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ABSTRACT
Planning in CPSs requires temporal reasoning to handle the
dynamics of the environment, including human behavior, as
well as temporal constraints on system goals and durations
of actions that systems and human actors may take. The
discrete abstraction of time in a state space planning should
have a time sampling parameter value that satisfies some
relation to achieve a certain precision. In particular, the
sampling period should be small enough to allow the dy-
namics of the problem domain to be modeled with sufficient
precision. Meanwhile, in many cases, events in the far fu-
ture (relative to the sampling period) may be relevant to the
decision making earlier in the planning timeline; therefore,
a longer planning look-ahead horizon can yield a closer-to-
optimal plan. Unfortunately, planning with a uniform fine-
grained discrete abstraction of time and a long look-ahead
horizon is typically computationally infeasible. In this pa-
per, we propose a multiscale temporal planning approach –
formulated as MDP planning – to preserve the required time
fidelity of the problem domain and at the same time approx-
imate a globally optimal plan. We illustrate our approach
in a middleware used to monitor large sensor networks.

Keywords
Temporal planning; probabilistic planning; multiscale time
abstractions

1. INTRODUCTION
Planning in smart cyber-physical systems requires reason-

ing about the dynamics of the environment (i.e., exogenous
events expected to occur at some future time), including the
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behavior of human actors, as well as temporal constraints
on system goals and durations of the actions or tactics that
the system may use. Therefore, an explicit representation of
time is required in a planning formalism. Probabilistic plan-
ning is appropriate for cyber-physical systems, especially be-
cause of the uncertainty in the behavior of the environment
and human actors with whom CPSs interact. Markov de-
cision process (MDP) is one of the most widely used for-
malisms to formulate probabilistic planning problems. For
instance, the work in [8] presents a time modeling approach
for MDP planning using uniform time discretization (i.e.,
all time steps have the same duration). This approach is
particularly useful for handling (probabilistic) predictable
exogenous events.

Planning may need to consider the environment dynamics
that involve different time scales. Some aspects of the envi-
ronment may change quickly, and planning requires a certain
time fidelity to represent those dynamics sufficiently pre-
cisely. Meanwhile, some events occurring in the distant fu-
ture (relative to the time scale of the fast dynamics) may be
relevant to the decision making earlier in the planning time-
line, since they reveal the opportunity, or the lack thereof,
for tasks to be accomplished. Without considering such dis-
tant but relevant events, planning may yield a suboptimal
solution. Such characteristics of a planning problem appear
in CPSs – an example is a class of CPSs that cooperate
with humans to achieve some goals. The dynamics of hu-
man behavior often involve multiple time scales, for instance,
humans’ attention may change quickly relative to their lo-
cations. Consider a system that must initiate interactions
with humans at an appropriate time (e.g., when they are not
attending to other important things) and when the humans
are at certain locations. In order to have an optimal coop-
eration between the system and the humans, both the at-
tention and location dynamics of the humans must be taken
into account in planning.

To yield an optimal plan given an environment whose dy-
namics involve different time scales, state-space planning,
such as MDP planning, requires a fine-grained time dis-
cretization and a long look-ahead horizon to model changes
in the environment at a sufficient precision and to model



potentially relevant events in the distant future. Unfor-
tunately, uniform-resolution time discretization makes such
multiscale temporal planning computationally infeasible, due
to the fast growth in the number of states as the length of a
look-ahead horizon increases. The problem becomes worse
as the number of actions increases.

To solve this problem, we can take advantage of the fact
that prediction uncertainty of the environment and human
behavior increases with time. Therefore, potentially relevant
events in the distant future can be modeled in a coarser time
resolution, capturing vagueness in the predicted time of oc-
currences of events and simplified dynamics. Moreover, it is
not necessary to provide plans with a uniform high resolu-
tion, since the realization of the environment in the distant
future may diverge from the original predictions, and re-
planning will be required. We propose a multi-resolution
temporal planning approach, which uses a finer time res-
olution early in the planning timeline, and a coarser time
resolution later. The coarser-resolution part of the plan will
gradually be refined via replanning. This approach preserves
the required time fidelity of the problem domain, and at the
same time approximates a globally optimal plan by enabling
a long look-ahead horizon for planning. We implement our
planning approach for a human-in-the-loop adaptation sce-
nario of a middleware used to monitor large sensor networks.
Our preliminary results based on this case study show that
(1) with the same planning horizon, multi-resolution tem-
poral planning can generate plans whose utility is close to
those generated by uniform-resolution temporal planning,
but with much lower planning complexity, and (2) with
the same amount of planning time, multi-resolution tempo-
ral planning can generate higher-utility plans than uniform-
resolution planning by looking further ahead into the future.

The rest of the paper is organized as follows. Section 2
presents the motivating example. Section 3 describes the for-
mal details of our approach. Section 4 presents the prelimi-
nary results and discussion. Section 5 discusses the related
work in the areas of multi-resolution planning and schedul-
ing. Section 6 concludes the paper.

2. MOTIVATING EXAMPLE
The Data Acquisition and Control Service (DCAS) [3] is a

middleware from Critical Software that provides a reusable
infrastructure to manage the monitoring of highly populated
networks of devices equipped with sensors. In particular,
the middleware is designed to be seamlessly integrated with
Critical’s Energy Management System (csEMS)1, which is a
platform that provides asset management support for power
producing companies based on renewable energy sources.
The overall csEMS architecture aims at high scalability, flex-
ibility and customization with management capabilities that
enable the operation of control centers independently of the
underlying application (e.g., wind, solar, etc.).

The basic building blocks in a DCAS-based system (Fig-
ure 1) are: 2

• Devices are equipped with one or more sensors to obtain
data from the application domain (e.g., from wind towers,
solar panels, etc.). Each sensor has an associated data
stream from which data can be read. Each type of device

1http://solutions.criticalsoftware.com/products services/csems/
2Further details about DCAS can be found in [3].
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Figure 1: Architecture of a DCAS-based system

has its particular characteristics (e.g., data polling rate,
or expected value ranges) specified in a device profile.

• Processor nodes pull data from the devices at a rate con-
figured in the device profile, and dispatch this data to the
database server. Each processor node includes a set of pro-
cesses called Data Requester Processor Pollers (DRPPs or
pollers, for short) responsible for retrieving data from the
devices.

• Database server stores the data collected from devices by
processor nodes.

• Application server is connected to the database server to
obtain data, which can be presented to the operators of
the system or processed automatically via software.

The main objective of DCAS is to collect data from the con-
nected devices at a rate as close as possible to the one config-
ured in their device profiles, while making an efficient use of
the computational resources in the processor nodes. Specif-
ically, the primary concern in DCAS is providing service
while maintaining acceptable levels of performance, mea-
sured in terms of processed data requests per second (rps)
inserted in the database.

DCAS has several self-adaptation mechanisms, one of which
is called scale-out, which aims at maintaining an acceptable
performance level when new devices are connected to the
network at runtime and all available resources in the set of
active processor nodes are already being used. One way to
achieve this is by manually deploying a new processor node,
and re-attaching some devices across the different proces-
sor nodes, according to the particular situation. Specifi-
cally, the scale-out process requires human operators to per-
form the following steps: (i) deploy new processor node(s),
(ii) determine which of the new devices can be attached to
a currently active processor node, and which must be at-
tached to a new one, and attach the new devices to the
corresponding processor node(s), (iii) re-attach devices that
are already attached to other processor nodes to the new
processor node(s), if necessary, (iv) activate the new proces-
sor node(s), and (v) restart active processor nodes that have
been assigned new devices, if any.

Scale-out requires at least two human operators, who have
different responsibilities in performing the tactic. Human
operators have (potentially different) regular working sched-
ules which do not include scaling out DCAS. Since the hu-
man operators are not always available to perform the tactic,
the decision of when to have which human operators scale
out DCAS must aim at not only the performance improve-
ment of DCAS but also at minimizing the interruption to
the operators. Formally, we define the utility of performing
each (sub)task of the scale-out tactic, task, at a particular
time, t, as the following function:

U(op, task, t) = wI · UI(op, t) + wT · UT (task, t) (1)

where: (i) UI(op, t) is the utility of interrupting operator
op at time t, (ii) UT (task, t) is the utility of the timeliness



of completing the scale-out tactic, and (iii) wI and wT are
the constants representing the relative importance of oper-
ator interruption and timeliness of completing the scale-out
tactic, respectively. Planning for scaling out DCAS aims at
maximizing the utility function in Equation 1.

The interruption utility UI(op, t) in Equation 1 depends
on the level interruptibility of operator op at time t, which
can be predicted based on the regular work schedule of the
operator. We employ five levels of interruptibility: best,
good, ok, bad, and worst – each has a corresponding constant
utility value. The interruptibility of an operator can change
every few minutes depending on what the operator is doing;
therefore, in order to model the operators’ interruptibility
with sufficient precision, the granularity of time discretiza-
tion must be at a minute-level (e.g., the sampling period is 1
minute). To account for uncertainty in the prediction of the
operators’ interruptibility, we use a discrete-time Markov
chain to model the dynamics of the interruptibility of each
operator. Meanwhile, the timeliness utility UT (task, t) in
Equation 1 is defined as:

UT (task, t) =


0 if task is not the

last step of scale-out

1− t+duration(task)
tend

if task is the

last step of scale-out

where tend is the maximum time in the planning timeline.
In this example, we employ the timeliness utility of com-
pleting the scale-out tactic as a proxy to the performance
improvement of DCAS.

Figure 2: Criticality of tasks on operator work schedules

Consider the following scenario. Operators A and B are
individually responsible for step 1 of scale-out (i.e., deploy-
ing processor nodes), and operators C and D are individually
responsible for steps 2-5 of scale-out (i.e., (re)attaching de-
vices to processor nodes and (re)starting processor nodes).
Operators A and B can complete step 1 of scale-out in 30
minutes and 45 minutes, respectively, and both operators
C and D can complete steps 2-5 of scale-out in 60 minutes.
The regular work schedules of the operators are shown in
Figure 2. Starting from 12:00pm, operator A is scheduled
to work on a high-criticality task for the first 10 minutes and
on low-criticality tasks for the next 140 minutes; operator B
is scheduled to work on high-criticality tasks for the first 30
minutes and on low-criticality tasks for the next 120 min-
utes; operator C is scheduled to work on medium-criticality
tasks for the first 40 minutes and on high-criticality tasks
for the next 110 minutes; and operator D is scheduled to
work on medium-criticality tasks for the first 70 minutes
and on non-critical tasks for the next 80 minutes. Operators

generally have lower interruptibility during tasks of higher
criticality, and have higher interruptibility during tasks of
lower criticality (although, the specific level of interruptibil-
ity varies within a task). If we choose the planning timeline
to be from 12:00pm to 2:30pm, then the optimal plan for
scaling out DCAS is to have operator B perform step 1 of
scale-out at around 12:30pm and operator D perform steps
2-5 of scale-out at around 1:10pm. This plan completes the
scale-out tactic at an acceptable time (around 2:10pm), and
interrupts operators B and D when they both have a rela-
tively high interruptibility.

However, planning at the required time granularity of 1
minute is computationally infeasible for a look-ahead hori-
zon of 150 minutes, due to a large state space. If we choose a
shorter look-ahead horizon of 120 minutes (i.e., the planning
timeline is from 12:00pm to 2:00pm) which is more feasible,
then the optimal plan for scaling out DCAS with respect to
that timeline is to have operator A perform step 1 of scale-
out at around 12:10pm and operator C perform steps 2-5
of scale-out at around 12:40pm. Unfortunately, this plan is
less desirable because it interrupts operator C when she has
a very low interruptibility.

This example illustrates a problem class for which multi-
resolution temporal planning is suitable. The dynamics of
the DCAS operators’ interruptibility require a time granu-
larity of a minute to be represented precisely. At the same
time, the predicted interruptibility of operator D in the rel-
ative distant future (from 1:10pm to 2:30pm) is relevant to
the decision making earlier in the planning timeline, since it
reveals an opportunity to complete the scale-out tactic with
a significantly less interruption to the operators. Planning
at a uniform time resolution with a long look-ahead horizon
is computationally infeasible due to a large state space, and
the problem becomes even worse as the number of actions
increases (e.g., more DCAS operators).

In the next section, we describe our approach of proba-
bilistic, multi-resolution temporal planning.

3. MULTI-RESOLUTION TEMPORAL PLAN-
NING

The scope of temporal planning that we consider in this
paper involves: (i) durative actions, (ii) exogenous events
predicted to occur at some future time, (iii) time-dependent
objectives (e.g., problems in which time is a relevant di-
mension of a potentially multi-dimensional utility function),
and (iv) probabilistic behavior. In this section, we formal-
ize temporal planning with probabilistic exogenous events
as a Markov decision process. We start by describing the
approach to formalize temporal planning as MDP using uni-
form time discretization. Then, we extend the approach to
support multi-resolution time discretization, and discuss a
replanning strategy for multi-resolution temporal planning.

3.1 Temporal Planning as MDP
In this section, we formalize a temporal planning problem

with probabilistic exogenous events as a Markov decision
process.

Definition 1 (Markov decision process). A Markov
decision process (MDP) is a tupleM = 〈S, sI , A,∆, r〉, where
S 6= ∅ is a finite set of states; sI ∈ S is an initial state;
A 6= ∅ is a finite set of actions; ∆ : S×A→ D(S) is a (par-
tial) probabilistic transition function; and r : S×A→ Q≥0 is



a reward structure mapping each state and action to a non-
negative rational reward. D(X) denotes the set of discrete
probability distributions over finite set X.

An MDP models how the state of a system can evolve in
discrete time steps. In each state s ∈ S, the set of enabled
actions is denoted by A(s) (we assume that A(s) 6= ∅ for
all states). Moreover, the choice of which action to take in
every state s is assumed to be nondeterministic. Once an
action a is selected, the successor state is chosen according
to probability distribution ∆(s, a).

We can reason about the behavior of MDPs using policies.
A policy resolves the nondeterministic choices of an MDP,
selecting which action to take in every state.

Definition 2 (Policy). A policy of an MDP is a func-
tion σ : (SA)∗S → D(A) s.t., for each path π · s, it selects a
probability distribution σ(π · s) over A(s).

In this paper, we use policies that are memoryless (i.e.,
based solely on information about the current state) and de-
terministic (σ(s) is a Kronecker function such that σ(s)(a) =
1 if action a is selected, and 0 otherwise).

3.1.1 State Structure
The set of states S is determined by a number of relevant

properties of the system and the environment, characterized
by a collection of random variables:

{e1, . . . , em, c1, . . . , cn, p1, . . . , pk, t}
that can be monitored at run time, where: (i) e1 . . . em is

a set of environment variables, (ii) c1 . . . cn is a set of sys-
tem configuration variables, (iii) p1 . . . pk is a set of progress
variables for all durative actions in A (see Section 3.1.2),
and (iv) t is a variable representing the time of the state.
First, we consider a uniform time discretization whose sam-
pling period is τ . The values of the time variable t are then
t0, t0 + τ, t0 + 2τ, ..., tend, where t0 is the start time and tend

is the planning horizon.

3.1.2 Actions and Transition Function
The set A contains the actions available to the system,

including a no-op action to allow the possibility of simply
waiting for the next decision-epoch. Each action has the as-
sociated duration. However, to allow modeling of exogenous
events that may occur during the executions of actions, all
transitions in the MDP occur between states of two consec-
utive time values. For every action a ∈ A whose duration –
denoted as d(a)– is larger than the sampling period τ , there
is a corresponding progress variable p ∈ [0, dd(a)/τe) to keep
track of the progress of the action at every decision-epoch.
The no-op action has the duration equal to the sampling
period τ , and it is applicable in all states in which no other
actions are in progress. The probabilistic transition function
∆ : S×A→ D(S) describes the effects of the actions on the
system configuration and the evolution of the environment
state, both as a result of the actions and independently of the
actions. The prediction of the environment evolution can be
made using an environment predictor, e.g., an autoregres-
sive (AR) time series predictor, to predict the environment
state at every time period τ up to the planning horizon tend.

3.1.3 Reward Structure
The reward structure r : S × A → Q≥0 defines the re-

ward obtained by executing (or continuing the execution of)

a particular action, including no-op, in a particular state.
In this paper, we assume that the objectives of the plan-
ning problem are captured as a reward, defined as a multi-
dimensional utility-based function, where each dimension
represents system qualities that correspond to different busi-
ness concerns (e.g., performance, cost). For all states s and
all actions a except no-op, we define the reward structure
r(s, a) =

∑
i wiri(s, a), where ri : S×A→ Q≥0 corresponds

to the reward for the ith dimension of the planning problem,
and wi is the weight for the ith dimension, which represents
the importance of that dimension in the system’s objectives
(e.g., if performance is given more importance than cost,
it will be given a higher weight). We define the reward
r(s,no-op) = 0 for all states s. We seek to find an opti-
mal policy, σ∗, that maximizes the expected accumulative
reward until a state whose time value is tend is reached.

3.2 Multi-Resolution Temporal Planning
Far future states may be relevant to the decision making

regarding what actions to perform in the current moment or
in the near future. A long planning horizon may reveal op-
portunities, or the lack thereof, for tasks to be accomplished
in the future, which allows for planning to analyze the trade-
offs among executing different actions at different points in
time. In some problem domains, it may be desirable to have
a planning horizon be larger in order of magnitude than the
appropriate sampling period of time discretization of the do-
mains – as determined by the dynamics of the environment,
the durations of actions, etc. For instance, the appropriate
sampling period may be minutes, while the desirable plan-
ning horizon may be several hours into the future. However,
planning using a uniform time discretization and a relatively
long planning horizon is likely computationally infeasible,
especially when the action space is large.

An important observation is that the prediction uncer-
tainty increases with time. An environment predictor may
not be able to determine precisely when certain events will
occur, but it may predict (possibly with relatively high accu-
racy) that the events will occur at some point during certain
intervals of time. We can utilize this fact by using a larger
sampling period of time discretization in the far future, in
order to reduce the growth in the number of states as we
use longer planning horizons. In this section, we describe
our proposed multi-resolution temporal planning approach
formulated in the MDP framework, where the lengths of the
sampling periods of time discretization increase with time.
In this paper, we demonstrate a 2-resolution temporal plan-
ning scheme; however, our approach can be generalized to
arbitrary n-resolution temporal planning.

3.2.1 State Structure
Our multi-resolution time discretization strategy employs

two different sampling parameters: τf and τc. For simplic-
ity, we choose τc to be a multiple of τf . τf is an appropriate
time granularity for the problem domain – determined by
the dynamics of the environment, durations of actions, etc.,
and τc can be much larger than τf to allow a long planning
horizon. τf -discretization is used from the start of the plan-
ning timeline t0 to a near-future time texec, which we refer to
as the execution horizon, and τc-discretization is used from
texec to the planning horizon tend (see Figure 3).

Since τf is a relatively small period for the problem do-
main, we assume that the environment may only evolve
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Figure 3: 2-resolution planning timeline

from one state to another during τf . Therefore, we con-
struct the states to represent the system configurations and
the (predicted) environment states at time t0, t0 + τf , t0 +
2τf , ..., texec. That is, the structure of these states is as
described in Section 3.1.1. However, from time texec + τc
onwards, we construct the states to capture the intervals of
time [texec+τc, texec+2τc), [texec+2τc, texec+3τc), ..., [tend−
τc, tend). This is because during a period τc, the environment
is likely to evolve through multiple states. We do not con-
struct the states to represent the environment states at time
texec + τc, texec + 2τc, ..., tend, for 2 reasons: (1) there is high
uncertainty in the prediction of the environment states in
the far future (e.g., after time texec +τc), and (2) completely
disregarding the intermediate environment states during τc
in planning likely results in highly suboptimal policies.

Since the environment can be in multiple states during
an interval [t, t + τc), the structure of the states after time
texec differs from that of the preceding states. In particular,
the subset of states S′ ⊂ S after time texec is determined by
a collection of random variables {E, c1, . . . , cn, p1, . . . , pk, t},
where: (i) E is a sequence of sets of the environment vari-
ables e1 . . . em, (ii) c1 . . . cn is a set of system configuration
variables, (ii) p1 . . . pk is a set of progress variables for all
durative actions (see Section 3.2.2), and (iv) t is a variable
representing the time interval [t, t+ τc) of the state. The se-
quence E of sets e1 . . . em represents a total ordering (based
on time) of the predicted environment states over the time
interval [t, t+ τc). Note that although we represent multiple
predicted environment states over the interval τc in the state
structure, we only represent a single system configuration,
since actions can only execute once in a state.

3.2.2 Actions and Transition Function
The set A of an MDP with multi-resolution time dis-

cretization is the same as that of an MDP with uniform
time discretization, except that the no-op action has du-
ration τf and τc if executed before time texec and at time
texec onwards, respectively. For every action a whose du-
ration is d(a) > τf (except the no-op), there is a corre-
sponding progress variable p ∈ [0, dd(a)/τfe) to keep track
of the progress of the action at every decision-epoch. How-
ever, each transition of an action updates the corresponding
progress variable differently depending on the time of the
state in which the action is executed. The progress vari-
able p of an action a advances by 1 if a is executed before
time texec, and p advances by min(dd(a)/τfe − p, τc/τf ) if
a is executed at time texec and after. Similar to the case
of a uniform time discretization, the probabilistic transition
function ∆ : S × A → D(S) describes the effects of the ac-
tions on the system configuration and the environment state,
and the predicted evolution of the environment state inde-
pendently of the actions. Since each state at time texec + τc
onwards represents an interval of time, a transition from
such state s to s′ describes the evolution of the environ-
ment, regardless of the system’s actions, from the end of the

time interval of s to the beginning of the time interval of s′.

3.2.3 Reward Structure
We define the reward structure rf (s, a) for all states s at

time t ≤ texec (i.e., in the finer time resolution) and for
all actions a, as described in Section 3.1.3. We define the
reward structure rc(s, a) for all states s at time t ≥ texec+τc
(i.e., in the coarser time resolution) and for all actions a.
Since we seek to find an optimal policy σ∗ that maximizes
the expected accumulative reward until tend is reached, we
want the reward structure rc to represent the fact that, if
we were to schedule an action a – with the exception of no-
op – to be executed in some time interval [t, t + τc), a can
be executed at the point in the interval such that it yields
the maximum utility of the system. Additionally, rc should
capture the minimum utility of the system if we were to not
execute any action during the interval. To achieve that, we
define the reward structure rc(s, a) as follows. Suppose s
has the values E, c1, . . . , cn, p1, . . . , pk, t.

• If a is a no-op action, then rc(s, no-op) = 0.

• If a has already started in s, i.e., the corresponding progress
variable of a in s is p > 0, then rc(s, a) is the utility of con-
tinuing the execution of a in the beginning of the interval
[t, t+ τc) of s. Formally,

rc(s, a) = r(ŝ0, a) =
∑
i

wiri(ŝ0, a),

where ri and wi are the reward function and the weight of
the ith quality dimension, respectively, and ŝ0 has the val-
ues e01, . . . , e

0
m, c1, . . . , cn, p1, . . . , pk, t, where the set e01, . . . , e

0
m

is the first element in the sequence E.

• If a has not started in s, then rc(s, a) is the maximum
utility of executing a at some point in the interval [t, t+τc)
of s. Formally,

rc(s, a) = max
ŝ
r(ŝ, a) = max

ŝ

∑
i

wiri(ŝ, a),

where each ŝ has the values e1, . . . , em, c1, . . . , cn, p1, . . . ,
pk, t, where the set e1, . . . , em is one of the elements in the
sequence E.

However, if the utility of executing an action a – with the
exception of no-op – is associated with the duration of a,
then the reward rc(s, a) must be adjusted accordingly. In
particular, if a has already started in s with progress p, then
the reward is

rc(s, a) = l · r(ŝ0, a) = l ·
∑

i wiri(ŝ0, a)

where l = min(dd(a)/τfe − p, τc). Otherwise, if a has not
started in s, then the reward is

rc(s, a) = l′ ·max
ŝ
r(ŝ, a) = l′ ·max

ŝ

∑
i

wiri(ŝ, a)

where l′ = min(dd(a)/τfe, τc).

3.3 Replanning
A long planning horizon allows planning to yield a more

optimal plan compared to a short planning horizon, because
it considers opportunities, or the lack thereof, for tasks to be
accomplished in the far future. However, since the predic-
tion uncertainty increases as we look further into the future,
the scheduled executions of actions in the far future may in
fact be suboptimal or inapplicable as the realization of the
environment diverges from the prediction used in the plan-
ning. Hence, replanning is required as we move forward in
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Figure 4: Percentage of τc-sampling vs: (a) number of states,
(b) transitions and choices, (c) planning time, and (d) ex-
pected reward

time – to update the plan as we obtain new observations. For
our multi-resolution temporal planning scheme, replanning
serves the purpose of refining the coarser part of the plan in
addition to updating the plan. We execute an optimal pol-
icy σ∗, generated from an MDP with multi-resolution time
discretization, from the start time up to a maximum of the
execution horizon. As we move closer to the execution hori-
zon, we replan using a new prediction obtained from new
observations.

4. PRELIMINARY RESULTS
We implement our multi-resolution temporal MDP in the

probabilistic model checker PRISM [6]. The overall struc-
ture of our PRISM model is adopted from the work by
Moreno et al. on proactive latency-aware self-adaptation
under uncertainty [8] – with the distinction in the use of
multiscale time abstraction. We conduct a set of prelim-
inary experiments to evaluate our multi-resolution tempo-
ral planning approach and compare it to uniform-resolution
temporal planning, using the example described in Section 2.
The scenario we use in the experiments involves 6 DCAS op-
erators – 4 of whom are described in Section 2. For uniform-
resolution temporal planning, we use a sampling parameter
τ = 1 minute, and for multi-resolution temporal planning,
we employ 2-resolution time discretization with sampling
parameters τf = 1 minute and τc = 30 minutes. In this
section, we discuss the preliminary results.

4.1 Planning Complexity
Figures 4(a) - 4(c) show the reduction of planning com-

plexity achieved by our approach. Figure 4(a) shows the
number of states in MDP as we vary the percentage of the
use of coarse-grained time sampling (sampling period = τc)
in the 2-resolution time discretization, with the planning
horizon tend = 120. For instance, 25% τc-sampling means
that τf -sampling is used from t = 0 to t = 90, and τc-

Uniform-resolution Multi-resolution
States 35267862 35267862

Planning Horizon 121 150
Sampling Parameters τ = 1 τf = 1

τc = 30
tmax(τf ) = 120

Expected Reward 0.486666667 0.94

Table 1: Expected rewards of optimal policies generated
from uniform- and multi-resolution temporal planning, pro-
vided both approaches use the same number of states

sampling is used from t = 90 to t = 120. Similarly, Fig-
ure 4(b) and Figure 4(c) show the number of transitions
and choices in MDP, and the amount of planning time took
to solve the MDP, as we vary the percentage of the use of
coarse-grained time sampling.

4.2 Coarse-grained Approximation
The use of a coarse-resolution time sampling in an MDP

can result in suboptimal policies compared to a fine-resolution
time sampling. For instance, any two actions that have an
ordering dependency would be scheduled far apart in time
– the two actions are scheduled in two different, relatively
large time periods – while if the time sampling were finer-
grained, the two actions may be scheduled much closer in
time. This reduces the number of possible solutions, result-
ing in suboptimal policies. However, the sub-optimality may
not be severe, given that we choose the right parameter of
the coarse-resolution sampling. How to systematically de-
termine an appropriate granularity of the coarse-resolution
sampling remains a future work.

In our preliminary experiments, we observe how the ex-
pected reward of a policy changes with varying percentage
of the use of coarse-grained time sampling (sampling period
= τc) in the 2-resolution time discretization, as shown in
Figure 4(c). We observe two sets of policies generated from
the 2-resolution temporal planning using the planning hori-
zons tend = 120 and tend = 150. For both sets of policies,
there is a relatively small decrease in the expected reward
as the percentage of use of coarse-grained timeline increases.

4.3 Long-horizon Planning
Given that both planning approaches generate the same

number of states, the multi-resolution temporal planning
can potentially find better plans in the long run compared to
the uniform-resolution approach, by looking further ahead
into the future. Table 1 shows the results of the particular
scenario of DCAS system described in Section 2. Given that
both approaches generate the same number of states, the 2-
resolution temporal planning, which uses 20% τc-sampling
and the planning horizon tend = 150, generates a policy with
a significantly higher expected reward (+93%) than a pol-
icy generated from the uniform-resolution planning, which
has the planning horizon tend = 121. The policies generated
from both approaches are described in Section 2.

5. RELATED WORK
Several work in mobile robot path planning and motion

planning employ multi-resolution state lattices to reduce the
complexity of the global search while still providing high-
quality solutions. Likhachev et el. [7] proposed an algo-
rithm for generating dynamically-feasible maneuvers for au-



tonomous vehicles traveling over large distances. Their work
considers multi-resolution discretization of the 2D position,
orientation, and speed of a vehicle. Steffens et al. [11]
proposed an approach to motion planning for service robots
with multi-resolution in time, and Petereit et al. [10] pro-
posed a hybrid-dimensional multi-resolution state and time
lattice for mobile robot motion planning. Although some of
these approaches address multi-resolution discretization of
time, they differ from our work in that they do not consider
exogenous events in multiscale abstraction of time.

Variable resolution discretization is also used in optimal
control and safe control problems. Munos et el. [9] pro-
posed several local splitting criteria for a variable resolution
discretization. Cámara et al. [4, 5] proposed an approach
for multiscale discrete abstractions for controller synthesis of
switched systems. The focus of our work differs from theirs
in that we use multiscale time abstraction to leverage the far
future prediction to make optimal decisions for the current
moment and for the near future.

Multi-resolution scheduling is closely related to our work.
For instance, Bakirtzis et al. [1, 2] proposed an approach for
operations scheduling using finer time resolution and coarser
time resolution in the first and latter hours of the scheduling
horizon. While their multiscale time sampling scheme is
similar to ours, the novelty of our work is in the semantics
of the utility model for multiscale temporal planning.

6. CONCLUSION
We propose a probabilistic, multi-resolution temporal plan-

ning approach for a class of planning problems which must
reason about an environment whose dynamics involve differ-
ent time scales. In particular, an environment may exhibit
both fast and slow dynamics – the faster dynamics require
a high time resolution of the planning model to represent
the changes at a sufficient precision; meanwhile, the slower
dynamics require a long look-ahead horizon for planning to
consider potentially relevant events in the distant future.
An example problem class of CPSs that have the multi-time
scale characteristics is a class of CPSs that cooperate with
humans to achieve some goals, since the dynamics of human
behavior often involve different time scales. In this paper, we
demonstrate our planing approach on a human-in-the-loop
adaptation scenario. The preliminary results show that our
multi-resolution temporal planning can yield higher-utility
plans compared to the uniform-resolution approach.

One limitation of the proposed multi-resolution temporal
planning approach is that rewards (or utilities) can only be
associated with executions of actions, and not with states. In
some applications, it is important to consider the rewards as-
sociated with the states of the system and the environment,
which we plan to include in future work.
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