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a b s t r a c t 

Mobile Multi-Robot Systems (MMRSs) are an emerging class of systems that are composed of a team of robots, var- 
ious devices (like movable cameras, sensors) which collaborate with each other to accomplish defined missions. 
Moreover, these systems must operate in dynamic and potentially uncontrollable and unknown environments 
that might compromise the safety of the system and the completion of the defined mission. A model of the en- 
vironment describing, e.g., obstacles, no-fly zones, wind and weather conditions might be available, however, 
the assumption that such a model is both correct and complete is often wrong. In this paper, we describe an 
approach that supports execution of missions at run time. It addresses collective adaptation problems in a decen- 
tralized fashion, and enables the addition of new entities in the system at any time. Moreover, it is based on two 
adaptation resolution methods: one for (potentially partial) resolution of mission-related issues and one for full 
resolution of safety-related issues. 
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. Introduction 

In the near future Mobile Multi-Robot Systems (MMRSs), will be used
xtensively to perform missions in everyday life and open new busi-
ess and societal opportunities. MMRSs are an emerging class of sys-
ems that can adapt their behavior at run-time to achieve specific goals.
hey are represented by a set of mobile robots operating as a team with
ther agents (the term “agents ” refers here to generic entities like cam-
ras, ground stations, or even humans) in a shared environment. MMRSs
hould be able to operate under dynamic, uncontrollable and partially or
ully unknown environments. That introduces a set of uncertainties re-
ulting from incomplete knowledge of the run-time structure of a MMRS
e.g., number of agents performing a particular task at a specific mo-
ent) and the environment in which the MMRS operates. Incomplete

nowledge of the run-time structure of MMRS comes from its openness.
y “openness ” we mean that new entities can join or leave the system
t run time. Incomplete knowledge of the environment comes from its
ynamics and uncontrollability (e.g., a bird flying in the environment).
he consideration of the environment when specifying the system arises
rom the fact that a mission is always associated with a physical context
ithin which it is happening, so how a system will perform a mission

trongly depends on the environment where it operates (e.g., the system
ill operate differently in environments with smooth vs. rough surface,
∗ Corresponding author. 
E-mail addresses: darko.bozhinoski@ulb.ac.be , darko.bozhinoski@gssi.infn.it (D. B

atrizio.pelliccione@gu.se (P. Pelliccione). 

ttps://doi.org/10.1016/j.sysarc.2019.02.018 
eceived 15 November 2017; Received in revised form 17 February 2019; Accepted 
vailable online 22 February 2019 
383-7621/© 2019 Elsevier B.V. All rights reserved. 
nvironments with many static obstacles vs. environments with a small
umber of obstacles). 

Handling uncertainty up front is often unfeasible (or expensive). This
mplies that we need to deal with it when the knowledge becomes avail-
ble at run time. The construction of MMRSs is significantly more chal-
enging than traditional systems due to their mission-criticality (mean-
ng a loss of resources can lead to possible reduction in mission effective-
ess) and their safety-criticality (meaning a failure or defective design
ould cause risk to human life and the environment). Commercialisa-
ion and adoption of MMRSs in dynamic environments will only occur
f safety aspects are considered and incorporated as first class concerns
n the design of the system. Certification bodies should assure some type
f safety certification that relies on a complete understanding of the sys-
em. However, for mobile robots that operate in dynamic environments
t is quite challenging to consider all variants of the overall system due
o their adaptive behaviour. Hence, having the ability to analyse and
eason about safety independently from the mission requires a clear sep-
ration of concerns between safety and mission related issues. 

System designers should be able to precisely specify different adapta-
ion solutions with specific guarantees for the different agents in MMRSs
n order to ensure high operational confidence. Moreover, they should
e able to craft different adaptation solutions that can be reused across
issions, projects, and organizations to minimize development cost.
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Fig. 1. Motivating scenario. 
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owever, researchers and practitioners have struggled with the lack of
pproaches to perform different adaptation strategies. 

State of the art approaches that support execution of missions in
MRSs enable description of the system behaviour under the assump-

ion that all the knowledge used to adapt a system is fully specified at
esign time and is centrally controlled by a specific component (e.g.,
1,2] ). Furthermore, most of the proposed solutions do not consider
afety aspects separately from the functional behaviour of the robots
aking the safety certification process more complex and difficult. With

ur work, we address the aforementioned challenges by proposing a
eneric approach that: 

1) supports execution of missions in MMRSs by providing description of
the run-time behaviour of different agents in the system. 

2) makes a clear separation between mission-related and safety-related
adaptation mechanisms. In our work, the system should always sat-
isfy all safety invariants, while the mission can be partially satis-
fied. Thus, we present two adaptation resolution methods: one for
(potentially partial) resolution of mission problems and one for full
resolution of safety problems. 

3) ensures guarantees about the behaviour of the system. 

The rest of the paper is organized as follows. Section 2 describes our
otivating scenario of a carbon dioxide monitoring system on which
e base our approach. Section 3 describes the framework for mission

xecution in details, while Section 3.1 discusses the agent’s modular
eusable behaviours. Section 4 defines a formal model for the problem
esolution process. Section 5 presents our mission problem resolution
rocess for (potentially partial) satisfaction of mission objectives, while
ection 6 shows our safety problem resolution process for full satisfac-
ion of safety objectives. Finally, related work is examined in Section 7 .

. Motivating scenario 

In this section we describe a motivating scenario of a carbon dioxide
onitoring system ( Fig. 1 ), which will be used as a running example

o explain details of the approach. Fig. 1 shows a single instance of a
ission in which three drones have to monitor the CO2 levels within
 geographical area; the team of drones has to sense the CO2 level of
ach geographical point in a grid composed of cells of size 10 × 10 me-
ers. The upper part of Fig. 1 represents the various mission and context
odels, where the different colours in the red rectangle represent the
ifferent levels of CO2 in the environment (red is an area that has C02
ver the treeshold, violet is an area of region that has normal CO2 level,
20 
hile yellow represents a warning level of CO2 concentration in the en-
ironment that is close to the treeshold). This single instance of a mission
s considered as successfully completed if the whole area has been fully
onitored. Starting from this very high-level description of the mission,

he configurations and flight plans for the drones can be automatically
enerated using tools like FLYAQ [3,4] . Once configured, these drones
erform the mission by flying from their initial position to the border
f the monitoring area. Then, each drone starts monitoring a specific
ub-area so that the whole team can cover the entire area in parallel. A
ub-area can be decomposed in number of blocks. A block is the smallest
easurable unit for the mission region. Each block is assigned a unique

dentifier. We represent the size of an area using the number of blocks
long each dimension. 

The bottom side of Fig. 1 shows the mission execution of three
rones. Each drone is executing its corresponding behaviour to cover
ts part of the mission. The black region is the region that has been
lready monitored by the corresponding drones. The region with dots
epresents the region that should be monitored by u 1 , the region with
orizontal stripes is the region that should be monitored by u 2 and the
egion with vertical stripes is the region that should be monitored by
 3 . 

Let us assume that the drone u 1 in Fig. 1 (part of the team U) must
each a target geographical position b 1 and it identifies an obstacle along
ts trajectory towards the block b 1 ; if the obstacle is avoidable (e.g., a
ree), then u 1 adapts its trajectory to avoid the obstacle to reach b 1 ; if the
bstacle cannot be easily avoided (e.g., the largewhite object in Fig. 1 ,
hen the behaviours of u 1 and some other drones in U are adapted so
hat the block b 1 is covered by another drone u i ∈U and u 1 can cover
ome other points within the area. 

. Framework for mission execution 

Missions are specified at design-time by in-the-field operators. The
perators are users that are non-expert in Information and communi-
ations technology (ICT), but have specific expertise in the mission do-
ain (like fire fighters, policemen, etc.). Within the panorama of mis-

ions [5] , mission scenarios might concern: (i) Disaster Prevention and
anagement, like damage assessment after earthquakes, searching for

urvivors after airplane accidents and disasters; (ii) Homeland Security,
uch as coastal surveillance, securing large public events; (iii) Protection
f Critical Infrastructure, such as monitoring oil and gas pipelines, pro-
ecting maritime transportation from piracy, observing traffic flows; (iv)
ommunications, like broadband communication, telecommunication
elays; (v) Environmental Protection, such as pollution emission, pro-
ection of water resources etc. This spectrum of mission requires MMRSs
nd often they are both mission-critical and safety-critical systems. The
efinition of missions at design-time include only the information that
s available at that time. 

A proper management of the run-time phase is required since envi-
onments in which these systems have to operate are often unpredictable
nd unknown. A new plan for adaptation should be computed on-the-
y every time something unexpected in the system or in the environ-
ent is observed. However, there are few major challenges in perform-

ng adaptation on-the-fly, i.e., computing agents’ behaviours on-the-fly.
ne challenge is to deal with the question of which part of the system

hould be engaged in an adaptation. This is not trivial at all, since so-
utions for the same problem may be generated at different levels. For
nstance, an issue of a robot (i.e., a drop of the battery level of a drone
elow a safety threshold) can be resolved in the scope of its mission, by
e-calculating its navigation plan (isolated adaptation), or in the wider
cope with the engagement of other robots and supporting systems (e.g.,
 drone trajectory manager) (collective adaptation). The challenge here
s to understand these levels and create a mechanism that decides the
ight scope for an adaptation for a given issue. The other challenge is
o understand how multiple entities in a collective adaptation can adapt
ltogether and transactionally and what type of negotiation must take
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Fig. 2. Overview of our approach. 
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lace to decide the right behavioural changes that should be applied on
ach side. Moreover, managing the execution of complex missions re-
uires a clear separation of concerns between safety and mission issues.
his way an operator can focus on the mission functional specification,
hile a safety engineer can only focus on safety-specific mechanisms

hat are generic and independent from the functional behaviour of the
ystem. 

In this work, we propose a generic approach for supporting execution

f MMRSs missions. A possible design-time phase for constructing the
ehaviour plans of the different agents can be FLYAQ [3,4] . FLYAQ is
 platform for the specification of missions of autonomous multicopters
hrough a high-level and graphical domain specific language tailored
o the specific application domains. In FLYAQ [3,4] the tool generates
ehaviour plans at design-time for each of the robots involved in the
ission according to the initial set of active robots and the mission

pecification. The tool associates a robot r i with a region R for each
f the mission tasks t . The correctness of the algorithms employed in
he FLYAQ framework regarding preserving safety is proved in [6] . 

Here we focus on the run-time phase. Most of the existing works
re based on the assumptions that the environment is static and that
ach agent has either a global communication range (can communicate
ith each other agent in the system) or that each agent can obtain a

ull knowledge of the system and the environment at any time. These
ssumptions, however, do not usually hold in real-world scenarios [7] .
n our work, an adaptation is performed on-the-fly every time an un-
xpected system or environmental feature is observed in a part of the
ystem. That being said, a new behavioural plan is computed for one
r a group of agents that are affected by it. Our approach supports on-
he-fly adaptation that enables MMRSs to complete the defined mission
hile guaranteeing the preservation of safety constraints. As shown in
ig. 2 the architecture of our approach consists of 3 main components: 

• Behavior Manager: contains the behaviour model of the mission.
Here, behaviour plans are stored as behaviours in a Behaviour Tree
[8] . Each agent in the system is assigned a Behaviour Tree. In the be-
ginning of the mission, the Behavior Manager contains all behaviours
that should be performed for completion of the mission. During mis-
sion execution, the behaviour trees may be updated as a result of
violations in the behaviour plans to one or more agents. 

• Execution Manager is in charge of: (i) receiving the current Behaviour
Model (BM) of the mission from the Behaviour Manager , (ii) inter-
acting with the controllers both to send their part of mission to be
executed and to receive telemetry data, (iii) checking when some
conditions in the behaviour plans are violated in order to trigger the
Adaptation Manager , and (iv) to log mission data. 
21 
• Adaptation Manager is a component where the adaptation happens. It
receives from the Execution Manager the conditions that are violated
and depending on the type of conditions that are violated it triggers
one of its subcomponents. If safety-related conditions are violated
the Safety Manager is always triggered. The Safety Manager is a safety-
specific adaptation component that can manage only safety-related
problems. If there isn’t any violation of safety-related conditions and
there are mission-related conditions that are violated, the Mission

Manager is triggered in order to perform mission problem resolution.

Based on the different type of issues: mission related vs. safety re-
ated the approach proposes different adaptation mechanisms which de-
ide the right scope for an adaptation. Safety is a first class concern in
ur missions as robots can collaborate with humans to accomplish the
ission. In this context, the system should always satisfy all safety in-

ariants, while the mission can be partially satisfied. That is why dis-
inguishing between safety-related and mission-related issues is of most
mportance in our approach. As the nature of the mission objectives is
ifferent to the safety objectives, we propose two different adaptation
esolution methods: one for partial satisfaction of mission objectives and
ne for full satisfaction of safety objectives. In this work, a MMRS might
eed an adaptation due to the following: 

• the system cannot successfully complete the defined mission (mis-
sion objective); 

• agent(s) performing the current mission may physically collide
(safety objective). 

The Safety Manager contains “safety ” solvers which are algorithms
hat generate a behavior for collision avoidance. These are agent-specific
nd defined independently from mission definition. The Mission Manager

ontains solvers which generate a behavior for completing parts of the
ission. These are mission-specific and employed before the start of the
ission. 

In our approach we took in consideration the following types of un-
ertainty that the system might face and can be a reason for adaptation:

• Changing Availability of resources: The availability of resources for an
agent can change over time (e.g., the battery level of a robot is less
then a certain value, so the robot cannot finish a task); 

• Change of environment conditions: The environment where the agents
operate is dynamic (e.g., a dynamic obstacle appears, so a robot can-
not finish a task). 

Even though the agents participating in the mission are autonomous,
hey are able to dynamically form collaborative groups, called ensem-
les [9] to gain benefits that otherwise would not be possible. The exam-
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Fig. 3. Partitioning behaviour plan state space. 
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le of such a collaborative group is an ensemble of drones that cooperate
n a carbon dioxide monitoring mission represented in the motivating
cenario in Fig. 1 . Multiple entities must follow certain rules in the en-
emble and in return the ensemble offers certain advantages with respect
o having single entities working independently. Adherence to these col-
ective rules temporarily reduces the flexibility of collaborating entities,
ut has huge impact on a particular quality of the system. We can con-
ider what happens if there is a fault on a drone and the drone can not
ontinue with its behaviour. In this case, all the tasks that the drone did
ot manage to complete need to be redistributed to other entities for
uccessful mission completion, while the faulty drone needs to adapt its
ehaviour plan to safely exit the mission. Another issue we can consider
s a collision between drones . In that case an immediate and collective re-
ction by a group of drones is needed for a collision to be avoided. Here,
ultiple entities must adapt altogether and transactionally to perform a
articular collision avoidance protocol. This shows that in MMRSs two
evels of adaptation are possible: 

• Isolated adaptation: change of a single agent’s behavior with pre-
defined behavior templates independently from the rest of the sys-
tem; 

• Collective adaptation: collective change of the behaviour of a set of
agent’s teamed up in an ensemble working towards a particular goal.

In this work, we mostly focus on collective adaptation, even though
he approach has capabilities to perform isolated adaptation by provid-
ng a simple solution to a specific issue. 

Finally, our approach is based around the principle of separation of
oncerns between mission-related vs. safety-related issues. 

In the following sections, we will describe how we model the modu-
ar reusable behaviours and how agents adapt when facing with mission
nd safety-critical issues. 

.1. Modeling modular behaviours 

In FLYAQ [3,4] , at design-time safe behaviour plans are generated
or the agents involved in the mission according to the initial set of active
gents and the mission specification. Our assumption is that the algo-
ithms used by mission designers at design-time to generate behaviour
lans for the agents in our system is correct as in FLYAQ. Now, we focus
n the run-time phase. During mission execution, at each point of time
he system can follow the state of the mission. We define a mission state
s follows. 

efinition 1. A Mission State is a tuple 𝑀 𝑆 = ( 𝑀 , 𝐶, 𝐴, 𝜏) , where: M is
he mission that should be performed, C is the context under which is
erformed and A is the set of agents part of the MMRS system performing
t at time 𝜏. 

Furthermore, we focus on the execution of behaviour plans. For each
gent a i ∈A involved in a mission M we generate a behaviour plan BP i .
e define an execution of a behaviour plan for an agent a i as follows. 

efinition 2 (Executing a Behaviour Plan) . We define an execution

f a Behaviour Plan for an agent a i at time 𝜏 as a tuple 𝐸𝐵𝑃 𝑖 
𝜏
=

 𝑎 𝑖 , 𝐵𝑃 𝑖 
𝜏
, 𝑆 

𝑖 
𝜏
, 𝑅 𝜏 ) where: 

• a i ∈A is an agent; 
• BP i is the behaviour plan performed by agent a i ; 
• 𝑆 

𝑖 
𝜏

is the state of the behaviour plan BP i at time 𝜏; 
• R 𝜏 : is the return status of the Behaviour Plan R, S, F (the state region

of 𝑆 

𝑖 
𝜏
), and can be equal to either Running (R), Success (S), or Failure

(F). 

The behaviour plan state space for an agent is partitioned in three
artitions: success, failure , and running when an agent a i is executing a
ehavior plan BP i ( Fig. 3 ). The return status of the Behaviour Plan at
ime 𝜏 reports the status of the behaviour plan execution. The states de-
ned in the success partition describe that the behaviour plan has been
22 
uccessfully completed. The states defined in the running partition de-
cribe that the behaviour plan is correctly executing at time 𝜏. The states
efined in the failure partition describe that the behavior plan is failing
t time 𝜏. In that point the agent should perform adaptation in order
o continue executing the mission or just safely exit the mission as de-
cribed in [4] . In Fig. 3 is represented the behaviour plan state space
or an agent a i executing a behavior plan BP i . The behavioural plan ex-

cution state transition ( a → b → c → d ) represents a behaviour plan state
ransition from an initial state S 0 to a state in the success region S 7 . That
s only one possible state transition that could happen. There are many
ther possible transitions which might include failing into a state from
he failure region from where it should adapt. 

To model the behaviour plans of an agent a i we will be using the Be-
aviour Tree architecture because it provides a flexible mechanism for
n agent to switch between different behaviour plans. From Dromey [8] ,
 Behavior Tree is a formal tool that can represent the behaviour of in-
ividual entities which change states, make decisions, respond-to/cause
vents, and interact by exchanging information and/or passing control.
t is an organizational execution structure that groups behaviours that
ne agent should execute as part of its mission. Each behaviour plan
f an agent is modeled as a separate behavioural unit. A Behaviour unit

s one of the basic concepts around which we define our approach. It’s
n executing structure for explaining what a single agent in the system
hould do as part of a mission. A behavioural unit is a modular and
arametric structure that can be used across missions, projects, and or-
anizations. We believe that modularity is important when designing,
esting, and reusing complex mission behaviour in robotics. Individual
ehaviour units allow individual behavior plans to be easily reused by
ther robots in other context, without the need to specify how they re-
ate to the whole mission behavior [10] . 

In the following sections, we will discuss how our approach manages
ission and safety issues. We will present an iterative collective adapta-

ion resolution method for partial satisfaction of mission objectives and
ull satisfaction of safety objectives. 

. Problem resolution model 

In this section, we discuss the general problem resolution model
hich is the base of our approach to manage mission and safety issues.

During normal conditions, each agent performs its behaviour plan
enerated at design-time and finishes its part of the mission, leading to
ull mission completion. 

However, when an agent executes a behaviour plan and the plan
eaches a state in the failure region, it is not correctly executing. When
n agent is not “correctly executing ” a behaviour plan, a problem is trig-
ered. 

A problem is a generic structure that corresponds to different critical
ituations that can happen to an agent when executing a particular be-
aviour plan. It is generated as a result of the inadequacy between the
gent configuration model and the model of its behaviour plan. It can
epresent situations like a state of an agent that can not cover a partic-
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lar mission region because of lack of resources or a state of an agent
hat represents a situation of possible collision. Each problem includes
 set of parameters describing it. We discuss about the problem space
e are covering in more details in the next sections. Now, we define a
roblem formally as follows. 

efinition 3 (Problem) . A Problem is a tuple 𝑃 = ( 𝑃 𝑆, 𝑓 ) where 

• PS is a generic type of problems; 
• f : PS.p →V is an assignment function that assigns values v ∈V for the

set of problems’ parameters p . This function defines the boundaries
of the problem. 

A Solver is a structure that as input receives an instance of a problem
nd produces a behaviour plan that is a solution to a particular problem.
ormally it is represented as: 

efinition 4 (Solver) . A Solver is a tuple 𝑆 = ( 𝑃 0 , 𝑃 𝑆, 𝑆𝑆, 𝜃) where: 

• P 0 is the initial problem that should be solved; 
• PS is the set of all possible Problems the solver is able to solve; 
• SS is the set of all possible solutions; 
• 𝜃 is a resolution function and ( P i , B i ) ∈ 𝜃 represents the following: 

• P i ∈PS is the problem that is addressed; 
• B i ∈ SS is the Behaviour Plan generated to solve the Problem (so-

lution). 

The problem resolution can be performed by one or multiple agents.
hen multiple agents participate in the mission problem resolution we

onsider their collective behaviour. Existing approaches typically deal
ith multi-agent adaptive systems through isolated adaptation: each
gent adapts itself independently from each other. However, in our
ork we consider isolated vs. collective adaptation. Run-time adapta-

ion raises an important issue, i.e., identifying which parts of the system
hould be engaged in adaptation. This issue is not trivial at all, since a
roblem may be solved at different scales. 

In order to explain our problem resolution process we start introduc-
ng the notions of entity and ensemble . Entities are basic building blocks
n the adaptation process representing the different agents of the system
e.g., robots, ground stations, etc.). An entity can be seen as a represen-
ation of an agent that can play a role in the problem resolution process.
ormally, we define it as follows. 

efinition 5 (Entity) . An entity 𝑦 = ( 𝑎 𝑖 , 𝑟 ) is defined by an agent a i play-
ng a role r . 

A role represents the type of collaborative interaction a particular
gent can participate in. Collaboration consists in managing problems
nd responding to problems raised. Formally, it is defined as follows. 

efinition 6 (Role) . A Role is a tuple 𝑅 𝑖 = ( 𝑃 , 𝑆) where: 

• P is a set of problems it can produce; 
• S is a set of solvers it provides. 

The model of an entity is primarily determined by the ways it collabo-
ates with other entities as part of an ensemble . In isolated adaptation the
ntity that triggered the problem is the same as the one that provides a
olution, but in collective adaptation a solution is provided by other en-
ities that are part of an ensemble. An ensemble is primarily determined
y the entities that collaborate to solve a particular problem. In collec-
ive adaptation, the ensemble facilitates cooperation between entities
y means of an information exchange at run-time. The collaboration
etween two entities is possible only if the entities can communicate
etween each other. Formally, an ensemble is defined as follows. 

efinition 7. An Ensemble is a dynamic run-time structure represented
s a tuple 𝐸 = ( 𝐴, 𝑅, 𝜆) where: 

• A is a set of agents grouped together; 
• R is a set of roles the agents are playing; 
23 
• 𝜆: A →R is an assignment function for which the agents are assigned
their respective roles (entity definition). 

efinition 8. A Problem Resolution is a tuple 𝑃 𝑅 = ( 𝐸 𝑖 , 𝑃 𝑖 , 𝑆 𝑖 ) where
 i is the ensemble solving a problem P i and coming with a solution S i . 

To verify the correctness and completeness of our approach using
odel-checking, we make the assumption that the maximum number

f entities that can be part of one ensemble during the problem resolu-
ion process is not larger than 16. We consider that this is a reasonable
ssumption as in practical sense it is difficult to imagine a larger ensem-
le that can perform complex tasks and give positive outcomes due to
he communication overhead and unreliable connection links between
ntities. 

.1. Representing the MAPE-K loop structure in an entity 

In our approach each entity implements the MAPE-K loop [11] . In
ig. 4 is represented a run-time perspective of the entity’s MAPE-K ar-
hitecture. This perspective represents how an entity manages the ex-
cution of the mission at run-time while preserving safety constraints.
n this section, we will describe each of the MAPE-K loop components
or the individual entities. The MAPE-K loop comprises of 4 components
perating over a Knowledge base. In order to illustrate the separation
f concerns between mission-related and safety-related mechanisms for
elf-adaptation, there are two sub-components at each stage of the loop,
ne managing the mission, while the other the safety ( Fig. 4 ). While
oth sub-components are running in parallel in the Monitor and Anal-
sis to either obtain or update information about the system or the en-
ironment, only one subcomponent is running in the Planning and the
xecutor stage of the loop. In the decision of which component to run,
afety has always a precedence over mission completion. 

In the Knowledge base we define three different types of models that
n entity contains. The first model is the Behaviour Tree Model (BTM).
he BTM contains all behaviour plans associated with the mission. Each
ntity has a set of behaviour plans defined at design-time, but only one
ehaviour plan can be active in one point of time during mission ex-
cution (depending on its priority). The second model is the current
onfiguration of the entity Conf . This model gives information about
he current resources of an entity containing information like position
f the robot in the map, current level of battery, etc. The third model is
 repository of the solvers it can provide i.e. Mission Solvers and Safety

olvers . 
Monitoring component : This component receives stimuli from the en-

ironment and from the rest of the system (other entities in the system)
nd it updates the current configuration Conf and BTM . Then, it triggers
he analysis component. The stimuli are values associated with specific
afety-related or mission-related parameters. The Mission Monitor keeps
rack of relevant mission-related information, while the Safety Monitor

eeps track of safety-related information. 
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Fig. 5. Task assignment for two agents. 
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Analysis component : This component makes analysis if the active be-
aviour either failed, succeeded , or is running . It has two sub-components
ission analyzer and Safety analyzer, both running in parallel and each

hecking of the appropriate conditions (mission related vs. safety re-
ated). Depending on the analysis of the active behaviour it does the
ollowing: 

1) Success: It references the active behaviour with the “next ” behaviour
plan in the behaviour tree model. Then, it triggers the execution com-
ponent; 

2) Failed: it triggers the planning component; 
3) Running: it triggers the execution component. 

Planning component : This component is triggered when the active be-
aviour returns status failed. The component starts the process of adap-
ation i.e. which as output generates a behaviour plan that will allow
he entity to continue its mission execution or safely exit it. The plan-
ing component consists of two subcomponents: Safety Planner and Mis-

ion Planner . When the planning component is triggered, first it gets
nformation from the knowledge about the current configuration model
onf . Depending on the type of configuration conditions that are vio-

ated it triggers one subcomponent or the other. Safety has precedence
ver mission completion, so if safety-related conditions are violated
he Safety Planner is always triggered. The Safety Planner is the safety-
pecific adaptation component that manages only safety-related prob-
ems. If there isn’t any violation of safety-related conditions and there
re mission-related conditions that are violated, the Mission Planner is
riggered to perform mission problem resolution. 

More details about the problem resolution process will be provided
n the next section where we discuss the two problem resolutions: mis-
ion problem resolution and safety problem resolution. Each of these
esolutions enables two types of adaptation: (i) isolated adaptation: per-
ormed by the entity itself or (ii) collective adaptation: performed by an
nsemble of entities. The behaviour plan that is generated at the end of
he adaptation process is updated in the BTM and then, the execution
omponent is triggered. 

Executor component : This component receives the active behaviour
rom the Behaviour Model (BM) and executes (ticks) it i.e. issues com-
ands to the entity’s effectors. When the executor component is trig-

ered, it first decides which subcomponent should be activated. Depend-
ng on which subcomponent performed the adaptation, it will activate
ne of the executor subcomponent correspondingly. If the safety planner
as activated, the safety executor will be activated. If the mission plan-
er was activated the mission executor will be activated. The mission
xecutor performs mission-related behaviours, while the safety executor
erforms safety-related behaviours. 

. Mission problem resolution 

In an initial work [12] , we provided a generic approach for manag-
ng run-time adaptation with general types of problems and solvers that
an be triggered during mission execution. In this work, we make dis-
inction between mission related vs. safety related problems and solvers.
ach entity in the system implements a Mission Planner that provides a
olution for mission-specific problems. The mission planner receives in-
ormation about the eligible mission related solvers in the Knowledge
ase. These are mission-specific and defined before the start of the mis-
ion. Mission-specific solvers have a set of solver constraints (configu-
ation parameters) that reduce the space of acceptable problems (e.g., a
olver for covering a geographical area might require an entity to have
n active camera, enough level of battery etc. to be able to resolve a par-
icular problem). If an entity activates an eligible solver, it generates a
olution i.e. a behaviour plan to complete parts of the mission. Here, the
cope of mission specific problems is related to the nature of our defini-
ion of mission. In order to explain the mission problem resolution process ,
e frame the scope of problems for isolated and collective adaptation.
24 
n entity might perform isolated adaptation when facing with a situa-
ion where its behaviour plan trajectory needs to pass through a private
esidence. In this case, the entity might have a solver that generates a
ehaviour plan for avoiding the region of the private residence. Next,
e will speak in more details about collective adaptation. 

.1. Collective adaptation 

At design time we assign the mission M to a set of agents A . On Fig. 5
he mission M is assigned to two agents a 1 and a 2 . Informally, a region
s an area of the mission that is decomposed in a number of blocks (e.g.
 11, b 12, b 13, b 14, b 15, b 16, b 17, b 18 and b 19 in Fig. 5 ). For each block
e assign a unique identifier b i , j ∈Reg i . For each agent a i ∈A involved

n the mission M we generate a behaviour plan BP i covering a region
eg i ∈M . 

As mission-specific problems strongly depend on the type of tasks
he MMRS performs, in this context, we define a mission-specific prob-
em as: a coverage path planning problem for a set of blocks in a region
eg i ∈M that a specific entity 𝑦 𝑖 = ( 𝑎 𝑖 , 𝑟 ) was assigned to cover, but was
ot able. The uncovered region Reg ∈M is an instance of a problem . Ac-
ordingly, we focus only on one type of mission-specific solvers which
epresent strategies for covering a region. The mission-specific solvers
re formulated as algorithms solving a coverage path planning problem,
hich depends on the type of the geometry of the mission M . Example
f a solver can be an algorithm that generates a solution for covering a
egion with respect to a specified grid of blocks as in Fig. 5 . 

As we work particularly with regions, a mission related problem can
e decomposed on smaller problems (regions). To be able to annotate
he progress of mission execution, we define a measure of satisfiabil-
ty for a mission M that gives information on the percentage of covered
locks. We indicate that a mission M is completed if all blocks are cov-
red. In contrast, a mission is partially completed if there is a set of
locks b i,j that are not covered. 

In collective adaptation, the Mission Manager of an entity can de-
ompose larger problems into smaller ones and can provide a partial
olution to the initial problem. The mission manager receives informa-
ion about the eligible mission related solvers in the Knowledge base
nd generates a solution i.e. a behaviour plan. The solution is a gener-
ted behaviour plan that resolves part of the problem. Our definition of
 solver in this particular context allows partial solving of a particular
roblem due to the fact that problems can be decomposed into smaller
nes. In this particular context, we define the size of a problem space
hrough the size (area) of the region that was not covered by the agents.

In this context, the activity of Mission problem resolution consists in re-
ucing the problem space of a problem until the problem space is empty
r until a timeout occurs. We believe that cooperation in emergent ap-
lication scenarios requires a new kind of problem resolution approach
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Fig. 6. EDL specification for mission resolution ensembles. 
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hich is efficient in terms of short delay; so we defined a time deadline
ntil when a solution should be found. If a full solution to the problem is
ound before the deadline, the mission problem resolution process does
ot need to wait until the deadline is reached, but it immediately re-
urns the found solution. We formally define a solution of the mission
roblem resolution as follows. 

efinition 9. A solution in the mission problem resolution PR is de-
ned as: 𝑆𝑜𝑙 = max ∅≤ 𝑃 𝑖 ≤ 𝑃 𝑜 𝑃 𝑅 ( 𝐸 𝑖 , 𝑃 𝑖 , 𝑑) , where E i is the ensemble solv-

ng a problem P i , P 0 is the initial problem that should be solved, d is a
ime deadline and Sol is the best solution found for that particular time
eadline d . 

To specify the model of the ensemble needed for problem resolution
f mission related problems in details, we will be using the declarative
nsemble Definition Language (EDL) [13] . The main section of the en-
emble specification is the ensemble membership which defines the struc-
ure of the ensemble. A structure of an ensemble is defined through the
nsemble roles the agents can participate in. A partial EDL Specification
or the mission resolution ensembles is presented on Fig. 6 . To identify
he ensemble, we declare the id of the entity playing the role Leader to
e the id of the ensemble essentially saying that instances of this ensem-
le type cannot be created without being associated with a unique entity
nstance, which can be seen as a sort of coordinator of the ensemble. 

The ensemble membership function consists of three sections. First,
he structure of the ensemble is defined by declaring the ensemble roles
hat the entities can play. In our case, an agent can play one of the
ollowing roles in the mission resolution ensemble: 

• Leader: an entity that triggers a problem P k and leads the ensemble
formation; 

• Solver_Agent: an entity that participate in the solution creation of
the aforementioned problem P k . 

An agent can play more then one role in the ensemble i.e. it can be
oth a leader and a solver_agent (it can trigger a problem, but at a same
ime it can provide a partial solution to the problem it triggered). 

Next, we place semantic constraints, represented by the constraint
xpression. In our scenario a constraint for an entity to be part of the
nsemble specifies that there must be a communication path between the
orresponding entity and its leader. What we mean by communication
ath is that if the ensemble leader sends a message in the environment,
he information can be transferred from one entity to another, and all
ntities that are able to receive the information are in the communi-
ation path of the leader. In other words, each entity in the ensemble
hould have a neighborhood region that is overlapping with the neigh-
orhood region of at least one other entity from the same ensemble.
eighborhood NR is a region of an entity e i that gives information with
hich other entities can communicate in a particular point of time 𝜏. At
ny point of time during mission execution, each entity in the system
as partial view of the system that consists of a list of entities neighbours

hat can communicate with. The third part of the membership definition
s the fitness function, specified with a numeric expression. The fitness
25 
unction provides information about which aspect of the ensemble mem-
ership should be optimized. That gives the framework a way to decide
hich entities should participate in the ensemble formation. More pre-

isely, ensemble instances will be created in such a way to maximize
he fitness function. In our example, the fitness function is calculated
s a sum of the solution quality provided by all entities in the commu-
ication range of the leader. Finally, knowledge exchange is specified,
reating an information exchange between the members of the ensem-
le. In our case, there is an exchange of three types of information: First,
he information on the entity that is the leader in the ensemble (line 11),
econd each of the entities in the ensemble has information about the
roblem that should be solved (line 12), and third, the solution that the
eader obtains for each entity in the ensemble (line 13). 

.2. Mission problem resolution algorithm 

We propose a best-effort approach for mission problem resolution,
hich is efficient in terms of short delay and which does not require
nowledge of which and how many entities (agents) are in the system in
 particular point of time. To realize our approach, we abstractly define
 recursive best-effort algorithm that covers the procedure for mission
roblem resolution. The algorithm starts from an entity e i that originally
etected a Problem P i and expects to commit a solution without a time
eadline d . Further recursive calls are propagated to other entities in the
nvironment using events. 

The algorithm consists of three phases: discover, construct , and com-

it . 
In the discover phase , the possible entities that can participate in the

ission problem resolution are found. Each of the entities that can con-
ribute with a solution to a specific problem and have a communication
ath towards the leader are discovered and links between each of the
orresponding entities is created. At any point of time during the mis-
ion execution, each entity in the system has partial view of the system
hat consists of a list of entities neighbours that can communicate with.
eighborhood NR is a region of an entity e i that gives information with
hich other entities can communicate in a particular point of time 𝜏.
ach entity that contains an active solver (solver for which the precon-
itions for activation are fulfilled) can contribute towards a solution to
he mission-specific problem if it is in a communication range with the
ntity that triggered the problem. In the discover phase , those entities
re found and a temporary ensemble is formed. The temporary ensemble
onsists of all possible entities that might participate in the resolution
rocess. 

In the construct phase , each discovered entity in the temporary en-
emble contributes towards the global solution formation. Each of the
ntities in the communication range contributes towards the global so-
ution by resolving a particular sub-problem of the general problem, and
roduces a solution with some specific quality q until a specific dead-
ine d is reached. Hence, solutions are composed from multiple solvers
rom different entities, the same way problems can be decomposed on
ultiple sub-problems. In the end, the entity that triggered the problem

esolution process decides which is the best solution and which part of
he temporary ensemble contributes towards it. 

In the commit phase , the leader of the ensemble knows how well each
f the entities can solve a particular sub-problem so it sends request to
he entities that can contribute with the best solution to commit their
esources. Meanwhile, some of the entities might leave the temporary

nsemble due to a lack of resources, because they have commitment for
nother problem resolution process or because they are not anymore in
he neighborhood of the entity that triggered the problem. After entities
ommit their resources for execution, a stable ensemble is formed and the
nal solution is obtained. The ensemble that provided the final solution is
alled stable ensemble . It is the ensemble that provides guarantees about
he proposed solution i.e. if all behaviours from all entities in the final
nsemble execute correctly (according to the generated behaviour plan),
he final solution will be guaranteed. 
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Fig. 7. Mission problem resolution algorithm. 
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For our algorithm to work we take in consideration the following
ssumptions: 

• All mission problems can be decomposed on sub-problems; 
• The entity that triggered the problem does not fail between the time

it triggers a problem and commits a solution to an ensemble; 
• There exists connectivity between the entity that triggered the prob-

lem and at least one other entity in the environment for an adapta-
tion to happen (that entity can be the same entity that triggered the
problem); 

• The maximum number of entities in one mission problem resolution
is 16; 

• There is not a noticeable difference in the resource configuration for
one entity between the time it proposes a solution and commits its
solution; 

• There is not a noticeable difference in the connectivity formation
between entities that proposed solution and commit their solutions;

• The last two assumptions are translated to the following assumption:
there isn’t a noticeable difference between the solution quality the
moment a solution is proposed and the moment a solution is com-
mitted. 

The decentralized mission manager for an entity r i ∈R is shown in
ig. 7 in the form of a state machine, which is executed by each entity in
he system. It is presented in the form of pseudo-code that closely rep-
esents the syntax of the P programming language. A P program com-
rises of concurrently executing state machines communicating asyn-
hronously with each other using events accompanied by typed data
alues. Each state machine has an input queue and machine-local store
or a collection of variables. Each state has a set of event-handlers, which
et executed on receiving the corresponding event. The function send ( r k ,
v, d ) is used to send an event ev with payload data d to target machine
 k . An entity r i broadcasts event ev with payload d to all the robots in its
ommunication range using the function broadcast ( ev, d ) (more details
bout the P programming language is available at [14] ). 

Fig. 7 shows the algorithm that encodes the mission-problem res-
lution state machine. This state machine has three states: Discover,

onstructSolution and RequestCommit . It contains the following variables
hich are important for understanding the code: r i - represents the id of

he robot that executes the state machine, P is the whole problem space
or which the entity has already proposed a solution, S is the global solu-
ion that the leader obtains, timerV is a state machine that is instantiated
hen a problem is triggered, sol is a local solution provided by an entity

n the ensemble. 
The algorithm includes the following important steps: 
Lines 2–8. The mission-resolution manager starts executing in the

iscover state. When a mission related problem is triggered, the solver
f the entity r i is invoked and a solution sol is calculated for the specific
roblem Pi . Function callSolvers ( line 4 ) is beyond the scope of this paper
ut may generally exploit various mission-specific solvers and provide
orresponding full or partial solutions. After the solution is calculated,
he machine creates an instance of a Timer machine, starts the timer
nd goes to ConstructSolution state. 

Lines 24–43. Upon entering the ConstructSolution state, it checks if
he solution can fully or partially solve the triggered problem P i . If we
ave full solution to the problem P i , the state machine transits to state
equestCommit state ( line 32 ). If there is a partial solution, the problem
pace is reduced to P j ( line 30 ) and the agent broadcasts problem P j in
ts neighborhood (communicates the problem P j with all entities in its
ommunication range). 

The events ReqForSolver and SolutionFound are used for ensemble
ormation. They create the links between the different ensemble par-
icipants that provide solution in the resolution process. For each link,
 corresponding problem communication is derived. For each problem
ommunication, a combination of potential solutions is identified across
ll reachable entities and returned. The entity that triggered the Problem
tays in the ConstructSolution state until the timeout is reached. When
26 
he Timer machine sends the TIMEOUT event to the entity that triggered
he problem, the same entity goes to RequestCommit state. 

Lines 44–62. Upon entering the RequestCommit state, the function
nd_best_solution is executed to identify the best solution sbest and which
ombination of entities contributes to sbest ( line 46 ). The function
nd_best_solution is beyond the scope of this paper but generally is a do-
ain and application specific. Finally, the leader sends the event com-

it to ask the ensemble participants in the specific problem resolution
o commit their resources. It should be noted that in the time between
he solution is proposed and the solution is chosen, some deviations of
esources important for problem resolution might be encountered. That
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Fig. 8. Problem Resolution Tree. 
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s why the check function ( line 19 ) checks the change in the proposed
nd the current solution, it updates the Behaviour Tree in the update()

unction ( line 20 ) with the current state of the local solution and sends
onfirmation to the leader. When the leader receives confirmation from
ll ensemble participants ( line 53 ) it updates its Behaviour Tree and
ransits to Discover State. The algorithm provided in Fig. 7 is able to re-
olve only one problem resolution triggered by one entity at one point of
ime without any recursion. Here, all the members in the ensemble can
irectly communicate with the leader. We propose an extension of the
lgorithm for resolving multiple problems triggered by different enti-
ies at a same time. Furthermore, sub-problems are recursively triggered
cross different entities in the system in order to have a larger range
f possible solutions i.e. a leader can obtain a solution from an entity
hat can not directly communicate with it, but through another entity
n the ensemble that is in its communication range. We define a data
ype 𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ( 𝑃 𝐼, 𝐸𝑖, 𝑆𝑖, 𝐸𝑆, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑃 0 , 𝐹 𝐸, 𝐹 𝑆) ,
hich is a tuple that contains information about one problem resolution

one ensemble) in which the entity participates. It contains the following
ariables: 

• P0 is the initial problem that is triggered by the entity. It can be sent
by another entity that requests collaborators for resolution of a larger
problem or it can be generated as a result of the inadequacy between
the entity configuration model and the model of its behaviour plan.

• parent gives information from where the initial problem originates.
If it is generated by the same entity then the parent receives the id
of the entity r i . 

• PI is a reduced version of the problem that is obtained after the entity
proposes some solution. We use the value of PI for identifying the
different resolution processes in which the entity participates. 

• Ei stores the information about which are the entities that participate
in the temporary ensemble formation. 

• Si is the solution proposed by the temporary ensemble. 
• ES is a matrix, which gives information about which entity proposed

which solution. 
• deadline is a timer machine that is instantiated when a problem is

triggered and decides until which period of time an ensemble for-
mation is allowed. 

• FE is the stable ensemble which is obtained after commitment. 
• FS is the final solution proposed by the stable ensemble. 

We can represent each instance of the resolution process as a tree,
hich we will call problem resolution tree ( Fig. 8 ). On top of the tree,

here is an entity that triggered the general problem P 0, while each node
n the lower levels in the tree represents an entity that decomposes the
roblem of its father entity and provides a partial/full solution. In the
nd, we have a resolution tree consisting of nodes representing the enti-
ies in one possible instance of the problem resolution process. We define
 hierarchical order in the resolution tree depending on the communica-

ion range of the entities. The order of an entity in the tree is defined
hrough the hop counter that refers to the number of intermediate en-
ities through which an information must pass between the entity and
he leader in the ensemble. For example in Fig. 8 , the leader e 1 might
ot be able to communicate its problem P 1 with the entities 𝑒 5 , … , 𝑒 10 ,
hich are the leafs in the resolution tree because of the limitation in

ts communication range, but it might need few entities from the en-
emble that are able to transit the information to the leafs (like entities
 2, e 3, e 4), which are in the communication range of the leader e1, but
lso in the communication range of the leafs in the tree. The order of the
ntities that can directly communicate with the leader is higher compar-
ng to the entities that need an intermediate entity to relay (in Fig. 8 ,
he leader e 1 has the highest order, while the leafs 𝑒 5 , … , 𝑒 10 have the
owest order). 

A formal definition of the problem resolution tree is as follows. 

efinition 10 (Problem Resolution Tree) . A problem resolution tree is
 tuple 𝑇 = ( 𝑟𝑜𝑜𝑡, 𝐸𝑖, 𝐿 ) where: 
27 
• root is the entity that triggered the top-level problem P 0. 
• E i are the nodes in the tree represented through the entities that

decompose and partially solve part of the top-level problem. 
• L : N ↦N are parent-child links between entities that are able to com-

municate between each other. It is a function that represents prob-
lems/solutions communications from the root to its children. 

Each child in the tree decomposes the problem received from its par-
nt. Then, in the end we have a resolution tree where the leaves are enti-
ies that contain the smallest subset of the problem space. Each problem
esolution tree represents only one possible instantiation of the problem
esolution process. When the problem resolution tree has a full solution,
he leafs’ problem space is an empty set. 

We define a quality q of a solution S i proposed by an entity in the
roblem resolution tree based on two factors: (i) closeness to the en-
ity that triggered the problem, (ii) intrinsic quality given by the entity.

hat we mean by closeness to the entity is the following: in one instance
f the problem resolution tree, if there is an entity e k that has a higher-

rder in the hierarchy in the problem resolution tree and can propose a
olution s k to a sub-problem p k , then we consider that the solution s k has
recedence over solutions that are able to solve the same sub-problem
 k , but are coming from other entities that have lower order in the hi-
rarchy in this instance of the problem resolution process. Because the
ommunication between entities is limited, the algorithm is searching
or solutions closer to the entity that triggered the problem p k and if it
nds one, it stops the search for other solutions that are generated from
ntities that might produce solutions with better intrinsic quality, but
re more distant from the leader in the problem resolution tree. Thus,
hen we speak about hierarchy, we consider hierarchy of entities in

erms of the problem resolution tree: the nodes that are closer to the
oot (meaning they need less number of hops to communicate with the
oot) have a higher order in the hierarchy comparing to nodes that are
ower in the branching. Root has the highest order in the hierarchy,
hile the leafs have the lowest order in the resolution tree. 

.3. Correctness and completeness 

To resolve mission resolution problems we used a gossiping algo-
ithm that aims to disseminate the information about a specific problem
nd finds a solution. To prove the correctness and completeness of the
pproach, we need to prove correctness and completeness of the algo-
ithm. In this section, we prove correctness and completeness of our al-
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orithm i.e. we show that the algorithm is aligned with Definition 9 and
lways provides the best possible solution for a particular deadline. 

.3.1. Correctness 

In order to prove that our algorithm is correct, we need to show
hat the solution computed by the algorithm is correct and is the best
olution for a particular deadline. 

For a solution to be correct, we assume that the solvers provided by
he different entities in the system are correct. Correctness of a solver
eans that an entity’s solver can generate a behaviour (solution) to re-

olve a particular mission related problem with a quality q a . 
Moreover, we need to show that the solution provided by the al-

orithm is the best solution for the specific deadline. The leader when
alculating the solution for a particular problem, does not have the exact
nformation on how each entity in the ensemble contributes towards the
nal solution. The only information the leader of the problem resolution
rocess has when making the decision is how each entity that is directly
eachable (it can directly communicates with) can help in resolving part
f the bigger problem of the leader. All reachable entities might have
ormed sub-ensembles that contribute towards the final solution, but the
eader does not have that information. For example, a leader might be
ble to communicate with two entities that can provide some solution
o the initial problem. Each of those two entities might have formed
 temporary sub-ensemble. The two temporary sub-ensembles are on
he same hierarchical level and they might have one entity in-common,
owever they belong to different instances of the resolution process and
an be represented with two different problem resolution trees. When
he leader decides for the final solution it might consider a combination
f both sub-ensembles which create the final solution and might choose
 final stable ensemble that is a combination of both sub-ensembles. Here
he idea is that at each level of the problem resolution tree each node
as calculated the “best solution ” provided by its leafs. The process is
epeating and in the end, the root of the tree should calculate the “best
olution ”. As mentioned before, we represent this solution provided in
ne instance of the problem resolution tree as in Fig. 8 . 

To understand if the algorithm correctly calculated the best solution,
e should consider not only the fact if the leader correctly calculated

he “best solution ”, but we also need to take in consideration the struc-
ure of the ensemble which participated in the specific resolution that
rovided the “best solution ”. The structure and state of the ensemble
roviding the final solution has high impact on the quality of the so-
ution. That being said, we make the following assumptions. First, we
ssume that there should not be a noticeable difference in the solution
uality between the moment a solution is proposed and a solution is
hosen. Solution quality will remain the same if there isn’t any change
n the entity’s resources and in the connectivity formation of the ensemble.
hat is why we assume that the time between a solution is proposed and
 solution is committed is within seconds, so that there isn’t any change
n the connectivity formation of the ensemble ( Assumption 1 ). However,
hange in the resources for the proposed solution might come if an entity
articipate in two different resolution processes triggered by different
eaders. During problem resolution, entities might propose solutions for
ifferent problems in different ensembles. As the resources of the entities
re limited, we made the assumption that the entity will not participate
n two different resolution processes (resolution processes triggered by
wo different leaders) which overlap in the usage of the resources i.e. if
n entity participates in two different resolution processes from different
eaders the usage of resources will not overlap ( Assumption 2 ). However,
here is another case that impacts the quality of the solution and that
s when an entity tries to propose multiple solutions in one problem
esolution process. In Theorem 1 we show that this would not be pos-
ible. Now, we show that our resolution algorithm for solving mission
roblems is correct by proving that it satisfies the following theorem. 

heorem 1 (Correctness) . If an entity e triggers a problem P i and Assump-

ion 1 and Assumption 2 are true, then the Mission Problem Resolution Algo-
28 
ithm finds and computes the best quality solution S i proposed by an Ensemble

 that is in the communication range of the entity e. 

roof. As we mentioned earlier we assume that all mission related prob-
ems can be decomposed. Let’s say we have an entity e that triggered
he problem Pi. Pi can be decomposed on m different different ways. For
ach different decomposition there is a sequence of local solutions pro-
osed by an ensemble E m 

that combined together give a global solution
 m 

. The global solution S m 

is a sequence of local solutions 𝑠 0 , 𝑠 1 , … , 𝑠 𝑘 ,

ach of them with a particular quality 𝑞 0 , 𝑞 𝑞 , … , 𝑞 𝑘 correspondingly. Let’s
ssume there exists an ensemble consisting of n entities for which there
s a communication path between them and the leader (the ensemble
ight include the leader) and that they can provide the best final solu-

ion S i to a problem P i . Correspondingly, we can decompose the solution
o a sequence of local solutions 𝑆 𝑖 = ( 𝑠 0 , 𝑠 1 , … , 𝑠 𝑛 ) each with a particular
uality 𝑞 0 , 𝑞 1 , … , 𝑞 𝑛 . We can represent that ensemble using the problem
esolution tree ( Fig. 8 ). In order to prove that the algorithm is correct,
e need to prove that the computed solution S i by the leader of the sta-
le ensemble E n is the best for the problem P i . To prove that, we use the
roblem resolution tree of the stable ensemble . The root of the tree is the
eader. We need to prove that the solution calculated by the leader has
he highest quality i.e. 𝑆 𝑖 = ( 𝑠 0 , 𝑠 1 , … , 𝑠 𝑛 ) each with a particular qual-
ty 𝑞 0 , 𝑞 1 , … , 𝑞 𝑛 . As our mission problem resolution is recursive at each
ode in the resolution tree, the algorithm calculates the best solution by
onsidering the best combination of solutions proposed by its children.
fter calculating the best solution, it sends that solution to its parent.
tarting from the leafs of the tree, the nodes calculate the best combina-
ion of solutions. In the end, the leader composes all combinations and
alculates the best combination of solutions proposed by its children. If
n entity proposed solutions to multiple problems in the same instance
f the problem resolution tree, the algorithm will return a value which
ight not be correct because of lack of resources for the entities that
roposed multiple solutions. 

That is why we need to have (i) a set of n different agents in the stable

nsemble contributing towards the final solution S i as a precondition for
he leader to be able to correctly calculate the best possible solution. Our
lgorithm should not allow for one entity to participate with multiple
ifferent solutions in a same ensemble because as we mentioned earlier
t might not be possible for one entity to perform multiple solutions due
o a lack of resources. 

To prove (i), we need to prove that there is no possibility for a com-

unication loop in one instance of the problem resolution process (prob-
em resolution tree). What is considered as a possible loop in this dis-
ributed algorithm is a situation where one entity communicates a sub-
roblem P j ∈P i with another entity that reduce the problem to P k ∈P i 
nd communicates that problem to the first entity that triggered P i . We
an imagine a situation where before an entity commits its resources to
 particular ensemble, it might propose solutions for other ensembles
o resolve different problems, so in that case we might encounter a sit-
ation where the first entity will propose a solution to a sub-problem
hat was not able to resolve it before taking in consideration the whole
ature of the problem (ex. in a previous iteration the entity proposed
 solution to a more general problem and if it commits its resources to
hat solution, it might not be able to resolve the smaller problem that
equires a solution in this iteration). To avoid that, each entity that runs
he algorithm checks if the problem that is being received for resolution
s some type of sub-problem of a more general problem that was being
esolved in a previous iteration. If that is the case, the problem reso-
ution procedure will not start i.e. the entity will not participate in the
xecution of the sub-problem. 

In order to prove the correctness of the algorithm, we verified (using
odel-checking) the following property: (i) for each problem resolution

ree, all nodes in the tree represent different entities in the system (for
p to 16 robots). We used Zing model-checker [15] to systematically
est our algorithm represented in the state-machine based programming
anguage P. Zing is a model checker used for verification of concurrent
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oftware. Zing explored the state space of our system model starting
rom the initial state exploring reachable states for up to 16 robots in a
epth-first manner. From here we can conclude that for each instance
f the resolution procedure for a problem P i we have a set of n ≤ 16
ifferent entities that contribute towards the solution S i . In other words,
here aren’t two nodes in the tree that have reference towards same
ntity. 

Hence, we proved correctness of our algorithm. □

.3.2. Completeness 

Completeness of the approach is defined based on assumptions about
he connectivity between the agents and the stability of resources and
onnectivity. First, we assume that we have complete connectivity be-
ween agents meaning that starting from each agent we can broadcast
 message that will reach all agents in the environment for a specific
eadline d . Second, we assume that we have stable connectivity be-
ween agents which means that the connection between the agents will
ot disrupt during the adaptation process. Third, we assume that we
ave stable resources during adaptation which means that there isn’t a
hange in the resources important for the agent to execute the solution
t proposes. Taking in consideration these assumptions, we prove the
ompleteness of the approach as stated in Theorem 2 . 

heorem 2 (Completeness) . If a solution S i for a specific problem P i exists

nd we have a deadline d to find it, the algorithm is able to find it. 

roof. Let us introduce a metric m that is a number that represents
he size of the problem. For example, in our motivating scenario, we
onsider that mission-specific problems are regions that are uncovered,
o in this case as a metric m we represent the area of the uncovered
egion. With this metric, we want to measure the different degrees (lev-
ls) of mission fulfilment [16 , § 16.1]. In this context, we represent one
nstance of the resolution process of problem P i as a monotonic decreas-
ng sequence m i ( 𝑚 𝑛 +1 ≤ 𝑚 𝑛 , ∀𝑛 ∈ ℕ ), where each number represents the
rea of a reduced uncovered region. 

Generally, we represent each instance of the mission resolution pro-
ess of problem P i (we consider that all mission-specific problems can be
ecomposed) as a monotonic decreasing sequence where each element
n the sequence represents the appropriate reductions of the problem P i .
bviously, if a sequence is decreasing and is bounded below by a mini-
um, in some finite time we will reach that minimum. In our case, the
inimum would be the problem that corresponds to the final solution
 i , which in ideal situation will be the empty set. 

If we represent one instance of the resolution process of problem
 i as function that reduces problem P i , then we can represent each re-
uction of P i in a monotonic decreasing sequence where each instance
epresents the appropriate reductions of the problem P i . Obviously, if a
equence is decreasing and is bounded below by a minimum, in some fi-
ite time we will reach that minimum. In our case, the minimum would
e the problem that corresponds to the final solution S i , which in ideal
ituation will be the empty set. Having that for all instances of the mis-
ion resolution process (which is always a finite number), we can always
nd a solution S i . □

. Safety problem resolution 

In this section, we discuss about the adaptation resolution problem
elated to safety problems. To be able to model specific safety related
ehaviours, we discuss few properties of agents and how they are con-
ected to safety. 

With A we denote the set of all agents performing the mission and
ith T the total mission execution time. 

We take a snapshot of the mission at a particular time 𝜏 ∈T . We de-
ote with OBS 𝜏 the region of all obstacles (known and unknown) in the
nvironment at time 𝜏. We define an Obstacle o ∈OBS 𝜏 as a region in the
nvironment that should not intersect with the region of operation of an
ctive robot (agent) to not jeopardize safety. We denote by 𝑉 𝑅 

𝑖 ∈ 𝑅 the

𝜏

29 
visible region ” in which an agent a i can “observe ” its local environment
obstacles and other agent’s location) at time 𝜏 and by 𝑆𝑅 

𝑖 
𝜏

the safety re-

ion of an agent a i at time 𝜏 that represents a region that is the absolute
inimum separation for safety that must be maintained during a close

ncounter with other (robots) agents or with a static/dynamic obstacle.
e identify each agent a i through its safety index. The safety index is

 unique identifier that specifies how well an agent can resolve safety
ssues. Agents that have a higher index have a higher level of safety
esolution capabilities. In this work, we focus on one representation of
afety defined through the concept of collision . We define collision as a
ituation when the safety zone of a robot is overlapping a region of an
bject or a safety zone of another robot at time 𝜏. In that context, we
ay that a MMR system is safe , if no collision happens during mission
xecution. Taking that in consideration, we formally specify what a safe
MRS is. 

efinition 11 (Safety) . We say a MMRS system is safe if and only if the
ollowing two safety invariants are valid: 

1. ∀𝑎 𝑖 , 𝑎 𝑗 ∈ 𝐴 &∀𝜏 ∈ 𝑇 ; 𝑆 𝑅 

𝑖 
𝜏
∩ 𝑆 𝑅 

𝑗 
𝜏 = ∅. 

2. ∀𝑎 𝑖 ∈ 𝐴 &∀𝑜 ∈ 𝑂𝐵𝑆 𝜏 ; 𝑆𝑅 

𝑖 
𝜏
∩ 𝑜 = ∅. 

We defined safety in Definition 11 in terms of absence of collisions,
here (1) states that there will be no collision between agents and (2)

tates that there will be no collision between agents and obstacles during
ission execution. 

Our framework implements a safety planner as part of the Planning
omponent in the MAPE-K loop for each entity. The knowledge base
f the MAPE-K loop contains a catalogue of correct obstacle avoidance
lgorithms as solvers which can be activated and able to provide a so-
ution for an agent in a specific situation. These are solvers that can be
eused in different application scenarios and missions independently of
he type of the domain. Here, the scope of safety specific problems is
ndependent of the nature of the definition of the mission. 

In order to explain the safety problem resolution process, we frame
he scope of safety problems for isolated and collective adaptation. In
ur work, we envision resolution of the following types of safety prob-
ems: (i) collision with a static obstacle; (ii) collision with a dynamic ob-
tacle; and (iii) collision between agents. In the case of static/dynamic
bstacle avoidance, an entity performs isolated adaptation i.e. one en-
ity generates a solution (behaviour plan) to the problem. The gen-
rated solution (behaviour plan) brings the entity into a state from
hich it can continue executing the mission. In the reminder of this

ection, Section 6.1 describes more in details collective adaptation, and
ection 6.2 discusses the correctness and completeness of the proposed
lgorithms. 

.1. Collective adaptation 

For the third type of safety problems (collision avoidance between
gents), our framework provides a palette of coordination protocols for
he agents to be able to perform collision avoidance maneuvers. To re-
olve safety problems related to collision between agents, our frame-
ork uses the concept of ensembles described above. Agents dynam-

cally form collaborative groups using attribute-based communication
nsembles as described in [17] to gain benefits that otherwise would
ot be possible. In safety problem resolution, the agents must follow
ertain rules and in return the ensemble offers a guarantee that if all
ingle agents follow the rules, safety will be preserved. Adherence to
hese collective rules temporarily reduces the flexibility of the collabo-
ating agents, but has a strongly positive impact on safety. Comparing to
ission resolution where those collective rules are more flexible, safety

esolution requires stronger, more precise, and detailed rules. 
A safety ensemble is primary determined by the agents that collab-

rate to solve a safety problem. In a collision between multiple agents,
ur safety resolution procedure consists of: (i) a protocol for on-the-fly
nsemble formation for safety resolution and (ii) a recursive function
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Fig. 9. EDL Specification for safety resolution ensembles. 
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hat is initially called locally by the ensemble leader to select and com-
it a solution. In the safety problem resolution, all entities in the en-

emble must participate in the solution creation because full solution
s required. What we mean here is that we treat safety as binary (the
MRS is safe or not). In contrast, in the mission resolution a partial so-

ution is enough for solving a particular problem. If one agent fails to
omply to the rules in the ensemble, safety will be compromised. Here,
he shape and structure of the ensemble is strongly correlated with the
ype of the safety problem due to the fact that all involved participants
eed to generate their corresponding behaviours to guarantee the safety
f the system. 

We specify the ensemble type used for safety problem resolution in
ig. 9 . To identify the ensemble, we declare a leader agent to be the
d of the ensemble - essentially saying that instances of this ensemble
ype cannot be created without the ensemble being associated with a
nique entity instance, which can be seen as a coordinator of the en-
emble. A leader of an ensemble for safety resolution is an agent that
eads the ensemble formation and decides for a safety resolution proto-
ol. Example could be a fixed camera positioned in a particular point
n the environment that checks if there is a possibility for collision be-
ween two or more robots or a robot that notices another robot in its
isible region. Unlike the leader in the mission resolution ensemble, the
eader in a safety resolution has knowledge of all the possible ensemble
articipants when it decides for a solution type and when it starts the
oordination of the problem resolution process. 

As we can see from Fig. 9 , the ensemble membership function con-
ists of three sections. 

First , the structure of the ensemble is defined by declaring the en-
emble roles the agents can play. In our case, same as in the mission
esolution, an agent can play one of the following roles in the safety
esolution ensemble: 

• Leader - an agent that has the highest safety index and leads the
ensemble formation; 

• Solver_Agent - an agent that can provide partial solution that con-
tributes towards the final solution. 

Second , we place semantic constraints, represented by the constraint
xpression. In our safety resolution ensemble a constraint for an agent
o be part of the ensemble is that there must be a communication link
etween the corresponding agent and its leader. What we mean here
s that the leader can communicate with all ensemble participants. The
ther very important aspect in the ensemble formation is the solution
pace. In contrast to the mission resolution ensemble, a safety resolution
nsemble must provide a full solution, so we put that as a constraint. Full
olution consists of combination of behaviours generated by all partici-
ants in the ensemble. What we mean is that all ensemble participants
gree to follow a specific protocol suggested by the leader i.e. each entity
n the ensemble must have a solver compatible to the solver proposed
y the leader. Our assumption is that each entity has at least one solver
hat is compatible to the solvers of the rest of the system. We consider
his assumption reasonable because we consider safety independently
30 
rom the mission, so all safety solvers can be independently embedded
n the knowledge base before the start of the mission independently of
heir type. 

The third part of the membership definition is the fitness function,
roviding information about which aspect of the ensemble membership
hould be optimized. In our example, the fitness function is represented
s maximized solution quality of the leader that coordinates all ensemble
articipants. Finally, knowledge exchange is specified, creating an infor-
ation exchange between the members of the ensemble. In our case, we
ave exchange of three types of information. First, it is the information
f the agents’ conflict region 𝑐 𝑜𝑛𝑓𝑙𝑖𝑐 𝑡 _ 𝑟, which is calculated by the posi-
ion of the agent and its corresponding speed (line 13). 𝑐 𝑜𝑛𝑓𝑙𝑖𝑐 𝑡 _ 𝑟 is the
afety region of an agent in a specific time interval during the mission
xecution. Second, each of the entities in the ensemble receives an in-
ormation about a specific solver proposed by the Leader. Each entity in
he ensemble receives information about a collision avoidance algorithm
 and the attributes of the algorithm attr (example of attributes of the
lgorithm might be the central point around which the entities will per-
orm the collision avoidance protocol, their corresponding speed, etc.)
line 14). Third, the leader gets information about the solution of each
ntity in the ensemble (line 15). 

We defined the following protocol ( Fig. 10 ) that is used for on-the-
y ensemble formation when agents discover that they are facing with
 possible collision among them. Each agent starts executing in the Dis-

over state. If an agent a i notices other agents in its visible region, it
roadcasts the ReqforSafetyRegion event with identifier for the VR - visi-
le region, the time 𝜏 when the message is sent and the identifier of the
gent id , asking for the safety region SR of the robots in its “visible re-
ion ” during some time period Δ𝜏. Then it goes to the WaitForResponse

tate. 
Depending of state it is, when an agent a i receives the event Reqfor-

afetyRegion(msg) , it generates a message 𝑚 = ( 𝑎 𝑖 ∶ 𝑖𝑛𝑡 ; 𝑐 𝑜𝑛𝑓𝑙𝑖𝑐 𝑡 _ 𝑟𝑒𝑔𝑖𝑜𝑛 ∶
 ; 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 _ 𝑠𝑡𝑎𝑡𝑒 ∶ 𝑖𝑛𝑡 ) , where a i is the identifier of the agent creating the
essage, 𝑐 𝑜𝑛𝑓𝑙𝑖𝑐 𝑡 _ 𝑟𝑒𝑔𝑖𝑜𝑛 is a region in the environment that should not

ntersect with the region of operation of an active agent. If the agent
s not part of an ensemble, the conflict region is equal to the agent’s
𝑅 

𝑖 
Δ𝜏

, while if the agent is part of an ensemble, it represents the execu-

ion region of the ensemble , which is the union of the 𝑆𝑅 

𝑖 
Δ𝜏

of all ensemble
onstituents. The 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 _ 𝑠𝑡𝑎𝑡𝑒 gives information if the agent is part of
n ensemble and if it is, it gives information in which phase of operation
he ensemble is. It can be in one of the following states: 

• NO_ENSEMBLE: means that the agent is not part of an ensemble; 
• INITIALIZATION: means that the agent is a part of an ensemble that

is in the phase of formation; 
• PLANNING & EXECUTION: means that the agent is a part of an en-

semble that is established and it executes some safety-related algo-
rithm that can not be interrupted at that time i.e. at the time of
execution. 

In the WaitforResponse state, the agent a i waits to receive feedback
rom all the agents that were found in its visible region VR . When it
eceives message from all the agents in its visible region it goes to a
tate Decide . In the state Decide , the agent goes through all messages
nd for each message it does the following: first, it checks if the agent
 j that sends the message might collide with a i . If there is a possible
ollision, it categorizes the message in one of the following categories: 

1) Category 1: The message is from an agent a j that is a part of an ensem-
ble in an initialization state (ensemble_state = initialization). In this
case, the agent a i considers the possibility to join to that ensemble. 

2) Category 2: The message is from an agent a j that is not part of an en-
semble (ensemble_state = no_ensemble). Here, the agent a i considers
the possibility to start with initialization of an ensemble. 

3) Category 3: The message is from an agent a j that is a
part of an ensemble that is in planning&execution state
(ensemble_state = planning&execution). In this case, the agent
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Fig. 10. State machine animating each entity in the 
safety resolution process. 
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a i considers the conflict_region received in the message as a dy-
namic obstacle and adds it in its collision region CollisionR . The
ensemble in planning&execution state cannot be interrupted. 

After a i finishes the iteration through all the messages, it does the
ollowing decision: 

• if there is at least one message from category 1 (statement B in
Fig. 10 is true), the agent a i goes to state JOIN and initiates the
joining process. If there are multiple messages from category 1 , the
agent a i considers joining to the ensemble that has leader with high-
est safety index. 

• if there are no messages from category 1 (statement B in Fig. 10 is
false), it checks if there is at least one message from category 2 , i.e. if
statement A in Fig. 10 is true. If there are multiple messages of that
kind, with the function findsafestrobot it finds the identifier of the
agent with the highest safety index in its visible region. If the agent
has the highest safety index in its visible region, it goes into state
FORMING from where it starts the initialization of the ensemble,
otherwise it goes into state INITIALIZE . 

• This is the case when the agent has received only messages
from agents that are parts of ensembles that are in their plan-
ning&execution phase ( category 3 ). In this case the agent a i goes into
the AVOID state where the agent acts as it discovered a dynamic ob-
stacle. In this state the agent should activate some of its solvers for
dynamic obstacle avoidance that are able to generate a behavior (so-
lution) for a dynamic obstacle avoidance. Here, the agent performs
isolated adaptation and threats this problem on the same level as a
dynamic obstacle. 

We define conflict set Rconf for an entity e as the set of entities that
re in its visible region, can collide with e and are not part of an ensem-
le that is in planning&execution phase (entities that have send mes-
ages from category 2 and category 3). This means that Rconf entities
re “open ” for performing an appropriate collision avoidance protocol
hat should avoid the possible collision. 

From the INITIALIZE state, the entity waits for a message m from the
gent that has the highest safety index in its visible region to decide in
hich state it should go. If it receives a message that there exists an-
ther entity with a higher safety index (statement D is true), it transits
o a JOIN state from where it starts the procedure for joining an existing
31 
nsemble. Otherwise, if it receives an ACCEPT message means that the
gent with the highest safety index in its visible region started the pro-
ess for ensemble creation, and then it goes to a state Coordinate . That
eans that there isn’t any other entity with higher safety index in both

f their visible regions. 
The entity in the FORMING state is a possible leader (coordinator) of

n ensemble. The entity in this state sends ensemble “proposal ” requests
o the entities that are in its vision region and have safety regions that
verlaps with its safety region at some point of time in the future. The
ntity e i stays in the FORMING state until one of the following happens:

• it receives a message from an entity in its visible region that “rejects ”
its ensemble “proposal ” meaning that the entity that send the mes-
sage is aware of another entity that has a higher safety index, so that
entity should be the coordinator/leader of the ensemble (statement
D is true). In that case, the entity that received the message directly
goes into state JOIN . 

• it receives a message from all entities in Rconf and they all accepted
the proposal for ensemble creation. That means statement D is false
i.e. there isn’t any entity in Rconf that is aware of another entity e j 
that is in the FORMING state and has a higher safety index. 

In the Coordinate state, the coordination between the different en-
ities in the ensemble happens. The entity stays in this state, until all
ntities represented with Rconf are part of the ensemble. When each of
conf entities join the ensemble, the entity goes into a Planning state. The

ast entity that enters the Planning state is the leader. When the leader
nters this state, on-the-fly ensemble formation phase finishes and the
nal ensemble is formed. Here, the leader has information for all en-
emble participants and the final conflict region of the ensemble. In this
tate the leader makes a decision of what is the best solver i.e. what
s the best collision avoidance protocol that all ensemble participants
hould follow. We implemented that by using the function coordinate ()
hich is executed only by the ensemble leader ( Fig. 11 ). Based on the in-

ormation about the ensemble (conflict regions, participants, etc.), the
eader generates a prioritized list of all possible solvers (list of colli-
ion avoidance algorithms) embedded in the Knowledge base that could
olve the possible collision for this ensemble formation (line 3). Then,
he ensemble leader starts from the first algorithm and calls the recur-
ive function 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 ( 𝐴, 𝑖𝑑, 𝑒 _ 𝑗) where A is the algorithm that is
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Fig. 11. Code snippets from Planning and Execution state. 
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hosen for safety resolution, id is the identifier of the entity that exe-
utes the algorithm to generate a solution and 𝑒 _ 𝑗 is the identifier of the
ntity that triggered the algorithm in the entity that executes it. Initially
𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 ( 𝐴, 𝑖𝑑, 𝑒 _ 𝑗) is called locally by the ensemble leader so it has
he form 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 ( 𝐴, 𝑖𝑑, 𝑖𝑑) (line 5). 

The function 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 includes the following. First, the appro-
riate solver is called to generate a solution S based on the algorithm
 (line 10). Then, a corresponding communication is derived using
𝑒𝑟𝑖𝑣𝑒 _ 𝑐𝑜𝑚𝑠 for each of the reachable entities in the ensemble. In other
ords, 𝑑𝑒𝑟𝑖𝑣𝑒 _ 𝑐𝑜𝑚𝑠 finds all the children in the problem resolution tree

eachable from the corresponding entity in the final ensemble. 
For each identified entity, the function 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 is called with

he algorithm A (line 13) and a solution S is calculated. 
The function 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 returns a boolean: 

• it returns true when the entity and all its children in the problem
resolution tree contain the algorithm A in its knowledge base. If that
is the case, the generated solution S is stored locally (function store
(line 18)); 

• it returns false when the entity itself or one of its children (targets)
does not contain the algorithm A in its knowledge base. 

In the end the 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 _ 𝑠𝑎𝑓𝑒𝑡𝑦 for the ensemble leader (line 5) re-
urns true if all the entities in the ensemble are able and agreed to per-
orm some algorithm A . If that is not the case, the ensemble leader goes
hrough the other algorithms in the SolverList and repeats the process
ntil finds a suitable algorithm A for which all ensemble participants
re able to perform it. If it finds one, it calls locally the function com-

it and breaks the loop. Execution of the commit function is when the
ntity enters the Execution state in Fig. 10 . 

The commit function lines 23–26 is recursive, it goes through each
ntity in the ensemble and enacts a distributed commit of the best solu-
ion. It updates the solution S in each entity by updating its behaviour
ree with the function update(S) (line 26). When the entity finishes with
he commit function in the Execution state, it goes to Discover . 

.2. Correctness and completeness 

In order to prove correctness of the safety resolution approach we
eed to prove the correctness of the safety resolution algorithm. In order
o prove the correctness of the safety resolution resolution algorithm we
32 
eed to analyze: (i) the protocol for on-the-fly ensemble formation and
ii) the recursive function for selecting and committing a solution. We
efine correctness as follows. 

heorem 3 (Correctness) . If an entity e triggers a safety problem P i , then

he Safety Problem Resolution Algorithm computes a solution S i where the

afety invariants in Definition 11 are always satisfied. 

roof. Our assumption is that each of the entities in the safety collective
daptation process contains at least one safety solver (collision avoid-
nce protocol) that is compatible to the solvers of the other entities in
he ensemble. This means that we assume that when an ensemble is
ormed, each of the entities participating in the ensemble contains an
ppropriate solver that can generate a solution that will satisfy the safety
nvariant defined in Definition 11 . Therefore, to guarantee correctness
f the safety resolution process we just need to prove correctness of the
rotocol for on-the-fly ensemble formation. 

In order to prove the correctness of the protocol for on-the-fly en-
emble formation, we verify (using model-checking) the following prop-
rties about the coordination protocol: (1) at each point of time there
on’t be any ensembles (up to 16 entities) that are in 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔&𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

hase and that have overlapping 𝑐 𝑜𝑛𝑓𝑙𝑖𝑐 𝑡 _ 𝑟𝑒𝑔𝑖𝑜𝑛 CR ; (2) the highest
afety index computed by the safety resolution algorithm is consistent
cross all entities in an ensemble that is in 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔&𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 phase.
e formally specify them as follows. We denote with T the total mis-

ion execution time and with 𝐸 

𝜏
𝑝𝑒 

the set of all ensembles in the system
hat are in 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔&𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 phase at time 𝜏. Hence, we define (1) as:
𝜏 ∈ 𝑇 &&∀𝑒𝑠 𝑖 , 𝑒𝑠 𝑗 ∈ 𝐸 

𝜏
𝑝𝑒 
; 𝑒𝑠 𝑖 .𝐶𝑅 ∩ 𝑒𝑠 𝑗 .𝐶𝑅 = ∅ and we define (2) for an

𝑠 ∈ 𝐸 

𝜏
𝑝𝑒 

as: ∀𝑒 𝑖 , 𝑒 𝑗 ∈ 𝑒𝑠 ; 𝑒 𝑖 .𝑠 _ 𝑖𝑑 = 𝑒 𝑗 .𝑠 _ = 𝑖𝑑. 
However, the safety resolution algorithm by itself is not complete

ue to the following reason: each entity in a stable ensemble might not
ave a solver compatible to the solver proposed by the leader. How-
ver, for completeness of the approach, as we mentioned earlier, we
ssume that each entity in the system has at least one safety solver that
s compatible to the solvers of the rest of the system. We consider this
ssumption reasonable because we consider safety independently from
he mission and in this way, we can reason about safety before the start
f the mission. That is how we guarantee safety during the whole mis-
ion execution. □

. Related work 

MMRSs are just one application domain from the variety of Cyber-
hysical systems (CPSs). In the literature, a lot of work has been done
o address run-time adaptation of CPSs in different application do-
ains and different levels of abstraction. Specifically, the authors of

18] present an approach to support the adaptation process of CPS
ased on run-time generation of verified system configurations, while
n [19] the temporal costs of an autonomic manager that performs
n-line verification for a specific application are analysed. Moreover,
20] presents an architecture of a middleware that supports time-
eterministic reconfiguration in distributed soft real-time environments,
hile [21] evaluates reinforcement learning adaptation policies through
 set of experiments. All the aforementioned works present general ap-
roaches that have been applied in a specific application scenario. In
omparison, in this work we focus on the specificities of the domain
f mobile multi-robot systems: (i) agents have partial knowledge of the
ystem and the environment and (ii) the interplay between (possibly)
artial resolution of mission problems vs. full resolution of safety prob-
ems is crucial. 

In the following, we focus on mobile multi-robot systems and we
eview recent work on run-time approaches that support mission exe-
ution. We investigate what kind of run-time collective approaches are
roposed for the different multi-robot systems and in which type of en-
ironments they are applicable. Furthermore, we focus at identifying
nd classifying approaches that address safety. Our aim is to understand
ow safety is managed and what are the constraints and limitations of
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Table 1 

Literature comparison. 

Work System & environment characteristics Safety Management Adaptation mechanisms 

A. Type Openness Ens. type Mgmt. Hierarchy ENV Coop. Mechanisms Concerns sep. Adapt Type Human 

[22] Heterogenous N/A dynamic N/A N/A N/A cooperative No Yes Both No 
[23] Heterogenous Yes N/A N/A No dynamic local No Yes isolated No 
[24] Heterogenous No N/A N/A N/A dynamic cooperative No No N/A N/A 
[25] Heterogenous No dynamic distributed No static cooperative No Yes isolated No 
[26] Homogeneous No N/A N/A No static local No Yes isolated No 
[27] Homogeneous No N/A N/A No static cooperative No No N/A NO 

[2] Heterogenous No N/A N/A NO dynamic centralized No Yes N/A N/A 
[1] Homogeneous No dynamic centralized No N/A centralized No No N/A N/A 
[28] Heterogeneous Yes dynamic distributed Yes dynamic N/A N/A Yes BOTH No 
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xisting methodologies addressing safety. Additionally, we consider if
he approach supports adaptation on the system and which adaptation
ecisions could be made at run-time. 

In Table 1 , we note some of these run-time mission execution ap-
roaches for mobile multi-robot systems and categorize them according
o the following criteria: 

1) System & environment characteristics; 
2) Safety management; 
3) Adaptation mechanisms. 

For each criteria we identify several parameters. For each of them,
e categorize the approaches as follows. 

System & environment characteristics 

• Agent type : whether the considered agents in the system are homo-
geneous or heterogeneous. 

• Openness : whether the approach supports systems that can accept
external agents at run-time (e.g., new robots entering the mission). 

• Ensemble type : whether the proposed approach supports formation of
an ensemble structure (group of agents) that can change at run-time
(dynamic) or not (static). 

• Ensemble management : whether an ensemble is managed in a cen-
tralised or in a distributed way. 

• Hierarchy : whether the approach provides a mechanism for hierar-
chical structure of ensembles (e.g. an ensemble of ensembles). 

• Environment (dynamic vs. static): whether the approach supports
modeling of systems that operate in environment that can change
at run-time (e.g., moving obstacles, some other elements outside of
the system can change their status). 

Safety Management 

• Cooperation mechanisms : whether the approach allows safety mecha-
nisms that involve cooperation between different agents rather than
centralized management of safety entity or local management on
single robots, without any cooperation. 
It is LOCAL if safety mechanisms are conceived to work on single
robots, without any cooperation, CENTRALIZED if the knowledge of
the overall system is maintained by a centralized entity, or COOPER-

ATIVE if there are mechanisms to share knowledge between different
robots that take part in the mission. 

• Separation of concerns : whether the approach keeps the management
of safety-specific issues (e.g. safety rules) separated from the man-
agement of mission-specific issues. 

Adaptation decisions 

• Adaptability : whether the approach supports MMRSs that can adapt.
• Type : whether the approach supports a collective adaptation where

a collection of autonomous agents collaborate together to satisfy a
particular goal or isolated adaptation where one agent adapts inde-
pendently from the rest of the system. 
33 
• Human Controllability : whether the approach enables an operator
(human) to be involved in the adaptation process. 

As shown in Table 1 , most of the approaches are unable to deal with
pen systems (only 2/9 approaches are able to deal with open systems).
y open systems, we mean systems that can accept external entities at
un-time (e.g., new robots or new human actors). This implies that most
f the approaches that have been proposed do not consider that the sys-
em evolves in terms of addition or removal of robots and/or other types
f agents, including humans. This is indeed an interesting research di-
ection since systems of the near future will be necessarily characterized
y openness, and it is often impossible to assess at design time the exact
oundaries and topology of the system. 

A peculiar system characteristic is the capability of managing teams
onsisting of robots of different types (e.g., robots for grabbing objects,
or video streaming, sensing and discovering relevant information). Ac-
ording to Table 1 most of the analyzed systems have the capability of
anaging heterogeneous robots, which is the direction in which we are

oing with our approach. 
In order to manage different unpredictable situations of missions and

onsidering situations where there is only partial communication be-
ween different agents, it is preferable that the MMR system is capable
f grouping and regrouping agents in ensembles at run-time in a decen-
ralized fashion. Most of the approaches propose solutions where they
ssume that all robots in the system will be able to communicate to
ach other. Only 2/9 approaches discuss about the possible benefits of
istributed ensemble formation. The concept of ensemble enables single
gents to take part in a group where they will follow certain rules and in
eturn the ensemble offers certain advantages with respect to a preser-
ation of a particular system quality. In this context, we don’t need to
onsider the whole system to analyze if a particular system quality is
atisfied, we only consider part of it. 

Furthermore, as shown in Table 1 , in all approaches the management
f safety-specific issues (e.g., safety rules) is not kept separated from
he functional management of the robots (e.g., the mission). Keeping a
eparation of concerns means for instance that the approach prescribes
 special layer for managing safety, which is totally separated from the
est of the system. 

Regarding the cooperation mechanisms, most of the approaches
dopt local safety mechanisms, i.e. safety mechanisms that are con-
eived to work on single robots, without any cooperation. Centralized
afety management mechanism means that there exists an entity manag-
ng the safety aspect of the overall system. As can be seen in Table 1 only
 approaches have a centralized safety management mechanism. In-
tead, 4 approaches rely on co-operative safety mechanisms, meaning
hat safety mechanisms involve a cooperation between different robots.

Regarding the adaptation mechanisms, most of the approaches al-
ow the system to adapt at run-time, meaning that the system is able to
dapt (e.g., behaviour adaptation, trajectory recalculation, goal renego-
iation, etc.) in order to find a solution depending on some change in
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he context. Adaptability might be considered in conjunction with con-
ext awareness since awareness of the context is a required capability
n order to support adaptability. Human involvement in the adaptation
rocess brings some degree of control-ability that can help in defining
egulations and rules about the responsibilities of the operators in oper-
tional scenarios and make adaptation more practical and safer. None
f the approaches in Table 1 includes the human as a factor in the adap-
ation process. Regarding the collectiveness of the adaptation process, 3
f the approaches consider isolated adaptation where the agent adapts
ts behaviour independently from the rest of the system, while only 2
pproaches consider the two types of adaptation: (i) on a collective level
here multiple agents must adapt altogether and transactionally and (ii)

solated adaptation where one agent adapts its behaviour independently
rom the rest of the system. 

Classifying our approach in this classification schema is as follows: It
upports modeling of open systems which consist of heterogeneous agents

hat are context-aware about their operational context. The agents can be
rouped in dynamic ensembles , which are groups of agents that are man-
ged in a distributed way among the ensemble participants. Furthermore,
he approach allows for a hierarchical structure of ensembles for satisfying
 particular goal as we showed in [12] . Regarding the environment, the
pproach has mechanisms for modeling MMRSs that operate in dynamic

nvironments and have some degree of unpredictability (ex. birds flying,
nimals walking, etc). 

Most of the approaches we have analyzed do not consider safety
spects separate from the functional behaviour of the robots. In our ap-
roach we make a clear separation of concerns between safety and mission

spects. We consider this as extremely important for managing com-
lex missions and it is one of the fundamental parts on which we base
ur work. This way an operator modeling its mission can focus on the
ission specification, while a safety engineer can focus on the safety-

pecific mechanisms, thus making safety-specific mechanisms reusable
cross missions, projects, and organizations. 

Another really important feature of our approach is allowing coop-

ration mechanisms between different agents when safety-related issues
re triggered. This means that safety is not managed in a centralized
ay (there isn’t an entity that manages the whole aspect of safety, but

t is managed on a level of ensemble in a distributed way where each
gent should perform an appropriate behavior as part of the ensemble).

Moreover, our framework contains structures that enable system de-
igners to design systems which are adaptable during mission execution.
t allows part of the adaptation decisions to be done at run-time . That
eing said, we make clear distinction about which decisions should be
ade at design-time versus decisions at run-time. Regarding the type,
e allow agents to adapt on a collective (ensemble) level, which means

hat a collection of autonomous agents collaborate to perform adapta-
ion in order to satisfy a particular goal or solve a particular problem.
n the end, we allowed the operator (human) be able to have control
n the adaptation process. Some adaptation decisions can not be done
y the system at run-time, however with our approach as we showed in
12] we allow the operator to take over and participate as agent in the
daptation process. 

. Conclusions 

In this paper, we presented a collective adaptation approach that
onsists of two parts: one for (potentially partial) resolution of mission
roblems and one for full safety resolution i.e. one that ensures a full sat-
sfaction of safety invariants. While most of the proposed solutions for
ollective adaptation work under the assumption that all the knowledge
sed to adapt a system is fully specified at design time (i.e., a prede-
ned set of issues) and is centrally controlled by a specific component
i.e., a set of predefined solvers), our approach, as depicted previously,
ddresses collective adaptation problems in a decentralized fashion, at
un-time, with new solvers that can be introduced at any time. At the
ame time, in highly dynamic and distributed environments, our ap-
34 
roach provides a way to dynamically understand which parts of the
ystem should be selected to help solve an adaptation issue making a
lear distinction when resolving mission vs. safety-related issues. That
ay, we can ensure full satisfaction of safety, while guaranteeing (po-

entially partial) mission completion. 
Currently, we are performing an extensive experimental campaign

o evaluate the collective adaptation process (CAP) by simulation. Sim-
lation is performed by using a Software-In-The-Loop (SITL) platform.
e are measuring mission satisfiability that gives information on how
uch percentage of the mission is performed by the system taking

n consideration various application domains. We are using hetero-
eneous robots operating under various circumstances (e.g. different
umber of tasks to be performed, different size of MMRSs, different
umber of problems triggered during mission execution, different ra-
io between safety and mission problems triggered during mission ex-
cution etc.). The final goal is to find out if our collective adaptation
pproach is scalable for managing real-sized missions. Additional mate-
ials concerning the experimental setup and the results is available here:
ttps://darkobozhinoski.github.io/MMRS/ . 

Moreover, we plan to integrate the approach with a suitable exten-
ion of the FLYAQ platform [3] . This platform permits to graphically
efine civilian missions for a team of autonomous multicopters via a
omain specific language to make the specification of missions accessi-
le to people with no expertise in IT and robotics. 
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