Integration Beyond Components and Models:
Research Challenges and Directions

Ivan Ruchkin
Institute for Software Research
Carnegie Mellon University
Pittsburgh, PA 15213
iruchkin@cs.cmu.edu

Abstract—Recent research in embedded and cyber-physical
systems has developed theories and tools for integration of
heterogeneous components and models. These efforts, although
important, are insufficient for high-quality and error-free systems
integration since inconsistencies between system elements may
stem from factors not directly represented in models (e.g.,
analysis tools and expert disagreements). Therefore, we need to
broaden our perspective on integration, and devise approaches
in three novel directions of integration: modeling methods, data
sets, and humans. This paper summarizes the latest advances, and
discusses those directions and associated challenges in integration
for cyber-physical systems.

I. INTRODUCTION

Integration means bringing together elements of a system to
make them operate cohesively, and it is an essential concern in
software and systems engineering. It Integration differs from
composition in that integration often refers to bringing together
heterogeneous parts that were not necessarily intended to
work together, or have significant challenges in doing so [1].
Research on early model-based integration has been focused
on uniting components and models to create a system, and
connecting systems to create larger systems.

As software becomes more pervasive and embedded in
physical world, cyber-physical systems (CPS) place substan-
tially higher demands on integration [2]. First, complexity and
scale are leaping forward: what used to be a self-contained
open-loop temperature control is now expected to interact and
learn from a multitude of other devices in a smart home, or
even a network of smart homes. Second, interdisciplinary en-
gineering methods increase heterogeneity of system elements,
making integrating these elements harder. Finally, autonomy
requires systems to be aware of their own heterogeneity and
complexity, and this awareness needs to be preserved or even
constructed during integration.

How can existing integration approaches be augmented to
deal with these challenges? To respond to complexity and
heterogeneity of CPS, we argue for extending the scope of
concerns addressed by integration. Doing so will enable us to
better address issues that originate outside of components and
models. For example, human interaction plays an increasingly
prominent role due to CPS pervasiveness, and component
integration is largely oblivious of humans.

This paper focuses on a vision for broadening the scope
of integration in CPS. We first summarize recent advances in

integrating components and models. After, we examine three
ways in which integration can be extended: modeling methods,
data, and humans. We will discuss research challenges in each
of these directions.

II. ADVANCES IN INTEGRATION

In this paper we consider integration that is carried out early
in an engineering lifecycle, also known as virtual integra-
tion [3]. Such integration is performed on digital blueprints
of a system, and is often used in model-driven engineering.

Over the last decade, two directions of CPS integration
research have been significantly advanced: component inte-
gration and model integration. We will review each direction
individually in the remainder of this section.

A. Component Integration

Component integration! is among the most common types
of integration. It is applied to systems separated into a number
of components to reassemble these systems from them. This
approach permits flexible sourcing of components: manual im-
plementation, generation from specifications, or using black-
box off-the-shelf components [4].

One necessary element of component integration is the
interface of components, which usually takes the form of
ports. Interface specification determines relative expressive-
ness, computational complexity, and flexibility of using
that interface. Architecture Analysis and Design Language
(AADL) [4], for example, fixes several forms of component
interfaces based on data and events with simple semantics. It is
possible to extend that semantics with annexes (i.e., language
extensions) [4] with arbitrarily complex extra specifications
and analyses. Such annexes are an example of flexibility of
interface descriptions that enables customization to specific
CPS domains and models.

Another fundamental idea in component integration is
assume-guarantee reasoning. Each component makes assump-
tions about its inputs and environment, and provides guaran-
tees about its outputs. Assume-guarantee reasoning depends
on finding intermediate assumptions between components that
would conveniently isolate and simplify reasoning (e.g., see
the AGREE tool [5]). Usually the existence of such assump-
tions depends on system design (some system decompositions

!Integration of homogeneous components is often called composition.



are easier to reason about than others) and manual search for
assumptions, which is time-consuming in complex models.
This can be overcome by learning assumptions from models
using machine learning and abstraction refinement [6].

One major downside of component integration is the (in-
tended) difficulty of bypassing interfaces when more informa-
tion is needed than available in these interfaces. For example,
it is challenging to synchronize timing of components (which
use different clocks and execution paradigms) in a model
where interfaces contain only functional information, such
as algebraic relations between inputs and outputs. Another
shortcoming of component integration is that pervasive and
cross-cutting qualities are difficult to integrate on component
basis. For example, imagine we want to model energy usage.
One option is to augment each component with a behavioral
energy specification, but then their composition may lead to a
statespace explosion. Another option is to ignore component
boundaries in energy specifications, but then we risk losing the
benefits of having components in the first place. Therefore, we
would benefit from integration techniques beyond components
to overcome the above limitations.

B. Model Integration

Model integration? looks to bring together whole models
— not merely components. The crucial difference from com-
ponent integration is that the models may overlap in their
referents — system parts that they model. For instance, a system
controller (referent) may be represented with a mathematical
function in a control model and a periodic algorithm in a
discrete event model. Thus, in models there may not be, and
often is not, a clear separation of components, making model
integration a more complex problem.

A general recipe for integrating models relies on applica-
tion of two techniques: abstraction and relation. Abstraction
factors out crucial commonalities of models into a simplified
space (in a metamodel language, a universal format for all
models traces, etc.). Once that space is constructed, some
elements of models are related through it. That relation is
checked for consistency properties [7], or used for model
synthesis or transformation to achieve consistency [8].

Orthogonally to abstraction and relation, existing research
on CPS model integration can be put into two categories of
approaches: structural and behavioral. Structural approaches
rely on metamodeling, viewpoints [9], megamodeling [10],
and multi-view modeling [11] to create a higher-level ab-
straction of model structure to relate models. The relationship
between a model and its structural abstraction is a major factor
in what consistency qualities can be checked [7]. Behavioral
approaches focus on behaviors that models permits; if an
appropriate behavioral form is found, it can be used to relate
and connect behaviors in heterogeneous models. Examples of
behavioral approaches include heterogeneous simulation [12]
and verification with behavior relations [13].

2Integration of homogeneous models is often called model composition;
e.g., parallel composition of automata.

Model integration, although generally successful within its
scope, has one significant drawback: it is usually fragile with
respect to model changes. Once models are integrated, any
change to them makes engineers either re-integrate models
again (expending substantial effort), or potentially abandon
the integrated state (risking design errors) — both of which are
suboptimal. This issue leads us to examine ways of broadening
the scope of integration in the next section.

III. BEYOND COMPONENTS AND MODELS

Our motivation to extend integration beyond components
and models is two-fold. First, such extension would help us
handle integration problems at appropriate levels of abstrac-
tion; e.g., resolving a dependency between transformations
once is more effective than fixing every model inconsistency
that arises from it. Second, by integrating other engineering
artifacts (such as data) with modeling, we expect to improve
system designs during early modeling (e.g., achieve desired
sensitivity to noise in data).

Early attempts to extend the scope of integration can be
traced to integrating models on multiple levels. For example,
in the OpenMETA toolchain [14], models are integrated at
component level, tool level, and execution platform level.
In another example, a methodology for power design [15]
builds upon multiple types of specification, maps them to
behavior and reliability models, and performs different model-
based operations: component synthesis, control synthesis, and
simulation. Notice that news levels and abstractions handle
specific concerns and add synergistic value to model and
component integration. We would like to follow the same
pattern for extending integration.

In the remainder of this paper we explore three directions
that appear most promising for future research on CPS inte-
gration: modeling methods, data, and humans.

A. Modeling Method Integration

Modeling method integration broadens the scope from mod-
els to modeling methods — cohesive approaches to modeling.
A modeling method encompasses, in addition to a formalism
and a set of models created using it, referents in the system
that the method is applied to (e.g., concurrent threads for
process-algebraic modeling) and ways of transforming and
analyzing these models [16]. These ways are often embodied
in tools and semi-automated procedures, such as real-time
analyses [17]. Modeling method integration builds directly
upon model integration, and presents several novel challenges.

One challenge is combining modeling methods that have
the same or significantly overlapping referents. Should these
modeling methods address different properties of their shared
referent? Or should they use different approaches to get at
the same property of the referent? Or is there perhaps a more
complex synergy between them? An example of such synergy
is found in [15]: discrete modeling, given its more restrictive
semantics, synthesizes new controllers, while hybrid modeling
is used to optimize and verify, due to its richer semantics.



Modeling method integration intends to merge heteroge-
neous design processes, which can run into conflicts other-
wise [17]. Most modeling methods rely upon certain assump-
tions about the system and its environment; these assumptions
need to hold throughout the engineering lifecycle so that the
modeling method produces correct results. Hence, situations
when the assumptions are violated need to be detected and/or
avoided. Another challenging aspect is that modeling methods
often depend (sometimes circularly) on information from each
other to proceed. Scheduling analysis, for instance, constrains
possible hardware optimizations, and vice versa. Therefore,
sequencing the steps of modeling methods is crucial to their
conflict-free integration. One promising approach to managing
assumptions and dependencies in modeling methods is aug-
menting analyses and transformations with formal contracts
about assumptions, guarantees, and data dependencies [16].

Finally, the notion of dependency itself needs to be broad-
ened for modeling methods in cyber-physical systems. De-
pendencies arise between inputs and outputs of components,
between related requirements, between system properties in
different models [18], between procedures for analysis and
transformation, and between other artifacts and model ele-
ments. These dependencies may have effects on each other:
adding a component interface dependency may add or re-
move dependency between analytic operations executed on
that component model. Therefore, frameworks for integrating
dependency management need to be developed, accompanied
with automated tools to discover and resolve dependencies.

B. Data Integration

Data integration refers to treating datasets as explicit engi-
neering artifacts, and data analysis as a systematic lifecycle
activity. Often in model-driven engineering, performance and
testing data is considered a “second-class citizen” compared to
models. For instance, a dataset obtained from a hardware-in-
the-loop simulation can be used to evaluate and tune models.
However, it is relatively rare for datasets per se to be system-
atically analyzed (e.g., for anomalies), compared among each
other, and fed universally into system design.

One data integration challenge arises in model-driven en-
gineering that heavily relies on (semi-)automated proofs of
system properties (e.g., [19]). Systems engineering tools of-
ten fail to enable efficient proving processes. For instance,
incomplete proofs are artifacts-in-progress, so it is important
to support common patterns of proving (e.g., by recording
tactics in a special language [20]) and relating incomplete
proofs to other models (e.g., to find counterexamples). A more
ambitious goal is to support distributed proof engineering,
where several people work on different parts of the same
proof simultaneously. One reason that distributed proving
is hard is that traditional information hiding interferes with
using necessary premises (e.g., if they are encapsulated in a
component and not present in its interface). Another reason
is that a model is often tuned to simplify a particular proof,
and changing that model leads to invalidation of other proofs.

Providing tools to detect and alleviate such conflicts would
lead to better integration of proofs and models.

Another data integration challenge is merging data that
comes from heterogeneous sources: simulations, sensor
datasets, human feedback, past failures and incidents, etc. It is
common for data to be incomplete due to different collection
frequencies, fidelities, and various barriers to data collection.
This incompleteness needs to be reconciled to draw valid
conclusions from data [21]. For instance, missing data from
taxi passengers who do not use their phones creates a gap
between modeled and real taxi traffic [21].

The last challenge to mention in this section is using
data to inform system design more broadly. Typically, data
from a system is used to build more efficient controllers by
providing more sophisticated algorithms. For instance, a robot
navigating in a university hallway during a break between
classes, would use more conservative parameters for collision
avoidance, expecting multiple people coming from different
directions. Going forward, can we extend the use of data to
affect other elements of system design, such as placement of
probes and actuators, system architecture patterns to apply,
and priorities of validation and verification activities? Doing
so could drastically improve the efficiency of engineering
processes by automating design space exploration even further
and widening the envelope of low-risk system evolution.

C. Integration with Humans

Humans are involved in creation and operation of cyber-
physical systems in a variety of ways. For example, a person
may be a user of a smart home system, an obstacle to
avoid for an autonomous car, or an engineer who models a
spacecraft. Let us separate all potential roles of humans into
two categories: (i) external agents, such as users and operators,
who interact with a system at its runtime, and (ii) engineers,
such as designers and developers, who shape the system at its
design time. We will consider each category separately.

When treating humans as users and operators, it is tempting,
and often reasonable, to objectify these humans in a set of
impersonal and fixed requirements, such as functionality, tim-
ing, and reliability. However, as cyber-physical systems are in-
creasingly embedded in our society, these simple “interfaces”
between a human and a system are inadequate to capture
a complex reality. More parameters need to be considered
for accurate modeling, like attention span and knowledge of
humans [22], calling for better human models.

As we refine models of humans, two integration challenges
arise. First, most human models are context-sensitive, and
hence fragile when the context switches. For example, im-
portant variables for air traffic controllers may be different
than those for server farm operators. Hence, integration should
merge human models across related contexts, producing more
reliable and reusable domain-specific models. The second
challenge is to develop human models that can be practically
combined with system models. The issue is that complex hu-
man models, when used alongside system models for analysis,



are likely to lead to statespace explosion for reachability
analysis, model checking, and similar methods [23].

As engineers, humans think of systems from their subjective
viewpoints. In a multidisciplinary environment, such subjectiv-
ity can be rooted in education and training in some discipline,
thus leading to biased preferences of tools and techniques.
Also, many other subtle questions may lead to disagreements
among engineers: what aspects and qualities are important
in the system? What concepts and abstractions are best used
to describe the system? How should faults be identified and
resolved? These questions open up a vast field of inquiry into
human factors in modeling and integration — a field which so
far has been explored sparsely’. Understanding mismatches
between perspectives of engineers may shed light on deeper
reasons behind integration issues, and suggest novel solutions.

One research direction of interest is relating differences in
human training to consistency issues between models. For
instance, it is plausible that a controller implementation does
not match its model because software developers are not fully
aware of the theoretical assumptions (and implications of their
violation) of a controller, as described by control theory. Is
it possible to find so called “boundary concepts” [24] that
span several disciplines to establish reliable communication,
or can we discover “boundary holes” — situations where
interdisciplinary modeling repeatedly fails? If so, we can
create tool support for model-based integration by building
upon common successes and avoiding common pitfalls.

IV. CONCLUSION

This paper revisited the latest achievements in integration
of CPS components and models, and identified new directions
for integration research: modeling methods, data, and humans.
These directions are promising to overcome existing limita-
tions in integration, ultimately improving quality of cyber-
physical systems and reducing costs and effort of integration.

ACKNOWLEDGMENT

Ideas expressed in this paper are based on collaboration
with Dionisio de Niz, Sagar Chaki, Bradley Schmerl, David
Garlan, and other researchers at Carnegie Mellon University.

This material is based on research sponsored by AFRL and DARPA under agree-
ment number FA8750-16-2-0042, the U.S. Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, and through the Office of the Assistant Secretary of Defense
for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004. The
Software Engineering Institute is a federally funded research and development center. The
Systems Engineering Research Center (SERC) is a federally funded University Affiliated
Research Center managed by Stevens Institute of Technology. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Software Engineering
Institute, Carnegie Mellon, the AFRL, DARPA, the United States Department of Defense,
ASD(R&E), or the U.S. Government.

3See hufamo.compute.dtu.dk.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

A. Isazadeh, “Software Engineering: Integration,” Applied and Compu-
tational Mathematics, vol. 3, no. 1, pp. 56-66, 2004.

J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,
V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a Science of
Cyber-Physical System Integration,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 2944, Jan. 2012.

P. Feiler and J. Hansson, “System Architecture Virtual Integration: An
Industrial Case Study,” p. 48, 2009.

P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
Ist ed. Upper Saddle River, NJ: Addison-Wesley Professional, 2012.
M. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. Heimdahl, and
S. Rayadurgam, “Your What Is My How: Iteration and Hierarchy in
System Design,” IEEE Software, vol. 30, no. 2, pp. 54-60, Mar. 2013.
L. Feng, T. Han, M. Kwiatkowska, and D. Parker, “Learning-Based
Compositional Verification for Synchronous Probabilistic Systems,” in
Proc. of ATVA. Springer Berlin Heidelberg, 2011, pp. 511-521.

A. Bhave, B. Krogh, D. Garlan, and B. Schmerl, “View Consistency in
Architectures for Cyber-Physical Systems,” in 2011 IEEE/ACM Inter-
national Conference on Cyber-Physical Systems (ICCPS), Apr. 2011.
M. E. Kramer, M. Langhammer, D. Messinger, S. Seifermann, and
E. Burger, “Change-Driven Consistency for Component Code, Archi-
tectural Models, and Contracts,” in Proc. of the 18th CBSE, ser. CBSE
’15. New York, NY, USA: ACM, 2015.

M. Torngren, A. Qamar, M. Biehl, F. Loiret, and J. El-khoury, “In-
tegrating viewpoints in the development of mechatronic products,”
Mechatronics, 2013.

R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione, “On the
Composition and Reuse of Viewpoints across Architecture Frameworks,”
in Proc. of 2012 WICSA and ECSA, Aug. 2012, pp. 131-140.

J. Reineke and S. Tripakis, “Basic Problems in Multi-View Modeling,”
in Proc. of TACAS’14. Springer Berlin Heidelberg, Jan. 2014.

C. Ptolemaeus, System Design, Modeling, and Simulation using Ptolemy
Ii. Ptolemy.org, Sep. 2013.

A. Rajhans and B. H. Krogh, “Heterogeneous verification of cyber-
physical systems using behavior relations,” in Proceedings of the 15th
ACM HSCC. New York, NY, USA: ACM, 2012, pp. 35-44.

J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and E. Jackson,
“OpenMETA: A Model and Component-Based Design Tool Chain for
Cyber-Physical Systems,” in From Programs to Systems The Systems
Perspective in Computing, Grenoble, France, 2014.

A. L. S.-V. Pierluigi Nuzzo, “Methodology and Tools for Next Gener-
ation Cyber-Physical Systems: The iCyPhy Approach,” INCOSE Inter-
national Symposium, vol. 25, no. 1, pp. 235-249, 2015.

I. Ruchkin, “Towards Integration of Modeling Methods for Cyber-
Physical Systems,” in Proceedings of the Doctoral Symposium at MOD-
ELS 2015. Ottawa, Canada: CEUR-WS, 2015.

I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan, “Contract-based
Integration of Cyber-physical Analyses,” in Proceedings of the 14th
International Conference on Embedded Software, ser. EMSOFT ’14.
New York, NY, USA: ACM, 2014, pp. 23:1-23:10.

A. Qamar, “Model and Dependency Management in Mechatronic De-
sign,” Ph.D. dissertation, KTH Sweden, Stockholm, Sweden, 2013.

A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics, 2010th ed. Heidelberg: Springer, Sep. 2010.

N. Fulton, S. Mitsch, J.-D. Quesel, and A. Platzer, “KeYmaera X: An
Axiomatic Tactical Theorem Prover for Hybrid Systems,” in Proc. of
CADE-25, vol. 9195, Berlin, Germany, 2015.

D. Zhang, J. Zhao, F. Zhang, and T. He, “UrbanCPS: a cyber-physical
system based on multi-source big infrastructure data for heterogeneous
model integration,” in Proc. of ICCPS’15, 2015.

S. Rosenthal, M. Veloso, and A. K. Dey, “Learning Accuracy and
Availability of Humans Who Help Mobile Robots,” in Proceedings
of the 25th AAAI Conference on Artificial Intelligence, San Francisco,
California, 2011, pp. 1501-1506.

S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin, “Cyber Physical
System Challenges for Human-in-the-Loop Control,” 2013.

P. P. Mollinga, “The rational organisation of dissent: Boundary concepts,
boundary objects and boundary settings in the interdisciplinary study of
natural resources management,” ZEF Paper Series, Tech. Rep., 2008.



