
 
 

SORASCS: A Case Study in SOA-based  
Platform Design for Socio-Cultural Analysis 

Bradley Schmerl, David Garlan, Vishal Dwivedi, Michael W. Bigrigg, and Kathleen M. Carley 
School of Computer Science, Carnegie Mellon University 

5000 Forbes Ave 
Pittsburgh, PA, 15213 USA 

+1 412 268 1252 

{schmerl,garlan,vdwivedi,bigrigg,carley}@cs.cmu.edu 

ABSTRACT 
An increasingly important class of software-based systems is plat-
forms that permit integration of third-party components, services, 
and tools. Service-Oriented Architecture (SOA) is one such plat-
form that has been successful in providing integration and distri-
bution in the business domain, and could be effective in other 
domains (e.g., scientific computing, healthcare, and complex deci-
sion making). In this paper, we discuss our application of SOA to 
provide an integration platform for socio-cultural analysis, a do-
main that, through models, tries to understand, analyze and predict 
relationships in large complex social systems.  In developing this 
platform, called SORASCS, we had to overcome issues we be-
lieve are generally applicable to any application of SOA within a 
domain that involves technically naïve users and seeks to establish 
a sustainable software ecosystem based on a common integration 
platform. We discuss these issues, the lessons learned about the 
kinds of problems that occur, and pathways toward a solution. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Domain-specific architectures.  

General Terms 
Design, Human Factors. 

Keywords 
Service Oriented Architectures, Platform Design, Socio-Cultural 
Analysis 

1. INTRODUCTION 
An increasingly important class of software-based systems is plat-
forms that permit the integration of third-party components and 
tools. Like frameworks [13] platforms provide a way to integrate 
independently-developed elements that can take advantage of 
common services (such as communication infrastructure, user 
interface mechanisms, registry and look-up services, etc.), and 
that in turn conform to the requirements of the platform (such as 
observing platform protocols, user interface conventions, initiali-
zation and take-down procedures, etc.). 
An example of a widely-used platform is the High Level Architec-

ture (HLA) for distributed simulation. Initially developed by the 
US Department of Defense, and later standardized as IEEE 1516, 
HLA supports the integration of simulations built by different 
vendors, running on distributed hosts. HLA provides common 
services for inter-simulation communication, data management, 
and simulation management (e.g., registering new simulations). In 
turn, an HLA-compliant simulation must provide an interface that 
is called by the HLA runtime to carry out a joint simulation exer-
cise. Other widely-used platforms include a large variety of ser-
vice-oriented architecture (SOA) platforms (such as IBM WebS-
phere, Apache ServiceMix, Mule), smart phone platforms (such as 
iOS and Android), and grid computing platforms (such as myGrid). 
Among the platforms in wide use today, service-oriented architec-
tures are particularly prominent. SOA is an approach for develop-
ing large-scale distributed systems through the incorporation of 
loosely-coupled services and typically exploits the technology of 
the Internet. To migrate legacy systems into the SOA domain, 
they are typically modified (often through wrappers or adapters) 
to provide a service-based interface, which is registered with a 
SOA. The service then becomes available for invocation (using 
standard web protocols such as SOAP), or it can be combined 
with other services to produce more complex applications using 
an “orchestration” language (such as BPEL) that prescribes the 
order of service invocations and pathways of communication be-
tween them. SOAs have found widespread applicability in support 
of enterprise business management and e-commerce applications 
(such as Amazon and eBay).  
SOAs are attractive not only for business and e-commerce; many 
other domains could in principle benefit from their use. Indeed, 
one might argue that SOAs are ideally suited for any family of 
applications that must be developed out of heterogeneous, inde-
pendent components running in a distributed setting. Examples 
include scientific computing (e.g., MeDICi [11]) and healthcare 
(e.g., VistA [9]). 
One such domain is the area of socio-cultural analysis (SCA). 
SCA is an increasingly important kind of application domain that 
attempts to build behavioral models of social systems (e.g., by 
extracting information from unstructured text such as web sites, 
blogs, email, etc.), and gain insight about these social systems 
through analysis, simulation, or observation of the models. It is 
used heavily in a variety of fields including anthropology, sociol-
ogy, business planning, law enforcement, and national security. 
While there are many powerful tools to support these activities, 
there is currently no standard way to integrate tools from different 
developers or to selectively compose capabilities from different 
tools. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA 
Copyright 2011 ACM 978-1-4503-0445-0/11/05... $10.00. 



 
 

But how easy is it to instantiate a SOA to create a platform for 
such a domain? If you believe the hype, it should be straightfor-
ward. One simply provides a web service description file for each 
service, registers those services with a registry, and voila! How-
ever, our experience is that this is not the case. In this paper we 
detail that experience, illustrating both the benefits and drawbacks 
of using SOA as a platform for SCA.  Our primary insight is that 
although SOA provides an adequate starting point as a platform 
for domains like SCA, it is not by itself sufficient. In particular, 
the critical question that one must answer is how to create a plat-
form that will support a sustainable software ecosystem [14].1  To 
do this, we argue that one must go beyond the raw capabilities of 
SOA to address the real needs of the ecosystem’s stakeholders: 
end users, tool integrators, and framework maintainers. As we 
illustrate, this requires substantial additions and adaptations to 
simple SOA in order to make a successful ecosystem. 

2. SOCIO-CULTURAL ANALYSIS TODAY 
Socio-cultural analysis involves understanding, analyzing and 
predicting the relationships in complex social systems. Such sys-
tems are typically represented as dynamic social networks that 
relate entities in the system (e.g., people, knowledge, places, ac-
tions) to each other. Dynamic network analysis (DNA) is centered 
on the collection, analysis, understanding and prediction of dy-
namic relations among multi-mode networks, and the impact of 
such dynamics on individual and group behavior [1][5].  DNA 
facilitates reasoning about real groups as complex dynamic sys-
tems that evolve over time.  Within this field, computational tech-
niques, such as machine learning and artificial intelligence, are 
combined with traditional graph and social network theory, in 
addition to empirical research on human behavior, groups, organi-
zations, and societies to develop and test tools and theories actions 
that are enabled and constrained by relations in the network.  
Socio-cultural analysis techniques typically entail a series of pro-
cedures. First, one needs to gather the relational data.  One ap-
proach to this is to extract relations from a corpus of texts, such as 
public domain web pages, news articles, journal papers, stock 
holder reports, community rosters, etc., and various forms of hu-
man and signals intelligence. Second, the extracted networks need 
to be analyzed.  That is, given the relational data, analysis identi-
fies key actors and sub-groups, points of vulnerability, and so on. 
Third, given a set of vulnerabilities, we can ask what would hap-
pen to the networks were the vulnerabilities to be exploited.  How 
might the networks change with and without strategic interven-
tion? For example, military intelligence may use news reports, 
intelligence reports, etc., to build a network to understand the 
“human terrain” of the field of operations, and then use simulation 
to determine how best to communicate with a population; federal 
agencies may take a combination of news stories and crime re-
ports to understand gang-related drug activities in a city and use 
simulation to plan the best courses of action to fight them; sociol-
ogists may use interviews and other sources to understand a popu-
lation and then use simulation to work out the best strategies for 
educating them about policy changes. 

                                                                 
1 “A software ecosystem is a set of actors functioning as a unit and 

interacting with a shared market for software and services, to-
gether with the relationships among them. These relationships 
are frequently underpinned by a common technological platform 
or market and operate through the exchange of information, re-
sources and artifacts.”[18] 

 A large variety of tools have been developed to help analysts with 
such tasks. For example, the Analyst’s Notebook (I2)2, ORA [7], 
and UCINET [2] provide tools to help conduct network analysis. 
But the tools in this area go well beyond network analysis to in-
clude tools for web scraping, text mining, data mining, statistical 
analysis, geo-spatial analysis, decision support, simulation, and 
gaming. The center for Computational Analysis of Social and 
Organizational Systems (CASOS) at Carnegie Mellon University 
has been engaged in developing methods and tools that provide 
support from the data collection phases through the analytic phase 
to the simulation or “what-if” forecasting phase. This toolset con-
tains the following tools:  AutoMap [7] for extracting networks 
from natural language texts, ORA for analyzing and visualizing 
networks [8], and Construct [3][6] for what-if reasoning about the 
networks. Analysts in this area always use sets of tools, in an iter-
ative fashion, to address diverse questions with data that varies in 
type, quantity, and quality. Figure 1 provides an example of the 
way that these tools are integrated into a tool chain. Each of the 
tools is a standalone program. They may be loosely integrated 
through files written in an XML format called DyNetML, a stan-
dard interchange format for multi-mode social network data. 
These tools can be used in a linear process; however, typically 
there are a series of analytic spirals that may use multiple tools as 
the analyst cleans and refines the data and fine-tunes the analysis. 
An SCA analyst will typically use tools in this domain to develop 
models of social systems, such as for a humanitarian relief effort 
like the Haiti earthquake in 2010.  Such a model can be built from 
open source news data provided through a source such as Lexis-
Nexis. This textual data needs to be preprocessed into a usable 
form, or “cleaned,” to filter out headers, remove noise and nor-
malize concepts. A multi mode network of associations between 
people, places, resources, knowledge, tasks, and events is then 
generated from the resulting concepts and analyzed.   
Currently, an analyst will execute a particular sequence of opera-
tions using the available tools. In effect, an analyst is manually 
executing a mental workflow particular to this activity. In addition 
to having to choose the operations to perform, the analyst also 
needs to act as the glue between those operations. If different tools 
are involved, he must manually ensure that data formats match, or 
are properly translated, and that data is located in the right place.  

                                                                 
2 http://www.i2group.com/us/products-services/analysis-product-line/analysts-

notebook 

Figure 1. The Toolchain for socio-cultural analysis devel-
oped by the CASOS group at Carnegie Mellon. 

External 
Tools 

DBs 

CONSTRUCT 

DyNetML 

Raw 
Data 

Networks Processed 
Networks 

Reports Trends 



 
 

When a nearly identical problem needs to be analyzed, such as 
developing a model of humanitarian relief for the Chile earth-
quake also in 2010, a (different) analyst will have to manually 
follow similar steps as above, but may encounter differences in 
processing and tools. For example, the source data for Chile may 
have been scraped from the web instead of from a news source as 
for Haiti, and so additional cleaning steps to remove the HTML 
tags are necessary. In the Haiti example, the resulting network 
may have been analyzed using UCINET. In the modeling of 
Chile, the analyst may opt instead to use ORA (because of fami-
liarity with ORA, or licensing fees of UCINET, or because she 
wants to make use of particular capabilities). However, she still 
wants to be able to use the knowledge in processing and analysis 
that the analyst for Haiti developed. 
The problem for analysts is that a significant duplication of effort 
is required to conduct very similar analyses, and they need to 
manually interact with tool operations, and manage tool interope-
rability. They can share the results of their analyses (often as re-
ports), but may only anecdotally share the processes for getting 
those results. The community as a whole requires a platform that 
supports sharing of knowledge about how to analyze certain data 
sets, fast turnaround of results when new data is made available or 
new situations arise, and the ability to work in an exploratory way 
to tease out and refine conclusions and data.      

3. VISION 
What is needed in this domain is a unifying platform that supports 
a number of key requirements: 
Heterogeneity: Allows analysts to use a vast range of processing, 
analysis, data, and report generation services created by multiple 
tool creators, running on a variety of distributed hosts; 
Compositionality: Supports composition of operations, enabling 
complex and domain-specific analyses and assessments to be 
constructed; 
Reuse: Provides mechanisms to share analysis primitives and 
compositions, allowing different communities to contribute ana-
lyses, data, and tools, without completely rewriting legacy tools; 
Usability: Analysis services should be accessible through the web 
using common interface standards and procedures for discovering 
available services, and for using them to perform analyses. 
Model Discovery: Services should be available for helping ana-
lysts identify what models can be applied to what data. 
To achieve this vision, over the past three years we have been 
developing SORASCS (Service Oriented Architecture for Socio 
Cultural Systems) [10]. Our goal has been to meet these require-
ments with an integration platform that supports a sustainable 
ecosystem involving at least three key groups of stakeholders: 
Analysts: These are the end users of the system – the people who 
develop and execute analyses. They range over a spectrum of sub-
communities. At one end are users whose primary role is to ex-
ecute prepackaged analyses. This community has little under-
standing about the internal analytical working of the tools they 
use, and are simply interested in the results of some analysis. At 
the other end are researchers who need to experiment with alterna-
tive compositions to develop new forms of analysis that can be 
use to produce novel insights into some phenomenon, support 
particular analytical needs of their funders, or package up new 
analyses to be used by less-skilled analysts. Analysts’ primary 
concerns are those of usability, reuse, and compositionality. 

Tool Developers/Integrators. These are the people who create 
the tools (and in some cases the data sets) that analysts employ to 
perform analyses. As noted earlier, currently there is a large in-
vestment in legacy tools that cannot be practically rewritten. It is 
expected that tool developers will integrate tool functionality into 
SORASCS. Furthermore, the body of tools will continue to grow 
over time. For these reasons, it must be relatively easy to integrate 
new tools as they become available. 
Platform Developers/Maintainers: These are the people who 
create and maintain the platform over time. While our team was 
expected to do the initial development, long term, our expectation 
is to transfer maintenance of the platform to an open-source con-
sortium supported by the community at large. Ease of platform 
development and cost of maintenance is a central concern for 
these stakeholders. 
In the remainder of this paper we describe how we achieved this 
vision, starting with a simple open-source SOA solution, and 
based on lessons learned from that experience, eventually devel-
oping a platform that addresses the needs of these stakeholders. 

4. FIRST VERSION 
4.1 SOA Based Design for SORASCS 
On the surface of it, service-oriented architectures (SOA) [15][16] 
are ideally suited to address the requirements listed above. In 
particular, standards exist for defining service compositions 
(termed orchestrations), policies for governance, and facilities for 
service discovery. With respect to the requirements stated above, 
heterogeneity is supported for both data (through data ontologies 
and transformations) and analysis mechanisms (through ap-
proaches and technologies for migrating legacy code to web ser-
vices that are defined in common Web Service Definition Lan-
guage (WSDL) or REST standards). Composition is supported 
through standard techniques for orchestration, and service regi-
stries allow one to discover services that can be used. Reuse is 
promoted through the distributed deployment of services and or-
chestrations that are accessible over the internet. Furthermore, 
there are well-designed standards for security and privacy of data, 
and high performance SOAs that are designed to work on large 
data sets are emerging (e.g., Mule).  
Given this kind of support from SOA platforms, it seemed natural 
to us (and to our funders) that basing the SORASCS platform on 
standard SOA technologies would be an ideal match to the prob-
lem at hand. 

4.2 SORASCS v1 Design and Implementation 
The first design of SORASCS focused on two key aspects: (a) 
provisioning existing tools as services, and (b) defining example 
workflows using these services. In providing services, we focused 
on two kinds of tools, both developed by the CASOS center: Au-
tomap and ORA. Automap was chosen because the individual text 
processing functions were based on batch processing, and so we 
anticipated that they would be easy to wrap as web services. ORA 
is a full-featured interactive graphical tool that contains functio-
nality for visualizing networks in addition to providing numerous 
kinds of analyses. It was chosen because it was representative of 
other types of analysis tools that exist in the domain, and its inte-
gration would provide general lessons that could be used in inte-
grating other tools.  
The first version of SORASCS was based on the design of SOA 
platforms available in industry [12]. Figure 2 depicts the system 
organization for this version. Each tool was inspected to identify 



 
 

Figure 2. SORASCS v1 System Organization. 

SORASCS Invocation API 
Component Interface 
Local Call 

Web Service Call 

Bridging Component 

Legend 
CONSTRUCT 

… … … 

Orchestration Engine Registry 

SORASCS Web Portal 

Se
rv

ic
es

 
La

ye
r 

To
ol

s 
La

ye
r 

U
se

r  
In

te
rf

ac
e 

La
ye

r 

Wrappers 

distinct functionality to be provided by SORASCS.  A bridging 
component was written to map each function of the tool to a web 
service API that can be accessed through SORASCS. An Orches-
tration Engine provided orchestrations as web services in 
SORASCS, and executed them by controlling how and when con-
stituent services within the orchestration were invoked. A registry 
allowed tools and clients to find services within SORASCS. Final-
ly, a web portal was developed to allow a user to interact with the 
services provided by SORASCS via a browser.  

4.2.1 Technology Selection 
As much as possible open source frameworks that implemented 
SOA standards were used in this first version. The reason for this 
was primarily that we desired SORASCS to be an evolvable plat-
form that would actively be worked on and augmented easily by 
other parties. This excluded commercial SOA technologies. We 
also desired SORASCS to be built on mature technologies that 
had an active development community so that problems in the 
underlying technology were more likely to be addressed.  
An important additional selection criterion was support for dy-
namism, both in service deployment and orchestration. This re-
quirement exists because analysts need to experiment with alter-
native service configurations, and because integrators would be 
adding their own services. At the time that we were evaluating 
technologies (2007), many claimed to support this kind of dynam-
ism, but in fact required rebooting of servers to recognize new 
orchestrations or services. For these reasons we chose Apache 
technologies as the basis for our implementation. Specifically, we 
used: 
- Apache CXF, upon which we built service implementations. 
Apache CXF allows us to present the APIs of existing code as 
web services. Additionally, it supports mapping service calls in 
SOAP (or REST) to Java API calls on backend code. It also sup-
ports various web standards including those for security, reliable 
messaging, etc. 
- Apache ODE and WS BPEL as the orchestration engine and 
orchestration language, respectively. 

4.2.2 Service Implementation 
Once the implementation technology was chosen, we set about 
designing how to migrate existing tool functionality to services. 
In an ideal SOA world, services are autonomous: they define 
explicit boundaries, and communicate via a contract. Because 
the legacy tools we were integrating were standalone tools, 
merely wrapping each tool as a web services was insufficient – 
we had to expose individual functions of the tools.  Our imple-
mentation effort therefore followed the following process: 
Componentization: In this phase, we identified key business 
functions that needed to be provided by SORASCS. To do this 
we had to make some changes to the tools in order to access 
their functionalities (cf., Section 4.3.2). This phase was con-
cerned not only with writing code, but also identifying depen-
dencies on libraries, configuration files, etc. 
Service Identification: In this phase we classified services via 
domain decomposition, which was done in a top-down fashion. 
First, we looked at network analysis as a domain and the key 
functions provided by the tools, followed by an inspection of 
the tool code to determine how the functionality was imple-
mented. This led to a service catalog, where we identified the 
candidate services, their input and output signatures, and pro-
duced a set of high-level categories. 

Service Implementation: In this phase, we implemented the 
catalogs that were previously identified. Our service implementa-
tion depended heavily on Apache CXF, which determines how 
service endpoints are realized. 
Identifying Granularity and Categories: In the domain of net-
work analysis, services often require many parameters. One chal-
lenge was that many services in certain categories have similar 
APIs in terms of input and output, but may be configured diffe-
rently. Had we treated these as different service types, we could 
have ended up with a proliferation of service types that would 
make composition or interaction difficult, because there would be 
many special cases. We decided to combine such service types 
and provide an extensible parameterization API for these configu-
ration parameters.  
Identifying Business Processes: Analysts use multiple operations 
to perform analysis tasks. We can think of these as the business 
processes of the domain. In this phase, we identified a set of or-
chestrations to help automate common processes using BPEL, and 
made them available as services with the SOA. 
The above process is similar to the activities that are defined by 
IBM’s SOMA, a method for developing service-oriented architec-
tures [1]. In this version of SORASCS, we categorized the servic-
es as follows: 
Simple Text Transformation: Operations to process text that re-
quire no other information (e.g., removing extra white space);  
List-Based Text Transformation: Operations that process text 
using an auxiliary list, for example, to remove a specified list of 
words from the text, or normalizing words based on a thesaurus. 
Generators: Operations that take text and generate information 
from them, such as lists of concepts or multi-mode networks. 
Reports: Operations that take a network, perform a number of 
network analysis algorithms on them, and produce reports. For 
example, operations that run various centrality measures on the 
network and produce a report identifying key people in the net-
work. 



 
 

Visualization: Operations that produce documents containing 
images to visualize the networks graphically. 
In this version of SORASCS, we side-stepped the issue of how to 
treat data in this environment. The operations from the tools were 
all file based – a fact that we could not change without great effort 
in reengineering the tools – and so in this version we assumed the 
existence of a distributed file system to access data.  

4.2.3 User Interfaces 
Once services and orchestrations were made available through 
SORASCS, we needed to give users access to them via a user 
interface. This user interface would (a) allow users to know what 
services and orchestrations are available in SORASCS, and (b) 
invoke them and see their results. The SORASCS Web Portal was 
developed to provide such access. The portal was form-based, 
defining a form for each service. Users uploaded files that they 
wanted to use to SORASCS and then located a desired service by 
browsing through the categories (presented in the left of the fig-
ure) and the services in those categories. Once the service com-
pleted execution, the user could examine the resulting files, and 
download them to a local machine. Orchestrations were presented 
to portal users in the same way as other services (i.e., they ap-
peared in the Tasks category on the left, and users filled out a 
form to interact with them). Orchestrations were written entirely 
in BPEL. 

4.3 Results and Initial Lessons 
To evaluate our design we carried out an exercise to integrate a 
variety of tools, and created some representative analysis scenario 
use cases involving those services. In addition we held a commu-
nity meeting where we demonstrated this version of SORASCS to 
about 50 participants. While the integration of existing tools as 
services using the platform was generally viewed as being suc-
cessful we met considerable resistance that caused us to refocus 
our approach for the second version. In this section, we discuss 
what we learned from this meeting, and in Section 5 we discuss 
how our focus changed in the second version. The lessons we 
learned can be broken into three categories, corresponding to the 
different SORASCS stakeholders: user lessons, tool develop-

er/integrator lessons, and platform designer/maintainer lessons. 

4.3.1 User Lessons 
Perhaps not surprisingly, resistance from potential users stemmed 
from the fact that they were not interested in the underlying archi-
tecture but rather in what SORASCS could do for them. In partic-
ular, they had the following concerns:  
Compositionality. The prepackaged orchestrations that we pro-
vided were fine for novices, who wanted to execute turnkey ana-
lyses, but expert analysts wanted more configurability of the ana-
lyses, and also to be able to construct their own. Having to con-
struct service compositions using notations like BPEL, or even 
BPMN, require a technical level of knowledge that would distract 
them from the actual analyses they wanted to do. Figure 3 shows a 
representation of the BPEL for a simple workflow containing five 
logical processing steps. As is evident from the sheer number of 
BPEL operations, even a relatively simple workflow requires a 
huge number of low-level steps. (These involve assigning the 
right variables to prepare a service invocation, invoking the ser-
vice using the service APIs correctly, and dealing with errors.) 
This was the wrong level at which non-technical analysts wanted 
to compose their analyses. Additional complications in the BPEL 
orchestrations include dealing with user interaction, and the itera-
tive nature in which they should be used.  
Dynamism. The orchestrations that we defined in this version 
lacked the dynamism that was needed to accomplish the kind of 
tasks outlined in Section 2. Specifically, there was no easy way to 
tailor orchestrations to new, slightly different situations (other 
than rewriting the BPEL). Also, there was no support for specify-
ing alternative services if particular service instances were not 
available. 
Existing Tools. While some of the functionality of existing tools 
was a natural fit to services, other functionality was not. For ex-
ample, it makes sense to develop a service for generating net-
works from processed source data, but the visualization of those 
networks is usually done as an interactive process that is not trans-
latable to the stateless nature of services in a SOA. Furthermore, 
analysts expressed concern that the training they had already re-
ceived on existing tools did not translate to SORASCS: they 
wanted to use the tools that they knew, with the interfaces they 
had invested time in learning, and which for some already had 
good built-in support for some tasks.  
File and Data Management. The location and organization of 
files both used as sources and generated as part of the analysis 
was confusing even to some expert analysts. SORASCS exacer-
bated this problem because users now had to ensure that files were 
uploaded to SORASCS before they could be processed, and 
downloaded when they were finished. 

4.3.2 Tool Developer/Integrator Lessons 
The two tools we chose to initially integrate as services, Automap 
and ORA, represented two points on a spectrum of the tools en-
countered in this domain: batch processing tools that perform 
manipulations on data, and highly interactive tools with rich user 
interfaces. Our integration efforts with Automap and ORA taught 
us lessons about the challenges to be addressed when integrating 
legacy tools. These lessons were: 
Separation of UI and Business Logic. Many tools with rich in-
terfaces are designed using a model-view-controller pattern, 
which serves to decouple the user interface from the application 
logic. However, in our experience, for many tools the view and Figure 3. BPEL Orchestrations for HSCB Tasks. 

Sequence 
X 

Invoke 

Assign 

Invoke 

While 

Sequence 

Invoke 

Wait 

X 

Catch 

Sequence 

Assign 

Assign 

Invoke 

Reply 

Throw 



 
 

the model are intertwined, making it difficult to create a strictly 
procedural interface to those tools. This is a challenge that inte-
grators will have to work around. To be able to easily integrate 
into a web-based system, this separation between the UI and the 
rest of the system needs to be explicit and consistent.  
Deployment Generality. Many legacy systems make assump-
tions about where libraries and configuration files are located 
relative to their installation. When deployed as part of a SOA, 
which has its own conventions about how services should be dep-
loyed, these assumptions no longer hold. Integrators and tool de-
velopers need to provide a way to configure the location of libra-
ries and configuration files so that they can be deployed within a 
SOA, for example as part of an application server.  
Protected Invocation. The platform needs to be robust when 
problems and errors arise in invoking tool functionality. For ex-
ample, if parts of a tool are running in the same process as the 
platform, the platform must trap exits or crashes to avoid total 
system failures. Also, when invoking tools in different processes, 
the platform must take care to manage memory and process limits 
to handle scalability. 
Thread Safety. When developing standalone applications, devel-
opers typically only need to be concerned about thread safety of 
those parts of their system for which it is explicitly required. In a 
SOA, where multiple requests are likely to be issued simulta-
neously, parts of the system that were not originally intended to be 
thread safe may have concurrent use when that service is being 
invoked by multiple users. 
Consequences of Distribution. Providing parts of standalone 
client applications as distributed services means that integrators 
must be concerned with issues such as whether a particular user 
has permission to invoke a service and how to access data.  Fur-
thermore, while we provided a parameterization API to configure 
options for the services, the SOA did not have a way to communi-
cate these options to clients. This led to clients (like the Portal) 
having to hardcode UIs to allow users to specify these options. 
Consequently, the UIs had to statically know the services they 
were interacting with. If a new service was added to SORASCS, 
any UI tools would need additional code for dealing with this new 
service.  
Our experience with integrating Automap and ORA showed that it 
was indeed possible to integrate functionality from different kinds 
of tools as services, using standard SOA technologies. But it also 
highlighted that some functions of tools (especially the highly 
interactive and graphical functions) were not as well-suited for 
provisioning as services. For those kinds of functions, it was more 
natural to allow the use of the existing tools in some kind of semi-
autonomous fashion. 

4.3.3 Platform Designer/Maintainer Lessons 
We also learned a number of lessons about designing platforms 
using standard SOA technologies: 
Architectural Lock-in. Choosing between different SOA tech-
nologies is difficult. Many technologies claim to support web 
standards, but often the actual features that they support vary be-
tween technologies. Partly, this is a function of the maturity of the 
technologies, and partly this is because the standards themselves 
are evolving. However, once a technology has been chosen, archi-
tectural decisions are forced on the platform that may run counter 
to the overall platform requirements. For example, when we ex-
amined Mule, it had excellent support for large data and auto-

mated data transformation, but lacked support for dynamic 
workflow creation and deployment; Apache technologies pro-
vided great support integration of legacy systems, but had limited 
support for data transformation. Choosing one technology over 
another means that the platform developers must hand craft the 
features not well-supported by the underlying technology. Also, 
the technologies themselves are continually evolving. But, once 
the choice has been made, switching to a different technology 
would involve significant platform reengineering. In fact, we were 
advised numerous times that we should even lock the particular 
version of the technology that we chose, as upgrading to newer 
versions might also incur significant cost. (In practice, this has not 
turned out to be much of an issue.)   
SOA Idiosyncrasies. Particular technologies support standards in 
different ways, which may impact the performance of the platform 
or even whether particular requirements can be satisfied at all. 
Unfortunately, discovering these idiosyncrasies requires thorough 
testing and evaluation of the different candidate technologies. For 
example, support for dynamic orchestrations differs between 
technologies: as noted earlier, while most orchestration engines 
claim to support dynamic deployment of orchestrations, some 
require the system to be rebooted before the orchestration can be 
made available to users. Some technologies have limitations on 
the size of data that can be passed to servers, limitations that are 
not explicitly stated and in fact depend on timeouts in the proto-
col, and the bandwidth between the invoker and the service, not 
on the actual size of the data (i.e., the amount of data that can be 
transmitted depended on how much of the data could be sent with-
in a particular time, not on any size specification of the data).  
Integration Incentives. In addition to the technical integration 
challenges we encountered, there were also some business con-
cerns that we had not anticipated but that had to be addressed. 
These issues reduced to the question of why a tool provider would 
want to integrate a tool into SORASCS. While the CASOS lab 
provided great support for tool integration, some other tool pro-
viders viewed SORASCS as a competing platform to their own, 
and so were reluctant to participate. Other tool developers feared 
that if users were able to recreate their own analyses by compos-
ing services, funding would no longer be made available for tool 
developers to hardcode custom workflows in their tools. Further-
more, some tool developers saw the models and theories that they 
use, as well as the way they are assembled for their user base, as 
their intellectual property, and so are reluctant to make these 
available more generally to others. 
Ease of Tool Integration. To integrate Automap and ORA we  
aimed to minimize the reengineering that a potential integrator 
would have to perform before integrating their tool with 
SORASCS. The lesson that we learned at this stage was to have 
the platform perform as much of the mundane functions of inte-
gration as possible, such as managing invocation and thread safe-
ty, before invoking the functionality of the integrated tools, e.g., 
the platform can provide thread management facilities, such as 
queues, to manage the degree of concurrency allowed. 
Platform as Domain-Specific Architecture. Most SOA technol-
ogies aim to be applicable to general business domains, and have 
limitations and idiosyncrasies as noted above. Taking these into 
consideration, it is necessary to augment SOA technology and 
concepts to particular domains. For SCA this is particularly rele-
vant because it is important that services be assembled by non-
technical analysts who have expertise in the domain they are try-
ing to analyze, but little expertise in programming. Thus, one of 



 
 

SORASCS Invocation API 
Component Interface 
Local Call 

Web Service Call 

Bridging Component 

Legend 

Figure 4. SORASCS v2 System Organization. 

Data Call 
Configuration Port 

Client Side Invocation 

SWiFT Applications 

Data 
Transformers 

SORASCS 
Workflows History Intelligence 

Data Services 

Data Services 
Orchestration Engine Registry 

U
se

r  
In

te
rf

ac
e 

La
ye

r 

So
ci

o-
 

C
ul

tu
ra

l 
La

ye
r 

Se
rv

ic
es

 
La

ye
r 

To
ol

s 
La

ye
r 

Client 

CONSTRUCT 

… … … 

the challenges is identifying the abstractions, protocols, and sup-
porting services that should be built on top of SOAs, but that are 
tailored to the needs of the SCA domain.  

5. SECOND VERSION 
Building on the lessons learned from the initial version, it was 
apparent that standard SOA technologies were not sufficient to 
provide the necessary functionality, usability, and flexibility that 
was required in this domain, both from a user’s perspective and an 
integrator’s perspective.  We therefore concentrated on providing 
abstractions specific to SCA for both of these communities.  

5.1 Augmenting with SCA-Specific Layers 
As mentioned previously, SOAs provide a great deal of support 
for putting together distributed heterogeneous systems in a general 
way. Rather than abandoning SOA technologies and developing 
our own integration infrastructure, we decided to specialize SOA 
concepts and abstractions to the SCA domain. Our aim here was 
twofold: (a) make the abstractions and tools that we presented to 
users more targeted toward analysts; and (b) make the abstractions 
for tool integrators and developers better matched to the SCA 
domain.  
To provide better support for users, we needed to add domain-
specific layer (the Socio-Cultural Layer) that provides platform 
services for constructing, executing, and running analyses in a 
way that did not require analysts to write programs, or their equi-
valents (e.g., in BPEL). We therefore needed to find the appropri-
ate abstractions to allow analysts to focus on composing their 
workflows, while still allowing these compositions to be executa-
ble on top of a SOA. 
An essential requirement that is not met at all by SOAs is the need 
to use existing standalone tools, not just the functionality of their 
parts, in concert with finer grained services. Indeed, as mentioned 
in Section 4.3.1, some tool functionality is not amenable to pro-
viding as services. We therefore had to provide support for exist-
ing, standalone tools to (a) be used in compositions with other 
services; and (b) seamlessly use data stored and managed by 
SORASCS 

The fine-grained services that we provided in the first version of 
SORASCS were still necessary to enable useful workflow compo-
sition. However, we improved the integration framework to man-
age as much of the SORASCS-specific functionality as possible, 
as we describe below. 
We also augmented the services layer to provide additional 
SORASCS support for managing data, specifying service configu-
ration parameters, and analyzing workflows. In the following 
sections, we discuss each of these improvements in more detail.  

5.2 SORASCS v2 Design and Implementation 
Figure 4 shows the system organization for version 2 of 
SORASCS. In addition to the components in version 1, we have 
(a) added a Socio-Cultural Analysis layer that provides functional-
ity specific to the domain, and (b) augmented the service wrapper 
layer and the user interface layer with additional functionality. 

5.2.1 User Interface Layer 
In addition to making the web portal more user-friendly, we con-
centrated on providing mechanisms to enable the use of existing 
applications that users are familiar with and tool support for the 
construction of analysis workflows. 
Existing Tools. The ability to use existing tools in a standalone 
fashion in conjunction with other web services in a SOA is a 
unique characteristic of SORASCS, and one that is critical to its 
success. SORASCS provides support for this by including a client 
program that manages launching already-installed applications on 
a user’s machine. This part of SORASCS also seamlessly manag-
es the flow of data between the client and SORASCS. Applica-
tions appear as web services in SORASCS that allow them to be 
invoked as part of a composition, or from the SORASCS portal. 
Users can easily add existing tools that can then be used in their 
compositions. Tool developers can further ease this integration by 
providing a specification of the command line parameters that the 
tool can accept to SORASCS as part of the tool’s deployment. 
Furthermore, if a particular application specified in a composition 
is not available, the user can indicate an alternative tool to use.  



 
 

 
Figure 5. SWiFT Workflow Mapping. 

Workflows. In contrast to version 1, where service compositions 
were defined using orchestrations, in version 2 we introduced the 
notion of workflows as an explicit form of abstraction and repre-
sentation in SORASCS. Workflows in SORASCS typically follow 
the pattern of data acquisition, followed by data processing to 
make it amenable to generating and augmenting networks. Once 
networks are prepared, services for analyzing, visualizing, or 
passing to simulations can be invoked. From an analyst’s perspec-
tive, we think of these workflows as a data flow style. The under-
lying abstractions of SORASCS workflows are similar to those 
used in scientific workflows, but do not include control flow ab-
stractions. Users do not have to be concerned with data transfor-
mation, or location, because SORASCS takes advantage of ser-
vices in the new Socio-Cultural layer to automatically locate and 
apply services to help with this (described in Section 5.2.2). Ana-
lysts can define templates, as reusable parameterized workflows 
that can be used within other workflows to build more complex 
workflows. To support these activities, we have constructed 
SWiFT, a web-based tool for rapid construction and execution of 
these workflows. 
Figure 5 shows the SWiFT workflow on the right, and how it is 
mapped to BPEL on the left. The workflow is a strongly-typed 
data flow, where the data is matched at the ports. Each service 
invocation is compiled to a pattern in BPEL that manages the 
asynchronous invocation of services in SORASCS (using the 
SORASCS service API), and handles any errors that are returned. 
Workflow construction is a matter of specifying the ordering of 
the operations desired and the data that they will use, rather than 
the programming intricacies of BPEL that was necessary in ver-
sion 1. 

5.2.2 Socio-Cultural Analysis Layer 
The SCA layer provides SCA-specific services to support con-
structing, analyzing, and locating workflows, as well as to provide 
data management abstractions and types that are specific to SCA 
activities. 
SORASCS Workflow Services. The workflows constructed in 
SWiFT are translated to component and connector architectural 
models in a data flow architectural style, where they can be for-
mally analyzed and transformed. Examples of workflow analyses 
range from performance analysis to a machine-learning based 
analysis that can advise analysts about service ordering. Examples 
of transformations include automatically inserting data transfor-
mation services, or parallelizing and reordering the sequence to 
make a workflow more efficient. Finally, workflows are compiled 
into BPEL orchestrations that are executed on the SOA. The 

SORASCS Workflow platform service is also responsible for 
managing the execution of workflows, and the location of appro-
priate Data Transformer services that can automatically convert 
data when there are mismatches between the output of one 
workflow step and the inputs of the next.  
History. To facilitate analyses, and for users to examine and re-
peat activities they have done before, we provide a way to record 
a series of SORASCS service invocations using a new capability 
called  the History service. Whenever a service or workflow is 
invoked, the History Service records the inputs and configuration 
parameters of the call, as well as any results. It also records meta-
data about the calls, such as the amount of time the service takes 
to complete, that can be used in workflow analysis. Additional 
uses of this history information include the ability for users to 
develop workflows based on their interactions with services, ma-
chine learning algorithms to learn and advise about typical service 
use and ordering, and to enable users to examine how data and 
reports were generated. 
Data Services. To raise the level of abstraction for handing data, 
version 2 provides new abstractions for: (a) organizing  data into 
projects and categories to better match the way users think about 
data; (b) typing the data in ways that are informative to analysts, 
while maintaining the storage of the data itself as files; and (c) 
tracking the origin of data, whether it was uploaded by a user or 
created by a particular service. 

5.2.3 Service Integration Layer 
The service integration layer was augmented to provide built-in 
support for the following SORASCS housekeeping functions, 
allowing integrators to focus on wrapping applications [17]: 
Web Service Definition. For each category of service, SORASCS 
provides a standard web service API that is used for invoking the 
service. For each category, the platform provides classes that map 
the web service call to a small group of APIs that the integrator 
must implement in order to integrate their tool. Tool integrators 
therefore do not need knowledge of the web service standards that 
are used for calling the tools, or the protocols that are used for 
invoking the service. They can concentrate on providing the tool 
functionality as services. 
User Authentication. Tool integrators do not need to be con-
cerned with whether SORASCS users have permission to invoke 
the operation they are wrapping or manipulate the data. The 
framework takes care of this, and when or if the operation is in-
voked, they can assume that this has been taken care of.  
Data Management. When a service is invoked, any data is trans-
ferred to the location of the service using the SORASCS data 
service, and any changes are automatically synchronized with 
SORASCS. Tool integrators are therefore free to refer to files, 
rather than write code to integrate data from SORASCS. 
Thread Management and Safe Invocation. Instead of reengi-
neering tools to be thread safe, the platform provides thread man-
agement and safe invocation facilities: it provides a queue that 
manages the requests and feeds them to the tool in sequence. The 
code that integrators write is called by the SORASCS. 
Parameterization. SORASCS provides an XML schema that 
allows integrators to specify the configuration parameters that can 
be passed into the service. This specification is stored in the 
SORASCS registry, and is used by UI tools to build forms for 
getting the configuration parameters from the user. For example, 
the portal uses it to generate a web form of the kind in Figure 4; 

 
X 

 
 
 
 
 

 
 

X 

 
 
 
 
 
 
 

Generate Network 

Delete 

Remove Numbers 

Format Case 

►Configuration 

►Configuration 

►Configuration 

Input Text 

Networks 

Noise 



 
 

SWiFT can use it for the same specification, to configure service 
calls statically, or to get any information required by the user dy-
namically as the workflow executes.  

5.3 Results and Lessons 
Once again, after developing this version of SORASCS we mi-
grated existing services, added more services and applications, 
and held a community meeting to demonstrate the new user inter-
faces and discuss our progress. To target this community meeting 
better toward users, we demonstrated the following capabilities: 
Integration with Existing Specialized Tools. We identified part-
ners within the community who had existing specialized HSCB 
tools that could use SORASCS as a back end. One such example 
is the Visualization of Belief Systems (VIBES)3 tool, which uses 
some of the CASOS tools and provides a rich user interface for 
analyzing beliefs in networks. Originally, the tool was deployed 
with a version of the CASOS tools, which were invoked by 
VIBES via a CASOS scripting interface. We were able to use this 
point of integration, quickly reengineering the part of VIBES that 
called the script to instead call an equivalent workflow execution 
in SORASCS. This provided a compelling example of develop-
ment of a tool targeted for a particular subset of the community, 
interested in belief analysis. 
Workflow User Interfaces. We demonstrated a number of alter-
native workflow construction tools to give users an idea of how 
they could use SORASCS to write, run, and share workflows. 
The feedback from this meeting was extremely positive.  

5.3.1 User Lessons 
The new user interfaces more successfully illustrated the possibili-
ties of using SORASCS with existing tools, as well as the value 
added in having parts of the functionality of the tools imple-
mented as services. However, applications are currently integrated 
in a coarse-grained fashion: SORASCS manages the data and 
invokes the tool, but SORASCS does not track what the user does 
in the tool. Users would like SORASCS to direct the tools (e.g., to 
bring up the appropriate part of the tool to interact with), and be 
able to remember what was done in the tool (e.g., how a user cus-
tomized a certain network to make it visually appealing).  While 
these issues are highly desired by users, they have a significant 
impact on the integration of tools into SORASCS. This functio-
nality would require tool reengineering to make them record all of 
their actions, and also to be able to play those recordings inside 
the tool. This is beyond the original scope of SORASCS, but if 
tools provided this functionality, it could be used by SORASCS to 
record and construct more interactive workflows.  

5.3.2 Tool Developer/Integrator Lessons 
Minimizing Integration Code. In our experience with this 
framework integrators need only write around 50 lines of code to 
integrate a tool’s function, much of which is mapping from the 
configuration parameters passed in from SORASCS to the data 
structures required by the tool [17]. This was a significant im-
provement over the previous version which forced integrators to 
consider all SORASCS-related issues discussed in Section 5.2.3.  

5.3.3 Platform Designer/Maintainer Lessons 
Extensibility. Building additional abstractions on top of standard 
SOA technologies is generally good practice. In SORASCS, we 
were able to develop a platform that specifically addresses the 
                                                                 
3 http://www.maad.com/index.pl/visualization_of_belief_systems 

needs of the SCA community. In doing this, we needed to restrict, 
in those layers, the way in which services are integrated into 
SORASCS, and the representation of workflows. However, there 
is still an opportunity for the underlying SOA technologies to be 
used directly by developers and maintainers wanting to create 
different kinds of services or more complicated workflows. The 
platform is therefore extensible, and over time these new features 
could be supported directly by SORASCS. 

6. STATUS AND ONGOING WORK 
SORASCS currently has over 120 services integrated into it. In 
addition, we are actively developing workflows and workflow 
templates that use these services. We have successfully integrated 
applications from various universities, in addition to standard 
tools like the Microsoft Office Suite.  
Currently SORASCS is evolving to strengthen the support for 
workflows, to provide full support for dynamism as described in 
Section 2, to add workflow analyses and transformations to help 
analysts understand workflows and make them more efficient, and 
better share and tailor their workflows. In addition to workflow-
related activities, we are addressing the following issues: 
Appropriate User Tools. There is still a gap between what users 
want, and what is provided, when it comes to constructing and 
using workflows. Analysts need to be focused on analyzing vast 
amounts of data and obtaining results quickly. They need help to 
quickly locate existing tasks that they need for their analysis, or to 
construct new ones. We anticipate the further work on SWiFT 
will help to address these issues. 
Certification. One important target audience for SORASCS is the 
intelligence community, and SORASC must be deployable in 
agencies supporting intelligence, state activities, humanitarian 
response, and diplomatic missions. To do this, all the code must 
be certified by those agencies so that it is cleared for field use. 
This is a long and detailed process, with different concerns and 
requirements for each kind of deployment. The details of what is 
required are not specified in a common, easy-to-attain format. The 
process is eased considerably by using elements already approved. 
For this reason we attempted to incorporate technologies (such as 
Apache Tomcat) that have been successfully certified in other 
contexts. However, we anticipate that full certification will be an 
issue when the time comes for deployment. Furthermore, the tools 
and models that could be integrated into SORASCS will vary in 
what they are certified for, if any. This is another compelling rea-
son for SORASCS to support both web and non-web applications. 
Security. Related to certification is the issue of security. We can 
use standard WS-Security tools in our existing framework to pro-
vide authentication, authorization, and data security. One remain-
ing issue of concern is the ability of SORASCS to launch a pro-
gram on other machines. While this is crucial to the usability of 
SORASCS, as noted earlier, it is a potential point of vulnerability. 
As much as possible, we have provided transparency so that a user 
knows exactly what SORASCS is doing on their machine. How-
ever, we are also providing a variety of protocols that can be used 
between the client and SORASCS, in addition to the current one 
that allows SORASCS to push instructions to the client machine. 
For example, we could replace it with a pull mode whereby the 
client polls SORASCS for any commands that it wants the client 
to do. However, in this mode we have to consider increased net-
work traffic and decreased response time of tool invocation.  



 
 

Existing web services. In the time that it has taken to develop 
SORASCS, other related functionality has been provided as web 
services. For example, some analysts use ArcGIS web services for 
geospatial analysis. We are currently investigating a lightweight 
way to wrap these existing web services as SORASCS services. 
Simulation. Currently, we have integrated tools that perform text 
processing and dynamic network analysis. Our next step is to be 
able to interface with existing agent-based and system dynamic 
simulation tools in this domain. By extending SORASCS to pro-
vide support for running virtual experiments, a host of new re-
quirements are likely to be uncovered, e.g., ability to link to data 
farming environments, distributed process management, data fu-
sion, and rapid process and movement of large amounts of simu-
lated data. We plan to provide bridges between SORASCS and 
faster-than-real-time gaming simulation environments like the C2 
Wind Tunnel that is used for simulating battle conditions.  
Developing a platform that supports a sustainable software eco-
system means satisfying the requirements of all the stakeholders 
for that platform. We originally thought that using standard SOA 
technologies would enable SORASCS’ sustainability, but instead 
we had to augment SOA with additional infrastructure that more 
directly addressed the concerns and requirements of the SCA 
communities. In particular, we needed to make tool integration 
easy, and create higher level representations of workflows to sup-
port analysis. Not all issues that we encountered were technical; 
there is a synergy between addressing the needs of the user base 
and encouraging tool developers to integrate tools – if users are 
not keen to use a platform, then there is little incentive for devel-
opers to use the platform. Furthermore, platform developers need 
to consider the environment (both technical and business) in 
which the platform will be used. 
While the details of our journey were specific to SCA, many of 
the lessons we learned likely have general applicability in other 
domains where dynamic composition of heterogeneous tools and 
data is required. First, providing a platform for non-technical us-
ers will almost certainly likely require a bridging layer to support 
higher-level abstractions of compositions, and to provide intuitive 
ways to compose and execute new configurations. Second, for 
communities that currently rely on the use of interactive tools, it is 
likely that some scheme will be needed to combine both stand-
alone and service-oriented elements. Third, effective data man-
agement is likely to be a critical aspect of any solution. Fourth, 
tool integration can be dramatically improved by providing a vo-
cabulary of domain-specific adapters that shield the tool integrator 
from low-level details such as thread safety, error handling, user 
interface management, and history tracking. Finally, taking an 
ecosystem view early in the design process will likely lead to a 
more successful system by clarifying the incentive systems that 
will support a sustainable and evolvable platform. 

ACKNOWLEDGEMENTS 
This work was supported in part by the Office of Naval Research - 
ONR-N000140811223, and the center for Computational Analysis 
of Social and Organizational Systems (CASOS). The views and 
conclusions contained herein are those of the authors and should 
not be interpreted as representing the official policies, either ex-
pressed or implied, of the Office of Naval Research, or the U.S. 
government. We thank the following people for their contribu-
tions: Aparup Banerjee, Jeff Barnes, Dan Chieffallo, Laura Glen-

denning, Minseong Kim, Frank Kunkel, Yue Lu, Mai Nakayama, 
Nina Patel, Jeff Reminga, and Hector Rosas.  

REFERENCES 
[1] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapa-

thy, S., and Holley, K. SOMA: A method for developing ser-
vice-oriented solutions. IBM Systems Journal, 47(3), 2008. 

[2] Borgatti, S., Evrett, M. and Freeman, L., UCINET 6 for 
Windows: Software for Social Network Analysis User’s 
Guide. Analytic Technologies. 2002.  

[3] Carley, K. A Theory of Group Stability. American sociologi-
cal Review, 56, 331-354, 1991. 

[4] Carley, K.M., Dynamic Network Analysis. Dynamic Social 
Network Modeling and Analysis: Workshop Summary and 
Papers. Breiger, R., Carley, K., Pattison, P. (eds). Committee 
on Human Factors, National Research Council, 2003. 

[5] Carley, K.M., A Dynamic Network Approach to the Assess-
ment of Terrorist Groups and the Impact of Alternative 
Courses of Action. In Visualizing Network Information 
Meeting Proceedings RTO-MP-IST-063, France, 2006. 

[6] Carley, K.M., Martin, M.K., and Hirschman, B. The Etiology 
of Social Change, Topics in Cognitive Science, 1(4), 2009. 

[7] Carley, K.M., Reminga, J., Storrick, J., and Columbus, D., 
ORA User’s Guide 2010. Carnegie Mellon University School 
of Computer Science Institute for Software Research Tech-
nical Report CMU-ISR-10-120, 2010. 

[8] Carley, K.M., Columbus, D., DeReno, Bigrigg, M. and Kun-
kel, F. AutoMap User’s Guide 2010. Carnegie Mellon Uni-
versity School of Computer Science Institute for Software 
Research Technical Report CMU-ISR-07-121, 2010. 

[9] Department of Veterans Affairs. VistA – HealtheVet Mono-
graph. 2008. http://www4.va.gov/VISTA_MONOGRAPH/docs 
/2008_2009_VistAHealtheVet_Monograph_FC_0309.pdf 

[10] Garlan, D., Carley, K.C., Schmerl, B., Bigrigg, M., and Celi-
ku, O. Using Service-Oriented Architectures for Socio-
Cultural Analysis. In Proceedings of the 21st International 
Conference on Software Engineering and Knowledge Engi-
neering (SEKE2009), Boston, USA, 2009. 

[11] Gorton, I., Wynne, A.S., Almquist, J.P., Chatterton, J. The 
MeDICi Integration Framework: A Platform for High Per-
formance Data Streaming Applications. In Proc the 7th 
IEEE/IFIP Working Conference on Software Architecture, 2008. 

[12] Heffner, R. Real World SOA: SOA Platform Case Studies - 
How Seven Firms Are Building Their Software Infrastruc-
tures for SOA, Forrester Research Report, Sept 15, 2005.  

[13] Johnson, R.E. Frameworks = (components + patterns). 
Communications of the ACM, 40(10), 1997. 

[14] Messerschmidt, D.G. and Szyperski, C. Software Ecosys-
tems: Understanding an Indispensible Technology and Indus-
try. Cambridge, MA, USA: MIT Press. 2003. 

[15] Newcomer, E., Lomov G. Understanding SOA with Web 
Services. Addison Wesley, 2005. 

[16] OASIS. OASIS Reference Model for Service Oriented Ar-
chitecture 1.0. http://www.sei.cmu.edu/pub/documents/ 
05.reports/pdf/05tn014.pdf. 2006. 

[17] Schmerl, B., Bigrigg, M., Garlan, D., and Carley, K.M. Inte-
grating Components into SORASCS. Carnegie Mellon Uni-
versity School of Computer Science Institute for Software 
Research Technical Report CMU-ISR-10-122, 2010. 

[18] Workshop on Software Ecosystems. 
http://iwesco.wordpress.com

 


	1. INTRODUCTION
	2. SOCIO-CULTURAL ANALYSIS TODAY
	3. VISION
	4. FIRST VERSION
	4.1 SOA Based Design for SORASCS
	4.2 SORASCS v1 Design and Implementation
	4.2.1 Technology Selection
	4.2.2 Service Implementation
	4.2.3 User Interfaces

	4.3 Results and Initial Lessons
	4.3.1 User Lessons
	4.3.2 Tool Developer/Integrator Lessons
	4.3.3 Platform Designer/Maintainer Lessons


	5. SECOND VERSION
	5.1 Augmenting with SCA-Specific Layers
	5.2 SORASCS v2 Design and Implementation
	5.2.1 User Interface Layer
	5.2.2 Socio-Cultural Analysis Layer
	5.2.3 Service Integration Layer

	5.3 Results and Lessons
	5.3.1 User Lessons
	5.3.2 Tool Developer/Integrator Lessons
	5.3.3 Platform Designer/Maintainer Lessons


	6. STATUS AND ONGOING WORK
	ACKNOWLEDGEMENTS
	REFERENCES

