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Abstract. Software architecture modeling is important for analyzing system qual-
ity attributes, particularly security. However, such analyses often assume that the
architecture is completely known in advance. In many modern domains, espe-
cially those that use plugin-based frameworks, it is not possible to have such
a complete model because the software system continuously changes. The An-
droid mobile operating system is one such framework, where users can install
and uninstall apps at run time. We need ways to model and analyze such archi-
tectures that strike a balance between supporting the dynamism of the underlying
platforms and enabling analysis, particularly throughout a system’s lifetime. In
this paper, we describe a formal architecture style that captures the modifiable
architectures of Android systems, and that supports security analysis as a system
evolves. We illustrate the use of the style with two security analyses: a predicate-
based approach defined over architectural structure that can detect some common
security vulnerabilities, and inter-app permission leakage determined by model
checking. We also show how the evolving architecture of an Android device can
be obtained by analysis of the apps on a device, meaning that the architecture can
be amenable for use throughout the system’s lifetime.

1 Introduction

Software architecture modeling is an important tool for early analysis of quality at-
tributes. Architecture analysis of run-time quality attributes such as performance, avail-
ability, and reliability can increase confidence at design time that quality goals will be
met during implementation. Component and connector view architectures are especially
important to reason about the desired run-time qualities of the system.

Architecture analysis of security involves understanding the information flow through
an architecture to uncover security related issues such as information leakage, privilege
escalation, and spoofing. Many of these run time analyses assume the existence of com-
plete architectures of the system being analyzed, and in the case of security analysis,
knowledge of the entire information flow of the system.

However, in many modern systems, architectures can evolve and change at run time,
and so new paths of communication, and thus new vulnerabilities, can be introduced
into these systems. A critical example of this is software frameworks, which are used in



the commercial sector and increasingly in the defense sector as well. Frameworks offer
a means for achieving composition and reuse at scale — frameworks can be extended
with plugins during use. Examples of such frameworks include mobile device software,
web browser extensions, and programming environments. The mobile device arena,
in particular the Android framework, is an interesting case. The Android framework
provides flexible communication between apps (plugins that use the framework) that
allows other apps to provide alternative core functionality (such as browsing, SMS, or
email) or to tailor other parts of the user experience. However, this flexibility can also
be exploited by malicious apps for nefarious purposes. We need ways to analyze the
architectures of these systems, in particular for security properties.

Like many of these frameworks, the architectures of the software of Android devices
exhibit a number of challenges when it comes to modeling and analysis of security
properties: (1) the system architectures evolve as new apps are installed, activated, and
used together; (2) the architectures of each app, while conforming to a structural style,
are constructed by independent parties, with differing motivations and tradeoffs, (3)
there are no common goals for a particular device.

This means that security needs to be reanalyzed as the system changes. In particular,
we need to be able to do analysis over a good model that is abstract enough to be
tractable, yet detailed enough to support analysis. And so there is a question of how to
specify the new evolved architecture, and at what level of abstraction. We also need a
way to derive the architecture from the system itself, so that throughout the software’s
lifecycle we can perform the analysis when we know all the communication paths.

In this paper, we describe an architecture style for Android that supports run-time
analysis of security. We show how instances of this style can be derived from An-
droid apps to specify an up-to-date architecture of the entire software on an Android
device. We also give examples of two kinds of security analysis that is supported for
this style — constraint-based analysis that detects the presence of a category of threats
commonly known as STRIDE [21], and a model-checking approach that determines
potentially vulnerable communication pathways among apps that may result in leakage
of information and permissions.

This paper is organized as follows: In Section 2 we introduce Android, and discuss
work on architecture modeling of Android and architecture-based security analysis.
Building on this, we define the requirements for an architecture style for Android se-
curity analysis in Section 3 and then describe the Acme architecture style in Section 4.
We describe how to automatically derive instances of this style from Android apps in
Section 5. Section 6 describes two security analyses using this architectural abstraction.
In Section 7, we show how long it takes to discover the architecture of a number of dif-
ferently sized apps available in the play store. We conclude with discussion and future
work in Section 8.

2 Background and Related Work

In this section, we first provide an overview of Android to help the reader follow the
discussions that ensue. We then provide an overview of the prior work in architectural
modeling and analysis, particularly with respect to the security of Android.
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2.1 Introduction to Android

Android is a popular operating system for mobile devices, like phones, tablets, etc.
It is deployed on a diverse set of hardware, and can be customized by companies to
provide additional features. Android is designed to allow programs, known as apps, to
be installed on the device by end users. From an operating system perspective, An-
droid provides apps with communication mechanisms and access to underlying device
hardware and services, such as telephony features.3 Furthermore, it allows end-user
extension in the form of installing additional apps that are provided by third parties.
The provision of explicit communication channels between apps allows for rich app
ecosystems to emerge. Apps can use standard apps for activities such as web browsing,
mapping, telephony, messaging, etc., or they can be flexible and allow third party apps
to handle these activities. Because security is a concern in Android, apps are sandboxed
from each other (using the Unix account access control where every app has its own
account), and can only communicate through the mechanisms provided by Android.

An app in Android specifies in a manifest file what activities and other components
comprise it. In this manifest, activities further specify the patterns of messages that
they can process. Furthermore, apps specify the permissions that they require that need
to be granted by users when they install the apps.4 Activities in an app communicate
by sending and receiving messages, called intents. These intents can be sent either to
other activities within the app, or to activities that belong to other apps. There are two
forms of intents: explicit and implicit. For explicit intents, activities specify the activity
that should receive and process the intent – which can be either inside the app or in
another app. For implicit intents, an activity does not specify the recipient. Instead,
Android conducts intent resolution that matches the intent with intent patterns specified
by activities. So, for example, an activity can request that a web page be displayed,
but can allow that web page to be displayed by third party browsing apps that may be
unknown at the time the requesting app is developed.

While intents provide a great deal of flexibility, they are also the source of a number
of security vulnerabilities such as intent spoofing, privilege escalation, and unauthorized
intent receipt [9]. To some degree, these vulnerabilities can be uncovered by analyzing
apps and performing static analysis to see how intents are used, what checks are made
on senders and receivers of intents, and so on [20]. However, Android is an extendable
platform that allows users to dynamically download, update, and delete apps that makes
a full static analysis impossible.

2.2 Security Architecture Modeling and Analysis

Many security vulnerabilities in Android result from unexpected interactions between
components. Architecture is the right place to identify these interactions because these
interactions can be evaluated at the system level. Many of the communication pathways
of interest are specified at the component level within the manifest definition of the

3 https://developer.android.com/
4 The most recent version of Android, Marshmallow, has a more dynamic form of permission

granting, which allows permissions to be granted as they are needed dynamically by the app.
This paper discusses the Lollipop version of Android.
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app, or can be extracted by analyzing calls in its bytecode (described in Section ??).
Therefore, we can focus our analysis for security at the architecture level - analyzing at
the level of components and interactions.

Specialized ADLs geared towards security analysis exist. These tend to focus on
specific security properties, such as access control [19,11]. In [2] UML OCL-type con-
straints are used to specify constraints that uncover threats specified by the Common
Attack Pattern Enumeration and Classification (CAPEC)5 and provide tool support for
security risk analysis during the system design phase using system architecture and
design models.

The key point of these architectural security analyses is that the communication
pathways need to be represented at the architecture level, along with the security rele-
vant properties needed for analysis. However, all of this work relates to security design,
and so there is an assumption that a complete architecture is analyzed. Furthermore,
the approaches discussed rely on developers to implement the systems according to the
architecture. To enable these kinds of analysis on Android requires being able to extract
the properties relevant to security from Android apps.

In [3], the authors study the extent to which Android apps employ architectural
concepts in practice. This study provides a characterization of architectural principles
found in the Android ecosystem, supported with mining the reverse-engineered archi-
tecture of hundreds of Android apps in several app repositories. We build on this work
to provide automated architectural extraction from Android devices.

SEPAR [6] provides an automatic scheme for formal synthesis of Android inter-
component security policies, allowing end-users to safeguard the apps installed on their
device from inter-component vulnerabilities. It relies on a constraint solver to synthe-
size possible security exploits, from which fine-grained security policies are derived.
Such fine-grained, yet system-specific, policies can then be enforced at run time to pro-
tect a given device.

Bagheri et al. conduct a bounded verification of the Android permission protocol
modeled in terms of architectural-level operations [4]. The results of this study reveal a
number of flaws in the permission protocol that cause serious security defects, in some
cases allowing the attacker to entirely bypass the Android permission checks.

SECORIA [1] provides security analysis for architectures and conformance for sys-
tems with an underlying object-oriented implementation. Through static analysis, a data
flow architecture of a system is constructed, as in instance of a an data flow architecture
style defined in Acme [17]. Components are assigned a trust level and data read and
write permissions are specified on data stores. Security constraints particular to a soft-
ware systems (such as that “Access to the key vault [. . . ] should be granted to only se-
curity officers and the cryptographic engine”) are captured as Acme constraints. In [15],
the DFD style was extended with constraints for analyzing a subset of the STRIDE vul-
nerabilities. We show in Section 6.2 how this latter approach can be applied to analyze
vulnerabilities in Android.

5 http://capec.mitre.org
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3 Modeling Requirements for Android

To evaluate the security of Android apps, the core Android architectural structures need
to be represented in a modeling language. Android app component types, such as ac-
tivities, services, and content providers form the building blocks for all apps. Each An-
droid component type possesses properties that are critical for security assessment. For
example, activities can be designated as “exported” if they can be referenced outside
of the app to which they belong. Exported activities are a common source of security
vulnerabilities, thus a security-focused architectural model must include information
about whether an activity is exported. Android apps are distinct, yet they share many
commonalities necessary for app creation and interaction. A major consequence of this
design is that boundaries between apps are loosely defined and enforced. To identify
and evaluate potential security issues that emerge from app interaction on a device, all
apps and their connections deployed on the device must be made explicit in the archi-
tecture. Furthermore, because apps can be updated, installed, and removed during the
lifetime of the device, the architecture model must be flexible and easy to modify.

Since a significant number of Android security issues arise from unexpected inter-
actions between apps, modeling communication pathways between apps on a device
is perhaps the most critical requirement for security analysis. At the device level, each
individual app is essentially a subsystem that operates in the context of a larger, device-
wide ensemble. Apps are often designed to rely on other apps, many of which may not
be known at design time. For instance, if an app needs a mapping service, it does not
necessarily know which specific mapping service will be available at run time. An app
can be reasonably secure in isolation, but when evaluated in the presence of other apps,
it may contribute to critical security vulnerabilities.

Android’s intent passing system provides a common communication mechanism
to simplify inter-app communication. Android supports many intent passing modes,
such as asynchronous and synchronous delivery. However, Android’s intent passing
system includes additional semantics that can have different security implications. For
example, whether an intent is delivered to one specific component or broadcasted to
all components. Differences in intent passing semantics need to be made explicit in
an Android architecture style to enable analysis of common security issues that rely
on certain types of communication, such as intent or activity spoofing. Android app
components and connectors are organized in apps by configuring them via a manifest
file. The boundaries set in the manifest creates an important trust boundary and must be
explicit to evaluate data flowing in to, or out of, an app. To be complete, the architectural
style must support component-to-component interaction and inter-app communication.

Android permissions are another core mechanism used to prevent security-related
issues. Given the pervasive intent-based communication system, it is left to permissions
to control access and information flow between components. Android supports a wide
array of core permissions and provides ways to add new permissions. Due in part to the
nature of Android permission management, many security issues result from compo-
nents with insufficient privileges gaining access to privileged components and system
resources. The architecture modeling language must support Android privileges. Iden-
tifying security vulnerabilities often involves determining whether permissions can be
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subverted. Thus, permissions must be attached to various resources in a way that allows
them to be analyzed.

4 An Android Architecture Style

Based on the requirements above, we define a formal architectural model of the An-
droid framework in order to have a basis for modeling the structures and constraints in
Android, and to permit analysis of security vulnerabilities and exploits. To do this, we
have developed an architectural style in Acme [17], that represents intent interactions
and permissions in Android.

All components types specify a property that indicates the class that implements
them and the permission needed to access them, as well as whether they are exported
(or public) to other applications. The types of components are:

AcvtivityT: This component type specifies an activity within an app. Activities rep-
resent components in an app that have a user interface. Communicating with that
activity involves instantiating this user interface. Specified with the activity are the
intent patterns that it understands and can process, the intents that it sends, in addi-
tion to the the services and resources that it accesses. These latter communications
are all represented by distinct port types, as described below.

ServiceT: This component type specifies a service within an app. According to the
standard Android description, “a Service is an application component that can per-
form long-running operations in the background and does not provide a user inter-
face. Another application component can start a service and it will continue to run
in the background even if the user switches to another application. Additionally,
a component can bind to a service to interact with it and even perform interpro-
cess communication (IPC). For example, a service might handle network transac-
tions, play music, perform file I/O, or interact with a content provider, all from the
background.”6 Services have ports that specify the interfaces they provide and the
services they use.

ContentProviderT: Content providers encapsulate and manage data. They provide
mechanisms, such as read and write permissions, to manage security. Architec-
turally, we distinguish read and write permissions on the data provided by these
components.

BroadcastReceiverT: Broadcast receivers are components that receive system level
events, like phone boot completed or battery low. We model broadcast receivers as
distinct from activities because they can only receive a subset of intent types called
standard broadcast action.

Figure 1 gives an example of an instance of the style showing two apps: K9-email (at
the top) and PhotoStream. Each of the component types described above are represented
by the rectangle or hockey puck shape with a solid line. We describe the connectors and
how we represent apps below.

6 http://developer.android.com/guide/components/services.html
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Fig. 1. An architecture instance in Android that captures two apps on a device.

Component type definitions for the style are relatively straightforward to derive,
and are consistent with other work on modeling Android. However, port and connector
modeling, in addition to modeling apps themselves, presents some challenges.

4.1 Modeling Apps as Groups

So far we have discussed how we have modeled elements of an app, but not the app it-
self. Because most vulnerabilities occur with inter-app communication, and apps them-
selves specify additional information (e.g., which activities are exported or public), we
need a way to explicitly represent them. One way to do this would be via hierarchy:
make each app a separate component with a subsystem that is composed of the activ-
ities, services, etc. This would mean that we could represent a device as a collection
of App components, where the structure is hidden in the hierarchy. However, this com-
plicates security checking. Because the checking needs understanding of sources and
targets, and those sources and targets are activities and services (and not apps), any
analysis would inevitably need to traverse the hierarchy.

Alternatively, Acme has a notion of groups, which are architectural elements that
contain components and connectors as members. Like other architectural elements, they
can define properties and rules. So, we use groups t to model apps. The group defines
the permissions that an Android app has as a property. It then specifies its members
as instances of the component types described above. Rules check that member ele-
ments do not require permissions that are not required by the app itself, providing some
consistency checking. Groups naturally capture Android apps as collections of activi-
ties, services, content providers, etc., as well as the the case where communication can
easily cross app boundaries by referring directly to activities that may be external to
the app. Groups are shown in Figure 1 as dashed lines around the set of components
that are provided by the app. Furthermore, for security analysis, groups form natural
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trust boundaries – communication within the app can be trusted because permissions
are specified at the app level; communication outside the app should be analyzed be-
cause information flows to apps that may have different permissions. Therefore we also
capture the permissions that are specified by apps as properties of the group. An appli-
cation (group) specifies the set of permissions that an app is granted; activities specify
the permissions that are required for them to be used.

4.2 Modeling Implicit and Explicit Intent Communication

One of the key requirements for enabling security analysis with formal models is being
able to explicitly capture inter-app communication. All intents use the same underlying
mechanism, but the semantics of implicit vs explicit intents are markedly different.
Explicit intents require the caller to specify the target of the intent, and so are therefore
more like peer-to-peer communication. Implicit intents require apps that can process
the intent to specify their interest. Senders of the intent do not specify a receiver, and
instead Android (or the user) selects which of the interested apps should process it
through a process called intent resolution. This communication is more like publish
subscribe. Because these different semantics suffer different vulnerabilities, they need
to be separated in the style. In Figure 1 we can see one device-wide implicit intent bus
as the filled in long rectangle in the middle of figure. Elements from all apps connect to
this bus (the intent type and intent subscriptions are kept as properties on the ports of
connected components).

Explicit intents are modeled as point-to-point connectors (pairwise rectangular con-
nectors in Figure 1), where there is one source of the intent and one target. On the other
hand, we model implicit intent communication via publish subscribe. We model one
implicit intent bus per device. Implicit intents sent from components in all apps are
connected to this bus; publishers specify the kind of intent that is being published (i.e.,
the intents action), whereas subscribers specify the intent filter being matched against.
Different connector types for each intent-messaging type (i.e. explicit, implicit, and
broadcast) allow for more nuanced and in-depth reasoning about security properties.
For example, identifying unintended recipients of implicit intents is easier if implicit
intents are first order connectors.

Android also has a notion of broadcasts (intents sent to broadcast receivers in apps).
We did not define a separate connector for broadcasts because, for the purposes of secu-
rity analysis, broadcast communication is done by sending intents (though via different
APIs). Subscribing to broadcasts is also done by registering an intent filter, making both
the sending and receiving for broadcasts the same as for intents.

5 Architecture Discovery

For security analysis to be tractable for an extendable system such as Android, we
need to be able to derive the architecture from the system. Being able to do this means
that a tool can be provided to construct Android architectures incrementally, and is the
architecture is unique for each device. Figure 2 depicts the overview of our approach for
recovering the architecture of an Android system. Given a set of Android application
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packages (also known as APKs), our architecture discovery method is able to recover
the architecture of entire phone system. For this purpose, we leverage three components,
namely, Model Extractor, Template Engine, and Acme Studio.

Fig. 2. Overview of Android system architecture discovery

The model extractor relies on the Soot [22] static analysis framework to capture an
abstract model of each individual app. The captured model encodes high-level, static
structure of each app, as well as possible intra- or inter-app communications. To obtain
an app model, the model extractor first extracts information from the manifest, includ-
ing an app’s components, their types, permissions that the app requires, and permissions
enforced by each component to interact with that component. It also extracts public in-
terfaces exposed by each app, which are entry points defined in the manifest file through
Intent Filters of components. Furthermore, the model extractor obtains complementary
information latent in the application bytecode using static code analysis. This additional
information, such as intent creation and transmission, or database queries, are necessary
for further security analysis.

Once the generic model of an app (App Model in Figure 2) is obtained, the template
engine translates it to an Acme-based architecture. Our template engine, which is based
on FreeMaker library, needs a template (i.e., Acme Template in Figure 2) specifying the
mapping between the app’s extracted entities and the elements of Acme’s architecture
style for Android described in Section 4. The process of translating the app model
(input) to an app architecture in the Acme ADL (output) is described in Algorithm 1.

Algorithm 1 consists of multiple iterations over three elements of apps (i.e., com-
ponents, intents, and database queries) provided by the model extractor. It first iterates
over the components of an app (lines 2–10), and generates a component element whose
type corresponds to one of the four component types of Android (i.e., Activity, Service,
Broadcast Receiver, and Content Provider). The properties of the generated components
are set based on the extracted information from manifest (e.g., component name, per-
missions, etc.). If the type of a component is ContentProvider (line 5), a provider port
is added to the component. Moreover, if a component has defined any public interface
through IntentFilters (line 7), a receiver port is added and then, connected to the implicit
Intents bus port, defined in the very beginning of the algorithm.

Afterwards, Algorithm 1 iterates over the communication messages, or Intents, of
the given app model (lines 11–20). For the explicit Intents (line 12), two ports are added
to the sender and receiver components of the Intent message, and then, a connector is
generated to attach those ports. For implicit Intents (line 17), however, only one port
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Algorithm 1: Translating Covert Model to Acme ADL
Input: M : App model generated by COVERT
Output: A : App ADL in accordance with Acme style for Android

1 portbus = A.addConnector(ImplicitIntentBus)
2 foreach compM ∈M.components do
3 comp = A.addComponent(compM)
4 comp.setProperties(compM .getProperties())
5 if compM .type = ‘‘ContentProvider’’ then
6 comp.addPort(ContentProviderResponsePort)

7 if compM .IntetFilter 6= /0 then
8 portreceiver = comp.addPort(ImplicitIntentBroadcastReceivePort)
9 conn = A.addConnector(ImplicitIntentBroadcastReceive)

10 conn.attachPorts(portbus, portreceiver)

11 foreach IM ∈M.Intents do
12 if IM .type = ‘‘Explicit’’ then
13 portsender = IM .component.addPort(ExplicitIntentCallPort)
14 portreceiver = IM .target.addPort(ExplicitIntentResponsePort)
15 conn = A.addConnector(IntentCallResponseConnector)
16 conn.attachPorts(portsender, portreceiver)

17 else if IM .type = ‘‘Implicit’’ then
18 portsender = IM .component.addPort(ImplicitIntentBroadcastAnnouncerPort)
19 conn = A.addConnector(ImplicitIntentBroadcastAnnounce)
20 conn.attachPorts(portprovider, portbus)

21 foreach QM ∈M.DB Queries do
22 portcaller = QM .component.addPort(ContentProviderCallPort)
23 portprovider = QM .authority.getPort(ContentProviderResponsePort)
24 conn = A.addConnector(ContentProviderConnector)
25 conn.attachPorts(portcaller, portprovider)

is added to the sender component of the message, which is attached to the bus port,
already defined in line 1. Moreover, to capture data sharing communications, the algo-
rithm iterates over database queries (lines 21–25), and adds a port to the components
calling a ContentProvider. This port is then connected to the other port, previously de-
fined (line 6) for the called ContentProvider, which is resolved based on the specified
authority in the database query.

Finally, after translating app models of all APK files, generated ADLs are com-
bined and together with Architecture description of Android framework (Android Fam-
ily ADL) are fed into Acme Studio as the architecture of the entire system. This recov-
ered architecture is further analyzed for identifying flaws and vulnerabilities that could
lead to a security breach in the system.

6 Architecture Analysis of Android

We now describe how the Android-specific architectural models developed on top of
Acme can be analyzed using both inherent analysis capabilities of Acme, as well as
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external analysis capabilities that require an architecture model of the system as input.
To that end, we first describe two types of analyses supported innately by Acme: the
ability to evaluate the conformance of architectural models to constraints imposed by
the Android framework, and the ability to evaluate the architectural models against a
predefined set of security threats. We then describe an integration of Acme with an
external environment, called COVERT [5], that given an architectural representation of
software is able to employ model-checking techniques to detect security vulnerabilities.

6.1 Conformance Analysis using Acme

In Section 4 we described the characteristics of the style, which are essentially derived
from the constraints imposed by the Android framework on the structure and behavior
of apps. Given the properties associated with permissions, exports, and intent filters, it
is possible to describe well-formed architectures in this style via first order predicate
logic rules. For example,

– Permission use within apps is consistent, meaning that any component of an app
that has a permission must be declared also at the app level. This constraint is
defined for each application group.
invariant forall m :! AppElement in self.MEMBERS |

(hasValue(m.permission) −> contains (m.permission, usesPermissions));

– Explicit intent connectors should reference valid targets.
heuristic forall p in /self/components/ports:!ExplicitIntentCallPortT |

exists c:!AppElement in self.components |
c.class == p.componentReference;

– All implicit intents are attached to the global implicit intent bus.
invariant forall c1 :! IntentFilteringApplicationElementT in self.components |

size (c1.intentFilters) > 0 −> connected (ImplicitIntentBus, c1);

– Activities and services that are not exported by an app are not connected to other
apps.
invariant forall g1 :! AndroidApplicationGroupT in self.groups |

forall g2 :! AndroidApplicationGroupT in self.groups |
forall a1 :! IntentFilteringApplicationElementT in g1.members |

forall a2 :! AppElement in g2.members |
((a1 != a2 and connected(a1, a2) and !a1.exported) −> g1 == g2);

Using these rules, Acme is able to check the architecture of individual apps, as well
as a set of apps deployed together on an Android device. When used in a forward en-
gineering setting, where a model of an app is constructed prior to its implementation,
the analysis can find flaws early in the development cycle. When used in a reverse engi-
neering setting, where a model of an app is recovered using the techniques described in
Section 2, the rules can be applied to identify flaws latent in the implemented software.

6.2 Acme Security Analysis

Threats facing a system can be classified using STRIDE [21], which captures five differ-
ent kinds of threat categories: Spoofing, Tampering, Repudiation, Denial of Service, and
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Elevation of Privilege. According to the STRIDE model, a system faces security threats
when it has information or computing elements that may be of value to a stakeholder.
Such components or information are termed the assets of the system. Furthermore, most
threats occur when there is a mismatch of trust between entities producing and those
consuming the data. This approach conforms to the security level approach mismatch
idea proposed in [12,13] and used by others since then (e.g., [7,14]).

STRIDE is often applied in the context of a larger threat modeling activity where the
system is represented as a Data-Flow-Diagram. This representation is particularly use-
ful for evaluating Android security issues that emerge from unintended intent passing.
Viewing apps and the data they access as assets in terms of data flow exposes situations
when possibly sensitive data passes between apps in an insecure way. For each data
path between apps on a device, careful analysis can be performed to identify vulnera-
bilities, such as spoofing and elevation of privilege issues. Intent spoofing is a known
classes of threat common in Android systems that occurs when a malicious activity is
able to forge an intent to achieve an otherwise unexpected behavior. In one scenario the
targeted app contains exported activities capable of receiving the spoofed intent. Once
processed by the victim app can be leveraged to elevate the privileges of the malicious
app by possibly providing access to protected resources.

Acme provides the framework for reasoning about app security. The properties
needed to reason about these threats are present in terms of Android structures and
data flow concerns. For example, Acme handles inter-app communication and exposes
security properties about apps, such as whether they are exported and what permissions
they possess. With this information in the model, automatically detecting app arrange-
ments that may allow intent spoofing, information disclosure, and elevation of privilege
can be written as first order predicate constraints over the style. Consider Listing 1
which shows how information disclosure vulnerabilities are detected. Each application
group is assigned a trust level, based on the category of the app - for example, banking
and finance apps would be more trusted than game apps; apps from certain providers
like Google would have higher trust. The constraint specifies that if a source applica-
tion sends an implicit intent to a target application then the source applications trust
level must be lower than or equal to the recipient. These constraints for STRIDE are
consistent with the approach taken in [15] for general data-flow architectures.

rule noInfoDisclosure = heuristic
forall a1 :! ApplicationGroupT in self.GROUPS |

forall a2 :! ApplicationGroupT in self.GROUPS |
((a1 != a2) −>

(forall src :! ImplicitIntentBroadcastAnnouncerPortT in
/a1/members:!ApplicationElementT/ports:!ImplicitIntentBroadcastAnnouncerPortT |

forall activity :! ApplicationElementT in a2.members |
forall tgt :! ImplicitIntentBroadcastReceiverPortT in activity.ports |

(connected (src, tgt) and contains(src.action, tgt.intentFilters)) −>
a1.trustLevel <= a2.trustLevel));

Listing 1. Acme Constraint for Information Disclosure

This constraint (and others that are being checked) highlight potential pathways
of concern and may generate false positives. This is one reason why in the style we
specify the constraint as a heuristic (or warning), rather than as an invariant. These
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pathways would need to be more closely monitored at run time to determine whether
the information should be transmitted.

6.3 Integrating with COVERT Security Analysis

In this section, we demonstrate how we can leverage the architectural models devel-
oped on top of Acme, together with external analysis environments that require such
a model, to evaluate the security posture of an Android system. One such external en-
vironment employed in our research is COVERT [5], which provides the ability to au-
tomatically check inter-app vulnerabilities, i.e. whether it is safe for a combination of
applications—holding certain permissions and potentially interacting with each other—
to be installed simultaneously.

COVERT assumes that system architectural specifications are realized in a first-
order relational logic [18]. Such specifications are amenable to fully automated yet
bounded analysis. Specifically, the set of architectural models recovered by parsing in-
dividual apps installed on the device (cf. Section ??) are first automatically transformed
into the Alloy [18], a specification language based on relational logic, with an analysis
engine that performs bounded verification of models.

The COVERT formal analyzer, in addition to extracted app specifications, relies on
two other kinds of specifications: a formal architectural model of the Android frame-
work and the axiomatized inter-app vulnerability signatures. Recall from Section 4,
the architectural style for Android framework specification represents the foundation
of Android apps. Our formalization of these concepts includes a set of rules to lay this
foundation (e.g., application, component, messages, etc.), how they behave, and how
they interact with each other. We regard vulnerability signatures as a set of assertions
used to reify security vulnerabilities in Android, such as privilege escalation. All the
specifications are uniformly captured in the Alloy language. As a concrete example, we
illustrate the semantics of one of these vulnerabilities in the following. The others are
evaluated similarly.

assert privilegeEscalation{
no disj src, dst: Component, i:Intent|

(src in i.sender) &&
(dst in src.ˆtransitiveIPC) &&
(some p: dst.app.usesPermissions |

not (p in src.app.usesPermissions) &&
not ((p in dst.permissions) ||(p in dst.app.appPermissions)))

}

Listing 2. Specification of the privilegeEscalation assertion in Alloy.

Listing 2 presents an excerpt from an Alloy assertion that specifies the elements
involved in and the semantics of the privilege escalation vulnerability. In essence, the as-
sertion states that the victim component (dst) has access to a permission (usesPermission)
that is missing in the src component (malicious), and that permission is not being en-
forced in the source code of the victim component, nor by the application embodying
the victim component. As a consequence, an application with less permissions (a non-
privileged caller) is not restricted to access components of a more privileged application
(a privileged callee) [10].
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Table 1. Performance of architecture extraction

Kilo # of # of total # of Average Extraction
Apps # of Components Explicit Components & Time (Sec)

Instructions Activity Service Receiver Provider Connectors Connectors Model ADL

Amwell 1516 64 2 1 0 51 118 59.16 0.69
Audible’s Audiobooks 2016 48 8 13 1 24 94 77.78 0.71
Baby Tracker 2163 79 30 46 4 90 249 84.76 0.73
BetterBatteryStats 388 9 3 6 0 23 41 18.43 0.66
Book Catalogue 119 21 0 0 1 21 43 31.93 0.65
K-9 Mail 835 28 7 5 3 38 81 33.48 0.63
LINE 2575 217 13 6 2 21 259 103.52 0.89
Mileage 128 50 2 2 1 18 73 9.54 0.62
MS Office Mobile 601 29 4 2 1 11 47 29.72 0.65
OctoDroid 447 53 0 0 0 31 84 21.88 0.64
Photo Grid 1771 54 5 3 1 32 95 73.42 0.74
SwiftKey 1159 35 13 19 0 16 83 49.28 0.68
Tango 1859 73 10 10 1 6 100 67.6 0.82
TextNow 1957 42 9 11 2 14 78 99.94 0.72
TouchPal 1538 88 6 16 0 81 191 66.19 0.78

The analysis is conducted by exhaustive enumeration over a bounded scope of
model instances. Here, the exact scope of each element, such as Application and Com-
ponent, required to instantiate each vulnerability type is automatically derived from the
system architectural model. If an assertion does not hold, the analyzer reports it as a
counterexample, along with the information helpful in locating the root cause of the
violation. A counterexample is a certain model instance that makes the assertion false,
and encompasses an exact scenario (states of all elements, such as components and
Intents) leading to the violation.

7 Performance analysis

To evaluate the performance of our approach, we randomly selected and downloaded
15 popular Android apps of different categories from the Google Play repository, and
ran the experiments on a computer with 2.2 GHz Intel Core i7 processor and 16 GB
DDR3 RAM. We handled uncontrollable factors in our experiments by repeating them
33 times, the minimum number of repetitions needed to accurately measure the average
execution time overhead at 95% confidence level. Table 7 summarizes the performance
measurements for the architecture discovery process described in Section 5, divided
into the time of model extraction and ADL generation.

Since the source code of the analyzed applications were not available, the (kilo)
number of smali 7 instructions is used as the metric for the size of each app. Moreover,
as an architectural metric, the number of components, categorized by the their types
(i.e., Activity, Service, Broadcast Receiver, Content Provider), and explicit connectors,
are provided in this table.

As shown in Table 7, there is a relationship between size (number of instructions)
of the apps and model extraction time – apps with more instructions require more time
to capture their model. On the other hand, the performance of the second part of the
process, i.e., translating the extracted model to ADL, depends on the total number of
components and connector, as the translator iterates over each of them.

7 http://baksmali.com
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8 Discussion and Future Work

In this paper, we have described an architectural style for Android that can be used to
do various kinds of analysis to uncover, in particular, vulnerabilities related to inter-app
intent communication. One of the challenges of doing such analysis in this domain is
the dynamic nature of Android, and the need to understand all the related information
flows. Statically forbidding certain kinds of information flows works against flexibility
and prevents many valid, non-threatening communications from occurring. This paper
provides a hybrid approach where the architecture (and information flows) of the system
can be derived from analysis of the code and then can be used to analyze potential
vulnerabilities on a per device basis.

The static analysis described in this paper identifies possible places where vulner-
abilities may exist, but not actual exploits that may happen at run time. This requires
combination of static analysis and run time analysis to capture and prevent actual ex-
ploits. Hence, static analysis can inform the run time analysis of parts of the system that
need monitoring and deeper analysis, for example to examine the contents of intents, in
order to determine if an exploit exists.

Our approach can be used to facilitate this combination of static and dynamic anal-
ysis. We are in the process of connecting our tool-suite to the Rainbow self-adaptive
framework [16,8], where the vulnerabilities found statically can be used to choose adap-
tation strategies to change communication behavior in Android. We are in the process
of addressing some of the challenges in integrating these two approaches, including
disconnected operation and prevention of behaviors rather than reaction to behaviors.

For the modeling aspect, we have concentrated on understanding the architecture
of the applications on the device, and those communication pathways. However, many
apps are part of a large ecosystem with diverse back ends that are not on the device.
Many of these apps may have information flows that affect security. How we model
this, and how much, is an area of future work. Furthermore, security aspects are context-
sensitive in the domain of mobile devices, where the degree of analysis required might
change depending on whether devices are, for example, being used in a public coffee
bar, or at home.
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