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ABSTRACT
Why is it so difficult to build self-adaptive systems by reusing ex-
isting self-adaptation services and frameworks? In this paper, we
argue that one possible explanation is that there is a fundamen-
tal mismatch between the adaptation needs of modern software
systems, and the architectural models and adaptation mechanisms
supported by current self-adaptation solutions. We identify and
discuss the main reasons leading to this problem by looking into a
number of representative self-adaptation solutions that have been
proposed in recent years, including open source frameworks and
cloud-based services, from two perspectives: generality, i.e., their
ability to support a variety of architectural models and adaptation
mechanisms, and reusability, i.e., their ability to be reused without
requiring substantial effort from software developers.We thenmake
the case that recent industry progress toward microservices and
their enabling technologies can open the way to the development
of more general and reusable self-adaptation solutions.
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1 INTRODUCTION
After a relatively slow start, research in the field of self-adaptation
has picked up significantly in recent years and is now following the
regular path of maturation [18]. Based on an analysis of the field
from the perspective of Redwine and Riddle’s Software Technology
Maturation (STM) model [14], Weyns argues that self-adaptation
is currently in the phases of internal and external enhancement
and exploration, where the technology is used to solve concrete
real problems involving a growing community to show evidence
of its value and applicability [18]. Still according to Weyns, pop-
ularization, which is the next (and last) phase in the STM model,
is in a very early stage for self-adaptation, with only a handful of
self-adaptation techniques, such as automated server management,
cloud elasticity, and automated data center management, having
thus far found their way to industrial applications [18].

This contrast between the state-of-the-art and the state-of-the-
practice is even more evident for self-adaptation models and tech-
niques that deal with multiple quality attributes, e.g., performance,
reliability and cost [11], or address more abstract quality concerns,
such as security [21]. Since offering multiple quality guarantees, in-
cluding security, is a basic extra-functional requirement of any mod-
ern software system, the question of why existing self-adaptation
models and techniques have been largely neglected by practitioners
deserves further attention.

One possible explanation might be that engineering production-
quality self-adaptive software systems requires far more advanced
adaptation models and techniques than what is currently available
in the state-of-the-art [17, 19]. Another possibility is that current
software engineering methods and tools lack adequate support
for implementing practical self-adaptation solutions. For instance,
Yuan et al. [20] claim that the lack of engineering principles and
repeatable methods for the construction of self-protecting soft-
ware systems has been a major hindrance to their realization and
adoption by industry. While both reasons are likely to be true,
at least to a certain extent, neither of them explains why exist-
ing architecture-based self-adaptation frameworks, such as Rain-
bow [6], K8Scalar [4] and ActivFORMS [7], which were originally
developed with reusability as a key design concern, are not more
widely adopted in practice.
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Figure 1: Znn’s N -tiered architecture (extracted from [3]).

In this paper, we argue that one major problem hindering a
more systematic reuse of existing self-adaptation solutions is that
there is a fundamental mismatch between the adaptation needs of
modern software systems, and the architectural models and adapta-
tion mechanisms supported by current self-adaptation services and
frameworks. We discuss the main reasons leading to this problem
by looking into a number of architecture-based self-adaptation ser-
vices and frameworks that have been proposed in recent years from
two design perspectives: generality, i.e., their ability to support a
variety of architectural models and adaptation mechanisms, and
reusability, i.e., their ability to be reused without requiring sub-
stantial effort from system developers. We frame our discussion by
identifying multiple patterns for adding self-adaptation capabilities
into existing systems. We then make the case that recent industry
progress toward the microservices architectural style [10] and its
enabling technologies can open the way to the development of
more general and reusable self-adaptation solutions.

2 MOTIVATING EXAMPLE
To illustrate the issues involved in reusing existing self-adaptation
solutions to add self-adaptation capabilities to an existing system,
we will use Znn as an example. Znn is a simple web-based news
service originally implemented as a benchmark system for Rain-
bow [3]. As Figure 1 indicates, Znn.com N -tiered architecture is
composed of a load balancer and a pool of replicated web servers,
some of which may be inactive. The load balancer balances client
requests across the pool of replicated servers. The servers deliver to
the clients static files (e.g., images and videos), as well as dynamic
content (e.g., news populated from periodically-updated sources).

To extend Znn with self-adaptation capabilities, we consider the
following adaptation needs:

Capacity It should be possible to dynamically adjust the num-
ber of active replicated servers.

Fidelity It should be possible to dynamically adjust the fidelity
level of the content provided by servers to the clients. For
instance, servers could be dynamically configured to provide
different levels of content ranging from full multimedia (i.e.,
including all images and videos) to static text.

Protection It should be possible to dynamically enable protec-
tion mechanisms so that the service can protect itself against
external attacks. For instance, the service may force clients

Figure 2: MAPE-based self-adaptation architecture.

to reauthenticate or pass a Turing test using a Captcha verifi-
cation mechanism. Also, the service may blacklist or throttle
the requests received from suspicious clients based on their
IP addresses.

A self-adaptive version of Znn can benefit from the adaptation
mechanisms put in place to satisfy the above needs to establish
quality tradeoffs across multiple extra-functional dimensions, such
as performance, cost, security, and user-experience. For example,
increasing the number of active servers is likely to improve per-
formance and make the service more resilient to Denial-of-Service
(DoS) attacks. However, this also increases the service’s operational
cost. Alternatively, performance can be improved with no extra
cost by only reducing content fidelity, but at the expense of user
experience. Finally, forcing clients to reauthenticate or pass a Tur-
ing test may improve security, but also may negatively affect user
experience and performance.

3 ARCHITECTURE-BASED
SELF-ADAPTATION

A system is self-adaptive if it can reflect on its behavior at runtime
and change itself in response to environmental conditions, errors,
and opportunities for improvement [15]. Typically, self-adaptation
capabilities are provided to some target system by adding a self-
adaptation layer that reasons about observations of the system’s
runtime behavior, decides whether the system is operating outside
its required bounds and what changes should be made to restore the
system, and effects those changes on the system. This form of self-
adaptation essentially involves adding a closed control loop layer
onto the system. Adaptive control consists of four main activities:
Monitoring, Analysis, Planning, and Execution (commonly referred
to as the MAPE loop [9]), as shown in Figure 2.

Classical control loops use models of target physical systems
to reason about control behavior. Similarly, self-adaptive software
requires models to reason about the self-adaptive behavior of a
system. Architecture models [16] represent a system in terms of its
high level components and their interactions (e.g., clients, servers,
etc.) reducing the complexity of the reasoningmodels and providing
systemic views on their structure and behavior (e.g., performance,
protocols of interaction, etc.). Much research in self-adaptive sys-
tems has therefore coalesced around using models of the software
architecture of systems as the basis of reasoning about behavior
and control, collectively termed architecture-based self-adaptive
systems [11].
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3.1 Generality vs. Reusability in Self-Adaptive
Systems

Many types of architectural models have been used to manage the
behavior of self-adaptive systems across multiple levels of abstrac-
tion. Irrespective of the architectural models used for that purpose,
the managed system inevitably has to be implemented or changed
in a way to accommodate the adaptation mechanisms required to
enable such models to be monitored and acted upon by the control
loop layer. For example, to allow managing the fidelity level of the
content provided by a Znn server, that server must offer a mecha-
nism (such as an environment variable or a management API) for
allowing its fidelity level to be dynamically changed by the control
loop components. In addition, the control loop components must
be implemented with that specific fidelity tuning mechanism in
mind. This two-way dependency between the managed system and
the control loop layer is arguably the main challenge developers
face when integrating existing self-adaptation solutions with an
existing system [2].

To better decouple the managed system from its control loop
layer, some architecture-based self-adaptation frameworks, such
as Rainbow, use separate system-level components to support the
monitoring and execution activities of the MAPE loop, called probes
and effectors, respectively [6]. In this way, system developers are
only required to provide the probes and effectors necessary to mon-
itor and change the behavior of their system according to a given
architectural model, without the need to implement or change any
control loop component directly. However, while this solution cer-
tainly facilitates the reuse of the control loop components across
self-adaptive systems that share the same architectural model, and
of probes and effectors across systems that share the same adapta-
tion mechanisms, it is of little help when developers need to define
new self-adaptation strategies based on architectural models not
previously supported by the self-adaptation framework at hand.
In that case, developers have no option but to extend the existing
control loop components to support the new architectural models,
as well as to provide the probes and effectors necessary to enable
those models to be monitored and changed at runtime.

3.2 MAPE Design Space
As we have mentioned previously, in this paper we focus on two
specific design attributes of a self-adaptation solution, namely gen-
erality and reusability. By generality we mean the ability of a given
self-adaptation solution to support a variety of architectural models
and adaptation mechanisms. By reusability we mean the ability of
a given self-adaptation solution to be applied and reused across
systems and domains without requiring substantial development
effort from system developers. Clearly, those two attributes are in
conflict with each other, as the extension mechanisms that allow a
given self-adaptation solution to support new architectural models
and adaptation mechanisms usually make it difficult to reuse, while
a reusable self-adaptation solution that only supports a fixed set of
architectural models and adaptation mechanisms is by definition of
limited generality. Figure 3 depicts our view of the design space for
architecture-based self-adaptation solutions from the perspective
of the generality and reusability attributes. We chose to represent

Figure 3: MAPE design space as a power law distribution.

the design space as resembling a power law distribution, to reflect
the competing nature of those two attributes.

In the next section, we will overview some representative archi-
tecture-based self-adaptation solutions from the perspective of their
potential generality and reusability. To this end, we will group those
solutions based on their MAPE integration strategies or patterns,
and discuss whether and the extent to which each of them could
be (re)used to satisfy the three Znn’s adaptation needs described in
Section 2.

4 MAPE INTEGRATION PATTERNS
Most modern software systems are delivered into production by
relying on a number of infrastructure management services, such as
those provided by tools like Docker and Kubernetes. Those services
offer a number of benefits to both system developers and operators,
as they greatly accelerate the tasks of packaging, testing, deploying,
monitoring, and operating system components across multiple exe-
cution environments (e.g., staging, canary release, production) [5].
In this paper, we refer to those infrastructure services as belonging
to the infrastructure layer.

Despite their increasing popularity in recent years, infrastructure
tools such as Kubernetes have not (yet) fully embraced more sophis-
ticated self-adaptation models, i.e., architectural models involving
multiple quality dimensions and multiple resource types, as found
in Rainbow as well as in many other research-based self-adaptation
frameworks. For this reason, the question of how to better integrate
existing research-based self-adaptation solutions within the con-
text of existing industry-driven infrastructure management tools
remains to be properly addressed by both the industry and research
communities. Some early work in that direction will be discussed
next.

4.1 System-Level MAPE Pattern
This pattern deploys all MAPE components as part of the system
layer (see Figure 4). Indeed, from the perspective of infrastructure
operators, all MAPE components are seen as an integral part of
the managed system’s architecture. This pattern is used by all tra-
ditional self-adaptation solutions that were originally developed
without current infrastructure technologies in mind, as is the case
of Rainbow.
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Figure 4: System-Level MAPE pattern.

Self-adaptation solutions that follow this pattern are highly gen-
eral, as all MAPE components are fully accessible to system develop-
ers. This means that developers are free to change or extend those
components to support any architectural model and adaptation
mechanism of interest. For example, Rainbow natively supports
the three Znn’s adaptation described in Section 2, and has been
further extended to support other types of architectural models and
adaptation mechanisms [2, 15].

The System-Level MAPE pattern does not fare well in terms of
reusability though. The fact that all MAPE components are available
at the system level also implies that it is up to system developers to
test, deploy, monitor and operate them at runtime, alongside the
other components that make up the managed system’s architecture.
This increases the developers’s responsibility, requiring a great
deal of effort from them in order to integrate those components
into their system’s architecture. Another drawback of this pattern
is that it may refrain developers from reusing potentially more
effective MAPE services provided at the infrastructure layer (e.g., a
native autoscaling service) if similar services are also part of the
self-adaptation solution being reused at the system layer.

4.2 Infrastructure-Level MAPE Pattern
In contrast to the System-Level MAPE pattern, this pattern deploys
all MAPE components at the infrastructure layer (see Figure 5).
Therefore, with this patternMAPE services are fully integrated with
other infrastructure services. Examples of self-adaptation solutions
that follow this patterns include AWS Auto Scaling, which provides
a rule-based reactive autoscaling service for systems deployed in
the Amazon cloud, and Horizontal Pod Autoscaler (HPA), which
provides a similar service for Kubernetes.

MAPE services provided at the infrastructure level are fully man-
aged by the infrastructure management software. This makes them
very easy to configure and reuse, as the managed system is required,
by design, to comply with the runtime model imposed by the un-
derlying infrastructure. On the other hand, since those services
are not fully visible at the system level, developers are provided
with only a fixed set of (possibly configurable) architectural models
and adaptation mechanisms, i.e., those natively supported by the
infrastructure management software at hand, which diminishes
their generality. For example, both AWS Auto Scaling and HPA
only support adding/removing replicas to/from a replicated service
based on user-defined scalability rules. In that regard, both solu-
tions could easily be reused to implement Znn’s Capacity need, as

Figure 5: Infrastructure-Level MAPE pattern.

long as the service itself is packaged and deployed in adherence
to the AWS’s and Kubernetes’s runtime models, respectively. Nev-
ertheless, those two solutions would be of no use to implement
Znn’s Fidelity and Protection needs, as their adaptation models are
confined to manage a single type of resource, i.e., service replicas.
Another issuewith this pattern is that, without proper configuration
support, infrastructure-level adaptation mechanisms are oblivious
to system-specific goals. So, having the infrastructure layer make
the right tradeoffs when adapting might be particularly problem-
atic when the infrastructure is shared by multiple systems with
disparate goals.

We note that both AWS and Kubernetes offer other infrastruc-
ture services that could be useful to implement some of the attack
mitigation capabilities mentioned as part of Znn’s Protection need.
However, those services are not currently managed by any self-
adaptation service provided by either AWS or Kubernetes, and, as
such, must be manually enabled/disabled by system developers.

4.3 Cross-Layer MAPE Pattern
This pattern offers a tradeoff between the System-Level and Infra-
structure-Level MAPE patterns, by deploying MAPE components
across both layers (see Figure 6). The idea is to extend the basic
MAPE services provided by the underlying infrastructure with
more sophisticated MAPE services provided at the system layer. In
this way, MAPE services at the infrastructure layer are completely
unaware of MAPE services at the system layer, with the former
providing infrastructure-level sensing and actuating components
to the latter. An example would be a system-level protection ser-
vice that reuses basic monitoring and replica management services
provided at the infrastructure level. To implement this pattern,
system-level MAPE services must be designed targeting specific
infrastructure-level MAPE services. This strategy has the benefit of
avoiding redundant MAPE services being deployed at both layers.
The downside is that the implementation of system-level MAPE
services becomes tightly coupled to services of a particular infras-
tructure, which makes them hard to reuse across infrastructures.
An example of a self-adaptation solution that follows this pattern
is K8-Scalar [4], which implements a container-based autoscaling
service on top of the native replica management services provided
by Kubernetes.

Compared to the System-Level MAPE pattern, this pattern offers
higher reusability, as the part of the MAPE layer that is provided at
the infrastructure-level is completely hidden from system develop-
ers. On the other hand, this pattern offers lower reusability when
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Figure 6: Cross-Layer MAPE pattern.

compared to the Infrastructure-Level MAPE pattern, as developers
now have to take responsibility for those MAPE components that
are deployed at the system layer. In terms of generality, this pat-
terns fares better than the Infrastructure-Level MAPE pattern, as
developers have the option of implementing new architectural mod-
els and adaptation mechanisms by reusing or extending existing
system-level MAPE components, and worse than the System-Level
Integration pattern, as the types of models andmechanisms develop-
ers can create are to some extent coupled to infrastructure-specific
MAPE services.

With respect to adding self-adaptation capabilities to Znn, so-
lutions that follow this pattern could only be reused in the case
that they already provide MAPE services supporting the architec-
tural models and adaptation mechanisms necessary to satisfy Znn’s
adaptation needs. Otherwise, the missing models and mechanisms
would have to be implemented by extending existing system-level
MAPE services. In the case of the K8-Scalar system, its current
version only supports autoscaling services, which could thus be
reused to satisfy Znn’s Capacity need only—again, assuming that
Znn is adequately ported to run in Kubernetes.

4.4 MAPE Design Space Revisited
Figure 7 shows an updated version of the MAPE design space de-
picted in Figure 3, now annotated with the names of the threeMAPE
integration patterns and their respective self-adaptation solutions.
The name of each pattern/solution is located along the Generality
× Reusability curve, so that their position reflects their expected
degrees of generality and reusability, as discussed above.

Note that we did not position any of the four solutions within
the region highlighted in gray, which represents potential self-
adaptation solutions that manage to strike a good balance between
generality and reusability. We make the case for one such solution
in the next section.

5 LOOKING AHEAD: THE CASE FOR
SELF-ADAPTIVE MICROSERVICES

By examining the self-adaptation solutions discussed in the previ-
ous section, as well as their respective MAPE integration patterns,
it is clear that, from a reuse and ease-of-use perspective, the best

Figure 7: MAPE integration design space annotated with the
names of the three patterns and their solutions.

approach is to shield developers from all MAPE services by hav-
ing them fully provided and managed at the infrastructure level.
However, this approach also yields the lowest generality, as current
infrastructure management technologies support only a limited
set of architectural models and adaptation mechanisms. Instead
of splitting MAPE services across both the system and infrastruc-
ture layers, as prescribed by the Cross-Layer MAPE pattern, we
believe that a more effective approach to strike a balance between
generality and reusability in the design of self-adaptation solutions
is to widen the adaptation scope of the architectural models and
adaptation mechanisms natively supported at the infrastructure
level.

To achieve that goal, we argue that developers should adopt
modern, industry-driven design approaches, particularly the mi-
croservices architectural style [10] and their enabling container-
based technologies. The autonomous and independent nature of
microservices makes them especially attractive as the locus for
self-adaptation. Since a typical microservice is much smaller than a
traditional (monolithic) system, developers could easily and rapidly
develop alternative versions for each microservice, and have those
versions being automatically replaced at runtime upon specific
system conditions by the underlying infrastructure software. For
example, in the case of Znn, the code responsible for generating the
content to be sent to the clients could be refactored into a microser-
vice with multiple parallel versions, with each version generating
content with a different fidelity level. In addition, infrastructure
services could be configured in a way to automatically switch the
version of all instances of the content generation microservice,
depending on factors such as the system’s current workload or
operational cost. Indeed, container orchestration tools like Kuber-
netes already provide features to automatically roll out and roll back
service versions without the need to take the service down, which
could be easily reused to provided a version switch adaptation
service as described above. As the delay for adding new container-
ized instances to a service is considerably lower than when using
traditional VMs, such a version switch service could be further
integrated into an existing autoscaling service, thus offering a more
flexible adaptation solution to manage both the performance and
cost of each individual microservice.
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Figure 8: Microservices and Service Mesh MAPE pattern.

Another advantage of adopting microservices as first-class self-
adaptation entities is that system developers can directly benefit
from a fast growing number of (mostly open source) technologies
being released as part of the microservice ecosystem [8]. Of par-
ticular interest are the so called “service mesh” technologies, such
as Linkerd and Istio [1]. Those tools build on well-established reli-
able communication libraries, such as Finagle, and service proxies,
such as Envoy, to provide a fully manageable service-to-service
communication platform. Among the most useful features provided
by a service mesh are service discovery, load balancing, fault toler-
ance, traffic monitoring, message routing, and authentication and
access control [12]. For this reason, service mesh technologies are
well-suited to address most of the communication-related security
concerns raised as part of Znn’s Protection need. In that direction,
we envision a new MAPE integration pattern, where the system
layer is composed of a collection of containerized microservices
communicating exclusively via a service mesh (see Figure 8). In
that pattern, both the containerized microservices and the service
mesh are fully managed by MAPE services provided by the under-
lying infrastructure. Such a pattern would enable developers to
automatically manage any architecturally relevant aspect of their
systems, from the scalability, recovery and functional diversifica-
tion of individual services to the monitoring and protection of their
message-based interactions.

Ultimately, the Microservices and Service Mesh MAPE pattern
could provide a uniform architectural style to develop, deploy
and operate general-purpose self-adaptive distributed applications,
without developers having to go through the burden of implement-
ing or explicitly managing system-level MAPE services.

6 CONCLUSION
Despite the prevalence of architecture-based self-adaptation mod-
els and techniques in both academia and, more recently, industry,
self-adaptation as a general and reusable software solution is yet to
go mainstream. In this paper, we have argued that this is largely due
to limitations of existing self-adaptation services and frameworks,
which are either too difficult to reuse or too narrow in scope. In
that regard, we have made the case that adopting a microservice
architecture and its enabling technologies can be the way forward
to address some of those limitations. We hope this discussion con-
tributes to promote a better understanding of the interplay between
reusability and generality in current and future self-adaptation so-
lutions.

As future work, we plan to develop and empirically validate the
Microservices and Service Mesh MAPE pattern on top of Kuber-
netes. We are also investigating how Kubernetes could be extended
to support a general-purpose self-adaptation framework, such as
Rainbow. Another interesting line of research would be to relate the
three MAPE integration patterns to the different types of runtime
uncertainty that self-adaptation is usually used to deal with [13].
Finally, we envision applying the microservices style to decompose
the MAPE architecture itself, essentially turning each MAPE com-
ponent into an autonomous service that could be independently
deployed, updated and scaled.
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