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Abstract—Security features are often hardwired into software
applications, making it difficult to adapt security responses to
reflect changes in runtime context and new attacks. In prior
work, we proposed the idea of architecture-based self-protection
as a way of separating adaptation logic from application logic
and providing a global perspective for reasoning about security
adaptations in the context of other business goals. In this paper,
we present an approach, based on this idea, for combating denial-
of-service (DoS) attacks. Our approach allows DoS-related tactics
to be composed into more sophisticated mitigation strategies
that encapsulate possible responses to a security problem. Then,
utility-based reasoning can be used to consider different business
contexts and qualities. We describe how this approach forms the
underpinnings of a scientific approach to self-protection, allowing
us to reason about how to make the best choice of mitigation
at runtime. Moreover, we also show how formal analysis can
be used to determine whether the mitigations cover the range
of conditions the system is likely to encounter, and the effect of
mitigations on other quality attributes of the system. We evaluate
the approach using the Rainbow self-adaptive framework and
show how Rainbow chooses DoS mitigation tactics that are
sensitive to different business contexts.

I. Introduction

Software is increasingly called upon to execute in en-
vironments that are constantly changing. Variations in load,
resources, and user expectation mean that systems commonly
encounter situations that were unforeseen, or are at the bounds
of what they were originally designed for. Perhaps nowhere
is this more apparent than in the area of security, where
new system vulnerabilities are often discovered, and motivated
attackers are continually developing new exploits and threats.

Many current approaches to self-protection target the
perimeters of the software, and are limited in a number
of ways [24]. First, they are focused on particular lines of
defense, such as the network, hosts, or middleware on which
the software runs. This means that they are agnostic to the
specifics of the software system that they are attempting to
defend. Second, they focus on a specific category of threat or
a specific mitigation technique. They are therefore ignorant of
other security threats and approaches that may be employed,
as well as the broader business context in which the software
system exists, i.e., they are concerned with a particular aspect
of security and nothing else. Approaches that work at the
application level are often designed as part of the system and
are also more challenging to develop because of the complexity
of threat detection and mitigation.

Recent research in architecture-based self-adaptation has
addressed many of these issues in the context of system

properties such as performance and cost. In [25] we argued
that building on recent research in architecture-based self-
adaptation we could provide an approach to architecture-based
self-protection, which addresses many of these challenges by:

• separating the concerns of protection into a control layer
and the application logic of the system,

• using architecture models as a basis for reasoning about
detection and mitigation,

• providing a basis for in-depth security by using the archi-
tecture model to provide a global perspective on the context
of the system,

• allowing reasoning about security properties in the context
of other business properties, such as performance, cost,
availability, etc., and

• defining an engineering basis that eases the construction of
self-protection by promoting reuse of threat detection and
self-protection strategies among a number of systems.

While this vision is compelling in the context of security,
it lacks some scientific underpinnings to make it a reality.
In this paper, we detail how the formal underpinnings of
architecture-based self-adaptation, in the context of a frame-
work called Rainbow [12], lead to a scientific approach to
self-protection that allows us to reason about composition of
mitigation approaches, consideration of business context in
choosing tactics, coverage of mitigations, and the effect of
self-protection mitigations on other qualities of the system.
Specifically, in this paper we make the following contributions:

1) An approach that shows how to compose security-related
tactics into higher level strategies that capture particular
kinds of responses to a security problem.

2) The use of utility theory to compose these security strate-
gies with other business qualities to choose a response that
is sensitive to business context.

3) The use of formal verification using probabilistic model
checking to reason about the selection of strategies, as
well as about their effect upon security and other quality
objectives.

4) An illustration of the approach using denial of service
(DoS) of a simple news site as a candidate example.

This paper is organized as follows. In Section II we pro-
vide some background on architecture-based self-adaptation,
describe state-of-the-art in dealing with DoS attacks in exist-
ing systems, and describe related work in the area of self-
protection. The science behind our approach is described in
Section III. Znn, an example news site that we use throughout
the paper, is introduced in Section IV and then used in
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Section V to elaborate our approach and describe the formal
foundations of utility theory and decision theory in providing a
scientific basis for self-protection. In Section VI we show how
these formal underpinnings can be combined with probabilistic
model checking to reason about some properties of the self-
protection system. Our implementation and some simple ex-
periments are described in Section VII. Section VIII concludes
and points to areas of further research.

II. Background and Related Work

In this section, we provide an overview of: (i) model-
based adaptation and Rainbow, the framework for architecture-
based self-adaptation that we use as the basis of our approach,
(ii) existing approaches to DoS mitigation that we use for
deriving possible countermeasures, and (ii) related existing
work in adaptive DoS mitigation, as well as other more general
approaches in the context of self-protecting systems.

A. Architecture-based Self-adaptation

A system is self-adaptive if it can reflect on its behavior
at runtime and change itself in response to environmental
conditions, errors, and opportunities for improvement. In the
approach advocated by this paper, self-adaptation is provided
by adding a self-adaptation layer that reasons about observa-
tions of the runtime behavior of some target system, decides
whether the system is operating outside its required bounds and
what changes should be made to restore the system, and effects
those changes on the system. This form of self-adaptation
essentially consists in adding a closed control loop layer onto
the system. Adaptive control consists of four main activities:
Monitoring, Analysis, Planning, and Execution (commonly
referred to as the MAPE loop) [15]. Classical control loops
use models of target physical systems to reason about control
behavior. Similarly, self-adaptive software requires models to
reason about the self-adaptive behavior of a system. Archi-
tecture models [22] represent a system in terms of its high
level components and their interactions (e.g., clients, servers,
etc.) reducing the complexity of the reasoning models and
providing systemic views on their structure and behavior (e.g.,
performance, protocols of interaction, etc.). Much research in
self-adaptive systems has therefore coalesced around using
models of the software architecture of systems as the basis
of reasoning about behavior and control [17], [21], [9], [12],
collectively termed architecture-based self-adaptive systems.

Specifically, in the approach presented in this paper we
employ the Rainbow framework for architecture-based self-
adaptation to implement an adaptation layer based on the
MAPE loop paradigm (Figure 1). Probes extract information
from the target system that is abstracted and aggregated by
Gauges to update the architecture model. The Architecture
Evaluator analyzes the model and checks if adaptation is
needed, signaling the Adaptation Manager if so. The Adap-
tationManager chooses the “best” strategy to execute, and
passes it on to the Strategy Executor, which executes the
strategy on the target system via Effectors. The best strategy
is chosen on the basis of stakeholder utility preferences and
the current state of the system, as reflected in the architecture
model. The underlying decision making is based on decision
theory and utility [20]; varying the utility preferences allows
the adaptation engineer to affect which strategy is selected.

System
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Target SystemTarget System
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Fig. 1. The Rainbow Framework

Each strategy, which is written using the Stitch adaptation
language [6], is a multi-step pattern of adaptations in which
each step evaluates a set of condition-action pairs and executes
an action, namely a tactic, on the target system. A tactic defines
an action, packaged as a sequence of commands (operators). It
specifies conditions of applicability, expected effect and cost-
benefit attributes to relate its impact on the quality dimensions.
Operators are basic commands provided by the target system.

As a framework, Rainbow can be customized to support
self-adaptation for a wide variety of system types. Customiza-
tion points are indicated by the cut-outs on the side of the
architecture layer in Figure 1. Different architectures (and ar-
chitecture styles), strategies, utilities, operators, and constraints
on the system may all be changed to make Rainbow reusable in
a variety of situations. In addition to providing an engineering
basis for creating self-adapting systems, Rainbow also provides
a basis for their analysis. By separating concerns, and formal-
izing the basis for adaptive actions, it is possible to reason
about fault detection, diagnosis, and repair separately from
the behavior of the system. In addition, the focus on utility
as a basis for repair selection provides a formal platform for
principled understanding of the effects of repair strategies [5].

As we will show later, because Rainbow separates adapta-
tion logic from application logic, it is possible to reason about
application level security separately and to use utility theory
as a scientific basis for incorporating different business goals
to affect which adaptations are chosen.

B. Denial of Service Detection and Responses

Denial-of-Service attacks can be difficult to detect and
mitigate. A variety of factors influence detection, such as
the type of DoS attack, the number of clients carrying out
the attack, and the degree of service-provider instrumentation.
Often, DoS attacks are detected when the targeted server(s)
become unresponsive or crash. The alerting party is typically
a customer or upstream service provider or dedicated monitor-
ing service [13]. Low-bandwidth attacks, such as application
layer DoS attacks, can be especially hard to detect because
they exploit specific application vulnerabilities with specially
crafted traffic rather than by overwhelming system capacity.

There are two general approaches to mitigating a DoS
attack: absorb the excess traffic or suppress the source of
the traffic. Absorbing DoS traffic while maintaining service



requires having enough capacity to handle the DoS and le-
gitimate traffic without noticeable disruption. Essentially this
approach outguns the attack and may require large, highly
distributed networks to be effective [14]. Blocking traffic from
malicious hosts can stop an attack, but requires accurately
identifying attacker(s). In practice distributed-denial-of-service
attacks and host spoofing complicate identifying malicious
hosts. However, if the attackers can be identified, then blocking
them (a technique known as blackholing or blacklisting) can be
effective. In many organizations, blackholing is performed at
the service provider because they have the appropriate instru-
mentation in place to block malicious traffic [11]. If identifying
malicious hosts is problematic, it may be possible to suppress
them with Turing tests such as Captcha [23] or requesting
reauthentication, to determine if attacks are originating from
automated bots (e.g., in work by Morein et al. [18]).

TABLE I. List of potential tactics from related work.

Increase capacity Provision more resources to outgun the attack
Decrease service Simplify queries to allow more requests
Captcha Introduce Captcha to filter out attacking bots
Force authentication Force everyone to log in to filter out bots
Blackhole Ignore requests from attacking clients
Throttle Limit the number of requests that a client can send

In summary, a list of common tactics that have been used
to thwart DoS attacks are listed in Table I. These tactics
could be combined in any number of ways, and can be
designed into the application (e.g., always request Captcha)
or employed at runtime (e.g., increasing capacity). However,
security attacks are a runtime phenomena: attacks are launched
against a running program, and new vulnerabilities may be
discovered and exploited after the system has been deployed.
Therefore, countermeasures also need to be deployed and
adjusted dynamically.

Another limitation of the approaches above is that they
do not consider the effect that countermeasures may have on
other quality attributes. For example, absorbing excess traffic
entails the cost of extra resources: either having these resources
when there is no attack, or assuming that the resources will be
available when an attack occurs. On the other hand blocking
clients relies on accurate identification, and Turing tests mean
that clients have to do extra things to interact with the
system. What is lacking is a mechanism for reasoning about
which response to use and when. Furthermore, many existing
approaches rely on architecting responses into the system at
design time, making it difficult to incorporate new responses.
Other approaches work on the network or operating system
layers of the system rather than the application, meaning that
it is difficult to reason about them in the context of the
application (and, indeed, may not thwart targeted application
level attacks).

C. Self-Protection

Substantial research has been conducted in the area of
self-protection, a large part of it nicely summarized by Yuan
et al. [24]. Among their findings, two trends are particularly
related to our work. First, they note that some systems for
self-protection are realizing the need to compose multiple
countermeasures to deal with a threat. For example [2] has
a hierarchical organization of strategies, sub-strategies, and
low-level tactics that is similar to our approach. Second, they

highlight the trend to consider cost as part of choosing a
response to a threat (e.g., [19] uses cost models of operation,
damage, and response in deciding what to do). Unfortunately,
this work does not generalize to consider other business
concerns such as performance, user disruption, etc.

Regarding adaptive DoS mitigation, the approach presented
in [4] describes a model-based adaptive architecture that in-
corporates a dynamic firewall component under the control
of a decision engine that is able to dynamically manipulate
firewall rules based on statistical anomaly detection, as well as
on performance models and monitored data from the protected
application. Specifically, a decision engine employs the perfor-
mance model to filter classes of requests that might overload
the application, which are redirected to an analyzer component
implementing a Captcha mechanism. This approach considers
performance in addition to security, but the decision engine
and countermeasures are architected into the system design,
rather than being added as a separate control layer.

Software architecture models are used for self-protection
in [8]. They use the architecture of the system to help detect
foreign activities and to reconfigure the system in response.
Unlike our approach, they do not consider other system qual-
ities or potential adaptations.

III. The Science

As outlined in the Section II, there is extensive work on
approaches to detecting and mitigating security problems, in
general, and Denial-of-Service, in particular. However, these
approaches are often hardwired into applications assuming
fixed business contexts and attack scenarios. There is little
work on reasoning about when to apply particular tactics and
why. Today’s state-of-the-art consists of fixed-point solutions
to particular instances of security problems. In previous work,
we have used formal models to reason generally about self-
adaptation [7], but these approaches have not been applied to
self-protection. In this paper we show how such models can
be used to reason about self-protection, and in particular to
answer the following questions:

1) What is the impact of security adaptations on other qualities
of the system? In our approach, we specify the impact that
tactics have on all the quality attributes of concern, and then
calculate how potential adaptations will affect each quality
of the system.

2) Given that there may be more than one possible adaptation
that could be performed, how should we choose among
them? For example, possible responses to DoS attacks could
be to add more servers to maintain response to clients,
blacklist machines that we think are involved in the attack,
or issue challenges to filter out bots. In our approach, we
use utility theory and business context to reason about which
adaptation is most suitable.

3) How can responses be composed into comprehensive strate-
gies? If we have a variety of responses that could be
performed, it is often necessary to combine them into more-
complex defense strategies. In our approach, individual
responses are termed tactics and we combine these into
strategies, which allow reasoning about tactic ordering,
timing, and uncertainty.

4) How can strategy choices made by the system be assessed,
given some particular utility profile? It is necessary to
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Fig. 2. Architecture of the znn web system used for evaluation.

analyze the state space to determine which strategies get
selected when, as well as the effects that those selected
strategies will have on system utility (e.g., determining
whether selected strategies never decrease utility, etc.).

Answering these questions systematically requires a sci-
ence consisting of formal models and analysis. As we detail
in the following sections, we use a combination of utility
and decision theory, along with probabilistic model checking,
to answer these questions and validate the effects of self-
protection on the system.

IV. Example

Before detailing how our approach can be used to reason
about DoS responses, we introduce an example that will be
used throughout the rest of the paper. In this paper, we use a
custom-built web system, Znn. Znn is a typical web system
using a standard LAMP stack (Linux, Apache, MySQL, PHP)
mimicking a news site with multimedia new articles. Znn’s
architecture is depicted in Figure 2.

In this system, multiple clients access one of two dispatch-
ers (also termed “load balancers”), which forward requests to
a random web server in a farm. If the request is not for an
image, the web server will access the database to fetch the
required information and generate the news page with HTML
text and references to images. Web clients will then access the
system to fetch the images. Images are served from a separate
file system storage component, shared among all web servers.

In previous work, we have used Znn to illustrate how to
reason about properties of the system other than security [7].
Here we use Znn and DoS to demonstrate how to reason about
security in the context of other quality attributes in the system,
such as cost and performance.

V. Architecture-Based Self-Protection in Rainbow

In this section, we detail our approach to self-protection,
using protection against Denial of Service attacks as an
example. The aim of here is not to develop a novel or
comprehensive approach to defending against DoS, but to
show how elevating the reasoning about such defenses to an
architectural level and using architecture-based self-adaptation
can provide a principled basis for answering the questions
raised in Section III.

Our approach comprises the following activities:

• Developing an architectural model that can be used to reason
about the qualities of concern;

• Collecting together architectural operators that can be ef-
fected in the system, into tactics that can help address
runtime issues;

• Composing these tactics into more complex strategies that
consider ordering, timing, and uncertainty;

• Formulating when these strategies are applicable, and the
business context in which choices will be made;

• Constructing monitors that can be used to abstract runtime
system information into the architecture model;

• Analyzing the business context, tactics, and anticipated
effects on the running system to work out whether there
is sufficient coverage in all cases, and what the likely effect
on the system will be. This part of the approach is presented
in Section VI.

A. Choosing tactics

To improve a system’s security, it is first necessary to
develop a repertoire of countermeasures that can be applied
in to the system. In [25] we summarized some architectural
patterns abstracted from existing approaches that could be
applied to various forms of security. Table I provides a list
of countermeasures specific to DoS attacks that we will use
as an example throughout this section. To reason about these
countermeasures, it is necessary to specify three things:

1) How the tactic affects the model of the formal model of
the system. Doing this allows us to reason about potential
changes on the model. In Rainbow, the model defines
operators that are sequenced by the tactics. In this way
we can ensure that tactics perform legal operations on the
model. Model operations are also mapped to changes on the
actual running system.

2) The model conditions under which tactics apply. For exam-
ple, if the tactic requires additional resource to be enabled,
are those resources available?

3) The anticipated impact of a tactic on the business context
dimensions of interest. This allows us to reason about
which strategy will provide the best improvement on all
dimensions. (This is described further in Section V-C.)

In Znn, we have defined the countermeasures in Table I as
the following tactics in Rainbow:

Adding Capacity: This tactic commissions a new replicated
web server. An equal portion of all requests will be sent to all
active servers. To integrate this into Rainbow, we need to know
how many servers are active and how many may be added. In
the model of the system, we separate the components into those
that are active in Znn and those that are available resources in
the environment.

Reducing Service: Znn has three fidelity levels: high, which
includes full multimedia content and retrieves information
from the database; medium, which has low resolution images;
and text only, which does not provide any multimedia content.
This tactic reduces the level of service one step (e.g, from high
to medium). The fidelity level is represented in the architecture
model by annotating servers with a fidelity property.

Blackholing: If a (set of) IPs is determined to be attacking
the system, then we use this tactic to add the IP address to the
blacklist of Znn. In the model, we need to know two things: (1)
what are the currently blacklisted clients, and (2) which clients
are candidates for blacklisting. In the architectural model, each
load balancer component defines a property that reflects the



currently blacklisted IPs, and each client in the model has a
property that indicates the probability that it is malicious.

Throttling: Znn has the capability to limit the rate of requests
accepted from certain IPs. In the model, these IPs are stored
in a property of each load balancer representing the clients
that are being throttled in this way. Similar to blackholing, the
maliciousness property on client components in the model can
be used to indicate potential candidates.

Captcha: Znn can dynamically enable and disable Captcha,
by forwarding requests to a Captcha processor. Captcha acts
as a Turing test, verifying that the requestor is human.

Reauthenticate: Znn has a public interface and a private
interface for subscribing clients. This tactic closes the pub-
lic interface and forces subscribing clients to reauthenticate
with Znn. Like Captcha, Reauthentication verifies whether
the requestor is a human. However, reauthentication is more
strict than Captcha because it requires that the requestor be
registered with the system. After reathentication is deployed,
anonymous users will be cut off from the system.

Tactics in Rainbow are specifed through the Stitch adapta-
tion language [6]. Tactics require three parts to be specified:
(1) the condition, which specifies when a tactic is applicable;
(2) the action, which defines the script for making changes (to
the model of ) the system; and (3) the effect, which specifies
the expected effect that the tactic will have on the model. In
keeping with closed-loop control conventions, when a tactic
is executed in Rainbow, changes are not made directly to the
model. Rainbow translates these operations into effectors that
execute on the system. Rainbow gauges then update the model
according to the changes they observe.

Listing 1 shows an example tactic for enabling Captcha.
Line 2 specifies the condition, which says that the tactic may
be chosen if any load balancer does not have Captcha enabled.
Lines 4-6 specify the action, which is to select the set of
load balancers with Captcha disabled, and call the operation
to enable Captcha. Line 9 says that the tactic succeeds only if
all load balancers will have Captcha enabled.

1 tactic addCaptcha () {
2 condition {exists lb:D.ZNewsLBT in M.components | !lb.captchaEnabled;}
3 action {
4 set lbs = {select l : D.ZNewsLBT in M.components | !l.captchaEnabled};
5 for (D.ZNewsLBT l : lbs) {
6 M.setCaptchaEnabled (l, true);
7 }

8 }

9 effect { forall lb :D.ZNewsLBT in M.components | lb.captchaEnabled;}
10 }

Listing 1. Tactic for adding Captcha to Znn.

B. Composing tactics into strategies

It is one thing to have a set of individual tactics that
can mitigate threats, but it is also important to be able to
compose to form richer strategies of mitigation, considering
aspects such as tactic ordering, uncertainty, and timing. It
is also desirable to be able to analyze these strategies for
properties such as expected effect on the system, likelihood
of success, and relationship with other quality attributes of
concern. For example, the conditions under which throttling
is applicable overlap the conditions under which blackholing
applies – which tactic should be done first?

To answer these questions, Rainbow has the concept of
strategy. A strategy encapsulates a dynamic adaptation process
in which each step is the conditional execution of some tactic.
In Stitch, a strategy is characterized as a tree of condition-
action-delay decision nodes, with explicitly defined probabili-
ties for conditions and a delay time-window for observing tac-
tic effects. A strategy also specifies an applicability condition
as a predicate that is evaluated on the model during strategy
selection.

1 strategy Challenge [unhandledMalicious || unhandledSuspicious] {
2 t0 : (cNotChallenging) −> addCaptcha () @[5000] {
3 t0a: (success) −> done;
4 t0b: (default) −> fail ;
5 }

6 t1 : (! cNotChallenging) −> forceReauthentication () @[5000] {
7 t1a: (success) −> done;
8 t1b: (default) −> fail ;
9 }

10 }

Listing 2. Strategy for challenging attackers.

In the DoS example with Znn, it is possible to comibe
tactics in multiple ways. For this paper, we have organized
them into three common patterns:

Challenge: This strategy combines the Captcha and Reauthen-
ticate tactics. If Captcha is not enabled, then the strategy will
enable it, otherwise it will enforce reauthentication.

Eliminate: This strategy combines the blackhole and throttling
tactics. If there are clients that we are confident are malicious,
then this strategy will blackhole them; otherwise, if there are
clients that we find suspicious, we will throttle them.

Outgun: This strategy combines the tactics for adding capacity
and reducing service to try to outgun the attack.

Listing 2 lists the Challenge strategy. The strategy specifies
its condition of applicability, which is when this strategy
may be chosen by Rainbow. In the example, the predi-
cate unhandledMalicious || unhandledSuspicious elides first order
logic expressions that use the properties of the model to de-
termine if there are unhandled malicious or suspicious clients.
The body of the strategy is modeled after Dijkstra’s Guarded
Command Language [10], with several additional features. The
Challenge strategy has two top-level condition-action blocks
labeled t0 and t1. If more than one guard for these nodes
evaluates to true, then one of the branches is chosen non-
deterministically (in the example, the conditions are mutually
exclusive and so only one will apply).

To account for the delay in observing the outcome of tactic
execution in the system (i.e., having Rainbow observe the tactic
effect through monitoring), t0 and t1 specify a delay window
of 5000 milliseconds (e.g., end of line 2). During execution,
the child node t0a is evaluated as soon as the tactic effect is
observed or the delay window expires, whichever occurs first.

Several keywords can be used within the body of a strategy
to support control flow and termination: success is true if
the tactic completes successfully and its effect is observed;
done terminates the strategy, signifying that the strategy has
achieved its adaptation aims; fail terminates without adap-
tation aims being achieved; default specifies the branch that
should be taken if no other node is applicable.

To connect with the running system, system-level infor-
mation needs to be reflected into model-level knowledge that



can be used for making appropriate decisions. In Rainbow,
we can use a variety of monitoring technologies at the system
level that are aggregated through Rainbow Gauges to provide
architecture-level information. In addition to gauges that report
on the state of Znn, we also require information about each
client’s response time and maliciousness. Determining this
information is a challenge in its own right, and not the focus
of this paper. For the purpose of this work, we use simplistic
measures to determine maliciousness, e.g., the amount of traffic
generated by a client. In principle, we can integrate off-the-
shelf intrusion detection or behavior monitoring into Rainbow
by adding and adjusting probes and gauges.

C. Choosing strategies

A particular security concern can generally be addressed
in different ways by executing alternative adaptation strategies,
many of which may be applicable under the same runtime con-
ditions. Different strategies impact runtime quality attributes
in various ways, thus there is a need to choose a strategy that
will result in the best outcome with respect to achieving the
system’s desired quality objectives.

To enable decision making for selecting strategies we use
utility functions and preferences, which are sensitive to the
context of use and able to consider trade-offs among multiple
potentially conflicting objectives. By evaluating all applicable
strategies against the different quality objectives, we obtain
an aggregate expected utility value for each strategy by using
the specified utility preferences. The strategy selected for
execution by the adaptation manager is the one that maximizes
expected utility.

Specifically, the strategy selection process entails: (i) defin-
ing quality objectives, relating them to specific runtime condi-
tions, (ii) specifying the impact of tactics on quality objectives,
and (iii) assessing the aggregate impact of every applicable
strategy on the objectives under the given runtime conditions.

1) Defining quality objectives: defining quality objectives
requires identifying the concerns for the different stakehold-
ers. In the case of DoS, users of the system are concerned
with experiencing service without any disruptions, whereas
the organization is interested in minimizing the cost of op-
erating the infrastructure (including not incurring additional
operating costs derived from DoS attacks). For users, service
disruption can be mapped to specific runtime conditions such
as (i) experienced response time for legitimate clients, and
(ii) user annoyance, often related to disruptive side effects
of defensive tactics, such as having to complete a Captcha.
For the organization, we map cost to the specific resources
being operated in the infrastructure at runtime (e.g., number
of active servers). Moreover, in addition to keeping cost below
budget, the organization is also interested in minimizing the
fraction of that cost that corresponds to resources exploited by
malicious clients. Hence, we identify minimizing the presence
of malicious clients as an additional objective.

In short, we identify four quality objectives: (legitimate)
client response time (R), user annoyance (A), cost (C), and
client maliciousness (M).

We characterize the different qualities of concern as utility
functions that map them to architectural properties. In this

TABLE II. Utility functions for DoS scenarios

UR UM UC UA
0 : 1.00 0 : 1.00 0 : 1.00 0 : 1.00
100 : 1.00 5 : 1.00 1 : 0.90 100 : 0.00
200 : 0.99 20 : 0.80 2 : 0.30
500 : 0.90 50 : 0.40 3 : 0.10
1000 : 0.75 70 : 0.00
1500 : 0.50
2000 : 0.25
4000 : 0.00

case, utility functions are defined by an explicit set of value
pairs (with intermediate points linearly interpolated). Table II
summarizes the utility functions for DoS. Function UR maps
low response times (up to 100ms) with maximum utility,
whereas values above 2000 ms are highly penalized (utility
below 0.25), and response times above 4000 ms provide no
utility. It is worth noticing that in this case, utility and mapped
property values across all quality dimensions are inversely
proportional, although this is not necessarily true in general.

Utility preferences capture business preferences over the
quality dimensions, assigning a specific weight to each one of
them. In the case of DoS we consider three scenarios where
priority concerns are summarized in Table III.

TABLE III. Utility preferences for DoS scenarios

Scenario Priority wUR wUM wUC wUA
1 Minimizing number of malicious

clients.
0.15 0.6 0.1 0.15

2 Optimizing good client experience. 0.3 0.3 0.1 0.3
3 Keeping cost within budget. 0.2 0.2 0.4 0.2

2) Describing the impact of tactics on quality objectives:
To assess the aggregate impact of strategies on quality ob-
jectives, we first need to assess their impact on the specific
runtime conditions of the system. Ultimately, runtime condi-
tions are affected by the tactics employed during the execution
of strategies, hence we need to describe how the execution of
individual tactics affects them.

Table IV shows the impact on different properties of the
tactics employed in DoS scenarios, as well as an indica-
tion of how the tactic affects the utility for every particular
dimension (the number of upward or downward arrows is
directly proportional to the magnitude of utility increments and
decrements, respectively). While all tactics reduce the response
time experienced by legitimate clients, some of them (e.g.,
enlistServers and blackholeAttacker) cause a more drastic
reduction, resulting in higher utility gains in that particular
dimension. Regarding the presence of malicious clients, tactics
blackholeAttacker and addCaptcha are the most effective,
whereas other tactics (e.g., enlistServers) do not have any
impact. With respect to cost, strategies enlistServers and
addCaptcha increase the operating cost and reduce utility in
this dimension, since they require using additional resources to
absorb incoming traffic, or to serve and process captchas. Fi-
nally, user annoyance is increased by the disruption introduced
when all users have to re-authenticate or complete captchas
when tactics forceReauthentication and addCaptcha are ex-
ecuted. Tactics blackholeAttacker and throttleSuspicious also
impact negatively on this dimension, since there is a risk
that misdetection of malicious clients will lead to annoying a
fraction of legitimate clients by blackholing or throttling them.

3) Assessing the impact of strategies: The aggregated im-
pact on utility of a strategy is obtained by: (i) computing



TABLE IV. Tactic cost/benefit on qualities and impact on utility dimensions

Tactic Response Time (R) Malicious Clients (M) Cost (C) User Annoyance (A)
∆ Avg. Resp. Time (ms) ∆UR ∆ Malicious Clients (%) ∆UM ∆ Operating Cost (usd/hr) ∆UC ∆ User Annoyance (%) ∆UA

enlistServers -1000 ↑↑↑ 0 = +1.0 ↓↓↓ 0 =

lowerFidelity -500 ↑↑ 0 = -0.1 ↑ 0 =

addCaptcha -250 ↑ -90 ↑↑↑ +0.5 ↓↓ +50 ↓↓

forceReauthentication -250 ↑ -70 ↑↑ 0 = +50 ↓↓

blackholeAttacker -1000 ↑↑↑ -100 ↑↑↑ 0 = +50 ↓↓

throttleSuspicious -500 ↑↑ 0 = 0 = +25 ↓

the aggregate impact of the strategy on runtime conditions,
(ii) merging aggregated strategy impact with current system
conditions to obtain expected conditions after strategy ex-
ecution, (iii) mapping expected conditions to utilities, and
(iv) combining all utilities using utility preferences.

As an example of how the utility of a strategy is calculated,
let us assume that the adaptation cycle is triggered in system
state [1500, 90, 2, 0], indicating response time, percentage of
malicious clients, operating cost, and user annoyance level,
respectively. We focus on the evaluation of strategy Challenge.

To obtain the aggregate impact on runtime conditions of
a strategy, we need to estimate the likelihood of selecting
different tactics at runtime due to the uncertainty in their
selection and outcome within the strategy tree. To this end,
the adaptation manager uses a stochastic model of a strategy,
assigning a probability of selection to every branch in the tree
(by default, divided equally among the branches). Figure 3
shows how the aggregate impact on runtime conditions is
computed bottom-up in the strategy tree: the aggregate impact
of each node is computed by adding the aggregate impact
of its children, reduced by the probability of their respective
branches, with the cost-benefit attribute vector of the tactic in
the node (if any). In the example, the aggregate impact in the
middle level of the tree corresponds to just the cost-benefit
vectors of the associated tactics, since the leaf nodes make
no changes to the system and therefore have no impact. In
contrast, the aggregate impact in the root node of the strategy
tree results from the aggregate impacts of its children:
0.5*[-250,-90,+0.5,+50]+0.5*[-250,-70,0,+50]=[-250,-80,+0.25,+50]

fail
[0,0,0,0]

done
[0,0,0,0]

addCaptcha()
[-250,-90,+0.5,+50]

0.5 0.5

fail
[0,0,0,0]

done
[0,0,0,0]

forceReauthentication()
[-250,-70,0,+50]

0.5 0.5

[-250,-80,+0.25,+50]

0.5 0.5

Fig. 3. Calculation for aggregate impact of strategy Challenge

Once we have computed the aggregate impact of the
strategy, we merge it with the current system conditions to
obtain the expected system conditions after strategy execution:

[1500,90,2,0]+[-250,-80,+0.25,+50]=[1250,10,2.25,50]
Next, we map the expected conditions to the utility space:

[UR(1250),UM(10),UC(2.25),UA(50)]=[0.625, 0.933, 0.25, 0.5]
And finally, all utilities are combined into a single utility

value by making use of the utility preferences. Hence, if we
assume that we are in scenario 2, the aggregate utility for
strategy Challenge would be:

0.625*0.3+0.933*0.3+0.25*0.1+0.5*0.3=0.6425

Utility scores are computed similarly for all strategies. In this
case, strategies Eliminate and Outgun score 0.6325 and 0.553
respectively, thus Challenge would be selected.

Now that we have the means to describe the different
qualities of concern and objectives, as well as the impact of
tactics and strategies on them, we have the foundations to
systematically analyze the strategy space.

VI. Validating the Strategy Space

When defining a collection of adaptation strategies and
their associated utility profile, we need to guarantee not only
that the system will carry out reasonable choices under all
possible circumstances, but also that the effect of those choices
will have a reasonable impact on other business concerns. To
provide such guarantees, we make use of a formal model based
on an abstraction of the Rainbow Framework that enables us
to reason before deploying Rainbow about: (i) the choices
made by the adaptation manager regarding adaptation strategy
selection, and (ii) the impact of the execution of selected
adaptation strategies upon the target system. This formal model
is based on Discrete-Time Markov Chains (DTMCs) and is
implemented in the probabilistic model-checker PRISM [16].

A. Formal Model

The main elements of the adaptation model, including tac-
tics, strategies, and utility profiles are realized using different
constructs in the PRISM language. The model is parameterized
to enable the analysis of strategy executions under some initial
runtime conditions that instantiate model parameters.

Target System and Tactics: the target system is implemented
as a module that incorporates a collection of variables encoding
the different system qualities and aspects relevant to the
applicability conditions of tactics and strategies (e.g., values
of predicates used in guards). Lines 4-9 of Listing 3 illustrate
how the different variables are initialized using parameters that
determine runtime conditions before strategy execution.

1 formula ac f rt= r t −250>=0?( r t −250<=MAX RT? r t −250:MAX RT) : 0 ;
2 . . .
3 module target system
4 act ive servers : [ 0 . .MAX SERVERS] i n i t i n i t ac t i ve se rve rs ;
5 cost : [ 0 . .MAX COST] i n i t i n i t c o s t ;
6 r t : [ 0 . .MAX RT] i n i t i n i t r t ; / / Avg . Response t ime
7 mc : [ 0 . . 1 0 0 ] i n i t in i t mc ; / / Ma l i c ious c l i e n t s
8 ua : [ 0 . . 1 0 0 ] i n i t i n i t ua ; / / User annoyance
9 lb ce : bool i n i t i n i t lb ce ; / / Captcha enabled i n LBs?

10 . . .
11 [ addCaptcha ] ( ! lb ce ) −> 1: ( r t ’ = ac f rt ) & (mc’=ac f mc)
12 & ( cost ’= ac f cost ) & ( ua ’= ac f ua ) & ( l b c e = true ) ;
13 . . .
14 endmodule

Listing 3. Target system module specification.

Moreover, this module includes commands that model the
effect of executing the different tactics on the target system as



updates on its variables. Concretely, each command includes
the tactic’s applicability condition in its guard, whereas the
updates modify variable values based on cost/benefit attribute
vectors (encoded as formulas, Listing 3, line 1).

Strategies: additional modules mirror the structure of the dif-
ferent strategies. Listing 4 shows how the different commands
model the branches of the execution tree in strategy Challenge.
It is worth observing that commands modeling branches that
include the execution of a tactic synchronize through shared
action names with commands in the target system module that
model the effect of tactics upon the target system.

1 module Challenge
2 node : [ 0 . . 2 ] i n i t 0;
3 l e a f : bool i n i t fa lse ;
4 end : bool i n i t fa lse ;
5

6 [ addCaptcha ] ( node=0) & ( cNotChal lenging ) −> 1: ( node ’ = 1 )
7 & ( lea f ’= true ) ;
8 [ f o rceReau then t i ca t i on ] ( node=0) & ( ! cNotChal lenging ) −> 1:
9 ( node ’ = 2 ) & ( lea f ’= true ) ;

10 [ ] ( l e a f ) −> 1: ( end ’= true ) ;
11 endmodule

Listing 4. Challenge strategy specification.

Utility Profile: Utility functions and preferences are encoded
using formulas and reward structures that enable the quantifi-
cation of the expected impact on quality objectives of a given
strategy. Formulas compute utility on the different dimensions
of concern, and reward structures weigh them against each
other by using the utility preferences of a given scenario.

1 formula uM = (mc>=0 & mc <=5? 1 :0 )
2 +(mc>5 & mc <=20? 1+(0.80 −1)∗ ( (mc−5) / (20 −5) ) :0 )
3 +(mc>20 & mc <=50? 0.80+(0 .40 −0.80)∗ ( (mc−20) / (50 −20) ) :0 )
4 +(mc>50 & mc <=70? 0.40+(0 .00 −0.40)∗ ( (mc−50) / (70 −50) ) :0 )
5 +(mc>70 ? 0 : 0 ) ;
6 . . .
7 rewards ” rGU” / / Global U t i l i t y
8 l e a f & scenar io=1 : 0.15∗uR +0.6∗uM +0.1∗uC +0.15∗uA ;
9 . . .

10 endrewards

Listing 5. Global utility reward structure for DoS scenarios.

Listing 5 illustrates in lines 1-5 the encoding of utility
functions using a formula for linear interpolation based on the
points defined for utility function UM in the second column
of Table II. Lines 7-10 show how a reward structure can be
defined to compute a single utility value for any state by using
the utility preferences defined for a particular scenario. The
reward structure considers only the expected rewards in model
states that correspond to leaf nodes of the strategies in order
to replicate the probabilistic aggregation mechanism employed
by the adaptation manager during strategy selection to compute
the expected utility value of any given strategy.

B. Analysis

To quantify the impact of strategy execution on utility,
we make use of Probabilistic Reward CTL (PRCTL) [1],
which extends the probabilistic temporal logic PCTL [3]
with reward-specific operators aimed at the specification of
performability measures over DTMC models. Specifically, our
technique enables us to statically analyze a particular region
of the state space, which first has to be discretized to check
PRCTL properties. Obtaining the results of the analysis for
each state in the discrete set requires an independent run of

the model checker in which model parameters are instantiated
with variable values corresponding to that state.

Strategy Selection: To analyze strategy selection, we compute
the expected utility after executing each of the alternative
strategies in the adaptation model. The expected utility value
of each strategy is quantified by checking the reachability
reward property R”rGU”=? [ F end ]. The property obtains the
accumulated value of the reward structure rGU (Listing 5) for
states that correspond to leaf nodes in every path of the model
until the end of the strategy execution is reached. Moreover, for
this part of the analysis, guards in the encoding of adaptation
strategies, as well as applicability conditions of tactics are
ignored in order to replicate the aggregate utility calculation
of a given adaptation strategy carried out by the adaptation
manager in Rainbow, which ignores both elements.

Figure 4 depicts strategy selection analysis results for
the different DoS scenarios. In the figure, the state space is
projected over the dimensions that correspond to malicious
clients and response time (restricted to interval 0-4000 ms).
Cost and user annoyance have a fixed value of 2 usd/hr and
0%, respectively. Results show how across all scenarios, the
use of strategy Outgun is always limited to the region that
corresponds to a low percentage of malicious clients. This
confirms that strategy selection is consistent with minimizing
the use of system resources by malicious clients. In Scenario
1, Eliminate is selected almost 50% of the time, since priority
is given in this scenario to minimizing malicious clients.
Although Challenge is slightly more effective at this, it is
more costly and its use only pays off when the percentage
of malicious clients is high enough (this is a constant across
all scenarios). In Scenario 2 the proportion in which Outgun
is selected increases despite its cost, since priority is given
to user experience (i.e., maintaining low values for response
time and user annoyance), and this strategy is the only one that
does not cause service disruption. Finally, Scenario 3 shows a
remarkable reduction in the selection rate of Challenge, and a
more moderate decrease in the case of Outgun. This is due to
an increase in the weight given to cost in this scenario, which
favors the selection of the least expensive strategy Eliminate.

Selected strategy impact on utility: analyzing the impact
of strategy execution in utility entails: (i) determining which
execution strategy is selected, and (ii) calculating the difference
between instantaneous utility before and after the execution of
the selected strategy. This is encoded in the PRCTL formula:
(R”rGU”=? [ F end ]) - (R”rIGU”=? [ I=0 ]), where the minuend cor-
responds to expected utility value after the execution of the
strategy that maximizes utility, and the subtrahend corresponds
to the instantaneous reward for utility in time instant 0. The
reward structure rIGU is analogous to the one for strategy
selection analysis (rGU), but is not constrained to leaf nodes.

Figure 5 shows the results of the analysis of selected
strategy impact on utility for the three scenarios, where lighter
levels of gray correspond to more substantial increments in
utility. It can be observed that there are no states within the
considered region of the state space in which the execution of
the selected strategy causes a reduction of utility (#S ↓∆U = 0)
in any scenario. Moreover, regions with low malicious clients
rates across all scenarios tend to experience low gains in utility
due to relatively high utility values before strategy execution.
The greatest increments in utility are mostly associated with
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Fig. 5. DoS strategy selection impact on utility

high malicious client rates and areas that neighbor response
times within the range 1500-2000 ms, which is explained by
more drastic reductions in malicious client rates and higher
utility extracted from performance, due to the shape of the
utility curve, which maps response times above 2000 ms to
much lower utility values.

VII. Implementation and Experimentation

In this section, we explain how the approach previously
described is realized in our Rainbow implementation. Rainbow
is implemented in Java as a distributed system, consisting of
a Master (which manages the adaptation logic) and Delegates
(deployed in the target system to manage probes, effectors,
and gauges), communicating over a custom event bus. The
following features were implemented in Znn:

1) Throttling and blackholing were implemented using the
Apache modules mod proxy1 and mod security2.2 Con-
comitant probes and effectors read and update the associated
configuration files, restarting the Apache servers on the load
balancers to achieve dynamic reconfiguration.

2) The PHP library secureimage3 was used to implement
Captcha. The PHP code for Znn reads a configuration file
to check if this feature is enabled, and probes and effectors
read and write this file.

3) Simple authentication is implemented in the PHP files. A
configuration file is read by Znn to check the enablement

1http://httpd.apache.org/docs/2.2/mod/mod proxy.html
2http://www.modsecurity.org/
3http://www.phpcaptcha.org/

of this feature, and probes and effectors used to report and
update this option dynamically.

To simulate an application level attack, one particular
request in Rainbow is especially CPU intensive. Malicious
attackers that spawn multiple concurrent instances of these
requests will quickly drive response time to benign clients
above their threshold. To automate both kinds of clients, we use
Apache JMeter:4 the script for benign clients sends a request
to Znn every second, and has Znn-specific cases for handling
Captcha and authentication; the script for malicious clients
sends 20 requests per second, and has no Znn-specific code.

We set up the experiment on a cluster of virtual machines
running on one host with four 2.8GHz CPU cores and 24GB
memory. Znn was configured with one database, one load
balancer, two active servers, and a spare server. The Rainbow
master and a benign client runs on the host, while two
malicious users run on separate virtual machines. While this
does not reflect a configuration that accurately simulates a DoS
attack, it is sufficient to illustrate how Rainbow chooses dif-
ferent strategies in different scenarios, and that it can mitigate
attacks by the malicious client.

Figure 6 shows the results of running a DoS attack on Znn
in three scenarios. In each case, an attack starts 15 seconds into
the run (labeled ’Attack’ in the figure) and continues until the
end. In Figure 6(a), the experiment is run without Rainbow.
As can be seen, the DoS attack causes response times to rise
from around 2 seconds to over 10 seconds and remain high

4http://jmeter.apache.org/
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Fig. 6. Experiment results showing the effect of a DoS attack on Znn (a) when Rainbow is not used; (b) when priority is given to eliminating malicious clients;
and (c) when priority is given to optimizing good client experience (both serving them in a timely manner, and minimizing annoyance).

for the duration of the experiment. Figures 6(b) and (c) show
runs with Rainbow managing Znn for scenarios 1 and 2 from
Table III. In both cases, Rainbow responds to the DoS attack
and the response time of the good clients returns to around 2
seconds. Detection of maliciousness in both cases occurs the
first time that Rainbow detects a precipitous rise in response
time (labeled ’Detected’ in the figures). Detection occurs once
the slow response time is measured, about 20 seconds after the
attack. However in both cases Rainbow responds within about
2 seconds of detecting the attack. In both cases it takes some
time for the result to flush existing requests out of the buffer,
thus the effect is not observed for a further 15 or so seconds.

Rainbow uses different strategies in scenarios 1 and 2 to
mitigate the DoS attack. In Scenario 1, Challenge is chosen
and Captcha is used. Malicious clients then do not pass the
Captcha and therefore cannot continue the attack. In Scenario
2, Eliminate is chosen (and the malicious clients blackholed).
This illustrates a change in Rainbow’s choice of strategy that
is sensitive to the business context (utility preferences).

VIII. Conclusions and Future Work

In this paper we have described an approach that uses
formal reasoning about self-protection strategies to provide
a scientific approach to self-protection, in the context of
Denial-of-Service attacks. We have detailed how to compose
existing mitigation tactics into strategies that can be chosen
based on the business context. The underlying formalisms of
utility and decision theory can be used to reason about when
strategies should be chosen and the effect on the system in
terms of overall impact on multiple quality dimensions. This
approach forms a foundation for reasoning about dynamic
system changes for security mitigation taking into account
broader system qualities, and allows mitigation strategies to be
tailored to particular business contexts by updating preferences
or organizing common mitigation tactics into new strategies.

While we believe the approach can be applied generally
to other self-protection scenarios, there are still some issues
that need to be addressed. Our current implementation uses
simplistic solutions to determine the probability that a client
is malicious. However, there are a number of existing off-the-
shelf intrusion detection systems that could be used. In fact,
numerous pieces of evidence may be used to determine if a
client is malicious, including geographical information, threat
context (e.g., the likelihood that a system may be attacked

at a certain time), and historical information. A calculus that
can combine different forms of evidence would lead to a more
principled approach to detecting attacks. Such a calculus could
also be used for other kinds of detection such as insider threats.

The example that we have discussed in this paper is limited
because we do not have space to describe how to restore
the system once an attack is over. This is done in a similar
way as dealing with the initial problem: by defining a set of
strategies that undo the changes, and relying on the strategy
utility evaluation to restore the system once the conditions are
right. This is consistent with the approach taken in [5].

The validation described in Section VI was used only to
validate coverage of the quality space one step ahead. It may
be possible to extend this to look further ahead. The benefits of
doing so include being able to detect oscillations, by analyzing
if the utility space resulting from a selected strategy makes it
possible to choose a strategy that would immediately undo it.

Relating security concerns to other qualities can be chal-
lenging. While the utility theory described in this paper
provides a formal foundation for doing so, and we have
described how multiple objectives can be accommodated in [7],
some security concerns may at first manifest themselves as
degradations in other qualities. For example, DoS attacks may
initially present as a degradation in performance. Care has to
be taken to get the utility space right. The analysis described
in this paper goes some way to helping reason about this, but
cataloging how different security threats affect other quality
attributes of the system would also be helpful guidance.

Often when dealing with security the aim should be to pre-
vent attacks rather than to react to them, and the timeliness of
the reaction is key in minimizing the damage. We are actively
exploring ways to extend architecture-based self-protection to
be able to anticipate attacks by using predictive and moving
target defenses, to factor the time it may take to execute a
mitigation into account when choosing (for example, to do a
quick fix first while preparing a more subtle response), and
to introduce tactics that change the system to require approval
(either from a human or from some analysis within Rainbow)
before allowing certain transactions to continue.
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