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Abstract— One common approach to self-adaptive systems is to 
incorporate a control layer that monitors a system, 
supervisorily detects problems, and applies adaptation 
strategies to fix problems or improve system behavior. While 
such approaches have been found to be quite effective, they are 
typically limited to carrying out a single adaptation at a time, 
delaying other adaptations until the current one finishes. This 
in turn leads to a problem in which a time-critical adaptation 
may have to wait for an existing long-running adaptation to 
complete, thereby missing a window of opportunity for that 
adaptation. In this paper we improve on existing practice 
through an approach in which adaptations can be preempted 
to allow for other time-critical adaptations to be scheduled. 
Scheduling is based on an algorithm that maximizes time-
related utility for a set of concurrently executing adaptations. 

self-adaptation; preemption; utility; concurrency 

I.  INTRODUCTION 
Today’s complex systems require considerable 

administrative overhead; this has led to a demand that they 
self-adapt at run-time to variable resource availability, loads 
and faults. Until recently, mechanisms for self-adaptation 
were largely in the form of programming language features, 
embedded in the code, hence prohibiting reusability and 
modifiability. Today there is an increasing trend toward 
autonomic computing, in which external control modules are 
used to provide adaptive capabilities that monitor and adapt 
the system at run time. Rainbow [1] is a framework for 
external control that provides capabilities for self-adaptation 
and provides mechanisms to balance adaptations amongst 
multiple stakeholder objectives [2]. It forms a closed-loop 
control system in which the adaptation mechanism probes, 
evaluates, decides, executes, and then probes again. In this 
respect, Rainbow is similar to other autonomic systems 
[3,4,5]. 

While such approaches have been demonstrated to be 
useful, they are largely limited to carrying out a single 
adaptation at a time; violations that occur while an 
adaptation is taking place will not trigger new adaptations 
until the current one has finished executing. Unfortunately, 
ignoring or delaying adaptations potentially leads to less-
than-optimal adaptation, since a high-priority adaptation may 
have to wait for a less critical adaptation to finish. For 
example, it may not be desirable to delay addressing security 
issues until a currently executing performance adaptation 
completes. By not addressing a security problem early, the 
system may be compromised, so that later the security 
adaptation will not be effective, or will be more disruptive to 
the system. 

Ideally, whenever new adaptation conditions arise, the 
adaptive mechanism should be able to reconsider all 
objectives and determine the best course of adaptation 
without waiting for an existing adaptation to complete. In 
this paper we propose an improvement upon existing 
approaches that avoids delaying adaptation decisions, where 
the adaptation mechanism promptly considers all 
adaptations, including the currently executing adaptation, 
when new conditions arise. To make this possible, we extend 
Rainbow’s adaptation mechanisms to support preemption of 
an executing adaptation strategy, reasoning amongst multiple 
strategies, starting new ones, and resuming preempted 
strategies. To facilitate this, we propose an adaptation time 
utility dimension for self-adaptive mechanisms to reason 
about and to prioritize amongst multiple objectives and their 
corresponding adaptations at runtime. The specific 
contributions of this paper are: 

 
• Applying the concept of time-utility curve (TUC) to 

prioritize amongst multiple adaptations using 
adaptation times1 (see III.b) 

• The application of existing concepts of multi-task 
scheduling under the constraint of maximizing overall 
utility to improve current adaptation decision-making 
algorithm (see III.c and III.d) 

• The use of an approximation of the rely-guarantee 
technique to ensure consistency amongst multiple 
interleaving adaptation strategies (see III.f) 

• The use of an architecture model of a system as a 
reference to provide architectural locks to ensure non-
interference (see III.f) 

 
The remainder of this paper is organized as follows: In 

Section 2, we give a brief overview of the existing Rainbow 
adaptation mechanism components and outline a motivating 
scenario. In Section 3 we present our design methodology 
and implementation. In Section 4 we give some experimental 
results. In Section 5 we give related work, and sections 6 and 
7 give discussion points and future work followed by 
conclusions in Sections 8. 

II. MOTIVATION 
The Rainbow framework uses software architectures and a 

reusable infrastructure to support self-adaptation of software 
systems. Figure 1 illustrates its adaptation control loop. 
Probes are used to extract information from the target system 

                                                             
1 The time from when a constraint violation is triggered until the 
corresponding adaptation strategy is executed 
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that updates the model via a set of gauges. The architecture 
evaluator checks constraints in the model and triggers 
adaptation if any violation is found. The adaptation 
manager, on receiving the adaptation trigger, chooses the 
best strategy to execute, and passes it to the strategy 
executor, which executes the strategy on the target system 
via effectors. The strategy to be executed is chosen on the 
basis of stakeholder utility preferences and the current state 
of the system as reflected in the architecture model. The 
underlying decision making model is based on decision 
theory and utility theory [6]. Each strategy, which is written 
using the Stitch adaptation language, is a multi-step pattern 
of adaptations in which each step evaluates a set of 
condition-action pairs and executes an action, called a tactic, 
on the target system. A tactic defines an action, packaged as 
a sequence of primitive commands, called operators. It also 
specifies conditions of applicability, expected effects, and 
cost-benefit attributes to define its expected impact on the 
quality dimensions. 
  

 
Figure 1.  Rainbow adaptation control loop components 

    To illustrate, consider a web-based client-server system 
that conforms to an N-tier style (as illustrated in Figure 1 
target system). It uses a load balancer to balance requests 
across a pool of replicated servers, the size of which is 
dynamically adjusted to balance server utilization, response 
time, cost, etc. Assume Rainbow can monitor the system for 
information such as server load, port activity on servers, etc. 
Assume also that we can modify the system to add more 
servers to the pool or to change the quality of the content and 
to shut down ports. Suppose Rainbow detects a violation of 
some servers’ response time and considers adding servers to 
the server group. While it is in the middle of carrying out this 
adaptation, probes report a port-scan activity on one of the 
servers and this triggers a security-related adaptation. In the 
current implementation of Rainbow, the new trigger will be 
ignored since Rainbow is in the middle of adding servers to 
the server group. If the port activity were in fact an intrusion 
and not just a scan, and the port was not closed (because the 

trigger was ignored), the server will be compromised, 
reducing overall system utility. 

Rainbow’s mechanisms were deliberately built to delay 
adaptations in such circumstances. Rainbow considered that 
a new adaptation trigger in the middle of an ongoing 
adaptation could potentially be caused by an intermediate 
action of the current adaptation on the target system, and that 
finishing the current adaptation could potentially eliminate 
the need for a new one. If the condition persists, a repair will 
eventually be triggered. Although this might be reasonable in 
some cases, in others, like the one mentioned above, this 
would reduce overall system utility. We aim to extend 
Rainbow’s mechanisms to be able to manage both scenarios. 

III. APPROACH 
We apply the concepts of preemption and concurrency in 

adaptation mechanisms to address the above situation. When 
an adaptation condition is triggered during an ongoing 
adaptation, Rainbow will consider the new condition along 
with the condition that caused the currently executing 
adaptation strategy. If addressing the new condition first 
yields higher utility, Rainbow will preempt the running 
strategy and schedule a new one, provided there are no 
conflicts between the two strategies. While promising, the 
introduction of preemption and concurrency gives rise to a 
number of issues. In the following sections, we present the 
design of incorporating preemption into Rainbow. 

A. Incorporating changes in Rainbow 
While introducing preemption mechanisms and dealing 

with its related issues, we want to extend Rainbow to provide 
a generic framework with which different Rainbow users can 
customize the prioritization knowledge, scheduling and 
conflict detection mechanisms according to their own 
requirements. To incorporate preemption, we add an 
RTEvaluator (Real Time Evaluator: Figure 2) sub-
component into the Adaptation Manager component. This 
component is responsible for ordering a set of strategies that 
could be executed according to customizable criteria and 
algorithms. 
 

 
Figure 2.  Detailed design of the RTEvaluator sub-component 
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    The RTEvaluator expects two inputs and two plugins. The 
inputs are a queue of strategies that need to be ordered for 
scheduling and the prioritization criteria. The plugins are the 
scheduling algorithm and the conflict detection mechanism. 
The evaluator, on receiving a set of strategies, uses the 
prioritization criteria and the scheduling algorithm, in 
consultation with the conflict detection module (described 
later), and outputs an execution order that satisfies the 
conflict rules and the prioritization criteria. The interactions 
of the RTEvaluator with other sub-components are shown in 
Figure 3. 
 

 
Figure 3.  Interactions of the RTEvalutor sub-component with other sub-

components in the Adaptation Manager 

B. Prioritizing Adaptations with TUC 
When an adaptation trigger occurs during an ongoing 

strategy execution, the Adaptation Manager must decide 
whether to finish executing the current strategy before 
servicing the newly triggered adaptation, or preempt it and 
service the new condition first. Accordingly, we need to be 
able to reason about which strategy or adaptation condition is 
more important given the current state of the system and user 
priorities. One way to prioritize strategy selection is for the 
architect of the system to specify the priorities of adaptation 
conditions at design time. In such a case, whenever a higher 
priority adaptation condition occurs, other lower priority 
adaptations will be aborted or preempted. This would imply 
that if a lower priority adaptation condition occurs, then it 
will always wait for the current adaptation to finish, and, if a 
higher priority adaptation occurs, then it will always be 
serviced first.  

As mentioned earlier, adaptations in self-adaptive 
systems are opportunities for improvement. They are aimed 
to increase overall system utility, which quantifies the 
happiness of the system stakeholders with the system. If 
strategies take a long time to execute over the target system, 
their intended utility improvement will diminish or 
disappear. In particular, given the static priority scheduling 
proposed above, a lower-priority condition strategy would 

always wait until higher-priority strategies finish executing, 
hence potentially losing its window of opportunity. 

To avoid the above situation, we must introduce some 
criteria into the Adaptation Manager that will allow it to 
make a decision at run-time about how to prioritize 
strategies. To do this, we associate each strategy with a time 
utility curve (TUC) [11]. A TUC specifies the expected 
utility [0,1] of completing a strategy as a function of its 
completion time (its use is explained further in section III.d). 
Using TUCs, we can express both hard real-time adaptations 
and soft real-time adaptations. It also gives one the ability to 
specify arbitrary utility values rather than step/linear 
functions (Figure 4). We can then use this information to 
schedule strategies according to some scheduling criteria. 

 
Figure 4.  Time Utility Curves for Hard/Soft Real time adaptations 

C. Improvements to Strategy Selection Algorithm 
The scheduling algorithm is encapsulated as a plug-in to 

the RTEvaluator, which different users can customize.  Our 
algorithm aims to maximize end system utility. When the 
evaluator triggers an adaptation, the set of applicable 
strategies are handed to the RTEvaluator by the Stitch 
Engine2 which schedules as follows: 

 

a. Let Q be the ordered queue of strategies pending 
execution; if non-empty, the head entry Q[0] is the 
currently executing strategy, so preempt it 

b. Let P be the unordered set of Q 
c. Let A be the set of applicable strategies for the new 

condition 
d. Create a new empty set C of candidate strategy 

orderings 
e. For each strategy a in A 

a. Pick the ordering of a∪P that has the highest 
Predicted System Utility (PSU) (explained in the 
next section) 

b. Add this ordering and PSU to C 
f. Pick the ordering with the highest PSU from C to form 

Q', the new ordered queue of strategies pending 
execution 

g. Execute (or resume) the strategy at Q'[0] 
 

When the Stitch Engine detects constraint violations for 
the first time and selects a set of applicable strategies, before 
handing over the applicable set to the RTEvaluator, it saves 
the set of constraint violations that caused the adaptation 

                                                             
2 Adaptation Manager sub-component that receives adaptation trigger from 
the evaluator 
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trigger. When a strategy is selected, the constraint set is 
associated with this strategy. In the next cycle, if the Stitch 
Engine finds constraint violations that already have some 
strategy(s) associated with them, it ends the evaluation cycle 
and waits for that strategy(s) to finish. When the strategy 
finishes execution, it instructs the Stitch Engine to remove its 
associated constraints so they can be considered in the next 
cycle if required. The rationale is not to service a set of 
constraint violations again if a strategy has already been 
chosen to improve or undo them. 

D. Predicted System Utility 
The Predicted System Utility (PSU) of a set of strategies 

gives the final utility of the system assuming the strategies 
are executed in a particular order. Suppose the current 
system state is represented by S[], which is a vector of all 
utility dimensions of the system. Say,  

S[] = [fidelity, cost, responseTime, security] = [p, q, r, t] 
We have a set of strategies A1, A2 … AN, that will be 
executed in the order [A1, A2 … AN]. Each strategy is 
associated with an aggregate Attribute vector3 agg[]Ai, and a 
time utility curve TUCAi 

agg[]Ai = [Δp, Δq, Δr, Δt] 
Running A1 first leaves the system in state S[]1 

S[]1 = S[]0 + TUCA1(exec time of A1)*agg[]A1 

TUCA1(exec time of A1) will give the percentage of expected 
change that actually happened depending on the execution 
time of A. Similarly running A2, A3 … AN gives 

S[]2 = S[]1 + TUCA2(exec time of A1+A2)*agg[]A2 
S[]N = S[]N-1 + TUCAN(exec time of A1+A2 … AN)*agg[]AN 

The state of the system at the end of executing A1, A2 … AN 
will be 

S[]N = [pN , qN , rN , tN] 
We calculate utility using utility profiles and weights for the 
quality dimensions 

Weightp * UtilityCurvep(pN) + Weightq * UtilityCurveq(qN) + 
Weightr * UtilityCurver(rN) + Weightt * UtilityCurvet(tN) = 

PredictedUtility 
 

This utility is the predicted system utility for the 
specified execution order. The strategy execution times are 
calculated by profiling under serial mode (i.e., with no 
preemption). Rainbow is run under different configurations 
and the mean, standard deviation and error are calculated 
using multiple runs for each tactic. The execution time of the 
strategy is then estimated probabilistically from its tactic 
tree, which is then fed into the calculation of the predicted 
system utility. Also, to calculate the execution time of a 
preempted strategy, the remaining execution time is 
calculated from the tactic where it was preempted and not 
from the beginning. 

                                                             
3 Aggregate attributed vector of a strategy is the expected change to utility 
dimensions it expects to provide after it finishes executing 

E. Granularity of Concurrency 
The execution of a running strategy must be interrupted 

to serve a higher priority adaptation. The granularity at 
which a strategy can be preempted, must strike a balance 
between achieving maximum possible interleaving and 
ensuring that preemption leaves neither the target system, 
nor the model on which decisions are made, in an 
inconsistent state. In Rainbow, there are three potential levels 
at which this basic execution unit can be set. 

First, we can set the basic execution unit at the strategy 
level, which is the most coarse-grained. This is equivalent to 
a policy in which a strategy cannot be preempted. Thus, if a 
new adaptation condition arises, it will always wait for the 
current strategy to finish. In this case, as mentioned before, 
the new strategy might lose its window of opportunity. The 
second possible granularity unit would be at the tactic level; 
a third at the operator level. If we choose an operator as the 
granularity unit, we will need to have preconditions added 
before every operator is executed, since there is currently no 
applicability condition check for operators. Also, 
specification of timing at every operator level would be 
unwieldy, as this would require a 2-way communication 
between the Rainbow adaptation and target layer involving 
overheads. If we choose tactic as the unit, it will not provide 
as fine grain granularity as an operator, and hence not as high 
end system utility. But Rainbow’s underlying assumption is 
that a tactic leaves the system in a consistent state, at least at 
the architectural level. Furthermore, tactics already have 
condition guards. For these reasons, for our work, we chose a 
tactic over operator to be the atomic unit of execution that 
cannot be pre-empted. 

F. Conflict Detection and Resolution using Architectural 
Locks 
Consider a strategy A that is pre-empted to execute 

another strategy B. Suppose that strategy A was pre-empted 
after executing 2 tactics, and is yet to execute 2 more. While 
strategy B executes it makes some changes to parts of the 
target system. Now when strategy A resumes and starts 
executing the remaining tactics, it assumes its target 
components to be in a state they were in when the first two 
tactics finished. If B undid those changes, then finishing A 
will leave the target system in a potentially undesirable or 
inconsistent state. 

Following the above example, we need to ensure that 
actions of interleaving strategies do not conflict with each 
other. There are a couple of ways to ensure this. First, we can 
leave the onus on the strategy writers to ensure that their 
strategies are written in ways that do not conflict with any 
other strategies written for this system. But there could be 
many strategies for a system, potentially written by different 
people; expecting a strategy writer to know the behavior of 
all other strategies would be unreasonable. Even if one 
assumes that the strategy writer knows about all other 
strategies, it could still be unreasonable for him to frame the 
strategies in a way that doesn’t conflict with others, because 
pairwise conflicts would again mean considering too many 
cases. 
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Second, we can provide some guarantees to a strategy 
that other strategies will not touch the parts of the system 
that it acts on using an approximation of rely and guarantee 
reasoning [17]. In this, each strategy guarantees that it will 
make changes to only a subset of the system and that it relies 
on the fact that no other strategy will makes change to this 
subset while it is executing. This would be like a strategy 
requesting a set of components and connectors that it would 
make changes to, effectively putting a lock over them, and 
no other strategy would make changes to that set. We 
propose to use the architecture model of the target system 
and its environment as a reference to provide virtual locks to 
strategies. The environment of a system consists of the 
components and connectors that are currently unused and 
can be added to the system. For example, unused servers that 
can be added to a system under high load are a part of the 
system’s environment. Each strategy, when queried at 
runtime, will return a set of components and connectors 
corresponding to the architectural model of the system and 
its environment that it would act upon if executed at that 
moment. We can use this information to ensure that a set of 
strategies do not interfere with each other. 

We encapsulate the conflict detection part in the Conflict 
Detector subcomponent in the Adaptation Manager by 
providing four interfaces to it. First is an interface with 
which a strategy that is about to be executed will register its 
components, and second is to deregister (mark as free by 
removing a virtual lock). When a new strategy is to be run, it 
seeks permission from the Conflict Detector using the third 
interface. Using the fourth interface that we provide, if one 
gives a set of strategies to the Detector, it will return a 
schedule, or a subset that will be a non-conflicting schedule.  
We leave it to the convenience of the Rainbow users to 
decide which best fits their requirements in terms of the 
interface they want to use, as well as the algorithms in the 
Conflict Detector. For our implementation, if a strategy 
about to run uses a component(s) being used by any pre-
empted strategy, it is not allowed to execute, and a new order 
is found that is non-conflicting and gives the next highest 
utility. 

IV. RESULTS 

A. Target System 
We use a typical news website infrastructure, Znn.com, 

which is typically a three-tiered architecture, to demonstrate 
the preemption scenario. In this model, a set of application 
servers serve content from the backend databases to clients 
via the presentation logic. Similar setup was used to 
demonstrate Rainbow’s results [18] during its stages of 
development (refer Figure 1 target system). The servers can 
be adjusted to balance utilization for response time. The set 
of clients makes requests for content that includes text, 
images, videos (static content) and templates (dynamic 
content). 

Common objectives for a news provider are to deliver 
server content within a reasonable response time, while 
keeping the budget under control. To avoid dropping 
requests in high load time, the fidelity of the content is 

adjusted, which decreases response time, hence serving more 
requests in a time frame. The providers also want to ensure 
that all their servers are secure and no malicious activity 
risks the server group. In short, we short-list four quality 
objectives for Znn.com – cost, performance, fidelity of 
content and security. The number of servers in the backend 
group directly impacts cost analysis and hence we take the 
server count into consideration. For content quality, we 
define three levels based on type of content served – high 
(text, video and images), medium (text and images) and low 
(only text). Performance analysis comes from considering 
response time, bandwidth and server load. For security 
analysis, we associate a security Confidence Level with each 
server, which indicates the trust the system has regarding its 
security (highest value being 1.0). In case of any suspicious 
activity (e.g., on a port) this confidence level would be 
lowered causing adaptation to be triggered. 

The server activate and deactivate operators are defined 
to add or remove server(s) from the server group, while the 
setFidelity operator changes fidelity of the content to be 
served at the specified level and the closePort operator closes 
the specified port. From these operators, we specify 2 pairs 
of tactic. One pair discharges (or enlists) a server(s) and the 
other shuts down the port on a ServerT type element. 

B. Competing Scenario 
The scenario that we chose to demonstrate is one in 

which cost adaptation competes with security adaptation. 
The Rainbow framework detects the cost of the system is too 
high. It triggers an adaptation that leads to a strategy being 
selected for execution – ReduceOverallCost. This will aim to 
reduce overall cost by discharging a few servers. While this 
adaptation is in progress, a possible security breach is 
reported on one of the servers, and is picked up by the 
Evaluator. This causes the secureServer strategy to be 
selected. At this point of time, Rainbow will have to make a 
decision. 

If Rainbow is running in the serial mode (which is how 
the current mechanisms exists), it will delay the new 
adaptation. It will continue to execute the cost adaptation, 
and when finished it will execute the security adaptation. By 
this time, the server could have been potentially 
compromised. If the cost strategy was preempted, and 
security adaptation scheduled, this could have prevented the 
server from being further compromised. This deadline time 
is reflected in the time utility curves of both the strategies 
that are used to schedule them as explained previously 
(Section 3.2, 3.3). 

C. System Utility 
We execute the scenario mentioned above in both modes, 

multi and serial, for multiple runs and record the 
instantaneous utility at regular intervals. We use these values 
to plot the utility graphs. Figure 5 displays the instantaneous 
system utility over the entire execution trace for both modes; 
Figure 6 plots the accrued utility4 for both runs. From the 

                                                             
     4 Accrued utility at any instance is the sum of instantaneous utilities 
of all previous instants in the execution trace 
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instantaneous utility graph, we see that in serial mode, 
because of the security strategy missing its deadline, the 
stable system utility drops down below to 0.854. When the 
server gets compromised, its response time and its service 
time go high, causing the system utility to drop to as low as 
almost 0.65. Seeing such a state of the system, adaptation 
layer selects new strategies in an effort for improvement. 
This effort ends up being a transient effort to compromise 
between cost and response time, where trying to improve one 
violates the other. This carries on until a compromise is 
made and no other strategies are available for further 
improvement. At this point the instantaneous utility stabilizes 
to being around 0.854. For the multi mode, the utility is not 
harmed since the cost adaptation was pre-empted and the 
security adaptation was carried out first. This stabilizes 
around 0.9725. The % difference in stable instantaneous 
utility is almost 13.9%. 
 

 
Figure 5.  Instantaneous utility 

    From the accrued utility graph, we get a measure of how 
well the system has been performing since it was brought 
online, being monitored by Rainbow.  
 

 
Figure 6.  Accrued utility 

    Results show that in serial mode, the accrued utility at the 
end of the execution trace is almost 194 and for the multi 
mode its approximately 234. This is net 20% increase by 
adding preemption mechanisms to Rainbow, clearly 
indicating the need for such mechanisms in the self-
adaptation domain. 
 

V. RELATED WORK 
    The technique of using rely-guarantee to ensure 
consistency is a studied concept. It has been used to ensure 
non-conflicting interactions for implementing linked lists 
fine-grain interactions [7]. It has been used for constructing a 
reasoning style system for the aspect-oriented programming 
paradigm [8]. Modifications for ease of use have been 
proposed as local rely and guarantee [9], and it has been 
combined with other concepts such as separation logic to 
give stronger consistency guarantees [10]. Although we have 
used a weak approximation of this concept, a stronger notion 
can be embedded into the Conflict Detector sub-component 
in the rainbow’s Adaptation Manager. 
    The concept of time utility curves [11] has been explored 
with respect to time-critical resource management [12]. They 
have been used in scheduling algorithms such as GUS [13] 
[14]. GUS was one of the earliest proposals for scheduling 
under real-time and mutual exclusion constraints in the 
operating system domain. This algorithm, similar to 
Predicted System Utility as proposed in this paper, aimed to 
maximize accrued system utility. It produced sub-schedules 
that were mutually exclusive and gave maximum system 
accrued utility. In a similar fashion, Rainbow’s RT Evaluator 
and Conflict Detector would interact to produce schedules 
and sub-schedules to ensure maximum predicted utility and 
adherence to rely-guarantee. 
    The pre-emption aspect of this work could be viewed as a 
form of conflict resolution in strategies. While prior work 
[19] provided integrated support for resolving conflicts in 
adaptation strategies, it did not consider the case of making 
an adaptation decision when an existing action is already in 
progress. Our work explicitly tackles this problem, which 
combines both scheduling and resource conflicts. 

VI. DISCUSSION 
    When an adaptation requirement is triggered during an 
ongoing strategy execution, the Adaptation Manager must 
decide whether to finish executing the current strategy before 
servicing the newly triggered adaptation, or preempt it and 
service the new condition first. The algorithm we proposed 
in Section 3.3 preempts the currently executing strategy and 
then decides the new execution order. One possible 
alternative would be to preempt the currently executing 
strategy only if the RTEvaluator chooses an order where the 
currently executing strategy is not first. The problem with 
this approach arises when the executing strategy is in the 
middle of a long tactic execution and cannot be preempted 
immediately. This loss of precious time for the new strategy 
would lead to a reduction in overall utility. On the contrary, 
had we indicated the request to preempt and then started 
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scheduling, the strategy could have possibly been preempted 
(or about to be finishing the long tactic) by the time when the 
execution order was finalized and the new one could have 
been scheduled almost instantly; hence our decision to 
indicate preemption immediately. 
    In using external control modules for self-adaptation, the 
time when problems occur in the target system and the time 
when they are actually reported/detected in the Rainbow 
layer will be different (see Figure 7). There will always be 
some time lag. Our current implementation of preemption 
mechanisms does not include this time lag. Some 
approximations can be used to negate this lag, for example, 
adding the execution cycle time to the constraint detection 
time, etc. But as of now there is no clear solution of how to 
negate or minimize this lag. 

 
Figure 7.  Potential time lag in actual constraint violation and detection 

 
    In Rainbow, there are potentially four places where we 
could associate TUC. Firstly, with each architectural 
property in the model; it could be possible that one 
architectural property is associated with multiple constraints, 
and each constraint associated with multiple strategies. So, it 
would be of lesser relevance associating TUC with 
architectural properties. This also rules out association of 
TUC with constraint violations. Thirdly, we can associate it 
with each quality dimension; the stakeholders of the system 
specify the dimensions that are most important to the 
business, but asking them to specify adaptation 
responsiveness for their objectives may be unreasonable. 
Lastly, with each strategy we can associate a different TUC. 
This is reflected in our implementation, the rationale being 
that domain experts writing strategies are in the best position 
to state the responsiveness expected. 
    The scheduling algorithm suggested in sections III.c and 
III.d, which is used as a plugin to the RTEvaluator, involves 
factorial times computation of the number of applicable 
strategies. In large-scale deployments where potentially 
hundreds of strategies would be involved, the algorithmic 
computation would become an overhead. Using well 
explored techniques of caching (of intermediate results) and 
parallel processing would reduce the overhead, but in cases 
where this is not permissible, Rainbow users can provide a 

different algorithm in the plugin. For demonstration under 
our setup, the computational time was negligible.  
 

VII. FUTURE WORK 
    From here onwards, we would like to see our work to be 
the background of a potentially fully concurrent adaptive 
system. Rather than having just an interleaving of strategies, 
we have different threads of execution for each strategy 
leading to true concurrency. This would depend not only on 
better and improved conflict detection mechanisms, but the 
effectors interface in the translation layer, supporting 
multiple instances. 
    Also, we would like to see more work being done towards 
the run time updatability test. Software systems consist of 
multiple nodes and many of these systems are distributed 
transactional systems. Transactions are sequences of steps 
that need to be carried out as one; if one of them fails, the 
entire transaction fails.  In a distributed context, a node could 
depend on the services provided by other nodes to provide its 
own functionality to process a transaction step.  Any changes 
to a node that is servicing or about to service as a part of a 
transaction could potentially lead to a transaction fail, and 
performing a rollback could be very costly. As identified by 
Kramer and Magee: the system must be in a consistent state 
before and after runtime changes [15]. Rainbow uses 
strategies to implement adaptation, where each strategy is a 
sequence of tactics. It assumes that each tactic leaves the 
system in a consistent state. The question that Rainbow does 
not address is “Can the tactic be executed now?” This means 
Rainbow needs to address the topic of whether a target node 
is in a quiescent state or undergoing update. Future work 
needs to be done to ensure that the target nodes are in an 
updatable state. We propose that one of the ways to ensure 
run-time updatability is to use the notion of tranquility [16]. 
We can use the probes in the Rainbow translation 
infrastructure to gather this information and make tranquility 
as a property in the architecture model. The strategies can 
check whether the target node is in a tranquil state or not as a 
condition of applicability in the strategy, or enforce the node 
to be tranquil via a tactic. 
 

VIII. CONCLUSION 
    Adding preemption mechanisms in self–adaptation and 
allowing multiple adaptations to be considered for 
scheduling gives time critical adaptations the opportunity to 
be scheduled promptly and hence increase overall system 
utility. We also proposed a framework with which different 
users can customize different scheduling methodologies, 
conflict detection mechanisms and prioritization criteria 
depending on their requirements, thus making this approach 
flexible and promising. 
 

ACKNOWLEDGMENT 
    This work is supported in part by the Office of Naval 
Research (ONR), United States Navy, N000140811223 as 

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.



part of the HCSB project under OSD, the National Science 
Foundation (NSF) under grant CNS-0615305, and by the US 
Army Research Office (ARO) under grant number 
DAAD19-02-1-0389 ("Perpetually Available and Secure 
Information Systems") to Carnegie Mellon University's 
CyLab. 

REFERENCES 
 

[1] D. Garlan, S. Wen-Cheng, A. Cheng-Huang, B. Schmerl and P. 
Steenkiste, “Rainbow: Architecture-Based Self Adaptation with 
Reusable Infrastructure”, in IEEE Computer, vol. 37(10), October 
2004, pages 46- 54. 

[2] S. Wen-Cheng, D. Garlan and B. Schmerl, “Architecture-based Self-
adaptation in the Presence of Multiple Objectives”, in ICSE 2006 
Workshop on Software Engineering for Adaptive and Self-Managing 
Systems (SEAMS), Shanghai, China, 21-22 May 2006, pages 2 - 8. 

[3] A. Sztajnberg and O. Loques, “Describing and deploying self-
adaptive applications”, in Proc. 1st Latin American Autonomic 
Computing Symposium, July 14–20, 2006. 2.3.3. 

[4] T. Vasconcelos Batista, A. Joolia, and G. Coulson, “Managing 
dynamic reconfiguration in component-based systems”, in EWSA, 
volume 3527 of LNCS, pages 1–17. Springer, June 13–14, 2005. 
2.3.3. 

[5] E. M. Dashofy, A. Van der Hoek, and R. N. Taylor, “Towards 
Architecture-based Self-healing systems”, in Proceedings of the First 
Workshop on Self-healing Systems, 2002, pages 21-26. 

[6] J. A. Bather, Decision Theory: An Introduction to Dynamic 
Programming and Sequential Decisions, John Wiley and Sons, July 
13, 2000. 1.3.1, 2.2. 

[7] V. Vafeiadis, M. Herlihy, T. Hoare, M. Shapiro, “Proving 
Correctness of Highly-Concurrent Linearisable Objects”, Proceedings 
of the eleventh ACM SIGPLAN Symposium on Principles and 
Practice of Parallel Programming, New York, 2006, pages: 129 – 
136. 

[8] R. Khatchadourian, J. Dovland ,N. Soundarajan, “Enforcing 
Behavioral Constraints in Evolving Aspect-Oriented Programs”, in 
Proceedings of the 7th Workshop on Foundations of Aspect-oriented 
Languages, Brussels, Belgium, 2008, pages 19-28. 

[9] X. Feng, “Local Rely-Guarantee Reasoning”, in Proc. 36th ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming 
Languages (POPL'09), Savannah, Georgia, USA, pages 315-327, 
January, 2009. 

[10] V. Vafeiadis, M. Parkinson, “A Marriage of Rely/Guarantee and 
Separation Logic”, in 18th International Conference on Concurrency 
Theory (CONCUR), vol 4703 of Lecture Notes in Computer Science. 
Springer, Lisbon, Portugal September 2007, cited on pages 12 and 45. 

[11] E. D. Jensen, C. D Locke and H. Tokuda, “A time-driven scheduling 
model for real-time systems”, in IEEE RTSS, pages 112-122, 
December 1985. 

[12] P. Li, B. Ravindran, E. Douglas Jensen, “Adaptive Time-Critical 
Resource management Using Time-Utility Functions: Past, Present 
and Future”, in Computer Software and Applications Conference, 
2004. COMPSAC 2004. Proceedings of the 28th Annual 
International, Hong Kong, vol 2, 28-30 Sept. 2004, page 12 – 13. 

[13] P. Li, H. Sang Wu, B. Ravindran and E. Douglas Jensen, “A Utility 
Accrual Scheduling Algorithm for Real-Time Activities with Mutual 
Exclusion Resource Constraints”, IEEE Transactions on Computers, 
vol. 55, No. 4, April 2006, pages 454- 469. 

[14] K. Chen and P. Muhlethaler, “A Task Scheduling algorithm for tasks 
described by time value function”, Real-Time Systems, vol 10, pages 
293-312 (1996). 

[15] J. Kramer, J. Magee, “The evolving philosophers problem: dynamic 
change management”, Software Engineering, IEEE Transactions, vol 
16, Issue 11, Nov 1990 pages: 1293 – 1306. 

[16] Y. Vandewoude, Y. Berbes, P. Ebraert, T. D’Hondt, “An Alternative 
to Quiescence: Tranquility”, Software Maintenance, 2006. ICSM '06. 
22nd IEEE International Conference, Philadelphia, USA, pages 73-
82. 

[17] C.B. Jones, "Tentative steps toward a development method for 
interfering programs", In Transactions on Programming Languages 
and Systems 1983,  vol. 5 number 4, pages 569-619 

[18] S. Wen-Cheng, Rainbow: Cost-Effective Software Architecture-
Based Self-Adaptation, Submitted in partial fulfillments for degree of 
doctor of philosophy. 

[19] A.-C.Huang and P.Steenkiste, “Bulding Self-adaptation services 
using service-specific knowledge”, in Proceedings of IEEE High 
Performance Distributed Computing (HPDC), Research Triangle 
Park, NC, USA, July 2005, pages 34-43. 

 

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.




