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Abstract
The problem of mitigating uncertainty in self-adaptation has driven much of the research proposed in the area of software
engineering for self-adaptive systems in the last decade. Although many solutions have already been proposed, most of
them tend to tackle specific types, sources, and dimensions of uncertainty (e.g., in goals, resources, adaptation functions)
in isolation. A special concern are the aspects associated with uncertainty modeling in an integrated fashion. Different
uncertainties are rarely independent and often compound, affecting the satisfaction of goals and other system properties in
subtle and often unpredictable ways. Hence, there is still limited understanding about the specific ways in which uncertainties
from various sources interact and ultimately affect the properties of self-adaptive, software-intensive systems. In this SoSym
expert voice, we introduce the Uncertainty Interaction Problem as a way to better qualify the scope of the challenges with
respect to representing different types of uncertainty while capturing their interaction in models employed to reason about
self-adaptation. We contribute a characterization of the problem and discuss its relevance in the context of case studies taken
from two representative application domains. We posit that the Uncertainty Interaction Problem should drive future research
in software engineering for autonomous and self-adaptive systems, and therefore, contribute to evolving uncertainty modeling
towards holistic approaches that would enable the construction of more resilient self-adaptive systems.
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1 Introduction

Complex systems in which software contributes essential
influences to the design, construction, deployment, and
evolution of the system, commonly referred to as software-
intensive systems, are increasingly relied upon to support
tasks that are typically characterized by a high degree of
uncertainty in different contexts.

Frequently, uncertainty is unavoidable. Having ameans to
explicitly represent uncertainty can significantly help avoid
making decisions associated with a high level of unpre-
dictability, which can lead to actions involving major losses
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or costs, i.e., the so-called cost of being wrong [38]. Exam-
ples of such situations are a facial recognition system that
misidentifies injured people in a search and rescue operation
due to a natural disaster, an automatic triage application that
misclassifies an emergency room patient as low risk when
she is actually critically ill, or the automatic stock manage-
ment system that decides to make a substantial investment
based solely on the confidence of a computer system predic-
tion, but without considering its associated uncertainty, can
all lead to disastrous consequences if the wrong decision is
made. Having a measure of the degree of uncertainty associ-
ated with a resulting decision can be useful, for example to
rule out any decision whose degree of uncertainty is above a
certain threshold [5,24].

Addressing these situations by mitigating the effects of
uncertainty in software-intensive systems has been one of the
focal points of self-adaptation [9,22], which is regarded as
a promising way to engineer in an effective manner systems
that are resilient to run-time changes despite the different
uncertainties in their execution environment (induced by,
e.g., resource availability, interaction with human actors),
goals, or even in the system itself (e.g., faults, noisy sensors,
machine learning-based components).

During the last decade, the research community has
made an important effort in supporting the analysis and
management of self-adaptive systems under uncertainty. In
particular, several taxonomies of uncertainty have been pro-
posed [16,29,35,36], and a substantial body of work exists
on methods to manage uncertainty [21]. These methods are
able to individually detect, represent, and mitigate uncertain-
ties from various sources, which may have distinctive effects
on the satisfaction of both functional and non-functional
requirements. However, these uncertainties are rarely inde-
pendent and often compound, affecting the satisfaction of
goals and other system properties in subtle and often unpre-
dictable ways, as we illustrate in the remainder of this article.

We believe that there is still limited understanding about
the specific ways in which uncertainties of different types
and from various sources interact and, ultimately, affect the
properties of self-adaptive, software-intensive systems. Rep-
resenting the interactions of such combined uncertainties,
analyzing the impact of their emergent effects on the satis-
faction of requirements, and mitigating them remain open
challenges that are the focus of this article.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an introduction to self-adaptive systems, explains
the uncertainty sources identified in this domain, and presents
a classification of uncertainties. Then Sect. 3 exemplifies the
uncertainty interaction problem in systems from two applica-
tion domains, where several types of uncertainty interactions
are illustrated. Section 4 outlines research challenges that
should be addressed in order to deal with the uncertainty
interaction problem. Finally, Sect. 5 concludes the paper.

Fig. 1 Self-adaptive system

2 Background

In this section, we first present some general background
about self-adaptive systems. Next, we introduce a catego-
rization of the sources of uncertainty in self-adaptive systems
informed by the work of Mahdavi-Hezavehi et al. [29], fol-
lowed by a taxonomy of uncertainty classified according to
its representation in software models [44].

2.1 Self-adaptive systems

What distinguishes a self-adaptive system fromanyother sys-
tem is its ability to continuously deliver its service despite
changes that may occur in the system, its environment,
or its goals. A key component that enables self-adaptive
systems to handle changes at run-time is a controller or self-
adaptive layer (Fig. 1) that implements a set of adaptation
functions and that relies on a feedback loop for managing
adaptations [9]. Controllers execute actions via effectors or
actuators on the target system, based on information moni-
tored by probes or sensors both from the target system and its
environment, which consists of all non-controllable elements
that determine the operating conditions of the system (e.g.,
hardware, network, physical context, etc.).

In the context of complex software-intensive systems,
these controllers are usually built based on patterns such
as MAPE-K [25], which implements the traditional sense-
plan-act architectures and includes four distinct operational
stages:

• Monitor: monitors the target system and environment
through sensors that provide information about the value
of relevant variables.

• Analyze: decideswhether the current state demands adap-
tation.
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• Plan: if adaptation is required, decides the best way to
adapt the system.

• Execute: applies a sequence of control or adaptation
actions through system-level effectors (or actuators).

Key concernswith respect to the run-time behavior of self-
adaptive systems are related to their non-functional attributes
that include performance, cost, availability, reliability, and
safety. Self-adaptive systems typically operate in environ-
ments that feature high-levels of uncertainty that emerge from
different sources and have a remarkable influence on the sat-
isfaction of system goals and other system properties. In the
following section, we identify a number of those sources.

2.2 Uncertainty sources in self-adaptive systems

Several papers have identified types of uncertainty in self-
adaptive systems [8,16,45]. Among them, the work by
Mahdavi-Hezavehi et al. [29] defines a comprehensive
and structured organization that identifies and categorizes
sources of uncertainty. The study identifies five dimensions
of uncertainty: location, source, nature, level/spectrum, and
emerging time. For our purposes, we focus on source and
location (i.e., the class of uncertainty source), abstracting
away from other dimensions that are not essential to illus-
trate the ideas in this paper. Next, we provide details of these
two dimensions of uncertainty.
Location. The place in which uncertainty emerges in the
self-adaptive system. Identified locations1 are:

1. Model: Models that the self-adaptive system employs
(typically for decision-making). One example might be
the abstraction of some aspect of the real system that is
not represented in its model, which induces epistemic
uncertainty.

2. AdaptationFunctions: Functionalities that a self-adaptive
loop performs. An example is the uncertainty caused by
faulty sensors of the adaptive system.

3. Goals: Goals that the self-adaptive loop uses to manage
the system.An example is not fully anticipating changing
goals in the future.

4. Environment:Context (including interactionswith human
actors) in which the system is running (e.g., the uncer-
tainties induced by the behavior of a human-in-the-loop,
which is not deterministic).

5. Resources: Components needed by the self-adaptive sys-
tem to operate. An example is uncertainty from changes
in resource availability.

1 In the remainder of this article, we use the term uncertainty source
informally to refer both to uncertainty source groups (locations) and
specific sources of uncertainty.

6. Managed System: Subsystem beingmanaged by theman-
aging subsystem in the self-adaptive system. An example
is uncertainty caused by the complexity of the managed
subsystem.

Source. It represents specific sources of uncertainty within
the locations described above. Table 1 describes the different
sources of uncertainty identified in [29].

In addition to the information presented in the table, Fig. 2
shows a UML class diagram that represents the six uncer-
tainty sources (classes shaded in light brown color in the
diagram) and their relationships, which in this case repre-
sent the possible interactions between them. For example, the
uncertainty of self-adaptive behavior may be aggravated by
a goal uncertainty when combined. Suppose that the thresh-
old used to decide about a change in behavior is not cleanly
definedbecause it depends on sensor values,which are impre-
cise. Suppose as well that the utility functions, which define
the objectives, are neither precisely defined because stake-
holders do not have a precise idea about in what contexts
they should prioritize performance over safety (the informa-
tion can be learned during run-time [3,40]). Similarly, the
decision to change a resource may be much more difficult
when it is not clear if the resource is available or not, and
such a decision is based on imprecise functions. In the fol-
lowing sections we will describe specific examples of these
interactions in two scenarios that we have chosen to illus-
trate some of the problems that can emerge when combining
uncertainties in self-adaptive systems.

2.3 Representing uncertainty

Quoting DeMarco [13],“You can’t control what you can’t
measure.” In order to measure uncertainty, first we need to
represent it. The purpose of explicitly representing uncer-
tainty is twofold: a software engineer who models or simu-
lates a system needs to capture the relevant characteristics of
uncertainty in a suitable way so they can bemade explicit and
later analyzed;while a systems engineer analyses uncertainty
to quantify it, reduce it, or mitigate its effects [2,31].

Scientists and engineers already know how to deal with
uncertainty in many of its forms (objective, subjective, epis-
temic, aleatory) [43], using different approaches such as
mathematical and numerical models [32], probabilities [3,
18], Fuzzy set theory [39,48], variability analysis [42] or
risk assessment [37], among others.

The representation of uncertainty depends largely on its
nature. Expressing the precision of a physical measurement
is neither the same as expressing the degree of belief that a
person has about a given fact, nor the design decisions that
a software engineer must contemplate under imprecise user
requirements. Different types of uncertainty require differ-
ent notations, underlying logics, and inference mechanisms
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Fig. 2 Uncertainty sources and
their relationships

to reason about them, for example, to analyze its properties
or how an uncertainty propagates. A classification of uncer-
tainty in terms of the notations used to represent it in software
models was presented in [44], which is summarized below.
This classification is relevant in our context since we need to
represent uncertainties in order to be able to study their inter-
action and quantify them. Their combination may be easier
if they are similar in nature, admit the same representations
and are amenable to similar reasoning mechanisms. Simi-
larly, studying the interaction of two uncertainties of very
different nature will pose more complex challenges. This
classification defines six dimensions:
Measurement uncertainty. This is an aleatory uncertainty
that refers to a set of possible states or outcomes of a mea-
surement [23]. For example, the distance to an object can
be expressed as 123 ± 0.1 cm, assuming our sensor has a
precision of 1 mm. Similarly, a Boolean variable can be best
represented by a number in the range [0,1] representing the
probability that the variable is true.
Occurrence uncertainty. This uncertainty refers to the
degree of belief that we have on the actual existence of an
entity, i.e., the real entity that amodel element represents. It is
normally represented in terms of probabilities [12], fuzzy set
theory [39] or subjective logic [24]. For instance, we can be
only 70% confident that the required resource will be avail-
able when actually needed.
Design uncertainty. This type of epistemic uncertainty
refers to a set of possible decisions or system design options.
It captures the usual uncertainty that the developer has about
the system design, which may be different depending on the
conditions the system may face during its operation and the
expected requirements by its intended users. This informa-

tion is normally unknown during the early analysis phase,
but heavily influences the system design. Variability models
are commonly used to represent this type of uncertainty [17].
Behavior uncertainty. This epistemic uncertainty refers to
the lack of knowledge about the behavior of the system or
its environment. It is common in self-adaptive [11,46] or
uncertainty-aware systems [19,47], whose operating envi-
ronments are unknown or may exhibit uncertain behaviors;
for example, a robot operating on Mars, or an application
whose users may have erratic or random behaviors [29,33].
Belief uncertainty. This epistemic uncertainty occurs when
belief agents are uncertain about how the system has been
modeled or about the system itself. For example, two dif-
ferent users may have different degrees of trust on the
measurements of the sensors depending on their previous
experiences with them, and therefore will interpret their
values differently. Again, probabilities, fuzzy set theory, or
subjective logic are used to represent this type of subjective
uncertainty (e.g., in self-adaptive system requirements [1]).
Spatio-temporal uncertainty. This type of epistemic uncer-
tainty refers to the lack of certainty about the geographical or
physical location of a system, its elements or its environment,
or about properties that relate to the timing of events in the
system or its environment. While measurement uncertainty
expresses possible variations of a measured value, and is of
an aleatory and objective nature, spatiotemporal uncertainty
implies vagueness and incompleteness, and is of epistemic
and subjective nature—e.g., stating that an archaeological
site is located “somewhere” in Northern Europe, or that an
event happened “a bit later” than another.
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Fig. 3 Znn.com architecture

3 The uncertainty interaction problem in
self-adaptive systems

In this section we present two different scenarios of self-
adaptive systems and describe how the six types of sources
of uncertainty explained in Sect. 2.2 can take place in each
of them. We also explain how the uncertainty interaction
problem may occur in these scenarios. Finally, we exem-
plify uncertainty interactions, such as those that take place
between model and adaptation functions, model and envi-
ronment, as well as environment and adaptation functions,
among others.

3.1 ZNN news

Znn.com is a simple news service that uses MAPE-K
(embodied by the Rainbow framework to deal with vary-
ing workloads—including slashdot effect and DoS attacks)
through different tactics [41]. As Fig. 3 indicates, Znn.com
has several servers (some of which are inactive), a load bal-
ancer, and a database. Rainbow monitors the load balancer,
servers, and the database to update the different models of
the system, environment, etc. to make decisions. In order
to adapt to changing workloads, the self-adaptive layer exe-
cutes different tactics such as activating servers, deny-listing
clients, enabling a CAPTCHA, or changing the quality of the
contents served, among others.

3.1.1 Sources of uncertainty

Let us consider a situation inwhichZnn.com, receives a spike
in workload with a high request arrival rate and has to decide
which of the tactics to trigger (if any), in order to continue
to satisfy system goals. We may face different uncertainties
in such a situation. Some examples are provided in Table 1,
classified according to their source.

• Model: The different models in the knowledge base
of the self-adaptive layer of Znn.com are also poten-
tial sources of uncertainty. For example, the abstraction
level of system and environment properties (e.g., coarse-
grained discretization of numerical variables like the
request arrival rate at the load balancer in the envi-

ronment model), different representations of the same
information (e.g., there can be discrepancies between the
response time as directly monitored by the system and
the one calculated based on CPU load and queue length),
or the modeling paradigm used (e.g., queuing models
and continuous-timeMarkov chains introduce errorwhen
modeling real-world phenomena [34]).

• Adaptation functions: The exact outcome of execut-
ing a given adaptation tactic (e.g., activating a new
server) is unknown, in terms of precise improvements
on throughput or response time. Sensing is also imper-
fect so measurements taken, e.g., at the load balancer to
gauge the request arrival rate, may be imprecise (aver-
aging windows are typically employed to mitigate quick
fluctuations), or even outdated by the time they are incor-
porated in models. The time that it takes to execute an
adaptation tactic (i.e., its latency) is also subject to uncer-
tainty, e.g., the time that it takes to activate a server can
suffer remarkable fluctuations depending on environment
conditions.

• Goals: In Znn.com, dependencies among goals are not
captured explicitly. Instead, the selection of adaptations
to satisfy the set of extra-functional goals (i.e., cost
minimization, user experience optimization, security) is
driven by utility functions that do not clarify for instance
under what conditions security has priority over cost, and
vice versa. In some cases, a spike in incoming traffic
due to a DoS attack can be handled with security tactics,
such as a deny list for potentially malicious users, or just
adding more resources at the expense of increased cost
when the priority is to maintain adequate service provi-
sion for legitimate users, rather than eliminating potential
attackers from the system. Currently, goals are fixed in
MAPE-K but this constraint is likely to be suboptimal.

• Environment: the evolution of the request arrival rate
(e.g., whether it is going up, down, or remains stable)
can be predicted in some cases, but only to some degree
of certainty, e.g., using a time series predictor [30]. This
is important for anticipating to usage peaks when more
resources may be needed. The nature of the access of
clients to the system (i.e., whether they are legitimate
clients or bots attempting to perform a DoS attack) is
unknown. We need this information to decide whether
preventive measures, such as the use of captchas, are
worth the potential inconvenience to most users.

• Resources: servers may fail, and considering their
expected failure ratemayprovidemore realistic estimates
when sizing the system. However, predictions based on
high uncertainty can increase the number of servers
required, thereby unnecessarily increasing the overall
costs. Similarly, the availability of additional servers to
activate to spreadworkload acrossmore serversmay only
be known with some degree of certainty, because they
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may not be available at all times. Their response times
and performance can also vary, introducing new sources
of uncertainty when predicting the overall system perfor-
mance.

• Managed system: This uncertainty is caused by the com-
plexity and dynamicity of the managed system, which
hinders the estimations of its behavior. The system and
its parts may also evolve, incorporating new elements
whose behavior was not considered when the system
was designed. These parts may also fail or behave in
erratic or unexpected manners, e.g., the performance of
the database can degrade if the number of records goes
above the limit for which it was originally intended to
store, or can suffer attacks or intermittent failures. These
uncertainties may amplify the overall system uncertainty
when combined with others.

In this paper, we are interested in the cases where two
or more of these uncertainties are combined, and the effects
of the interactions between them. The following subsections
describe particular scenarios that serve to illustrate these sit-
uations and their effects.

3.1.2 Uncertainties due to model and adaptation functions

In theMAPE-K loop implemented for Znn.com, the analysis
stage is in charge of detecting if the triggering of an adap-
tation mechanism is needed due to invariant violation. One
typical example is the invariant stating that the current sys-
tem response time r should always be below some threshold
Rmax specified in one of the system models. In this setting,
we could observe the following situations related to the inter-
ference of sources of uncertainty with respect to the correct
operation of the analysis:

• The imperfect sensing of the response time property
could yield values within some range [r̂min, r̂max] that
contains the ground truth value r . If the observed value
is above threshold (r̂ ≥ Rmax), but the real value is not
(r < Rmax), this will lead to a false positive that will trig-
ger an adaptation planning and execution cycle when it
is not really needed, increasing the cost of operating the
system without need. The symmetric case can be given
when r̂ < Rmax ≤ r , meaning that the adaptation cycle
will not be triggered even if it is really needed, causing an
unnecessary degradation of performance that could have
been addressed otherwise.

• The coarse-grained discretization of the response time
property in the managed system model can also result
in undesired adaptation triggers or the lack of required
adaptations when the discretized value rd of the prop-
erty is on the other side of the threshold, when compared
to the ground truth value r . Hence, if response time is

(a) (b)

Fig. 4 Model-adaptation function interaction: a causing execution of
spurious adaptation b preventing execution of required adaptation

discretized with a granularity of ηr = 200 ms, response
times measured where ‖r − Rmax‖ ≤ 200 could be prob-
lematic, depending on the concrete discretization scheme
used.

Avoiding the problems derived from the two situations
described above could involve the explicit modeling of the
uncertainty induced by the imperfection in the sensing and
the discretization of the response time property values.

However, these two sources of uncertainty can interact
with each other in multiple ways. Consider for instance the
situation illustrated in Fig. 4a, where the ground truth value
of the variable r is observed with some error. Both r and
the observed value r̂ lie below threshold Rmax. In the figure,
dashed gray lines represent the values that the variable can
take in the discrete abstraction of the systemmodel. Any real
value observed in the surrounding boxwill be snapped to that
discrete value. We observe that even if the observed value of
the variable r̂ contains some error, this error on its ownwould
not be enough to trigger an undesired adaptation. However,
due to the discretizationof the observedvariable values, r̂ will
be snapped to r̂d ′ , which is above Rmax, triggering a spurious
adaptation. Note that without the error induced by observa-
tion, the discretization process on its own would not have
been enough to trigger this adaptation, given that r would
have been snapped to rd , which is below Rmax. Conversely,
we have the situation illustrated in Fig. 4b, in which both the
ground truth and the observed value of the variable lie above
the threshold. However, the discretization process snaps the
value of r̂ to r̂d ′ , preventing the triggering of adaptation in a
situation in which it would have been required. Analogously
to the situation described in (a), neither the discretization
process nor the observation error on their own would have
been enough to prevent the execution of the required adap-
tation. Instead, it is the compound effect of both sources of
uncertainty that causes the undesired situation.
Addressing this issue. This case could be treated by rep-
resenting numbers with their associated uncertainty [23,44].
In this context, comparison between numbers is no longer
a Boolean operation but returns a probability that expresses
the likelihood (or confidence) of being one number less than,
equal to, or greater than the other [4]. Given that the sources
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of uncertainty of the two facts in this example are independent
(accuracy of r and its snapping r̂d ′), their combination can
be computed by multiplying the confidence of the compari-
son between the uncertain response time and the threshold,
with the degree of uncertainty caused by the discretization
process. Then the decision can be made considering not only
whether r > Rmax but also its associated degree of uncer-
tainty, discarding those decisions where the uncertainty is
above a certain threshold.

3.1.3 Uncertainties due to goal and adaptation functions

Similarly to other self-adaptive systems, the selection of an
adaptation in Znn.com is driven by a utility function U that
balances the tradeoffs among multiple concerns. These func-
tions are often encoded as a linear combination of terms,
where each term is a utility function that captures a given
concern (e.g., performance, cost), moderated by a weight
that specifies user priorities:

U = wp · u p(r) + wc · uc(c) (1)

In Equation 1, u p, uc : R≥0 → [0, 1] are utility functions for
the concerns of performance and cost, which map a response
time r and a cost c, respectively, to a utility value. Weights
wp andwc, which sumup to 1 capture the relative importance
of each term. Selection of a specific adaptation, designated
by the term adaptation strategy, is carried out by analyzing
the anticipated effect of the different strategies available on
the value of U , and choosing the one that maximizes that
value. This analysis relies on models in the knowledge base
of the MAPE-K loop that capture the expected impact of
available adaptation actions (or adaptation tactics), which
are the building blocks of adaptation strategies, on the qual-
ities of the system. A simple model of expected adaptation
tactic impact could include entries similar to the following
one: ActivateServer [r : −500, c : +5]. This entry captures
that the tactic ActivateServer is expected to reduce response
time r by 500 ms and to increase the operating system cost in
5 USD/hr. Of course, this class of model is simple and does
not explicitly capture the obvious uncertainties that concern,
for instance, the variability of the execution context (e.g.,
response time reduction does not behave in a linear manner,
and the activation of more servers does not always result in
the same reduction of 500 ms.).

Moreover, additional sources of uncertainty may interfere
with the adaptation strategy. First, itmay be the case that there
are no servers available when they are needed (for instance,
because the monitors employed for service availability are
not completely reliable), so even when a given strategy pro-
vides the best estimate, we cannot be sure about its real
outcome, or even if it can be applied. Second, in practice
the utility functions u p and uc of Equation (1) have asso-

ciated uncertainties, the same as the corresponding weights
wp and wc. This means that U should be more faithfully
represented accompanied by an associated uncertainty, i.e.,
given in terms of U ± d, where d represents its standard
deviation [23]. For example, U1 = 0.7± 0.3, which is more
informative than a crisp value of U1 = 0.7. Thus, the com-
parison between strategies should be made by comparing
uncertain instead of crisp values, which will give an indi-
cation of the confidence associated with the resulting utility
value. This may provide very useful information. For exam-
ple, if U (s1) = 0.70 and U (s2) = 0.65 are two utility
function values that correspond to two competing alterna-
tive strategies s1 and s2, the adaptive system will select the
former because clearlyU (s1) > U (s2). However, if we know
thatU (s1) = 0.7±0.3 andU (s2) = 0.65±0.2, then the situ-
ation is not as clear since the probability thatU (s1) > U (s2)
is only 0.15. In fact, in this case it would be better to select
s2 because it has less associated uncertainty.

There is also another problem due to uncertainties of epis-
temic nature, i.e., those caused by lack of knowledge, and
where probabilistic logic is not expressive enough to cap-
ture them and, therefore, other belief logics are often used
instead. For example, suppose two stakeholders who assign
different levels of confidence to the values of the utility func-
tions because their trust in the sensors’ values is different.
Imagine that John trusts the sensors that produce the values
of u p and uc, but Eva is aware that they have been running for
too long, and thus their performance measures are imprecise.
Therefore, she assigns different degrees of belief to theirmea-
surements and hence to the value of u p, whose uncertainty is
altered according to the confidence of Eva, but maintained in
the case of John. How to combine two types of uncertainty,
namely measurement uncertainty and belief uncertainty, is
not easy. In this case, Subjective logic [24] could be used
to represent opinions, combine them with the measurement
values, and thereby help the two engineers reach a consensus
using a fusion operator [5].

3.1.4 Uncertainties due to adaptation functions

Different sources of uncertainty within the adaptation func-
tions of a self-adaptive system can also interact among
themselves. Consider for instance the uncertainty in the
latency of the adaptation tactics of a self-adaptive system
(i.e., the time that spans between the triggering of the exe-
cution of the adaptation action and the time instant in which
its effects take place), and the imperfect sensing of system
variables.

In the context of Znn.com, the adaptation tactic Activate-
Servermentioned in Sect. 3.1.3 has a latency associated with
the time that it takes to boot up a new server and for it to start
processing incoming requests. Of course, there is an uncer-
tainty associated with that latency because under different

123



The uncertainty interaction problem in self-adaptive systems

Fig. 5 Adaptation function uncertainty interaction: imperfect sensing
and uncertainty in latency

execution and network conditions, spinning up a new server
may take different amounts of time that range between a few
seconds and several minutes [20]. Ignoring such uncertainty
in the latency can result in inefficiencies due to the system
performing a suboptimal sequence of adaptations. For exam-
ple, the system may adapt to handle a transient change in
workload, only to have to adapt back to the previous con-
figuration moments later. If the cost of performing those two
adaptations is higher than their benefit, then it would be better
for the system not to adapt at all.

We have also seen in previous sections that imperfect
sensing is a source of uncertainty that can affect the nor-
mal operation of self-adaptation, for instance, by inducing
an error in the observed value of the response time variable
r̂ .

Figure 5 illustrates the interaction between imperfect
sensing (in r ) and uncertainty in tactic latency (in Activate-
Server). The figure illustrates a situation in which response
time goes above threshold Rmax and triggers the tactic. One
of the first things that we can observe is that the error in the
sensing induces a delay in the triggering of the tactic, which
would be triggered at time t tr without sensing error (r , dashed
red line), and at t tr̂ when based on the observed value of the
response time (r̂ , dotted red line).

Beyond that delay in tactic execution, we can observe that
there is an error induced in the measurement of the satis-
faction of system goals. Let us recall that in Znn.com the
satisfaction of goals is measured bymeans of accrued instan-
taneous utility (cf. Expression 1). Hence, we can characterize
the overall error in measured accrued utility (corresponding
to the performance concern u p) induced by imperfect sensing
in an arbitrary time interval [t1, t2] as:

meup (t1, t2) ≡
∫ t2

t1
|u p(r(t)) − u p(r̂(t))|dt (2)

For the overall execution of the system, we can say then
that the overall accrued utility error due to measurement
uncertainty is meup (0, T ). In Fig. 5, this error corresponds

(i.e., is proportional) to the light yellow and green areas
between the values of the ground truth and observed variable
values (dashed and dotted lines). Note that the areas in the
figure are for illustration purposes and assume a simple linear
mapping between observed response time values and utility.
However, due to the arbitrary shape of utility functions (e.g.,
nonlinearities such as penalties associatedwith high response
times), the error in measured utility might actually be larger
or smaller, depending on the specific case.

Let us focus now on tactic latency. We assume that the
effects of executing the tactic can take place in an inter-
val of minimum/maximum latency [tlmin, tlmax ] and that
the occurrence of this event in time is distributed accord-
ing to a probability distribution (that we abstract away for
clarity). Hence, if no sensing imperfection exists, the effect
of the tactic execution will take place in the interval [ter =
t tr + tlmin, t ′er = t tr + tlmax ], whereas with the sensing imper-
fection, in this example the effect would take place in the
interval [ter̂ = t tr̂ + tlmin, t ′er̂ = t tr̂ + tlmax ]. Given these two
alternative scenarios for execution, the maximum difference
interval that can exist between the time instants in which the
effects of the latency takes place is given by [ter , t ′er̂ ]. The
case in which the effects can take place at the earliest time
instant ter (minimum overall latency lmin) corresponds to per-
fect sensing and minimum tactic latency. On the other end,
the effects of the tactic can take place at the latest (time instant
t ′er̂ , maximum overall latency lmax) when imperfect sensing
is given along with maximum tactic latency.

This means, that during the period [ter , t ′er̂ ], there are two
different contributions by different uncertainties to the error
in the measurement of accrued utility: one given by the mea-
surement error of r that corresponds to meup (t

e
r , t

′e
r̂ ) (green

areas in the figure), and another one that corresponds to the
alternative, delayed execution of the tactic (r ′).

The contribution to the error inmeasured accrued utility of
these two combined sources can be characterized as follows:

lmeup ≡
∫ t ′er̂

ter

|u p(r̂(t)) − u p(r̂ ′(t))|dt (3)

In Fig. 5, we illustrate the integrated error over time that cor-
responds to the combination of the green and pink areas of
the figure, where we observe that the error resulting from
the interaction of the two uncertainties is different to the
sum of the different contributions considered individually.
Of course, this example is just one instance that illustrates
possible interactions that may occur between imperfect sens-
ing and tactic latency: other situations are possible, such as
anticipated triggering of the adaptation tactic due to mea-
surement error, or effects in system variables that outlast the
maximum latency period (which we chose to bound in our
example).
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Fig. 6 Mobile robotics architecture configuration space

3.2 Autonomousmobile service robot

Mobile indoor service robots operate in environments where
obstacles might dynamically appear, light conditions may
change, and batteries may require recharging. They are also
limited in what they can sense, creating uncertainty in their
location, chances of colliding against obstacles, and the
resources that they may have left to complete a plan. In spite
of this uncertainty, they must attempt to ensure safe opera-
tion, effective use of resources like battery, and timeliness of
completing a task.

In a simple scenario, the mission of the robot is navigat-
ing to a target location from an initial location in the shortest
possible time, with a limited battery, and without bumping
into obstacles or walls. To achieve this goal, the robot can
perform physical actions (e.g., move between locations) and
change its configuration (e.g., change a sensor, its localiza-
tion algorithm, or its speed setting).While accomplishing the
mission, the main goals are: (i) timeliness—the robot should
get to the target in the shortest possible time, (ii) safety—the
robot should arrive at the target location without bumping
into obstacles, and (iii) efficiency—the robot should mini-
mize the energy used to get to the target location (Fig. 6).

The MAPE-K architecture of the self-adaptation layer
synthesizes specifications for the architecture and behavior of
the robot to successfully complete the mission, attending to
the criteria described above, despite situations that include
component or sensor failure, obstacles blocking corridors,
and unexpectedly low battery level.

3.2.1 Sources of uncertainty

Some of the uncertainties that can affect this robot system
are listed below, classified according to their sources.

• Model: The fidelity of the models used to make decisions
may cause errors in the system behavior. For example,
an overly abstract model of the robot or its environment
may cause collisions with external objects because some
of their protruding parts have not been considered in the

models, and hence clash with the environment obstacles.
Similarly, a coarse-grained discretization of the naviga-
tion system or a very low resolution of the navigation
time step can produce that the robot reacts too late to
unexpected situations, e.g., not being able to stop in time
when it detects an obstacle or another robot crosses its
path.

• Adaptation functions: The outcome of executing a given
adaptation tactic (e.g., changing the navigation compo-
nent) is unknown. Sensing is also imperfect, so decisions
based on the values of sensors’ measurements (e.g., the
position of the robot and surrounding obstacles based on
information coming from the cameras) may be wrong, or
at least carry some uncertainty. In some cases, informa-
tion coming from sensors may be inaccurate due to, e.g.,
miscalibrated cameras, and even incomplete (obstacles
that do not intersect with the plane of the lidar cannot be
detected). The time that an adaptation tactic takes (i.e.,
its latency) is also subject to uncertainty, e.g., the time it
takes to change the localization algorithm.

• Goals: Robot goals (timeliness, safety and efficiency)
clearly conflict, so trade-offs between them need to be
established. In addition, the weight assigned to each
objective can change, and also be different depending on
the stakeholders’ opinions. Of course, stakeholders are
not 100% confident about their opinions, so there is an
associated uncertainty that needs to be handled. Besides,
these opinions and their associated uncertainties need to
bemerged and reconciled in order to find consensus deci-
sions.

• Environment: New obstacles can unexpectedly appear.
• Resources: The remaining amount of energy cannot be
directly measured and has to be estimated based on the
output voltage.

• Managed system: The robot may suffer erratic or inter-
mittent failures in some of its components.

In this case, interactions between these uncertainties may
also happen and cause undesirable effects. For example, a
too conservative design that tries to avoid movements with
too much degree of uncertainty in several of these sources
(potential objects in front, low confidence in the readings of
a cheap camera or low precision of sensors) may cause the
robot to move too cautiously and slowly, and therefore fail
to achieve its goals. Conversely, a more aggressive design
that virtually ignores all uncertainties in order to achieve its
goals at all costs may cause the robot to collide with other
objects, suddenly runout of battery power because it stretches
it to the limit, or make mistakes when grasping objects or
performing its tasks.Again, it is crucial to explicitly represent
and quantify the uncertainty associated with each source,
decide the appropriate manner to combine these individual
uncertainties when they interact, and compute the combined
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uncertainty in order to make better informed decisions. We
illustrate two of such interactions in the remainder of this
section.

3.2.2 Uncertainties due to model and environment

Goals in cyber-physical systems tend to be of a different
nature, when compared to IT systems like Znn.com and
therefore can interact in different ways with other sources of
uncertainty. Consider for instance the uncertainty associated
with the abstraction of the models that capture the physical
environment of the robot. An overly abstract model might
cause computation of sub-optimal navigation paths or col-
lisions against objects that would not be given with a more
detailed model. This uncertainty affects all three nonfunc-
tional goals of the robot, degrading safety due to the extra
collisions, timeliness due to the time required to maneuver
and recover from them, and efficiency due to all the energy
consumed during the recovery.

In addition to the degraded nonfunctional goals, the unex-
pected appearance of obstacles that were not present in
the environment model can compound with the uncertainty
induced by model abstraction, producing further effects.

Figure 7 illustrates a scenario in which the robot has to
traverse a corridor and arrive at a target location on the right,
overcoming the obstacle and the person in the middle. While
the obstacle is fixed and its presence known by the robot
(i.e., it is captured in its model), the presence of the person
is unknown a priori and considered part of the uncertainty
associated with the future evolution of the environment. The
model of the obstacle encoded in the robot is also consid-
ered in two variants: a high-resolution version that includes
the geometry of its protrusions, and a coarse-grained variant
consisting of an inaccurate bounding box. Figure 7a shows
the situation in which there is no uncertainty associated with
the model or the environment (i.e., the robot has an accurate
portrayal of the geometry of the obstacle and knows about
the presence of the person in the corridor). In this case, the
robot goes around the obstacle through the gap without any
problems. Figure 7b shows the situation in which the robot
knows about the presence of the person, but is not aware
of the details of the geometry of the obstacle. In this case,
the robot again chooses to go through the gap, but collides
with the obstacle before resuming its navigation towards the
target location, incurring a penalty in safety, timeliness, and
energy consumption. In Fig. 7c, the robot does not know
about the presence of the person in the corridor, so it decides
to go through that side of the obstacle, and unexpectedly finds
that the corridor is blocked. This triggers replanning, which
incurs a time and energy consumption penalty. Next, the
robot decides to go around the obstacle through the other side
and arrives at its destination. In Fig. 7d we observe the case
in which the two sources of uncertainty are combined. The

(a)

(b)

(c)

(d)

Fig. 7 Environment and model uncertainty interaction: a no uncer-
tainty, bmodel uncertainty, c environment uncertainty, and d combined
environment and model uncertainty

robot decides to go through the side of the corridor where the
human is, needs to replan, and decides to go through the other
side of the obstacle. However, in this case the inaccuracies in
the model cause the robot to collide with the obstacle, which
requires further time, maneuvering, and energy consump-
tion. At this point, the interaction between the two types of
uncertainty canmake other effects emerge that go beyond the
sum of the parts (i.e., degraded timeliness, energy consump-
tion, and safety). For instance, the battery of the robot may
not have enough energy to complete the mission due to the
extra energy spent in the combination of the energy expense
required for replanning and recovering from the collision.
This situation would not be given in any of the situations in
which the sources of uncertainty are given individually.
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(a) (b) (c) (d)

Fig. 8 Environment and sensing uncertainty interaction: a no uncertainty, b environment uncertainty, c sensing uncertainty, and d combined
environment and sensing uncertainty

3.2.3 Uncertainties due to environment and adaptation
functions

Environment uncertainty can also interact with adaptation
functions such as sensing, and produce effects that only
emerge when the two are combined.

Let us continue with our robot example, which is now in
the scenario depicted in Fig. 8. In this scenario, the goal of
the robot is arriving at the target location on top (depicted
as concentric circles), avoiding obstacles, and with limited
battery. One of the two corridors that the robot can use to
reach the target location is dark (left, in gray). Environmen-
tal uncertainty in the scenario can occur when the robot is not
aware that the left corridor is dark (represented by a question
mark in the thought bubble). Sensing uncertainty is present
when the robot is using a planar lidar sensor to detect obsta-
cles, instead of a camera. In the example, we assume that
the obstacles are not detectable via lidar because they do
not intersect with the lidar plane and therefore the robot is
completely unaware of their presence.

Scenario (a) illustrates the case in which there is no uncer-
tainty: the robot is aware that the left corridor is dark and the
camera is able to detect obstacles. Hence, the robot’s planner
generates a task plan to reach the target location through the
right corridor and everything runs smoothly.

In scenario (b), the robot is not aware of the lack of light in
the left corridor. Hence, the planner determines to go through
it, but when the robot arrives at the corner, its sensors detect
that the corridor is dark. At that point, task replanning is
triggered. The planner generates a plan to go through the
right corridor. However, due to the limited battery, the robot
stops by the charging station in the corner before continuing
the route towards the target location.

Scenario (c) depicts the scenario in which the robot knows
that the left corridor is dark, but in this case the sensor built
in to detect obstacles is the lidar instead of the camera. In this
case, the robot’s planner generates a task plan to go through
the right corridor. However, due to the lack of obstacle detec-

tion capabilities, the robot collides against the first obstacle.
At this point, the robot’s energy analysis determines that the
estimated level of battery might not be enough to complete
the mission, so the task plan is regenerated to charge in the
station, and then proceed towards the target location through
the dark corridor again. The robot collides again with the
second obstacle, but despite the safety penalty incurred due
to the collisions, it manages to accomplish the mission.

Finally, scenario (d) illustrates the case in which environ-
ment and sensing uncertainty are combined: the robot does
not know about the lack of light in the left corridor, and the
built in sensor is not able to detect any obstacles. In this
case, the robot’s planner determines that the robot should go
through the left corridor. Unlike in case (b), going through
the dark corridor should not represent any problems a priori
because, unlike the camera, the lidar sensor is not sensitive
to low-light conditions. Hence, the lack of light in the corri-
dor does not trigger any replanning, and the robot keeps on
advancing through the dark corridor until it collides with the
obstacle, which blocks the way and hence, the robot cannot
progress. At this point, replanning is triggered, and the robot
decides to go back to the charging station, and then proceed
to the target location through the right corridor. However, in
this case the battery is depleted before arriving at the charging
station and the mission fails.

An interesting observation that we can make is that if the
robot’s planner had decided to go through the left corridor in
the first place in scenario (c), the outcome would have been
similar to that of scenario (d). This observation illustrates that
the ways in which uncertainty from different sources interact
can be subtle in many situations, and that the provision of
solid guarantees about run-time system behavior in software
intensive systems demands further study about uncertainty
interaction.
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4 Challenges

Based on the current limitations tomitigate uncertainty inter-
action in self-adaptive systems as in the examples discussed
in Sect. 3, we have identified a set of challenges, which need
to be addressed as self-adaptive systems becomemore preva-
lent, particularly in safety-critical sectors. We also classify
them in different categories related to modeling, analysis,
mitigation, and exploration.

4.1 Modeling challenges

These challenges refer to how the approach to modeling
uncertainties can influence the mitigation of the uncertainty
interaction problem. The following challenges have been
identified:
Challenge M1: Combining uncertainties with different
representations. Different types of uncertainties require dis-
parate notations. For example, a lack of response from a
sensor whose value is needed for deciding about a change
of behavior can be due to a delayed transmission or to the
fact that the sensor’s battery is exhausted and therefore the
sensor will never respond. How long towait for the response?
And, if it is received late, how much can we trust its value?
In this case, we need to represent all the elements required
to capture and quantify the combined uncertainty to decide
whether the overall degree of uncertainty discourages any
actions based on it. Similarly, think of the combination of
a sensor whose measurements are expressed as fuzzy val-
ues, with a decision threshold that uses probabilistic logic
to make decisions. Research is needed in the quest for nota-
tions and logics that enable the combination of uncertainties
of different nature, or are specified using different notations.
Challenge M2: Combining uncertainties with different
granularity, resolution, or abstraction levels. Even if the
interacting uncertainties are expressed in similar notations
and use similar reasoning mechanisms, they may be defined
at different levels of abstraction or with different levels of
granularity. One challenge is how to discover and compute
the influence that each of them may have in the interaction?
For instance, consider a moving robot that has a position-
ing device with a precision of 1 cm, and a move base with
motors whose minimum energy pulses last 1 second and
make the robot move aminimum of several cm, moving in an
unknown environment. In this context, any decision made by
the robot controlling software should be carefully considered
because the coarse-grained granularity of the movements
can introduce significant imprecision and vagueness—see
the different uncertainties described in Sect. 2.3. There is a
need for faithful abstraction and refinement mechanisms that
allow us to balance the levels of abstraction and/or resolu-
tion of the corresponding uncertainties, while respecting the
systemproperties of interest. For example, interpolation tech-

niques can be used to approximate the more abstract model
with a more refined one. Other mechanisms should also be
explored, as well as how they preserve (or degrade) the prop-
erties of interest of the system.
Challenge M3: Combinatorial explosion of uncertainty
interaction effects.Althoughwemanaged to combine differ-
ent interacting uncertainties, the effects of the combination
need to be quantified and bounds established. The challenge
here lies in how to analyze and measure the effects of such a
combination, which may be of an exponentially amplifying
character. For example, a variability model describing the
possible configuration options under uncertain environmen-
tal requirements may be significantly worsened by imprecise
values of the variables used to determine the option to choose.
Methods and techniques for coping with these situations
are needed. Furthermore, a better understanding of how
two or more uncertainties interact can also help to define
limits to the effects of their combination. Most models of
uncertainty specification and analysis follow the worst-case
scenario. However, in the physical world we see how uncer-
tainties cancel each other out or at least offset each other’s
effects. Defining alternative models to those using worst-
case analysis (e.g., using means, medians or other central
values measures) that are more faithful to the way in which
real-world systems is a promising direction to overcome this
challenge.

4.2 Analysis challenges

In order to be able to manage uncertainty interactions in
self-adaptive systems, we need to be able to identify such
interactions, quantify their impact, and determine those that
require mitigation, leading to the following challenges:
Challenge A1: Identifying uncertainty interactions. Deter-
mining all the uncertainty interactions that a self-adaptive
system needs to consider is extremely difficult. While Sect. 3
provides multiple examples of such interactions for two pro-
totypical self-adaptive systems, assembling a comprehensive
list of these interactions for a given system is a complex and
error-prone process. Methods adapted from risk identifica-
tion could potentially be used for this purpose, supported by
predefined lists of likely uncertainty interactions and contri-
butions from both domain experts and the developers of the
actual system.
Challenge A2: Quantifying the impact of uncertainty inter-
actions.Assuming that a complete list of relevant uncertainty
interactions could be compiled, the next challenge is to
determine their potentially disparate impacts. The interac-
tion between the model uncertainty due to a coarse-grained
discretization of the map used for robot navigation and sens-
ing uncertainty that makes obstacle detection imprecise can
have a considerable impact on a robot’s ability to navigate
through an environment containing obstacles. In contrast, the
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interaction between the same type of model uncertainty and
effecting uncertainty due to actuator imprecision may have
only a limited impact if the system goals allow such impre-
cision.
Challenge A3: Determining the uncertainty interactions
that require mitigation. The effort to devise, implement, test
and deploy suitable mitigations for uncertainty interactions
can be considerable. As such, methods are required for sys-
tematically determining which of these interactions need to
be addressed, and which can be accepted. These methods
must consider the impact of all relevant uncertainty inter-
actions, and must carry out this assessment based on a set
of well-defined criteria provided by domain experts. Where
applicable, the intended users of the system may need to be
involved in this assessment. For instance, uncertainty inter-
actions that impact the navigation of an assistive-care robot
need to be mitigated when the robot is helping a partially
sighted user, but may be acceptable for a fully sighted user.

4.3 Mitigation challenges

When dealing with uncertainty in self-adaptive systems, one
promising approach is to explicitly and proactively mitigate
uncertainty through uncertainty-reduction techniques [7,31].
The key idea is to allocate system resources to reducing
uncertainty in contexts where inaccurate decisions might
have a strong negative impact on system utility. For example,
in a robotic navigation scenario, a robot might decide to turn
on a spotlight in a darkened hallway to reduce uncertainty in
robot localization. Such actions, however, come with a cost
(e.g., in additional energy consumed, more intrusive pres-
ence, etc.) and hence it becomes important to reason about
the net effect of such uncertainty reduction techniques on
overall utility. When considering interactions between dif-
ferent forms of uncertainty, however, a number of challenges
arise:
Challenge Mt1: Uncertainty mitigation dominance.

Uncertainty reduction in one dimension may dominate,
and possibly make irrelevant, uncertainty mitigation in other
dimensions. Consider the robot example. One concern for
such systems is energy usage—we do not want the robot to
run out of battery power en route to its destination.Under nor-
mal operating conditions we may choose to query the power
level to reduce uncertainty about its usage. But such moni-
toring may be completely dominated by the need to reduce
uncertainty in the environment, for example by turning on
the robot’s headlamp in a poorly lighted space.
Challenge Mt2: Uncertainty mitigation augmentation. A
second form of uncertainty mitigation interaction is aug-
mentation: by reducing the uncertainty in one dimension we
may also reduce uncertainty in other dimensions. For a robot,
lighting a hallway to reduce localization uncertaintymay also
affect occupancy uncertainty (knowing howmany people are

in the space, and hence how intrusive the robot is). In such a
situation, it might be wise to pick an uncertainty mitigation
approach that is less effective in one dimension, but through
augmentation can reduce uncertainty inmultiple dimensions.
ChallengeMt3: Uncertainty mitigation conflicts.This chal-
lenge is related to the third form of uncertainty mitigation
interaction, which is conflict: by reducing uncertainty in one
dimension you may increase it in another. For a robot, turn-
ing on a headlamp may reduce localization uncertainty, but
increase uncertainty about the robot’s power level if the
headlamp’s energy consumption is not well-calibrated. It
is important to explore mechanisms in order to reduce the
uncertainty increase.

4.4 Exploration challenges

Several factors for current and emerging systems will neces-
sitate sophisticated strategies for assessing the impact of
uncertainty. Cost as defined in terms of human lives and
monetary expense provides perhaps the most compelling
motivation for run-time relevant impacts of uncertainty.
While much of the work with uncertainty management cen-
ters around system development (e.g., how to make systems
more robust and resilient to uncertainty), it is also important
to understand the scope and impact of uncertainty. Specif-
ically, techniques are needed to explore uncertainty and its
impact. We highlight the following specific challenges:
Challenge E1: Complementary uncertainty exploration.
Given the range of sources of uncertainty, varying types and
degrees of impact, temporal relevance, and potentially con-
flicting strategies for mitigating uncertainty, complementary
uncertainty exploration techniques are needed. For exam-
ple,multi-objective optimization techniques canbe leveraged
to explore the cumulative impact of multiple sources of
uncertainty. Probabilistic analysis, data mining, and (adver-
sarial) machine learning techniques can be used to explore
uncertainty based on historic data. For the ZNN application,
historic-use data and uncertainty factors can be used to guide
the self-adaptation for changes to the server configuration and
networking support. Search-based techniques such as evolu-
tionary computing can be used to explore uncertainty that is
not predicated on previously known uncertainty data [10].
The different sources of uncertainty for the robot (e.g., ter-
rain, lighting, obstacle size, wheel slippage) can all affect the
robot navigation and obstacle avoidance. Evolutionary com-
puting can be used to explore the different combinations of
the uncertainty factors to determine contexts that would be
detrimental to the robot behaving acceptably [27,28]. Explor-
ing uncertainty with “What if?” scenarios (e.g., using game
theory) enables the developer to explore uncertainty with
respect to specific operational contexts [6,26].
Challenge E2: Utilization of digital twin frameworks. Dig-
ital twin (DT) frameworks provide a potentially invaluable
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framework for uncertainty exploration that supports “human
in the loop.” Digital twinning can be used in a number of
scenarios. For example, with uncrewed space missions, DTs
can incorporate run-time monitored information regarding
the environment and its uncertainty factors, which can be
analyzed and explored in order to determine appropriate
behavior changes for the onboard control behavior for a ter-
restrial rover. DT frameworks can also be used to explore
“What if?” scenarios based on historic data and synthetic
data [14,15]. Effective use of DTs for uncertainty exploration
will necessarily have to be informed by advances across
all the aforementioned challenge categories related to the
representation, analysis, and mitigation of uncertainty inter-
actions.

5 Conclusions

In this SoSym Expert Voice, we have described the Uncer-
tainty Interaction Problem in self-adaptive systems, focus-
ing on uncertainty modeling in an integrated fashion. The
motivation has been illustrated with examples in two repre-
sentative application domains (an autoscaling news website
infrastructure and a mobile autonomous service robot). We
have outlined a set of challenges that concern the represen-
tation, analysis, mitigation, and exploration of interactions
among uncertainties from different sources. The set of poten-
tial uncertainty interactions illustrated in this article is by
no means exhaustive and further collaborative effort from
the self-adaptive systems and modeling communities will
be required to develop a detailed catalog of uncertainty
interactions and guidelines to deal with them. However,
through the Uncertainty Interaction Problem, we hope to
set the reference coordinates to reason about the emer-
gent effects of uncertainty interactions and their impact on
software-intensive systems. We believe that this is an impor-
tant area that deserves the attention of the community, and
that research in this direction will pave the way towards more
holistic approaches that enable the construction of safer and
more resilient software-intensive systems.
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