
Analyzing Self-adaptation
Via Model Checking of Stochastic Games

Javier Cámara1, David Garlan1, Gabriel Moreno2, and Bradley Schmerl1

1 ISR - Institute for Software Research
Carnegie Mellon University, Pittsburgh, PA 15213, USA
{jcmoreno,garlan,schmerl}@cs.cmu.edu

2 SEI - Software Engineering Institute
Carnegie Mellon University, Pittsburgh, PA 15213, USA

gmoreno@sei.cmu.edu

Abstract. Design decisions made during early development stages of self-adap-
tive systems tend to have a significant impact upon system properties (e.g., safety,
QoS) at runtime. However, understanding the outcome of these decisions a priori
is difficult due to the different types and degrees of uncertainty that affect such
systems (e.g., simplifying assumptions, human-in-the-loop). To provide some as-
surances about self-adaptive system designs, evidence can be gathered from ac-
tivities such as simulations and prototyping, but these demand a significant effort
and do not provide a systematic way of dealing with uncertainty. In this chap-
ter, we describe an approach based on model checking of stochastic multiplayer
games (SMGs) that enables developers to approximate the behavioral envelope of
a self-adaptive system by analyzing best- and worst-case scenarios of alternative
designs for self-adaptation mechanisms. Compared to other sources of evidence,
such as simulations or prototypes, our approach provides developers with a pre-
liminary understanding of adaptation behavior with less effort, and without the
need to have any specific adaptation algorithms or infrastructure in place. We il-
lustrate our approach by showing how it can be used to mitigate different types of
uncertainty in contexts such as self-protecting systems, proactive latency-aware
adaptation, and human-in-the-loop.

Keywords: Self-adaptation, Stochastic multiplayer games, Probabilistic Model
Checking, Design-time assurances



2 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

1 Introduction

Complex software-intensive systems are increasingly relied upon in our society to sup-
port tasks in different contexts that are typically characterized by a high degree of un-
certainty. Self-adaptation [13, 28] is regarded as a promising way to engineer in an
effective manner systems that are resilient to runtime changes in their execution envi-
ronment (e.g., resource availability), goals, or even in the system itself (e.g., faults).

Self-adaptive approaches typically focus on enforcing safety and liveness proper-
ties [4, 26] during operation, and/or optimize qualities such as performance, reliability,
or cost [25, 43]. However, providing actual assurances about the satisfaction of proper-
ties in a self-adaptive system is not easy in general, since its runtime behavior is largely
influenced by the unpredictable behavior of the execution environment under which it is
placed [22]. This is particularly true during the early stages of the development process,
in which major design decisions that can have a large impact on the properties of the
resulting system are made.

When developers face the construction of a self-adaptive system, there is a plethora
of considerations that need to be made upfront, such as what the trade-offs between
reactive and proactive adaptation are; whether decision-making should be centralized or
decentralized; or how the concurrent execution of adaptations affects the performance
and the reliability of a system, compared to a sequential execution model.

In general, the answer to these questions will be to a great extent informed by prior
experience with similar existing systems, or by activities involving prototyping o sim-
ulation. However, experience with similar existing systems is not always available, and
simulation and prototyping of (potentially many) system design variants is not cost-
effective and does not provide systematic support analyze the system in the context of
an unpredictable environment.

Ideally, developers should be able to use techniques that provide some feedback
about the potential outcomes of early design choices in the development process, help-
ing them to narrow down the solution space in a cost-effective manner.

In this chapter, we propose an approach to analyze self-adaptive systems while ac-
counting explicitly for the uncertainty in their operating environment, given some as-
sumptions about its behavior. The approach enables developers to approximate the be-
havioral envelope of a self-adaptive system by analyzing best- and worst-case scenarios
of alternative designs for self-adaptation mechanisms. The formal underpinnings of our
proposal are based on model checking of stochastic multiplayer games (SMGs), which
is a technique particularly suited to analyzing the interplay of a self-adaptive system
and its environment, since SMG models are expressive enough to capture: (i) the uncer-
tainty and variability intrinsic to the execution environment of the system in the form of
probabilistic and nondeterministic choices, and (ii) the competitive behavior between
the system and the environment, which can be naturally modeled as players in a game
whose behavior is independent (reflecting the fact that changes in the environment can-
not be controlled by the system).

The main idea behind the approach is modeling the system and its environment as
players in a SMG that can either cooperate to achieve a common goal (for best-case sce-
nario analysis), or compete against each other (for worst-case scenario analysis). The
approach is purely declarative, employing adaptation knowledge based on architectural



Analyzing Self-adaptation Via Model Checking of Stochastic Games 3

system descriptions as the scaffolding on which game model specifications are built.
The analysis of such SMG specifications enables developers to obtain a preliminary un-
derstanding of adaptation behavior, and it can be used complementarily to other sources
of evidence that typically require the availability of specific adaptation algorithms and
infrastructure, such as prototypes or simulations.

In [8] we reported on a concrete application of this technique to quantify the benefits
of employing information about the latency of tactics in proactive adaptation, compar-
ing it against approaches that made the simplifying assumption of no tactic latency. In
this chapter, we generalize our approach and show its versatility by describing how it
can be instanced for new applications to deal with other sources of uncertainty (due to
parameters over time and human-in-the-loop).

In the remainder of this chapter, Section 2 introduces some background and related
work on different theories and approaches to support the construction of self-adaptive
systems. Section 3 provides a general description of our approach, and Section 4 illus-
trates its application in different contexts, including the analysis of self-protecting sys-
tems, proactive latency-aware adaptation, and human-in-the-loop adaptation. Finally,
Section 5 draws some conclusions and indicates directions for future work.

2 Background and Related Work

During the last few years, the research community has made an important effort in sup-
porting the construction of self-adaptive systems. In particular, approaches to identify
the added value of alternative design decisions have explored different theories (e.g.,
probability [30], fuzzy sets and possibility [41, 42], or games [35]) to factor in and
mitigate the various types of uncertainty that affect self-adaptive systems.

Moreover, recent advances in formal verification [33, 11] have also explored the
combination of probability and game theory to analyze systems in which uncertainty
and competitive behavior are first-order elements.

In this section, we provide an overview of how different theories have been em-
ployed to analyze systems under uncertainty. We categorize the different approaches
according to the theories employed and the different sources of uncertainty that they
target conforming to the classification provided by Esfahani and Malek in [22] (Ta-
ble 1).

2.1 Fuzzy Sets and Possibility Theory

Fuzzy set theory extends classical set theory with the concept of degree of member-
ship [41], making its use appropriate for domains in which information is imprecise
or incomplete. Rather than assessing the membership of an element to a set in binary
terms (an element belongs to a set or not), fuzzy set theory describes membership as a
function in the real interval [0,1], where values closer to 1 indicate higher likelihood of
the element belonging to the set. Possibility theory [42] is based on fuzzy sets, and in
its basic interpretation, it assumes that given a finite set (e.g., describing possible future

3 POISED employs probability theory to mitigate uncertainty due to noise.



4 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

Source of Uncertainty

Theory Approach Si
m

pl
ify

in
g

A
ss

um
pt

io
ns

M
od

el
D

ri
ft

N
oi

se

Pa
ra

m
et

er
so

ve
r

tim
e

H
um

an
in

th
e

lo
op

O
bj

ec
tiv

es

D
ec

en
tr

al
iz

at
io

n

C
on

te
xt

C
yb

er
-p

hy
si

ca
ls

ys
te

m
s

Fuzzy Sets / RELAX [38] X
Possibility Theory FLAGS [2] X

POISED [21] X X3 X

Probability Rainbow [25] X X
Theory FUSION [17] X X X

Calinescu and Kwiatkowska [6] X
KAMI [20] X
QoSMOS [5] X
MAUS [23] X

Probability + Li et al. [34] X
Game Theory Emami-Taba et al. [18] X

Cámara et al. [8, 9] X X X
Table 1. Theories and approaches to mitigate uncertainty

states of the world), a possibility distribution is as a mapping between its power set, and
the real interval [0, 1] (i.e., any subset of the sample space has a possibility assigned by
the mapping).

In the context of self-adaptive systems, possibility theory has been mainly used in
approaches that deal with the uncertainty of the objectives [2, 21, 38]. RELAX [38] is
a formal specification language for requirements that employs possibility theory to ac-
count for the uncertainty in the objectives of the self-adaptive system. The language
introduces a set of operators that allows the ”relaxation” of requirements at runtime,
depending on the state of the environment. FLAGS [2] also employs possibility theory
to mitigate the uncertainty derived by the environment and changes in requirements by
embedding adaptability at requirements elicitation. In particular, the framework intro-
duces the concept of adaptive goals and counter measures that have to be executed if
goals are not satisfied as a result of predicted uncertainty. POISED [21] is a quantita-
tive approach that employs possibility theory to assess the positive and negative conse-
quences of uncertainty. The approach incorporates a framework that can be tailored to
specify the relative importance of the different aspects of uncertainty, enabling devel-
opers to specify a range of decision-making approaches, e.g., favoring adaptations that
provide better guarantees in worst-case scenarios against others that involve higher risk
but better maximization of the expected outcome.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 5

2.2 Probability Theory

Probability theory [30] is the branch of mathematics concerned with the study of ran-
dom phenomena. Probability is the measure of the likeliness that an event will occur,
and is quantified as a number in the real interval [0, 1] (where 0 indicates impossibil-
ity and 1 certainty). Within probability theory, frequentist interpretations of random
phenomena employ information relative to the frequencies of past actual outcomes to
derive probabilities that represent the likelihood of possible outcomes for future events.

This interpretation of probability is widely employed to deal with different sources
of uncertainty in self-adaptive systems (e.g., context, simplifying assumptions, model
drift) [17, 25]. FUSION [17] is an approach to constructing self-adaptive systems that
uses machine learning to tune the adaptive behavior of a system in the presence of
unanticipated changes in the environment. The learning focuses on the relation between
adaptations and the effects and system qualities, helping to mitigate uncertainty by con-
sidering explicitly interactions between adaptations. Rainbow [25] is an approach to
engineering self-adaptive systems that includes constructs to deal with the mitigation of
uncertainty in different activities of the MAPE loop [29]. In particular, the framework
employs running averages to mitigate uncertainty due to noise in monitoring, as well
as explicit annotation of adaptation strategies with probabilities (obtained from past ob-
servations of the running system) to account for uncertainty when selecting strategies
during the planning stage.

Moreover, other approaches employ probabilistic verification and estimates of the
future environment and system behavior for optimizing the system’s operation. These
proposals target the mitigation of uncertainty due to parameters over time [6, 5, 19].
Calinescu and Kwiatkowska [6] introduce an autonomic architecture that uses Markov-
chain quantitative analysis to dynamically adjust the parameters of an IT system accord-
ing to its environment and goals. Epifani et al. introduce KAMI [19], a methodology
and framework to keep models alive by feeding them with runtime data that updates
their internal parameters. The framework focuses on reliability and performance, and
uses Discrete-Time Markov Chains (DTMCs) and Queuing Networks as models to rea-
son about the evolution of non-functional properties over time. Moreover, the QoS-
MOS framework [5] extends and combines [6] and [19] to support the development
of adaptive service-based systems. In QoSMOS, QoS requirements are translated into
probabilistic temporal logic formulae used for identifying and enforcing optimal system
configurations.

Eskins and Sanders introduce in [23] a Multiple-Asymmetric-Utility System Model
(MAUS) and the opportunity-willingness-capability (OWC) ontology for classifying
cyber-human systems elements with respect to system tasks. This approach provides
a structured and quantitative means of analyzing cyber security problems whose out-
comes are influenced by human-system interactions, dealing with the uncertainty de-
rived from the probabilistic nature of human behavior.

2.3 Probability and Game Theory

Game theory is the study of mathematical models of conflict and cooperation between
intelligent rational decision-makers [35]. The theory studies situations where there are



6 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

multiple decision makers or players who have a variety of of alternatives or strategies
to employ in order to achieve a particular outcome (e.g., in terms of loss or payoff).
Game theory has been applied in a wide variety of fields, such as, Economics, Biology,
and Computer Science to study systems that exhibit competitive behavior (e.g., zero-
sum games in which the payoff of a player is balanced by the loss of the other players),
as well as a range of scenarios that might include cooperation (e.g., when players in a
coalition coordinate to choose joint strategies by consensus).

Li et al [34] present a formalism for human-in-the-loop control systems aimed
at synthesizing semi-autonomous controllers from high-level temporal specifications
(LTL) that expect occasional human intervention for correct operation. The approach
adopts a game-theoretic approach in which controller synthesis is performed based on
a (non-stochastic) zero-sum game played between the system and the environment. Al-
though this proposal deals to some extent with uncertainty due to parameters over time
and human involvement, the behavior of all players in the game is specified in a fully
nondeterministic fashion, and once nondeterminism is resolved by a strategy, the out-
come of actions is deterministic.

Emami-Taba et al. [18] present a game-theoretic approach that models the interplay
of a self-protecting system and an attacker as a two-player zero-sum Markov game. In
this case, the approach does not perform any exhaustive state-space exploration and is
evaluated via simulation, emphasizing the learning aspects of the interaction between
system and attacker.

Probabilistic Model Checking of Stochastic Multiplayer Games. Automatic verifi-
cation techniques for probabilistic systems have been successfully applied in a variety
of application domains including security [31] and communication protocols [27]. In
particular, techniques such as probabilistic model checking provide a means to model
and analyze systems that exhibit stochastic behavior, effectively enabling reasoning
quantitatively about probability and reward-based properties (e.g., about the system’s
use of resources, time, etc.).

Competitive behavior may also appear in systems when some component cannot
be controlled, and could behave according to different or even conflicting goals with
respect to other components in the system. In such situations, a natural fit is modeling
a system as a game between different players, adopting a game-theoretic perspective.

Our approach to analyzing self-adaptation builds upon a recent technique for mod-
eling and analyzing stochastic multi-player games (SMGs) extended with rewards [11].
In this approach, systems are modeled as turn-based SMGs, meaning that in each state
of the model, only one player can choose between several actions, the outcome of which
can be probabilistic.

Definition 1 (SMG). A turn-based stochastic multi-player game augmented with re-
wards (SMG) is a tuple G = 〈Π,S,A, (Si)i∈Π , ∆,AP, χ, r〉, where Π is a finite set of
players; S 6= ∅ is a finite set of states; A 6= ∅ is a finite set of actions; (Si)i∈Π is a
partition of S; ∆ : S × A → D(S) is a (partial) transition function; AP is a finite set
of atomic propositions; χ : S → 2AP is a labeling function; and r : S → Q≥0 is a
reward structure mapping each state to a non-negative rational reward. D(X) denotes
the set of discrete probability distributions over finite set X .



Analyzing Self-adaptation Via Model Checking of Stochastic Games 7

In each state s ∈ S of the SMG, the set of available actions is denoted by A(s) =
{a ∈ A | ∆(s, a) 6= ⊥}. We assume that A(s) 6= ∅ for all states s in the model.
Moreover, the choice of which action to take in every state s is under the control of a
single player i ∈ Π , for which s ∈ Si. Once action a ∈ A(s) is selected by a player,
the successor state is chosen according to probability distribution ∆(s, a).

Definition 2 (Path). A path of SMG G is an (in)finite sequence λ = s0a0s1a1 . . . s.t.
∀j ∈ N • aj ∈ A(sj) ∧ ∆(sj , aj)(sj+1) > 0. The sets of all finite paths in G is
denoted as Ω+

G .

Players in the game can follow strategies for choosing actions in the game, cooper-
ating with each other in coalition to achieve a common goal, or competing to achieve
their own (potentially conflicting) goals.

Definition 3 (Strategy). A strategy for player i ∈ Π in G is a function σi : (SA)∗Si →
D(A) which, for each path λ · s ∈ Ω+

G where s ∈ Si, selects a probability distribution
σi(λ · s) over A(s).

In the context of our approach, we always refer to player strategies σi that are mem-
oryless (i.e., σi(λ ·s) = σi(λ

′ ·s) for all paths λ ·s, λ′ ·s ∈Ω+
G ), and deterministic (i.e.,

σi(λ · s) is a Dirac distribution for all λ · s ∈Ω+
G ). Memoryless, deterministic strategies

resolve the choices in each state s ∈ Si for player i ∈ Π , selecting actions based solely
on information about the current state in the game. These strategies are guaranteed to
achieve optimal expected rewards for the kind of cumulative reward structures that we
use in our models.4

Reasoning about strategies is a fundamental aspect of model checking SMGs, which
enables checking for the existence of a strategy that is able to optimize an objective
expressed as a property in a logic called rPATL. Concretely, rPATL can be used for
expressing quantitative properties of SMGs, and extends the logic PATL [12] (a prob-
abilistic version of ATL [1], a logic extensively used in multi-player games and multi-
agent systems to reason about the ability of a set of players to collectively achieve a
particular goal). Properties written in rPATL can state that a coalition of players has a
strategy which can ensure that the probability of an event’s occurrence or an expected
reward measure meets some threshold.

rPATL is a CTL-style branching-time temporal logic that incorporates the coali-
tion operator 〈〈C〉〉 of ATL, combining it with the probabilistic operator P./q and path
formulae from PCTL [3]. Moreover, rPATL includes a generalization of the reward op-
erator Rr

./x from [24] to reason about goals related to rewards. An extended version of
the rPATL reward operator 〈〈C〉〉Rr

max=?[F
? φ] 5 enables the quantification of the maxi-

mum accrued reward r along paths that lead to states satisfying state formula φ that can
be guaranteed by players in coalition C, independently of the strategies followed by the
rest of players. An example of typical usage combining the coalition and reward max-
imization operators is 〈〈sys〉〉Rutility

max=?[F
c end], meaning “value of the maximum utility

4 See Appendix A.2 in [11] for details.
5 The variants of F?φ used for reward measurement in which the parameter ? ∈ {0,∞, c}

indicate that, when φ is not reached, the reward is zero, infinite or equal to the cumulated
reward along the whole path, respectively.



8 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

reward accumulated along paths leading to an end state that a player sys can guarantee,
regardless of the strategies of other players.”

Previous Work. We presented in [8] an analysis technique based on model checking of
SMGs to quantify the effects of simplifying assumptions in proactive self-adaptation.
Specifically, the paper shows how the technique enables the comparison of alterna-
tives that consider tactic latency information for proactive adaptation with those that
are latency-agnostic, making the simplifying assumption that tactic executions are not
subject to latency (i.e., that the duration of the time interval between the instants in
which a tactic is triggered and its effects occur is zero). In [9] we adapted this analysis
technique to apply it in the context of human-in-the-loop adaptation, extending SMG
models with elements that encode an extended version of Stitch adaptation models [15]
with OWC constructs [23].

3 Approach

This section describes our approach to analyzing self-adaptive systems via model check-
ing of SMGs. The approach enables developers to approximate the behavioral envelope
of a self-adaptive system operating in an arbitrary environment, on which some assump-
tions are made. Figure 1 illustrates the underlying idea behind the approach, which con-
sists in modeling both the self-adaptive system and its environment as two players of a
SMG. The system’s player objective is optimizing an objective function encoded in a
rPATL specification (e.g., minimizing the probability of violating a safety property, or
maximizing accrued utility - encoded as a reward structure on the game). In contrast,
the environment can either be considered as adversarial to the system (enabling worst-
case scenario analysis), or as a cooperative player that helps the system to optimize its
objective function (enabling best-case scenario analysis).

<<sys>> RU
max=? [Fc end]


<<sys>> Pmax=? [F end]


Probabilistic Model Checker


System Goals

rPATL Properties
Stochastic Finite-state System Models


Strategy
Quantitative 

Results


System
 Environment

Reward 


Structure


U=f(s)


Stochastic Multiplayer Game Model


Fig. 1. Model checking of self-adaptation SMGs.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 9

Our approach consists of two phases: (i) model specification, consisting in build-
ing the game model that describes the possible interactions between the self-adaptive
system and its environment, and (ii) strategy synthesis, in which a game strategy that
optimizes the objective function of the system player is built, enabling developers to
quantify the outcome of adaptation in boundary cases.

3.1 Model Specification

Model specification involves constructing the solution space for the system by specify-
ing a stochastic multiplayer game G = 〈Π,S,A, (Si)i∈Π , ∆,AP, χ, r〉, where:

– Π = {sys, env} is the set of players formed by the self-adaptive system and its
environment.

– S = Ssys ∪ Senv is the set of states, where Ssys and Senv are the states controlled
by the system and the environment players, respectively (Ssys ∩ Senv = ∅). States
are tuples of values for state variables that capture system and environment state
properties represented in architecture models. Moreover, a special state variable t
encodes explicitly in the game whether the current state belongs either to Ssys or
Senv .

– A = Asys ∪ Aenv is the set of available actions in the game, where Asys and Aenv
are the actions available to the system and the environment players, respectively.

– AP is a subset of all the predicates that can be built over the state variables. AP
always includes a special predicate end, which labels explicitly all absorbing states of
the model (for a state s ∈ S, we say that s |= end iff ∀s′ ∈ S, a ∈ A •∆(s, a)(s′) 6=
0 ⇒ s = s′). In practice, the end predicate abstracts the conditions leading to the
end of the game (e.g., stop condition for the execution of the system).

– r is a reward structure labeling states with an associated cost or benefit. In the context
of this chapter we assume a reward structure encoding utility. Specifically, the reward
of an arbitrary game state s is defined as:

r(s) =

q∑
i=1

wi · ui(vsi )

where ui is the utility function for quality dimension i ∈ {1, . . . , q},wi ∈ [0, 1] is the
weight assigned to the utility of dimension i, and vsi denotes the value that quantifies
quality attribute i in state s.

The state space and behaviors of the game are generated by performing the alphabetized
parallel composition of a set of stochastic processes under the control of the system and
environment players in the game (i.e., processes synchronize only on actions appearing
in more than one process):

System Player The self-adaptive system (player sys) controls the choices made by
two different processes:

– The controller, which corresponds to a specification of the behavior followed by the
adaptation layer of the self-adaptive system, and can trigger the execution of tactics



10 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

upon the target system under adaptation. The set of actions available to the controller
processAsys corresponds to the set of available tactics in the adaptation model. Each
of these actions a ∈ Asys is encoded in a command of the form:6

[a] Ca ∧ ¬end ∧ t = sys→ t′ = env

Where the guard includes: (i) the conjunction of architectural constraints that limit
the applicability of tactic a (abstracted by Ca, e.g., a new server cannot be activated
if all of them are already active), (ii) a predicate ¬end to avoid expanding the state
space beyond the stop condition for the game, and (iii) a predicate to constrain the
execution of actions of player sys to states s ∈ Ssys (control of player turns is made
explicit by a variable t that can take a value associated with any of the two players).

Note that in the most general case, all the local choices regarding the execution of
controller actions are specified nondeterministically in the process, since this will
enable the unfolding of all the potential adaptation executions when performing the
parallel composition of the different processes in the model. However, the behavior
of the controller can be further constrained to represent more specific instances of
adaptation logic (e.g., as expressed in Stitch strategies) by including additional ele-
ments in the specification of the controller process. We illustrate both cases in the
applications described in Section 4.

– The target system, whose set of available actions is also Asys. Action executions in
the target system synchronize with those in the controller process on the same action
names. In this case, each action can be encoded in one or more commands of the
form:

[a] prea → p1a : post1a + . . .+ pna : postna
. . .

Hence, a specific action in the controller can synchronize with any of the alternative
executions of the same action in the target system. This models the different execu-
tion instances that the same tactic can have upon the target system (e.g., when the
controller enlists a server, the target system can activate any of the alternative avail-
able servers). Each one of these commands is guarded by the precondition of a tactic’s
execution instance, denoted by prea (e.g., a specific server needs to be disabled in
order to be enlisted). Moreover, the execution of a command can result in a number
of alternative updates on state variables (along with their assigned probabilities pia)
that correspond to the different probabilistic outcomes of a given tactic execution
instance, denoted by postia (e.g., the activation of a specific server can result in a
successful boot with probability p, and fail with probability 1− p).

6 We illustrate our approach to modeling the SMG using the syntax of the PRISM language [32]
for Markov Decision Processes (MDPs), which are encoded as a set of commands of the form:

[action] guard→ p1 : u1+ . . . + pn : un

Where guard is a predicate over variables in the model. Each update ui describes a transi-
tion that the process can make (by executing action) if the guard is true. An update is specified
by giving the new values of the variables, and has an assigned probability pi ∈ [0, 1]. Multiple
commands with overlapping guards (and commonly, including a single update of unspecified
probability) introduce local nondeterminism.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 11

Environment Player The environment (player env) controls one or more stochastic
processes that model potential disturbances in the execution context out of the system’s
control such as network latency, or workload fluctuations. Each environment process
is specified as a set of commands with asynchronous actions a ∈ Aenv , and, similarly
to the controller process, its local choices are specified nondeterministically to allow
a broad range of environment behaviors within its possibilities. Each one of the com-
mands follows the pattern:

[a] Cea ∧ ¬end ∧ t = env → p1a : post1a ∧ t′ = sys+ . . .+ pna : postna ∧ t′ = sys

Where Cea abstracts the set of environment constraints for the execution of action a
(e.g., a threshold for the maximum latency that can be introduced in the network), and
¬end prevents the generation of further states for the game. The command includes
one or more updates, along with their associated probabilities. Each alternative update
corresponds to one probabilistic outcome of the execution of a (postia), and yields the
turn to the system player.

3.2 Strategy Synthesis

Consists of generating a memoryless, deterministic strategy in G for player sys that
optimizes its objective function. The specification of the objective for the synthesis
of such strategy is given as a rPATL property that uses the operators P./q or Rr

./x to
optimize probabilities or rewards, respectively.

– Probability-based properties are useful to maximize the probability of satisfying a
given property (or conversely, minimize the probability of property violation). We
consider properties encoded following the pattern:

〈〈sys〉〉P./∈{max=?,min=?}[F φ]

An example of such property would be 〈〈sys〉〉Pmax=?[F success], meaning “value
of the maximum probability to reach a success state that the system player can guar-
antee, regardless of the strategy followed by the environment.”

– Reward-based properties can help to maximize the benefit obtained from operating
the system (e.g., in terms of utility), or minimize some cost (e.g., minimize the time
to achieve a particular outcome when adapting the system). We consider properties
encoded using the pattern:

〈〈sys〉〉Rr./∈{max=?,min=?}[F
? φ]

In the context of our game specifications, the above pattern enables the quantification
of the maximum/minimum accrued reward r along paths leading to states satisfying
φ that can be guaranteed by the system player, independently of the strategy followed
by the environment. Examples of such properties are 〈〈sys〉〉Rutility

max=?[F
c empty batt]

(“value of the maximum accrued utility reward that the system can guarantee before
the full depletion of the battery, regardless of the strategy followed by the environ-
ment”), or 〈〈sys〉〉Rtime

min=?[F
c rt < MAX RT] (“value of the minimum time that the

system can guarantee to reach an acceptable performance level in which response
time rt is below a threshold MAX RT, regardless of the strategy followed by the envi-
ronment”).



12 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

In the next section, we illustrate our approach by describing how the checking of
rPATL properties on SMG models can support the analysis of self-adaptive behavior in
different contexts.

4 Applications

In this section, we first illustrate how to instance our approach in the context of self-
protecting systems, comparing how different variants of system defense mechanisms
perform in an environment including attackers. Second, we describe an application of
SMG analysis to systematically reason about the involvement of humans in the execu-
tion of adaptations in the context of an industrial middleware used to monitor energy
production plants.

Our formal models for analyzing self-protecting systems and human-in-the-loop
adaptation are implemented in PRISM-games [10], an extension of the probabilistic
model-checker PRISM [32] for modeling and analyzing SMGs.

4.1 Self-Protecting Systems

Probabilistic model checking of SMGs can be a powerful tool applied in the context of
self-protecting systems [39]. In this context, the interplay between a defending system
and a potentially hostile environment including attackers can be modeled as competing
players in a SMG. In this section, we illustrate how model checking of SMGs can
be used to model variants of self-protecting systems to compare their effectiveness.
Concretely, we compare a generic version of Moving Target Defense (MTD) [36] with
the use of self-adapting software architectures [40].

The fundamental premise behind MTD is to create a dynamic and shifting system,
which is more difficult to attack than a static system. To be considered an MTD system,
a system needs to shift the different vectors along which it could potentially be attacked.
Such a collection of vectors is often termed an attack surface, and changing the surface
in different ways as the system runs makes an attack more difficult because the surface
is not fixed. The main motivation behind an MTD system is to significantly increase the
cost to adversaries attacking it, while avoiding creating a higher cost to the defender.

In contrast, self-adapting software architectures tackle in a different way the self-
protection of software systems by applying specific strategies to increase the complexity
of the system, decrease the potential attack surface, or aid in the detection of attacks [37,
40]. In terms of MTD, self-adaptive systems apply approaches at the architectural or
enterprise level, meaning that security can be reasoned about in the context of other
qualities and broader business concerns.

The results at the end of this section demonstrate the impact of shifting self-protecting
mechanisms from working in response to existing stimulus (reactive) to acting in prepa-
ration for potential perceived threats based on predictions about the environment (proac-
tive). We consider in our study three variants of self-protection:

– Uninformed-Proactive. The defending system adapts proactively with a fixed time
frequency based on an internal model of the environment (i.e., it does not factor



Analyzing Self-adaptation Via Model Checking of Stochastic Games 13

in sensed information about the environment in decision making regarding when or
which tactics should be performed).

– Predictive-Proactive. The system adapts proactively, but factoring in information
sensed from the environment, as well as predictions about the environment’s future
behavior (e.g., trend analysis, or seasonal information).

– Reactive. The defending system adapts reactively, executing tactics based on infor-
mation sensed from the environment (e.g., after a number of detected probing events
that can increase the amount of information that a potential attacker might have avail-
able, thereby increasing its chances of carrying out a successful attack).

Game description Our formal model for analyzing self-protecting systems is played in
turns by two players that are in control of the behavior of the environment (including an
attacker), and the defending system, respectively. In this game, the environment’s goal
is compromising the defending system by carrying out an attack on it. The probability
of success of the attack is directly proportional to the amount of information that the at-
tacker has successfully gathered about the system through subsequent probing attempts
during the game. On the other hand, the goal of the defending system is thwarting the
attacks by adapting the system. The behavior of the system includes a single, abstract
adaptation tactic that has the effect of invalidating the information that the attacker has
collected about the system up to the point in which the system adapts. Probing, attack-
ing, and adapting are actions that incur costs in terms of consumed resources, both on
the attacker’s and the defending system’s sides.

– System Player. The behavior of the defending system is parameterized by the con-
stants shown in Table 2 (note that MAX THREAT LEVEL and THREAT SENSITIVITY
are relevant only to the reactive game variant). During its turn, the system can:
• Yield the turn to the environment player without executing any actions.
• Adapt, resulting in the (partial) invalidation of the information collected by the at-
tacker. The adaptation of the system can only be executed if the following conditions
are satisfied:
∗ There must be enough available system resources to carry out the adaptation

(ADAPTATION COST).
∗ The perceived threat level must be above the threshold (THREAT SENSITIVITY).

This condition applies only in the reactive variant of the model (the value of the
threshold is always set to zero in proactive variants).

∗ The system should be able to adapt at the current time. This applies only for the
uninformed proactive variant of the model, in which the system is allowed to
adapt only with a fixed frequency (ADAPT PERIOD).

Once the adaptation commands executes, it carries out a reduction in the amount
of information collected by the attacker directly proportional to the value set in the
parameter ADAPTATION EFFECTIVENESS. In the reactive version of the system,
the level of perceived threat is also reduced in the same proportion.

– Environment Player. The behavior is parameterized by the constants shown in Ta-
ble 3. During its turn, the environment player can either:



14 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

Name Game
variant

Description

MAX SYSTEM RES All Maximum amount of available system resources.
ADAPTATION COST All Amount of resources consumed each time the sys-

tem adapts.
ADAPTATION EFFECTIVENESS All Probability of invalidating the information that the

attacker ha gathered about the system.
MAX THREAT LEVEL Reactive Maximum level of threat as perceived by the de-

fending system.
THREAT SENSITIVITY Reactive Degree of reactiveness of the defending system

regarding threat detection (e.g., it is the mini-
mum threshold in perceived threat level required
to adapt, where threat level is increased by exter-
nal events such as attacks or probes).

Table 2. Constants parameterizing the behavior of the system player.

• Probe the system if there are enough resources available for it. There are two prob-
abilistic outcomes for the probing action: (i) the probe succeeds with probability
P PROBE SUCCESS, incrementing the amount of information available to the at-
tacker, as well as the threat level perceived by the system, or (ii) the probe fails with
probability 1-P PROBE SUCCESS, incrementing only the threat level perceived by
the system.
• Attack the system if there are enough resources available for it. The possible out-
comes of the attack are: (i) the attack succeeds with probability P ATTACK SUCC-
ESS, and (ii) the attack fails with probability 1-P ATTACK SUCCESS, raising the
value of the threat level perceived by the system.
• Yield the turn to the system player without executing any actions.

Name Description
MAX ATTACKER RES Maximum amount of resources available to the attacker.
PROBE COST Amount of resources consumed when probing the system.
ATTACK COST Amount of resources consumed when attacking the system.
PROBE THREAT DELTA Increment in perceived threat level caused by a probe on the sys-

tem.
ATTACK THREAT DELTA Increment in perceived threat level caused by an attack on the sys-

tem.
PROBE INFO GAIN Amount of information obtained from successfully probing the

system.
P PROBE SUCCESS Probability that a probe on the system will successfully obtain use-

ful information for the attacker.
Table 3. Constants parameterizing the behavior of the environment player.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 15

Analysis Results. To compare the different variants of self-protecting mechanisms, we
carried out a set of experiments in which we checked the minimum probability of com-
promising the system that each of the defense variants could guarantee, independently
of the strategy followed by the environment/attacker. This corresponds to quantifying
the rPATL property:

PComp , 〈〈sys〉〉Pmin=?[F compromised]

where compromised is a predicate that encodes the occurrence of a successful attack
event in the game.

We instanced all the variants of the game model with the set of parameters values
displayed in Table 4.1, exploring how PComp evolved throughout the range of values
[5, 50] for available system resources, with the rest of the parameter values fixed.

System Environment/Attacker
MAX SYSTEM RES [5,50] MAX ATTACKER RES 5
ADAPTATION COST 1 PROBE COST 0

ADAPTATION EFFECTIVENESS 1 ATTACK COST 1
MAX THREAT LEVEL 5 ATTACK THREAT DELTA 2

PROBE THREAT DELTA 1
PROBE INFO GAIN 1

P PROBE SUCCESS 0.8
Table 4. General parameter values for model instantiation.

Specifically, we carried out two experiments:

– Comparison of uninformed vs. predictive variants of proactive adaptation. Figure 2
shows a comparison of the maximum probability that the attacker has of compromis-
ing the system for the two variants that implement proactive defense. The uninformed
variant adapts with the maximum possible frequency allowed by the available amount
of resources to the system (e.g., if the amount of available resources is 5, and the time
frame defined for the game is 50, the system will adapt every 10 time units. The re-
sults show that given the same amount of system resources, the predictive variant
always performs better than uninformed adaptation.7 Moreover, while the predictive
variant progressively and smoothly reduces the probability of the attacker compro-
mising the system, the uninformed one is more uneven, presenting different intervals
during which the addition of system resources does not make any difference concern-
ing the probability of the system being compromised (e.g., the probability does not
change for the uninformed variant during the interval [25, 49]).

– Comparison of predictive proactive adaptation vs. reactive adaptation. Figure 3
shows PComp for the predictive variant of MTD, comparing it with reactive adap-
tation variants that have different threat sensitivity levels. As expected, predictive
proactive adaptation always performs better than the different reactive variants, since
the solution space of reactive adaptation is always a subset of the solutions available
to predictive proactive adaptation. In particular, it can be observed how increasing
levels of sensitivity (i.e., lower values of threshold THREAT SENSITIVITY) yield in-
creasingly better results.

7 Our experiments assume that the predictive variant has access to a perfect prediction of the
future evolution of the environment.



16 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

Fig. 2. Probability of compromising the system in proactive adaptation: uninformed vs. predictive.

Fig. 3. Probability of compromising the system in proactive vs. reactive adaptation.

4.2 Latency-aware Proactive Adaptation

When planning how to adapt, self-adaptive approaches tend to make simplifying as-
sumptions about the properties of adaptation, such as ignoring the time it takes for an
adaptation tactic to cause its intended effect. Different adaptation tactics take different
amounts of time until their effects are produced. For example, consider two tactics to
deal with an increase in the load of a system: reducing the fidelity of the results (e.g.,
less resolution, fewer elements, etc.), and adding a computer to share the load. Adapting
the system to produce results with less fidelity may be achieved quickly if it can be done
by changing a simple setting in a component, whereas powering up an additional com-
puter to share the load may take some time. We refer to the time it takes since a tactic
is started until its effect is observed as tactic latency. Current approaches to decide how
to self-adapt do not take the latency of adaptation tactics into account when deciding
what tactic to enact. For proactive adaptation, considering tactic latency is necessary so
that the adaptation can be started with the sufficient lead time to be ready in time.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 17

In this section, we show how SMG analysis can help to mitigate the uncertainty
derived from simplifying assumptions by enabling the comparison of adaptation alter-
natives that consider tactic latency information for proactive adaptation with those that
are latency-agnostic.

Game Description. We model our game for analysis of latency-aware adaptation
based on Znn.com [14], a case study portraying a representative scenario for the appli-
cation of self-adaptation in software systems which has been extensively used to assess
different research advances in self-adaptive systems. Znn.com embodies the typical in-
frastructure for a news website, and has a three-tier architecture consisting of a set of
servers that provide contents from backend databases to clients via front-end presenta-
tion logic (Figure 4). The system uses a load balancer to balance requests across a pool
of replicated servers, the size of which can be adjusted according to service demand. A
set of clients makes stateless requests, and the servers deliver the requested contents.

c0

c1

c2

lbproxy

s0

s1

s2

s3

Fig. 4. Znn.com system architecture

The main objective for Znn.com is to provide content to customers within a reason-
able response time, while keeping the cost of the server pool within a certain operating
budget. It is considered that from time to time, due to highly popular events, Znn.com
experiences spikes in requests that it cannot serve adequately, even at maximum pool
size. To prevent losing customers, the system can maintain functionality at a reduced
level of fidelity by setting servers to return only textual content during such peak times,
instead of not providing service to some of its customers. Concretely, there are two main
quality objectives for the self-adaptation of the system: (i) performance, which depends
on request response time, server load, and network bandwidth, and (ii) cost, which is
associated with the number of active servers.

In Znn.com, when response time becomes too high, the system is able to increment
its server pool size if it is within budget to improve performance; or switch servers to
textual mode if the cost is near to budget limit.8

The game is played in turns by two players that are in control of the behavior of the
environment and the system, respectively. We assume that the frequency with which the
environment updates the value of non-controllable variables, and the system responds

8 We consider a simple version of Znn.com that adapts only by adjusting server pool size.



18 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

to these changes is defined by the constant TAU.9 Hence, two consecutive turns of the
same player are separated by a time period of duration TAU.

– Environment Player. The environment is in control of the evolution of time and other
variables of the execution context that are out of the system’s control (e.g., service
requests arriving at the system). During its turn, the environment sets the amount of
request arrivals for the current time period and updates the values of other environ-
ment variables (e.g., increasing the variable that keeps track of execution time).

– System Player. During its turn, the system can trigger the activation of a new server,
which will become effective only after the latency period of the tactic expires (mod-
eled using a counter that keeps track of time since the tactic was triggered). Alterna-
tively, the system can discharge a server (with no latency associated). Concretely, the
system can execute one of the following actions during its turn:
• Triggering the activation of a server. This action executes only if the current num-
ber of active servers has not reached the maximum allowed, and the counter that
controls tactic latency is inactive (meaning that there is not currently a server already
booting in the system). Triggering server activation sets the value of the counter to
the latency value for the tactic.
• Effective server activation, which executes only when the counter that controls
tactic latency reaches zero, incrementing the number of servers in the system, and
deactivating the counter.
• Deactivation of a server, which decrements the number of active servers. This ac-
tion is executed only if the current number of active servers is greater than the min-
imum allowed and the counter for server activation is not active.
• Yield the turn to the environment player without executing any actions (decreasing
the value of the latency counter if it is active).

In addition, the system updates during its turn the value of the response time ac-
cording to the request arrivals placed by the environment player during the current
time period and the number of active servers (computed using an M/M/c queuing
model [16]).

The objective of the system player in the game is maximizing the accrued utility
during execution. To represent utility, we employ a reward structure that maps game
states to a single instantaneous utility value computed according to a set of utility func-
tions and preferences (i.e., weights). Specifically, we consider two functions that map
the response time and the number of active servers in the system to performance and
cost utility, respectively.

In latency-aware adaptation, the reward structure rIU encoded in the game employs
the real value of response time and number of servers during the tactic latency period to
compute the value of instantaneous utility. However, in non-latency-aware adaptation,
the instantaneous utility expected by the algorithm during the latency period for acti-
vating a server does not match the real utility extracted for the system, since the new
server has not yet impacted the performance. In this case, we add to the model a new

9 TAU is the period of the self-adaptation control loop that includes the monitoring of the envi-
ronment, and the adaptation decision.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 19

reward structure rEIU in which the utility for performance during the latency period is
based on the response time that the system would have if the new server had completed
its activation.

Analysis Results. To compare latency-aware vs. non-latency-aware adaptation, we
make use of rPATL specifications that enable us to analyze (i) the maximum accrued
utility that adaptation can guarantee, independently of the behavior of the environment
(worst-case scenario).

– Latency-aware adaptation. We define the real guaranteed accrued utility (Urga) as
the maximum real instantaneous utility reward accumulated throughout execution
that the system player is able to guarantee, independently of the behavior of the en-
vironment player:

Urga , 〈〈sys〉〉RrIU
max=?[F

c t = MAX TIME]

This enables us to obtain the utility that an optimal self-adaptation algorithm would
be able to extract from the system, given the most adverse possible conditions of the
environment.

– Non-latency-aware Adaptation. In non-latency-aware adaptation, real utility does
not coincide with the expected utility that an arbitrary algorithm would employ for
decision-making, so analysis is carried out in two steps:
1. Compute the strategy that the adaptation algorithm would follow based on the
information it employs about expected utility. That strategy is computed based on
an rPATL specification that obtains the expected guaranteed accrued utility (Uega)
for the system player:

Uega , 〈〈sys〉〉RrEIU
max=?[F

c t = MAX TIME]
For the specification of this property we employ the expected utility reward rEIU
instead of the real utility reward rIU. Note that for latency-aware adaptation Uega =
Urga.

2. Verify the Urga under the generated strategy. We do this by building a product of
the existing game model and the strategy synthesized in the previous step, obtaining
a new game under which further properties can be verified. In our case, once we have
computed a strategy for the system player to maximize expected utility, we quantify
the reward for real utility in the new game in which the system player strategy has
already been fixed.

Table 5 compares the results for the utility extracted from the system by a latency-
aware vs. a non-latency-aware version of the system player, for two different models of
Znn.com that represent an execution of the system during 100 and 200s, respectively.
The models consider a pool of up to 4 servers, out of which 2 are initially active. The
period duration TAU is set to 10s, and for each version of the model, we compute the
results for three variants with different latencies for the activation of servers of up to
3*TAU s. The maximum number of arrivals that the environment can place per time
period is 20, whereas the time it takes the system to service every request is 1s.

We define the relative difference between the expected and the real guaranteed util-
ity as:



20 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

∆Uer = (1− Uega

Urga
)× 100

Moreover, we define the relative difference in real guaranteed utility between latency-
aware an non-latency aware adaptation as:

∆Urga = (1− Un
rga

U l
rga

)× 100,

where Unrga and U lrga designate the real guaranteed accrued utility for non-latency-
aware and latency-aware adaptation, respectively.

Table 5. SMG model checking results for Znn

MAX TIME Latency Latency-Aware Non-Latency-Aware ∆Urga

(s) (s) Uega Urga ∆Uer(%) Uega Urga ∆Uer(%) (%)
TAU 53.77 53.77 0 65.97 48.12 -27.05 10.5

100 2*TAU 49.35 49.35 0 64.3 42.1 -34.5 14.69
3* TAU 45.6 45.6 0 64.3 33.25 -48.2 27

TAU 110.02 110.02 0 127.25 95.9 -24.63 12.83
200 2*TAU 105.6 105.6 0 125.57 76.6 -38.99 27.46

3* TAU 101.17 101.17 0 123.9 66.15 -46.6 34.61

The results show that latency-aware adaptation outperforms in all cases its non-
latency-aware counterpart. Concretely, latency-aware adaptation is able to guarantee
an increment in utility extracted from the system, independently of the behavior of
the environment (∆Urga) that ranges between approximately 10 and 34%, increasing
progressively with higher tactic latencies. Regarding the delta between expected and
real utility that adaptation can guarantee, we can observe that ∆Uer is always zero in
the case of latency-aware adaptation, since expected and real utilities always have the
same value, whereas in the case of non-latency-aware adaptation there is a remarkable
decrement that ranges between 24 and 48%, also progressively increasing with higher
tactic latency.

4.3 Human-in-the-loop Adaptation

The different activities of the MAPE-K loop in some classes of systems (e.g., safety-
critical) and application domains can benefit from human involvement by: (i) receiving
information difficult to automatically monitor or analyze from humans acting as so-
phisticated sensors (e.g., indicating whether there is an ongoing anomalous situation),
(ii) incorporating human input into the decision-making process to provide better in-
sight about the best way of adapting the system, or (iii) employing humans as system-
level effectors to execute adaptations (e.g., in cases in which full automation is not
possible, or as a fallback mechanism).

However, the behavior of human participants is typically influenced by factors ex-
ternal to the system (e.g., training level, stress, fatigue) that determine their likelihood
of succeeding at carrying out a particular task, how long it will take, or even if they
are willing to perform it in the first place. Without consideration of these factors, it is
difficult to decide when to involve humans in adaptation, and in which way.

Answering these questions demands new approaches to systematically reason about
how the behavior of human participants, incorporated as integral system elements, af-



Analyzing Self-adaptation Via Model Checking of Stochastic Games 21

fects the outcome of adaptation. In this section, we illustrate how the explicit model-
ing of human factors in stochastic multiplayer games (SMGs) can be used to analyze
human-system-environment interactions to provide a better insight into the trade-offs
of involving humans in adaptation. In particular, we focus on the role of human partic-
ipants as actors (i.e., effectors) during the execution stage of adaptation, and illustrate
the approach in the context of DCAS (Data Acquisition and Control Service) [7], a
middleware from Critical Software that provides a reusable infrastructure to manage
the monitoring of highly populated networks of devices equipped with sensors.

Application 

Server

Database 

Server

Processor

Node

Processor

Node

Device

Device

Device

Device

Fig. 5. Architecture of a DCAS-based system.

The basic building blocks in a DCAS-based system (Figure 5) are: 10

– Devices are equipped with one or more sensors to obtain data from the application
domain (e.g., from wind towers, or solar panels). Each sensor has an associated data
stream from which data can be read. Each type of device has its particular character-
istics (e.g., data polling rate, or expected value ranges) specified in a device profile.

– Processor nodes pull data from the devices at a rate configured in the device profile,
and dispatch this data to the database server. Each processor node includes a set
of processes called Data Requester Processor Pollers (DRPPs or pollers, for short)
responsible for retrieving data from the devices. Communication between DRPPs
and devices is synchronous, so DRPPs remain blocked until devices respond to data
requests or a timeout expires. This is the main performance bottleneck of DCAS.

– Database server stores the data collected from devices by processor nodes.
– Application server is connected to the database server to obtain data, which can be

presented to the operators of the system or processed automatically by application
software. However, DCAS is application-agnostic, so the application server will not
be discussed in the remainder of this paper.

The main objective of DCAS is to collect data from the connected devices at a rate
as close as possible to the one configured in their device profiles, while making an
efficient use of the computational resources in the processor nodes. Specifically, the
primary concern in DCAS is providing service while maintaining acceptable levels of
performance, measured in terms of processed data requests per second (rps) inserted
in the database, while the secondary concern is optimizing the cost of operating the

10 We herein consider a simplified version of the DCAS architecture. Further details about DCAS
can be found in [7].



22 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

system, which is mapped to the number of active processor nodes (i.e., each active
processor node has a fixed operation cost per time unit).

In situations in which new devices are connected to the network at runtime and all
available resources in the set of active processor nodes are already being used, DCAS
includes a scale out mechanism aimed at maintaining an acceptable performance level
by dynamically activating new processor nodes, according to the demand determined
by the new system’s workload and operating conditions. Scale out can be performed in
two different ways:

– As a manual process carried out by a human operator. This is a slow and demand-
ing process, in which a new processor node must be manually deployed, and devices
re-attached across the different already active processor nodes, according to the par-
ticular situation.

– As an automated process that can be executed by adaptation logic residing in an
closed control loop. Although this process is faster than the manual version of scale
out and does not require any human intervention, it is less effective in terms of ex-
ploiting system resources, since only new devices can be attached to the new (pre-
deployed) processor nodes being activated (i.e., devices already attached to other
processor nodes cannot be re-attached, restricting the space of target configurations
that the system can adopt with respect to the manual variant of scale out).

Game Description. The game is played in turns by two players that are in control of
the behavior of the environment and a DCAS-based system, respectively. Concretely,
the system player controls of all the actions that belong to a human actor and the target
system, including the execution of adaptation tactics for manual and automatic scale
out. The objective of the system player is maximizing accrued utility obtained from
performance and cost during execution.

– Environment Player. Controls the evolution of variables in the execution context
that are out of the system’s control. For the sake of simplicity, we assume in this
case a neutral behavior of the environment that only keeps track of time, although
additional behavior controlling other elements (e.g., network delay) can be encoded
(please refer to Sections 4.2 and 4.1 for further details illustrating the modeling of
adversarial environment behavior).

– System Player. Models the cooperative behavior of the system and the human oper-
ator. It consists of two parts:
• Human model. Attributes of human actors that might affect interactions with the
system are captured in a model inspired by an opportunity-willingness-capability
(OWC) ontology described in the context of cyber-human systems [23]. Although a
single actor is modeled in our game, system descriptions can incorporate multiple
human actor types (e.g., human actor roles specialized in different tasks), each of
which can have multiple instances (e.g, operators with different levels of training in
a particular task). Attributes of human actor types can be categorized into:
∗ Opportunity. Captures the applicability conditions of the adaptation tactics that

can be executed by human actors upon the target system, as constraints imposed
on the human actor (e.g., by the physical context – is there an operator physi-
cally located on site?).



Analyzing Self-adaptation Via Model Checking of Stochastic Games 23

Example 1. We consider a tactic to have a human actor manually deploy a pro-
cessor node (addPN) when performing scale out in DCAS. Opportunity ele-
ments are OEaddPN = {L,B}, where L represents the operator’s location, and
B tells us whether the operator is busy doing something else:

· L.state ∈ {operator on location (ONL), operator off location (OFFL)}.
· B.state ∈ {operator busy (OB), operator not busy (ONB)}.

Using OEaddPN, we can define an opportunity function for the tactic f addPNO =
(L.state == ONL) · (B.state == ONB) that can be used to constrain its
applicability only to situations in which there is an operator on location who is
not busy.

∗ Willingness. Captures transient factors that might affect the disposition of the
operator to carry out a particular task (e.g., load, stamina, stress). Continuing
with our example, willingness elements in the case of the addPN tactic can be
defined as WEaddPN = {S}, where S.state ∈ [0, 10] represents the operator’s
stress level. A willingness function mapping willingness elements to a prob-
ability of tactic completion can be defined as f addPNW = prW (S.state), with
prW : S → [0, 1].

∗ Capability. Captures the likelihood of successfully carrying out a particular
task, which is determined by fixed attributes of the human actor, such as training
level. In our example, we define capability elements as CEaddPN = {T}, where
T represents the operator’s level of training (e.g., T.state ∈ [0, 1]). We define a
capability function that maps training level to a probability of successful tactic
performance as f addPNC = prC(T.state), with prC : T → [0, 1].

• Target System Behavior. Models the execution of the different tactics on the sys-
tem. During its turn, the system player can execute two actions per tactic available.
We focus on tactic addPN to illustrate how tactic execution is modeled:
∗ Tactic trigger happens when: (i) an operator is on location and not busy, (ii) the

number of active processor nodes is lower than the maximum available, and
(iii) the latency counter for the tactic is zero. As a consequence, the operator is
flagged as busy and the latency counter is activated.

∗ Tactic completion. When the tactic’s latency counter expires, the command can
either: (i) update variables for performance and active number of processor
nodes according to a successful activation of a processor node with probabil-
ity addPN wc prob (determined by the willingness and capability elements de-
fined in the human model), or (ii) fail to activate the node with probability 1-
addPN wc prob. In both cases, the latency counter is reset, and the busy status
of the operator is set to false.

In addition, the system player can choose not to execute any actions, just updating
any tactic active latency counters that have not reached their respective tactic latency
values. Note that the encoding used for the automatic scale out tactic (activatePN)
follows the same structure, but without any OWC elements encoded in the guards or
updates of the commands (activation of a processor node using this tactic is assumed
to be always successful).



24 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

• Adaptation Logic. The adaptation logic placed in the controller is modeled as
two alternative adaptation strategies 11 for scale out (scaleOutOp and scaleOut).
Actions in the specification of the strategies synchronize with the trigger actions on
the specification of the target system behavior on shared action names.
∗ scaleoutOp models the variant of the scale out mechanism that makes use of a

human actor by first triggering tactic addPN. Once an observation period for the
effects of the tactic has expired, the strategy falls back on automatic activation
by triggering the activatePN tactic if the activation of the new processor node
by the human operator has not been successful.

∗ scaleOut models the automatic scale out mechanism with a single command
that triggers the execution of tactic activatePN on the target system.

The game includes an encoding of utility functions and preferences for performance
and cost as a reward structure rGU that enables the quantification of instantaneous
utility in game states.

Analysis Results. We exploit our human-in-the-loop adaptation game model to deal
with the uncertainty derived from involving humans in adaptation, employing its anal-
ysis to determine: (i) the expected outcome of human involvement in adaptation, and
(ii) the conditions under which such involvement improves over fully automated adap-
tation.

– Strategy Utility. The expected utility value of an adaptation strategy (potentially
including non-automated tactics) is quantified by checking the reachability reward
property:

umau , 〈〈sys〉〉RrGU
max=?[F

c t=MAX TIME]

The property obtains the maximum accrued utility value (i.e., corresponding to re-
ward rGU) that the system player can achieve until the end of execution (t=MAX TIME).
Figure 6(a) depicts strategy utility analysis results for the different adaptation strate-
gies in a scale out DCAS scenario. In the figure, a discretized region of the state
space is projected over the dimensions that correspond to training and stress levels
of a human actor (with values in the range [0,1] and [0,10], respectively). Each point
on the mesh represents the maximum accrued utility that the system can achieve on
a DCAS SMG model instanced for a time frame [0,200].
If we focus on the curve described by values in the lowest stress level, the figure
shows how the use of strategy scaleOutOp attains values that go above 140 for maxi-
mum training, whereas values below 0.4 are highly penalized and barely yield utility.
Moreover, progressively higher stress levels reduce the probability of successful tac-
tic completion, flattening the curve to a point in which training does not make any
difference and the strategy yields no utility. On the contrary, the utility obtained by
the automated scaleOut strategy (represented by the plane in the figure) is always
constant since it is not affected by willingness or capability factors.

11 In this context we refer to adaptation strategies as described in Stitch [15]. These correspond
to decision trees in which branches are defined by means of condition-action-delay rules.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 25

0

2

4

6

8
10

0
0.2

0.4

0.6

0.8

1
100

120

140

Stre
ss lev

elTraining level

A
cc

ru
ed

ut
ili

ty

Avg. umau(Scaleout) = 112.75, Avg. umau(ScaleoutOp) = 114.66

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Stress level

Tr
ai

ni
ng

le
ve

l

s↑=ScaleOutOp (45.12%)
s↑=ScaleOut (54.88%)

0

2

4

6

8
10

0
0.2

0.4

0.6

0.8

1
100

120

140

Stre
ss lev

elTraining level

A
cc

ru
ed

ut
ili

ty

Avg. umau(s↑) = 118.17, Avg. ∆umau = +8.93

Fig. 6. Experimental results: (a) ScaleOut vs ScaleOutOp strategy utility (top left), (b) strategy
selection (top right), and (c) combined utility (bottom).

– Strategy Selection. Given a repertoire of adaptation strategies S, we can analyze their
expected outcome in a given situation by computing their expected accrued utility
according to the procedure described above. Based on this information, the different
strategies can be ranked to select the one that maximizes the expected outcome in
terms of utility. Hence the selected strategy s↑ can be determined according to:

s↑ , argmax
s∈S

umau(s)

where umau(s) is the value of property umau evaluated in a model instantiated with
the adaptation logic of strategy s.
Figure 6(b) shows the results of the analysis of strategy selection in DCAS scale out.
The states in which human involvement via strategy scaleOutOp is chosen (' 45%
of states) are represented in black, whereas states in which the fully automated strat-
egy scaleOut is selected (' 55%) are colored in white. The figure shows that human
involvement is only advisable in areas in which the operator has a stress level of 8
and below. Progressively higher stress levels make human involvement preferable
only when also progressively higher training levels exist, which is consistent with
maximizing the probability of successful adaptation tactic completion. In any case,
for training levels below 0.4, human actor participation is not selected even with zero



26 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

stress level (this is consistent with the function f addPNC that we define for the capabil-
ity elements of the human actor, which highly penalizes poorly trained operators).
Figure 6(c) shows the combined accrued utility mesh that results from the selection
process (i.e, every point in the mesh is computed as umau(s↑)). Note that the min-
imum accrued utility never goes below the achievable utility level of the automatic
approach, over which improvements are made in the areas in which the strategy in-
volving human actors is selected. The average improvement in the combined solution
corresponds to a percentual improvement of 7.94% over the automatic scale out ap-
proach, and 7.81% over the manual one.

5 Conclusions and Future Work

In this chapter, we have described an approach that enables developers to approximate
the behavioral envelope of a self-adaptive system by analyzing best- and worst-case
scenarios of alternative designs for self-adaptation mechanisms. The approach relies
on probabilistic model checking of stochastic multiplayer games (SMGs), and exploits
specifications that encode assumptions about the behavior of the environment, which
are used as constraints for the generated state-space.

The approach can accommodate different levels of detail in the specification of the
environment. On the one hand, rich specifications of environment assumptions can help
to reduce the game’s state-space and provide a better approximation of the system’s
behavioral envelope. On the other hand, an under-specified set of assumptions will re-
sult in a larger game state-space due to an over-approximation of the environment’s
behavior. However, one of the benefits of the approach is that the guarantees given with
respect to the satisfaction of the system’s objectives can still be relied upon with an
under-specified set of assumptions in worst-case scenario analysis. This stems from the
fact that the most adverse environment strategy in the over-approximation will always
represent a lower bound in the system’s guaranteed payoff (either in terms of probability
or reward) with respect to any strategies that can be synthesized for more constrained
versions of the environment’s behavior.

A second advantage of our approach is that it is purely declarative, enabling self-
adaptive system developers to obtain a preliminary understanding of adaptation behav-
ior without the need to have any specific adaptation algorithms or infrastructure in place.
This represents a reduced upfront investment in terms of effort when compared to other
sources of evidence, such as simulation or prototyping.

We have illustrated the versatility of the approach by showing how it can be used
to deal with the uncertainty associated with different sources in various contexts, such
as self-protecting systems (parameters over time), proactive latency-aware adaptation
(simplifying assumptions), and human-in-the-loop adaptation.

A current limitation of the approach is that its scalability is limited by PRISM-
games, which currently uses explicit-state data structures and is to the best of our knowl-
edge the only tool supporting model-checking of SMGs. This limitation can be miti-
gated in some cases by carefully choosing the level of abstraction and relevant aspects
of the system and environment in the model. Moreover, we expect that the maturation
of this technology will result in the development of symbolic SMG model checkers that
will improve scalability.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 27

Regarding future work, we plan to instantiate our adaptation analysis technique in
other contexts to deal with uncertainty in cyber-physical and decentralized systems. As
regards the application of the technique to human-in-the-loop adaptation, our current
models assume that actors and system are working in coalition to achieve goals. In fact,
the interaction may be more subtle than that; Eskins and Sanders point out that humans
may have their own motivations that run counter to policy [23]. To capture this subtlety,
we plan on extending the encoding of SMGs to model human actors as separate players.
Moreover, we will extend the human-in-the-loop instance of the approach to formally
model and analyze human involvement in other stages of MAPE-K, studying how to
best represent human-controlled tactic selection, and human-assisted knowledge acqui-
sition. Concerning latency-aware adaptation, we aim at exploring how tactic latency
information can be further exploited to attain better results both in proactive and reac-
tive adaptation (e.g., by parallelizing tactic executions). Finally, we also aim at refining
the approach to do runtime synthesis of proactive adaptation strategies.

6 Acknowledgements

This work is supported in part by awards N000141310401 and N000141310171 from
the Office of Naval Research, CNS-0834701 from the National Science Foundation, and
by the National Security Agency. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Office of Naval Research or the U.S. government. This
material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development
center. This material has been approved for public release and unlimited distribution.
(DM-0002084).

References

1. R. Alur et al. Alternating-time temporal logic. J. ACM, 49(5), 2002.
2. L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals for requirements-driven adaptation. In

Requirements Engineering Conference (RE), 2010 18th IEEE International, pages 125–134,
Sept 2010.

3. A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In FSTTCS, volume 1026 of LNCS. Springer, 1995.

4. V. A. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel. Controller synthesis:
from modelling to enactment. In D. Notkin, B. H. C. Cheng, and K. Pohl, editors, 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pages 1347–1350. IEEE / ACM, 2013.

5. R. Calinescu et al. Dynamic QoS Management and Optimization in Service-Based Systems.
IEEE Trans. Software Eng., 37(3), 2011.

6. R. Calinescu and M. Z. Kwiatkowska. Using Quantitative Analysis to Implement Autonomic
IT Systems. In ICSE, 2009.

7. J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. R. Schmerl, and R. Ventura.
Evolving an adaptive industrial software system to use architecture-based self-adaptation.



28 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

In M. Litoiu and J. Mylopoulos, editors, Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. SEAMS 2013, San Fran-
cisco, CA, USA, May 20-21, 2013, pages 13–22. IEEE / ACM, 2013.

8. J. Cámara, G. A. Moreno, and D. Garlan. Stochastic game analysis and latency awareness
for proactive self-adaptation. In G. Engels and N. Bencomo, editors, 9th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014,
Proceedings, Hyderabad, India, June 2-3, 2014, pages 155–164. ACM, 2014.

9. J. Cámara, G. A. Moreno, and D. Garlan. Reasoning about human participation in self-
adaptive systems. In B. Schmerl and P. Inverardi, editors, 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Proceedings,
Florence, Italy, May 18-19, 2015. ACM, 2015. To appear.

10. T. Chen et al. PRISM-games: A model checker for stochastic multi-player games. In TACAS,
volume 7795 of LNCS. Springer, 2013.

11. T. Chen, V. Forejt, M. Z. Kwiatkowska, D. Parker, and A. Simaitis. Automatic verification
of competitive stochastic systems. Formal Methods in System Design, 43(1):61–92, 2013.

12. T. Chen and J. Lu. Probabilistic alternating-time temporal logic and model checking algo-
rithm. In FSKD, volume 2, 2007.

13. B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. D. M. Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Software
engineering for self-adaptive systems: A research roadmap. In B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee, editors, Software Engineering for Self-Adaptive Sys-
tems, volume 5525 of Lecture Notes in Computer Science, pages 1–26. Springer, 2009.

14. S. Cheng, D. Garlan, and B. R. Schmerl. Evaluating the effectiveness of the rainbow self-
adaptive system. In 2009 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2009, Vancouver, BC, Canada, May 18-19, 2009, pages 132–
141. IEEE, 2009.

15. S.-W. Cheng and D. Garlan. Stitch: A language for architecture-based self-adaptation. Jour-
nal of Systems and Software, 85(12), 2012.

16. R. Chiulli. Quantitative Analysis: An Introduction. Automation and production systems.
Taylor & Francis, 1999.

17. A. Elkhodary, N. Esfahani, and S. Malek. Fusion: A framework for engineering self-tuning
self-adaptive software systems. In Proceedings of the Eighteenth ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE ’10, pages 7–16, New York,
NY, USA, 2010. ACM.

18. M. Emami-Taba, M. Amoui, and L. Tahvildari. Strategy-aware mitigation using markov
games for dynamic application-layer attacks. In High Assurance Systems Engineering
(HASE), 2015 IEEE 16th International Symposium on, pages 134–141, Jan 2015.

19. I. Epifani et al. Model Evolution by Run-Time Parameter Adaptation. In ICSE. IEEE CS,
2009.

20. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-time pa-
rameter adaptation. In J. M. Atlee and P. Inverardi, editors, 31st International Conference
on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings,
pages 111–121. IEEE, 2009.

21. N. Esfahani, E. Kouroshfar, and S. Malek. Taming uncertainty in self-adaptive software. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages 234–244. ACM, 2011.

22. N. Esfahani and S. Malek. Uncertainty in self-adaptive software systems. In R. de Lemos,
H. Giese, H. Muller, and M. Shaw, editors, Software Engineering for Self-Adaptive Systems
II, volume 7475 of Lecture Notes in Computer Science, pages 214–238. Springer, 2013.



Analyzing Self-adaptation Via Model Checking of Stochastic Games 29

23. D. Eskins and W. H. Sanders. The multiple-asymmetric-utility system model: A framework
for modeling cyber-human systems. In Eighth International Conference on Quantitative
Evaluation of Systems, QEST 2011, Aachen, Germany, 5-8 September, 2011, pages 233–242.
IEEE Computer Society, 2011.

24. V. Forejt et al. Automated verification techniques for probabilistic systems. In SFM, volume
6659 of LNCS. Springer, 2011.

25. D. Garlan, S. Cheng, A. Huang, B. R. Schmerl, and P. Steenkiste. Rainbow: Architecture-
based self-adaptation with reusable infrastructure. IEEE Computer, 37(10):46–54, 2004.

26. R. P. Goldman, D. J. Musliner, and K. D. Krebsbach. Managing online self-adaptation in
real-time environments. In Self-Adaptive Software: Applications, volume 2614 of LNCS,
pages 6–23. Springer, 2003.

27. W. V. D. Hoek and M. Wooldridge. Model checking cooperation, knowledge, and time - a
case study. In Research in Economics, 2003.

28. M. C. Huebscher and J. A. McCann. A survey of autonomic computing - degrees, models,
and applications. ACM Comput. Surv., 40(3), 2008.

29. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36, 2003.
30. A. N. Kolmogorov. Foundations of the Theory of Probability. Chelsea, New York, 1956.
31. S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair exchange

protocols. In CONCUR 2001, volume 2154 of LNCS. Springer, 2001.
32. M. Kwiatkowska et al. PRISM 4.0: Verification of probabilistic real-time systems. In Proc.

of CAV’11, volume 6806 of LNCS. Springer, 2011.
33. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of proba-

bilistic timed automata. In J. Ouaknine and F. W. Vaandrager, editors, Formal Modeling
and Analysis of Timed Systems, volume 5813 of Lecture Notes in Computer Science, pages
212–227. Springer Berlin Heidelberg, 2009.

34. W. Li, D. Sadigh, S. Sastry, and S. Seshia. Synthesis for human-in-the-loop control systems.
In E. Abraham and K. Havelund, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 8413 of Lecture Notes in Computer Science, pages 470–484.
Springer Berlin Heidelberg, 2014.

35. R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge,
MA, 1991.

36. H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow, and W. Streilein.
Survey of cyber moving target techniques. Technical Report 1166, Lincoln Laboratory, Mas-
sachusetts Institute of Technology, 2013.

37. B. Schmerl, J. Camara, J. Gennari, D. Garlan, P. Casanova, G. A. Moreno, T. J. Glazier, and
J. M. Barnes. Architecture-Based Self-Protection: Composing and Reasoning about Denial-
of-Service Mitigations. In Symposium and Bootcamp on the Science of Security (HotSoS),
Raleigh, USA, 8-9 April 2014.

38. J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J. Bruel. Relax: Incorporating uncertainty
into the specification of self-adaptive systems. In Requirements Engineering Conference,
2009. RE ’09. 17th IEEE International, pages 79–88, Aug 2009.

39. E. Yuan, N. Esfahani, and S. Malek. A systematic survey of self-protecting software systems.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 8(4):17, 2014.

40. E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari. Architecture-based self-protecting
software systems. In Proceedings of the Ninth International ACM Sigsoft Conference on the
Quality of Software Architectures (QoSA 2013), 17-21 June 2013.

41. L. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353, 1965.
42. L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100,

Supplement 1(0):9 – 34, 1999.



30 Javier Cámara, David Garlan, Gabriel A. Moreno, Bradley Schmerl

43. X. Zhang and C. Lung. Improving software performance and reliability with an architecture-
based self-adaptive framework. In S. I. Ahamed, D. Bae, S. D. Cha, C. K. Chang, R. Subra-
manyan, E. Wong, and H. Yang, editors, Proceedings of the 34th Annual IEEE International
Computer Software and Applications Conference, COMPSAC 2010, Seoul, Korea, 19-23 July
2010, pages 72–81. IEEE Computer Society, 2010.


