
Improving Architecture-Based Self-Adaptation Using Preemption

Rahul Raheja, Shang-Wen Cheng, David Garlan, Bradley Schmerl
Carnegie Mellon University

Pittsburgh, PA - USA
rahul.raheja2009@gmail.com, {zensoul, garlan, schmerl}@cs.cmu.edu

Abstract— One common approach to self-adaptive systems is to
incorporate a control layer that monitors a system,
supervisorily detects problems, and applies adaptation
strategies to fix problems or improve system behavior. While
such approaches have been found to be quite effective, they are
typically limited to carrying out a single adaptation at a time,
delaying other adaptations until the current one finishes. This
in turn leads to a problem in which a time-critical adaptation
may have to wait for an existing long-running adaptation to
complete, thereby missing a window of opportunity for that
adaptation. In this paper we improve on existing practice
through an approach in which adaptations can be preempted
to allow for other time-critical adaptations to be scheduled.
Scheduling is based on an algorithm that maximizes time-
related utility for a set of concurrently executing adaptations.

self-adaptation; preemption; utility; concurrency

I. INTRODUCTION
Today’s complex systems require considerable

administrative overhead; this has led to a demand that they
self-adapt at run-time to variable resource availability, loads
and faults. Until recently, mechanisms for self-adaptation
were largely in the form of programming language features,
embedded in the code, hence prohibiting reusability and
modifiability. Today there is an increasing trend toward
autonomic computing, in which external control modules are
used to provide adaptive capabilities that monitor and adapt
the system at run time. Rainbow [1] is a framework for
external control that provides capabilities for self-adaptation
and provides mechanisms to balance adaptations amongst
multiple stakeholder objectives [2]. It forms a closed-loop
control system in which the adaptation mechanism probes,
evaluates, decides, executes, and then probes again. In this
respect, Rainbow is similar to other autonomic systems
[3,4,5].

While such approaches have been demonstrated to be
useful, they are largely limited to carrying out a single
adaptation at a time; violations that occur while an
adaptation is taking place will not trigger new adaptations
until the current one has finished executing. Unfortunately,
ignoring or delaying adaptations potentially leads to less-
than-optimal adaptation, since a high-priority adaptation may
have to wait for a less critical adaptation to finish. For
example, it may not be desirable to delay addressing security
issues until a currently executing performance adaptation
completes. By not addressing a security problem early, the
system may be compromised, so that later the security
adaptation will not be effective, or will be more disruptive to
the system.

Ideally, whenever new adaptation conditions arise, the
adaptive mechanism should be able to reconsider all
objectives and determine the best course of adaptation
without waiting for an existing adaptation to complete. In
this paper we propose an improvement upon existing
approaches that avoids delaying adaptation decisions, where
the adaptation mechanism promptly considers all
adaptations, including the currently executing adaptation,
when new conditions arise. To make this possible, we extend
Rainbow’s adaptation mechanisms to support preemption of
an executing adaptation strategy, reasoning amongst multiple
strategies, starting new ones, and resuming preempted
strategies. To facilitate this, we propose an adaptation time
utility dimension for self-adaptive mechanisms to reason
about and to prioritize amongst multiple objectives and their
corresponding adaptations at runtime. The specific
contributions of this paper are:

• Applying the concept of time-utility curve (TUC) to

prioritize amongst multiple adaptations using
adaptation times1 (see III.b)

• The application of existing concepts of multi-task
scheduling under the constraint of maximizing overall
utility to improve current adaptation decision-making
algorithm (see III.c and III.d)

• The use of an approximation of the rely-guarantee
technique to ensure consistency amongst multiple
interleaving adaptation strategies (see III.f)

• The use of an architecture model of a system as a
reference to provide architectural locks to ensure non-
interference (see III.f)

The remainder of this paper is organized as follows: In

Section 2, we give a brief overview of the existing Rainbow
adaptation mechanism components and outline a motivating
scenario. In Section 3 we present our design methodology
and implementation. In Section 4 we give some experimental
results. In Section 5 we give related work, and sections 6 and
7 give discussion points and future work followed by
conclusions in Sections 8.

II. MOTIVATION
The Rainbow framework uses software architectures and a

reusable infrastructure to support self-adaptation of software
systems. Figure 1 illustrates its adaptation control loop.
Probes are used to extract information from the target system

1 The time from when a constraint violation is triggered until the
corresponding adaptation strategy is executed

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

that updates the model via a set of gauges. The architecture
evaluator checks constraints in the model and triggers
adaptation if any violation is found. The adaptation
manager, on receiving the adaptation trigger, chooses the
best strategy to execute, and passes it to the strategy
executor, which executes the strategy on the target system
via effectors. The strategy to be executed is chosen on the
basis of stakeholder utility preferences and the current state
of the system as reflected in the architecture model. The
underlying decision making model is based on decision
theory and utility theory [6]. Each strategy, which is written
using the Stitch adaptation language, is a multi-step pattern
of adaptations in which each step evaluates a set of
condition-action pairs and executes an action, called a tactic,
on the target system. A tactic defines an action, packaged as
a sequence of primitive commands, called operators. It also
specifies conditions of applicability, expected effects, and
cost-benefit attributes to define its expected impact on the
quality dimensions.

Figure 1. Rainbow adaptation control loop components

 To illustrate, consider a web-based client-server system
that conforms to an N-tier style (as illustrated in Figure 1
target system). It uses a load balancer to balance requests
across a pool of replicated servers, the size of which is
dynamically adjusted to balance server utilization, response
time, cost, etc. Assume Rainbow can monitor the system for
information such as server load, port activity on servers, etc.
Assume also that we can modify the system to add more
servers to the pool or to change the quality of the content and
to shut down ports. Suppose Rainbow detects a violation of
some servers’ response time and considers adding servers to
the server group. While it is in the middle of carrying out this
adaptation, probes report a port-scan activity on one of the
servers and this triggers a security-related adaptation. In the
current implementation of Rainbow, the new trigger will be
ignored since Rainbow is in the middle of adding servers to
the server group. If the port activity were in fact an intrusion
and not just a scan, and the port was not closed (because the

trigger was ignored), the server will be compromised,
reducing overall system utility.

Rainbow’s mechanisms were deliberately built to delay
adaptations in such circumstances. Rainbow considered that
a new adaptation trigger in the middle of an ongoing
adaptation could potentially be caused by an intermediate
action of the current adaptation on the target system, and that
finishing the current adaptation could potentially eliminate
the need for a new one. If the condition persists, a repair will
eventually be triggered. Although this might be reasonable in
some cases, in others, like the one mentioned above, this
would reduce overall system utility. We aim to extend
Rainbow’s mechanisms to be able to manage both scenarios.

III. APPROACH
We apply the concepts of preemption and concurrency in

adaptation mechanisms to address the above situation. When
an adaptation condition is triggered during an ongoing
adaptation, Rainbow will consider the new condition along
with the condition that caused the currently executing
adaptation strategy. If addressing the new condition first
yields higher utility, Rainbow will preempt the running
strategy and schedule a new one, provided there are no
conflicts between the two strategies. While promising, the
introduction of preemption and concurrency gives rise to a
number of issues. In the following sections, we present the
design of incorporating preemption into Rainbow.

A. Incorporating changes in Rainbow
While introducing preemption mechanisms and dealing

with its related issues, we want to extend Rainbow to provide
a generic framework with which different Rainbow users can
customize the prioritization knowledge, scheduling and
conflict detection mechanisms according to their own
requirements. To incorporate preemption, we add an
RTEvaluator (Real Time Evaluator: Figure 2) sub-
component into the Adaptation Manager component. This
component is responsible for ordering a set of strategies that
could be executed according to customizable criteria and
algorithms.

Figure 2. Detailed design of the RTEvaluator sub-component

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

 The RTEvaluator expects two inputs and two plugins. The
inputs are a queue of strategies that need to be ordered for
scheduling and the prioritization criteria. The plugins are the
scheduling algorithm and the conflict detection mechanism.
The evaluator, on receiving a set of strategies, uses the
prioritization criteria and the scheduling algorithm, in
consultation with the conflict detection module (described
later), and outputs an execution order that satisfies the
conflict rules and the prioritization criteria. The interactions
of the RTEvaluator with other sub-components are shown in
Figure 3.

Figure 3. Interactions of the RTEvalutor sub-component with other sub-

components in the Adaptation Manager

B. Prioritizing Adaptations with TUC
When an adaptation trigger occurs during an ongoing

strategy execution, the Adaptation Manager must decide
whether to finish executing the current strategy before
servicing the newly triggered adaptation, or preempt it and
service the new condition first. Accordingly, we need to be
able to reason about which strategy or adaptation condition is
more important given the current state of the system and user
priorities. One way to prioritize strategy selection is for the
architect of the system to specify the priorities of adaptation
conditions at design time. In such a case, whenever a higher
priority adaptation condition occurs, other lower priority
adaptations will be aborted or preempted. This would imply
that if a lower priority adaptation condition occurs, then it
will always wait for the current adaptation to finish, and, if a
higher priority adaptation occurs, then it will always be
serviced first.

As mentioned earlier, adaptations in self-adaptive
systems are opportunities for improvement. They are aimed
to increase overall system utility, which quantifies the
happiness of the system stakeholders with the system. If
strategies take a long time to execute over the target system,
their intended utility improvement will diminish or
disappear. In particular, given the static priority scheduling
proposed above, a lower-priority condition strategy would

always wait until higher-priority strategies finish executing,
hence potentially losing its window of opportunity.

To avoid the above situation, we must introduce some
criteria into the Adaptation Manager that will allow it to
make a decision at run-time about how to prioritize
strategies. To do this, we associate each strategy with a time
utility curve (TUC) [11]. A TUC specifies the expected
utility [0,1] of completing a strategy as a function of its
completion time (its use is explained further in section III.d).
Using TUCs, we can express both hard real-time adaptations
and soft real-time adaptations. It also gives one the ability to
specify arbitrary utility values rather than step/linear
functions (Figure 4). We can then use this information to
schedule strategies according to some scheduling criteria.

Figure 4. Time Utility Curves for Hard/Soft Real time adaptations

C. Improvements to Strategy Selection Algorithm
The scheduling algorithm is encapsulated as a plug-in to

the RTEvaluator, which different users can customize. Our
algorithm aims to maximize end system utility. When the
evaluator triggers an adaptation, the set of applicable
strategies are handed to the RTEvaluator by the Stitch
Engine2 which schedules as follows:

a. Let Q be the ordered queue of strategies pending
execution; if non-empty, the head entry Q[0] is the
currently executing strategy, so preempt it

b. Let P be the unordered set of Q
c. Let A be the set of applicable strategies for the new

condition
d. Create a new empty set C of candidate strategy

orderings
e. For each strategy a in A

a. Pick the ordering of a∪P that has the highest
Predicted System Utility (PSU) (explained in the
next section)

b. Add this ordering and PSU to C
f. Pick the ordering with the highest PSU from C to form

Q', the new ordered queue of strategies pending
execution

g. Execute (or resume) the strategy at Q'[0]

When the Stitch Engine detects constraint violations for
the first time and selects a set of applicable strategies, before
handing over the applicable set to the RTEvaluator, it saves
the set of constraint violations that caused the adaptation

2 Adaptation Manager sub-component that receives adaptation trigger from
the evaluator

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

trigger. When a strategy is selected, the constraint set is
associated with this strategy. In the next cycle, if the Stitch
Engine finds constraint violations that already have some
strategy(s) associated with them, it ends the evaluation cycle
and waits for that strategy(s) to finish. When the strategy
finishes execution, it instructs the Stitch Engine to remove its
associated constraints so they can be considered in the next
cycle if required. The rationale is not to service a set of
constraint violations again if a strategy has already been
chosen to improve or undo them.

D. Predicted System Utility
The Predicted System Utility (PSU) of a set of strategies

gives the final utility of the system assuming the strategies
are executed in a particular order. Suppose the current
system state is represented by S[], which is a vector of all
utility dimensions of the system. Say,

S[] = [fidelity, cost, responseTime, security] = [p, q, r, t]
We have a set of strategies A1, A2 … AN, that will be
executed in the order [A1, A2 … AN]. Each strategy is
associated with an aggregate Attribute vector3 agg[]Ai, and a
time utility curve TUCAi

agg[]Ai = [Δp, Δq, Δr, Δt]
Running A1 first leaves the system in state S[]1

S[]1 = S[]0 + TUCA1(exec time of A1)*agg[]A1

TUCA1(exec time of A1) will give the percentage of expected
change that actually happened depending on the execution
time of A. Similarly running A2, A3 … AN gives

S[]2 = S[]1 + TUCA2(exec time of A1+A2)*agg[]A2
S[]N = S[]N-1 + TUCAN(exec time of A1+A2 … AN)*agg[]AN

The state of the system at the end of executing A1, A2 … AN
will be

S[]N = [pN , qN , rN , tN]
We calculate utility using utility profiles and weights for the
quality dimensions

Weightp * UtilityCurvep(pN) + Weightq * UtilityCurveq(qN) +
Weightr * UtilityCurver(rN) + Weightt * UtilityCurvet(tN) =

PredictedUtility

This utility is the predicted system utility for the
specified execution order. The strategy execution times are
calculated by profiling under serial mode (i.e., with no
preemption). Rainbow is run under different configurations
and the mean, standard deviation and error are calculated
using multiple runs for each tactic. The execution time of the
strategy is then estimated probabilistically from its tactic
tree, which is then fed into the calculation of the predicted
system utility. Also, to calculate the execution time of a
preempted strategy, the remaining execution time is
calculated from the tactic where it was preempted and not
from the beginning.

3 Aggregate attributed vector of a strategy is the expected change to utility
dimensions it expects to provide after it finishes executing

E. Granularity of Concurrency
The execution of a running strategy must be interrupted

to serve a higher priority adaptation. The granularity at
which a strategy can be preempted, must strike a balance
between achieving maximum possible interleaving and
ensuring that preemption leaves neither the target system,
nor the model on which decisions are made, in an
inconsistent state. In Rainbow, there are three potential levels
at which this basic execution unit can be set.

First, we can set the basic execution unit at the strategy
level, which is the most coarse-grained. This is equivalent to
a policy in which a strategy cannot be preempted. Thus, if a
new adaptation condition arises, it will always wait for the
current strategy to finish. In this case, as mentioned before,
the new strategy might lose its window of opportunity. The
second possible granularity unit would be at the tactic level;
a third at the operator level. If we choose an operator as the
granularity unit, we will need to have preconditions added
before every operator is executed, since there is currently no
applicability condition check for operators. Also,
specification of timing at every operator level would be
unwieldy, as this would require a 2-way communication
between the Rainbow adaptation and target layer involving
overheads. If we choose tactic as the unit, it will not provide
as fine grain granularity as an operator, and hence not as high
end system utility. But Rainbow’s underlying assumption is
that a tactic leaves the system in a consistent state, at least at
the architectural level. Furthermore, tactics already have
condition guards. For these reasons, for our work, we chose a
tactic over operator to be the atomic unit of execution that
cannot be pre-empted.

F. Conflict Detection and Resolution using Architectural
Locks
Consider a strategy A that is pre-empted to execute

another strategy B. Suppose that strategy A was pre-empted
after executing 2 tactics, and is yet to execute 2 more. While
strategy B executes it makes some changes to parts of the
target system. Now when strategy A resumes and starts
executing the remaining tactics, it assumes its target
components to be in a state they were in when the first two
tactics finished. If B undid those changes, then finishing A
will leave the target system in a potentially undesirable or
inconsistent state.

Following the above example, we need to ensure that
actions of interleaving strategies do not conflict with each
other. There are a couple of ways to ensure this. First, we can
leave the onus on the strategy writers to ensure that their
strategies are written in ways that do not conflict with any
other strategies written for this system. But there could be
many strategies for a system, potentially written by different
people; expecting a strategy writer to know the behavior of
all other strategies would be unreasonable. Even if one
assumes that the strategy writer knows about all other
strategies, it could still be unreasonable for him to frame the
strategies in a way that doesn’t conflict with others, because
pairwise conflicts would again mean considering too many
cases.

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

Second, we can provide some guarantees to a strategy
that other strategies will not touch the parts of the system
that it acts on using an approximation of rely and guarantee
reasoning [17]. In this, each strategy guarantees that it will
make changes to only a subset of the system and that it relies
on the fact that no other strategy will makes change to this
subset while it is executing. This would be like a strategy
requesting a set of components and connectors that it would
make changes to, effectively putting a lock over them, and
no other strategy would make changes to that set. We
propose to use the architecture model of the target system
and its environment as a reference to provide virtual locks to
strategies. The environment of a system consists of the
components and connectors that are currently unused and
can be added to the system. For example, unused servers that
can be added to a system under high load are a part of the
system’s environment. Each strategy, when queried at
runtime, will return a set of components and connectors
corresponding to the architectural model of the system and
its environment that it would act upon if executed at that
moment. We can use this information to ensure that a set of
strategies do not interfere with each other.

We encapsulate the conflict detection part in the Conflict
Detector subcomponent in the Adaptation Manager by
providing four interfaces to it. First is an interface with
which a strategy that is about to be executed will register its
components, and second is to deregister (mark as free by
removing a virtual lock). When a new strategy is to be run, it
seeks permission from the Conflict Detector using the third
interface. Using the fourth interface that we provide, if one
gives a set of strategies to the Detector, it will return a
schedule, or a subset that will be a non-conflicting schedule.
We leave it to the convenience of the Rainbow users to
decide which best fits their requirements in terms of the
interface they want to use, as well as the algorithms in the
Conflict Detector. For our implementation, if a strategy
about to run uses a component(s) being used by any pre-
empted strategy, it is not allowed to execute, and a new order
is found that is non-conflicting and gives the next highest
utility.

IV. RESULTS

A. Target System
We use a typical news website infrastructure, Znn.com,

which is typically a three-tiered architecture, to demonstrate
the preemption scenario. In this model, a set of application
servers serve content from the backend databases to clients
via the presentation logic. Similar setup was used to
demonstrate Rainbow’s results [18] during its stages of
development (refer Figure 1 target system). The servers can
be adjusted to balance utilization for response time. The set
of clients makes requests for content that includes text,
images, videos (static content) and templates (dynamic
content).

Common objectives for a news provider are to deliver
server content within a reasonable response time, while
keeping the budget under control. To avoid dropping
requests in high load time, the fidelity of the content is

adjusted, which decreases response time, hence serving more
requests in a time frame. The providers also want to ensure
that all their servers are secure and no malicious activity
risks the server group. In short, we short-list four quality
objectives for Znn.com – cost, performance, fidelity of
content and security. The number of servers in the backend
group directly impacts cost analysis and hence we take the
server count into consideration. For content quality, we
define three levels based on type of content served – high
(text, video and images), medium (text and images) and low
(only text). Performance analysis comes from considering
response time, bandwidth and server load. For security
analysis, we associate a security Confidence Level with each
server, which indicates the trust the system has regarding its
security (highest value being 1.0). In case of any suspicious
activity (e.g., on a port) this confidence level would be
lowered causing adaptation to be triggered.

The server activate and deactivate operators are defined
to add or remove server(s) from the server group, while the
setFidelity operator changes fidelity of the content to be
served at the specified level and the closePort operator closes
the specified port. From these operators, we specify 2 pairs
of tactic. One pair discharges (or enlists) a server(s) and the
other shuts down the port on a ServerT type element.

B. Competing Scenario
The scenario that we chose to demonstrate is one in

which cost adaptation competes with security adaptation.
The Rainbow framework detects the cost of the system is too
high. It triggers an adaptation that leads to a strategy being
selected for execution – ReduceOverallCost. This will aim to
reduce overall cost by discharging a few servers. While this
adaptation is in progress, a possible security breach is
reported on one of the servers, and is picked up by the
Evaluator. This causes the secureServer strategy to be
selected. At this point of time, Rainbow will have to make a
decision.

If Rainbow is running in the serial mode (which is how
the current mechanisms exists), it will delay the new
adaptation. It will continue to execute the cost adaptation,
and when finished it will execute the security adaptation. By
this time, the server could have been potentially
compromised. If the cost strategy was preempted, and
security adaptation scheduled, this could have prevented the
server from being further compromised. This deadline time
is reflected in the time utility curves of both the strategies
that are used to schedule them as explained previously
(Section 3.2, 3.3).

C. System Utility
We execute the scenario mentioned above in both modes,

multi and serial, for multiple runs and record the
instantaneous utility at regular intervals. We use these values
to plot the utility graphs. Figure 5 displays the instantaneous
system utility over the entire execution trace for both modes;
Figure 6 plots the accrued utility4 for both runs. From the

 4 Accrued utility at any instance is the sum of instantaneous utilities
of all previous instants in the execution trace

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

instantaneous utility graph, we see that in serial mode,
because of the security strategy missing its deadline, the
stable system utility drops down below to 0.854. When the
server gets compromised, its response time and its service
time go high, causing the system utility to drop to as low as
almost 0.65. Seeing such a state of the system, adaptation
layer selects new strategies in an effort for improvement.
This effort ends up being a transient effort to compromise
between cost and response time, where trying to improve one
violates the other. This carries on until a compromise is
made and no other strategies are available for further
improvement. At this point the instantaneous utility stabilizes
to being around 0.854. For the multi mode, the utility is not
harmed since the cost adaptation was pre-empted and the
security adaptation was carried out first. This stabilizes
around 0.9725. The % difference in stable instantaneous
utility is almost 13.9%.

Figure 5. Instantaneous utility

 From the accrued utility graph, we get a measure of how
well the system has been performing since it was brought
online, being monitored by Rainbow.

Figure 6. Accrued utility

 Results show that in serial mode, the accrued utility at the
end of the execution trace is almost 194 and for the multi
mode its approximately 234. This is net 20% increase by
adding preemption mechanisms to Rainbow, clearly
indicating the need for such mechanisms in the self-
adaptation domain.

V. RELATED WORK
 The technique of using rely-guarantee to ensure
consistency is a studied concept. It has been used to ensure
non-conflicting interactions for implementing linked lists
fine-grain interactions [7]. It has been used for constructing a
reasoning style system for the aspect-oriented programming
paradigm [8]. Modifications for ease of use have been
proposed as local rely and guarantee [9], and it has been
combined with other concepts such as separation logic to
give stronger consistency guarantees [10]. Although we have
used a weak approximation of this concept, a stronger notion
can be embedded into the Conflict Detector sub-component
in the rainbow’s Adaptation Manager.
 The concept of time utility curves [11] has been explored
with respect to time-critical resource management [12]. They
have been used in scheduling algorithms such as GUS [13]
[14]. GUS was one of the earliest proposals for scheduling
under real-time and mutual exclusion constraints in the
operating system domain. This algorithm, similar to
Predicted System Utility as proposed in this paper, aimed to
maximize accrued system utility. It produced sub-schedules
that were mutually exclusive and gave maximum system
accrued utility. In a similar fashion, Rainbow’s RT Evaluator
and Conflict Detector would interact to produce schedules
and sub-schedules to ensure maximum predicted utility and
adherence to rely-guarantee.
 The pre-emption aspect of this work could be viewed as a
form of conflict resolution in strategies. While prior work
[19] provided integrated support for resolving conflicts in
adaptation strategies, it did not consider the case of making
an adaptation decision when an existing action is already in
progress. Our work explicitly tackles this problem, which
combines both scheduling and resource conflicts.

VI. DISCUSSION
 When an adaptation requirement is triggered during an
ongoing strategy execution, the Adaptation Manager must
decide whether to finish executing the current strategy before
servicing the newly triggered adaptation, or preempt it and
service the new condition first. The algorithm we proposed
in Section 3.3 preempts the currently executing strategy and
then decides the new execution order. One possible
alternative would be to preempt the currently executing
strategy only if the RTEvaluator chooses an order where the
currently executing strategy is not first. The problem with
this approach arises when the executing strategy is in the
middle of a long tactic execution and cannot be preempted
immediately. This loss of precious time for the new strategy
would lead to a reduction in overall utility. On the contrary,
had we indicated the request to preempt and then started

0.6 
0.65 
0.7 

0.75 
0.8 

0.85 
0.9 

0.95 
1 

0  100  200  300 

In
st
an
ta
ne

ou
s 
Sy
st
em

 U
8l
ity

 
[0
,1
] 

Simula8on Time Points (every 500ms) 

Serial 

Mul8 

0 

50 

100 

150 

200 

250 

0  100  200  300 

A
cc
ru
ed

 S
ys
te
m
 U
8l
ity

 

Simula8on Time Points (every 500ms) 

Serial 

Mul8 

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

scheduling, the strategy could have possibly been preempted
(or about to be finishing the long tactic) by the time when the
execution order was finalized and the new one could have
been scheduled almost instantly; hence our decision to
indicate preemption immediately.
 In using external control modules for self-adaptation, the
time when problems occur in the target system and the time
when they are actually reported/detected in the Rainbow
layer will be different (see Figure 7). There will always be
some time lag. Our current implementation of preemption
mechanisms does not include this time lag. Some
approximations can be used to negate this lag, for example,
adding the execution cycle time to the constraint detection
time, etc. But as of now there is no clear solution of how to
negate or minimize this lag.

Figure 7. Potential time lag in actual constraint violation and detection

 In Rainbow, there are potentially four places where we
could associate TUC. Firstly, with each architectural
property in the model; it could be possible that one
architectural property is associated with multiple constraints,
and each constraint associated with multiple strategies. So, it
would be of lesser relevance associating TUC with
architectural properties. This also rules out association of
TUC with constraint violations. Thirdly, we can associate it
with each quality dimension; the stakeholders of the system
specify the dimensions that are most important to the
business, but asking them to specify adaptation
responsiveness for their objectives may be unreasonable.
Lastly, with each strategy we can associate a different TUC.
This is reflected in our implementation, the rationale being
that domain experts writing strategies are in the best position
to state the responsiveness expected.
 The scheduling algorithm suggested in sections III.c and
III.d, which is used as a plugin to the RTEvaluator, involves
factorial times computation of the number of applicable
strategies. In large-scale deployments where potentially
hundreds of strategies would be involved, the algorithmic
computation would become an overhead. Using well
explored techniques of caching (of intermediate results) and
parallel processing would reduce the overhead, but in cases
where this is not permissible, Rainbow users can provide a

different algorithm in the plugin. For demonstration under
our setup, the computational time was negligible.

VII. FUTURE WORK
 From here onwards, we would like to see our work to be
the background of a potentially fully concurrent adaptive
system. Rather than having just an interleaving of strategies,
we have different threads of execution for each strategy
leading to true concurrency. This would depend not only on
better and improved conflict detection mechanisms, but the
effectors interface in the translation layer, supporting
multiple instances.
 Also, we would like to see more work being done towards
the run time updatability test. Software systems consist of
multiple nodes and many of these systems are distributed
transactional systems. Transactions are sequences of steps
that need to be carried out as one; if one of them fails, the
entire transaction fails. In a distributed context, a node could
depend on the services provided by other nodes to provide its
own functionality to process a transaction step. Any changes
to a node that is servicing or about to service as a part of a
transaction could potentially lead to a transaction fail, and
performing a rollback could be very costly. As identified by
Kramer and Magee: the system must be in a consistent state
before and after runtime changes [15]. Rainbow uses
strategies to implement adaptation, where each strategy is a
sequence of tactics. It assumes that each tactic leaves the
system in a consistent state. The question that Rainbow does
not address is “Can the tactic be executed now?” This means
Rainbow needs to address the topic of whether a target node
is in a quiescent state or undergoing update. Future work
needs to be done to ensure that the target nodes are in an
updatable state. We propose that one of the ways to ensure
run-time updatability is to use the notion of tranquility [16].
We can use the probes in the Rainbow translation
infrastructure to gather this information and make tranquility
as a property in the architecture model. The strategies can
check whether the target node is in a tranquil state or not as a
condition of applicability in the strategy, or enforce the node
to be tranquil via a tactic.

VIII. CONCLUSION
 Adding preemption mechanisms in self–adaptation and
allowing multiple adaptations to be considered for
scheduling gives time critical adaptations the opportunity to
be scheduled promptly and hence increase overall system
utility. We also proposed a framework with which different
users can customize different scheduling methodologies,
conflict detection mechanisms and prioritization criteria
depending on their requirements, thus making this approach
flexible and promising.

ACKNOWLEDGMENT
 This work is supported in part by the Office of Naval
Research (ONR), United States Navy, N000140811223 as

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

part of the HCSB project under OSD, the National Science
Foundation (NSF) under grant CNS-0615305, and by the US
Army Research Office (ARO) under grant number
DAAD19-02-1-0389 ("Perpetually Available and Secure
Information Systems") to Carnegie Mellon University's
CyLab.

REFERENCES

[1] D. Garlan, S. Wen-Cheng, A. Cheng-Huang, B. Schmerl and P.
Steenkiste, “Rainbow: Architecture-Based Self Adaptation with
Reusable Infrastructure”, in IEEE Computer, vol. 37(10), October
2004, pages 46- 54.

[2] S. Wen-Cheng, D. Garlan and B. Schmerl, “Architecture-based Self-
adaptation in the Presence of Multiple Objectives”, in ICSE 2006
Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Shanghai, China, 21-22 May 2006, pages 2 - 8.

[3] A. Sztajnberg and O. Loques, “Describing and deploying self-
adaptive applications”, in Proc. 1st Latin American Autonomic
Computing Symposium, July 14–20, 2006. 2.3.3.

[4] T. Vasconcelos Batista, A. Joolia, and G. Coulson, “Managing
dynamic reconfiguration in component-based systems”, in EWSA,
volume 3527 of LNCS, pages 1–17. Springer, June 13–14, 2005.
2.3.3.

[5] E. M. Dashofy, A. Van der Hoek, and R. N. Taylor, “Towards
Architecture-based Self-healing systems”, in Proceedings of the First
Workshop on Self-healing Systems, 2002, pages 21-26.

[6] J. A. Bather, Decision Theory: An Introduction to Dynamic
Programming and Sequential Decisions, John Wiley and Sons, July
13, 2000. 1.3.1, 2.2.

[7] V. Vafeiadis, M. Herlihy, T. Hoare, M. Shapiro, “Proving
Correctness of Highly-Concurrent Linearisable Objects”, Proceedings
of the eleventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, New York, 2006, pages: 129 –
136.

[8] R. Khatchadourian, J. Dovland ,N. Soundarajan, “Enforcing
Behavioral Constraints in Evolving Aspect-Oriented Programs”, in
Proceedings of the 7th Workshop on Foundations of Aspect-oriented
Languages, Brussels, Belgium, 2008, pages 19-28.

[9] X. Feng, “Local Rely-Guarantee Reasoning”, in Proc. 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'09), Savannah, Georgia, USA, pages 315-327,
January, 2009.

[10] V. Vafeiadis, M. Parkinson, “A Marriage of Rely/Guarantee and
Separation Logic”, in 18th International Conference on Concurrency
Theory (CONCUR), vol 4703 of Lecture Notes in Computer Science.
Springer, Lisbon, Portugal September 2007, cited on pages 12 and 45.

[11] E. D. Jensen, C. D Locke and H. Tokuda, “A time-driven scheduling
model for real-time systems”, in IEEE RTSS, pages 112-122,
December 1985.

[12] P. Li, B. Ravindran, E. Douglas Jensen, “Adaptive Time-Critical
Resource management Using Time-Utility Functions: Past, Present
and Future”, in Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th Annual
International, Hong Kong, vol 2, 28-30 Sept. 2004, page 12 – 13.

[13] P. Li, H. Sang Wu, B. Ravindran and E. Douglas Jensen, “A Utility
Accrual Scheduling Algorithm for Real-Time Activities with Mutual
Exclusion Resource Constraints”, IEEE Transactions on Computers,
vol. 55, No. 4, April 2006, pages 454- 469.

[14] K. Chen and P. Muhlethaler, “A Task Scheduling algorithm for tasks
described by time value function”, Real-Time Systems, vol 10, pages
293-312 (1996).

[15] J. Kramer, J. Magee, “The evolving philosophers problem: dynamic
change management”, Software Engineering, IEEE Transactions, vol
16, Issue 11, Nov 1990 pages: 1293 – 1306.

[16] Y. Vandewoude, Y. Berbes, P. Ebraert, T. D’Hondt, “An Alternative
to Quiescence: Tranquility”, Software Maintenance, 2006. ICSM '06.
22nd IEEE International Conference, Philadelphia, USA, pages 73-
82.

[17] C.B. Jones, "Tentative steps toward a development method for
interfering programs", In Transactions on Programming Languages
and Systems 1983, vol. 5 number 4, pages 569-619

[18] S. Wen-Cheng, Rainbow: Cost-Effective Software Architecture-
Based Self-Adaptation, Submitted in partial fulfillments for degree of
doctor of philosophy.

[19] A.-C.Huang and P.Steenkiste, “Bulding Self-adaptation services
using service-specific knowledge”, in Proceedings of IEEE High
Performance Distributed Computing (HPDC), Research Triangle
Park, NC, USA, July 2005, pages 34-43.

In Proceedings of the Workshop on Self-Organizing Architecture, Cambridge, UK, September 14, 2009.

