Task Planning of Cyber-Human Systems

Roykrong Sukkerd! ™) David Garlan', and Reid Simmons?

! Institute for Software Research, School of Computer Science Carnegie Mellon
University, Pittsburgh, PA, USA
{rsukkerd,garlan}@cs.cmu.edu

2 Robotics Institute, School of Computer Science Carnegie Mellon University,

Pittsburgh, PA, USA
reids@cs.cmu.edu

Abstract. Internet of Things (IoT) allows for cyber-physical applica-
tions to be created and composed to provide intelligent support or
automation of end-user tasks. For many of such tasks, human partici-
pation is crucial to the success and the quality of the tasks. The cyber
systems should proactively request help from the humans to accomplish
the tasks when needed. However, the outcome of such system-human
synergy may be affected by factors external to the systems. Failure to
consider those factors when involving human participants in the tasks
may result in suboptimal performance and negative experience on the
humans. In this paper, we propose an approach for automated genera-
tion of control strategies of cyber-human systems. We investigate how
explicit modeling of human participant can be used in automated plan-
ning to generate cooperative strategy of human and system to achieve a
given task, by means of which best and appropriately utilize the human.
Specifically, our approach consists of: (1) a formal framework for mod-
eling cooperation between cyber system and human, and (2) a formal-
ization of system-human cooperative task planning as strategy synthesis
of stochastic multiplayer game. We illustrate our approach through an
example of indoor air quality control in smart homes.

Keywords: Cyber-human systems - Planning - Stochastic multiplayer
games

1 Introduction

Computing has become increasingly ubiquitous and integrated into our daily
lives through interconnected devices and services inhabiting in our living envi-
ronments. The advancement of this ubiquitous computing paradigm enables us
to automate processes to support our everyday living and activities, such as effi-
cient home heating/cooling, security and emergency response, and navigation.
We refer to these processes as tasks.

This work is supported by Bosch Research and Technology Center North America.

© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 293-309, 2015.
DOI: 10.1007/978-3-319-22969-0_21

294 R. Sukkerd et al.

Cyber and robotic systems that can carry out our everyday tasks in a fully
autonomous way are still far from reality. In many cases, human involvement is
crucial to the success and the quality of tasks. Some tasks may require manual
steps — humans may need to act, provide information, or make decisions for the
cyber or robotic systems responsible for those tasks. For example, an emergency
response system requires human responders to provide first aid to the patients.
And even when human involvement is not strictly required, many tasks can
be performed better with cooperation from humans. For example, a navigation
system may obtain information about occurring events around the area from the
locals to plan a better tour for the visitors.

It is important, therefore, to consider cyber-human system (CHS) paradigm,
in which cyber systems in smart environments cooperate with humans to carry
out tasks. Such cyber-human systems raise a number of challenges for soft-
ware and system engineers, who must decide when and how humans should
be involved, how to deal with the uncertainty inherent in having humans in the
loop, how to provide assurances that such systems will not go awry, and how to
take into consideration variability of human capability and motivation for task
participation. Moreover, ideally engineered solutions should be flexible enough to
accommodate at low cost the rapidly changing contexts of smart environments
in which mobile users move in and out of spaces, new tasks are introduced,
and new devices, technologies, appliances and services may become available at
any time.

Unfortunately, today’s practice fails to adequately address these challenges.
Software for smart environments tends to be written as handcrafted programs
for particular environments by specialized engineers, making it costly to create
and even more costly to upgrade. Code tends to involve complex low-level logic
encoded as if-then-else statements, which is brittle, hard to maintain, and diffi-
cult to validate. Policies for coordination between automated and non-automated
functions tend to be wired in, and are largely context independent. In cases where
systems adapt to context (such as the Nest smart thermostat), they tend to be
isolated devices or subsystems, and have limited ability to explicitly leverage
human capabilities.

What is missing is a way to describe tasks and develop strategies for accom-
plishing them that (a) provides flexibility by accommodating varying contexts,
human factors, and changing technology, (b) accounts for the inherent uncer-
tainty in human-in-the-loop systems, (c) can be analyzed formally to provide
probabilistic guarantees about the expected quality of a plan under various con-
ditions.

To this end, we explore the use of automated planning to design coopera-
tion between cyber systems and humans in performing tasks, in which human
participants have the role of actuators. We investigate how explicit modeling of
human participants can be used in planning to generate cooperative strategies
which best and appropriately utilize the humans. Specifically, our contributions
are: (1) a formal framework for modeling cooperation between cyber systems
and humans under uncertainty, with an explicit modeling of human participants

Task Planning of Cyber-Human Systems 295

based on opportunity-willingness-capabiity (OWC) ontology, and (2) a formal-
ization of cyber system-human cooperative task planning as strategy synthesis
of stochastic multiplayer game.

This paper is organized as follows. Section 2 provides background on SMG.
Section 3 describes the running example. Section4 presents the approach to
model system-human delegation. Section 5 presents the formalization of system-
human cooperative task planning as strategy synthesis of SMG. Section 6 shows
the analysis results from the running example. Section 7 discusses the related
work and Sect. 8 concludes the paper.

2 Preliminaries

This section introduces our notion of tasks, and background on stochastic multi-
player games (SMGs) and strategy synthesis of SMGs — the technique on which
we build our approach.

2.1 Task Representation

We consider a task to consist of a reachability goal and a utility function, denoted
as T = (goal,r). goal is a predicate describing the end condition of T'. This
end condition may be the desired condition that 7' must achieve, or it may
simply indicate the end of T’s duration. r : S — Ry is the utility function that
maps the states of the execution context to their associated utility values. This
utility function captures the qualities of concern of T and allows for trade-offs
among multiple potentially conflicting objectives over those qualities. The utility
function is to be optimized in the task planning.

2.2 Stochastic Multiplayer Games

A turn-based stochastic multiplayer game (SMG) is a tuple G =
(IT,S, A, (Si)icm, A, AP, x), where: IT is a finite set of players; S is a finite,
non-empty set of states; A is a finite, non-empty set of actions; (S;)icm is a
partition of S; A: S x A — D(S) is a partial transition function; AP is a finite
set of atomic propositions; and x : S — 24% is a labeling function.

In each state s € S of the SMG G, the set of available actions is denoted by
A(s) :={a € A|A(s,a) #L}. We assume that A(s) # 0 for all s. The choice of
action to take in s is under the control of exactly one player, namely the player
i € II for which s € S;. Once action a € A(s) is selected, the successor state is
chosen according to the probability distribution A(s,a).

A path of SMG G is an (in)finite sequence A = spagsias... such that Vj €
N-a; € A(s;) A A(sj,a;)(sj+1) > 0. £2& denotes the set of finite paths in G.

A strategy for player ¢ € IT in G is a function o; : (SA)*S; — D(A) which,
for each path \-s € Qg where s € S;, selects a probability distribution o;(\ - s)
over A(s).

296 R. Sukkerd et al.

2.3 Strategy Synthesis of SMGs

Reasoning about strategies is a fundamental aspect of model checking SMGs,
which enables checking for the existence of a strategy that is able to optimize
an objective expressed as a quantitative property in a logic called rPATL, which
extends ATL, a logic extensively used to reason about the ability of a set of
players to collectively achieve a particular goal. Properties written in rPATL
can state that a coalition of players has a strategy which can ensure that the
probability of an event’s occurrence or an expected reward measure meet some
threshold. rPATL is a CTL-style branching-time temporal logic that incorpo-
rates the coalition operator ({(C)) of ATL, combining it with the probabilistic
operator P, and path formulae from PCTL. Moreover, rPATL includes a gen-
eralization of the reward operator R, ([1,2]) to reason about goals related to
rewards. An example of typical usage combining coalition and reward operators
is (({1,2}))RL;[F¢] meaning that “players 1 and 2 have a strategy to ensure
that the reward r accrued along paths leading to states satisfying state formula
¢ is at least 5, regardless of the strategies of other players.” Moreover, extended
versions of the rPATL reward operator ((C))R_.[F'¢] and ((C))R! .. _,[F¢],
enable the quantification of the maximum and minimum accrued reward r along
paths that lead to states satisfying ¢ that can be guaranteed by players in coali-
tion C, independently of the strategies followed by the rest of players. Model
checking of rPATL properties supports optimal strategy synthesis for a given

property.

3 Running Example

Air quality control system (AQC-sys) periodically monitors the air quality in
the home — a measure of how clean or polluted the air is, as indicated by the
index ranging bad, moderate, and good — and controls it to be at a desirable level.
AQC-sys can clean the air by running an electric air purifier. Alternatively, if
the condition of the outdoor climate is favorable (e.g., no pollution and the
temperature is desirable), the indoor air quality can be improved by means of
wind ventilation through open windows. However, AQC-sys does not have a
mechanism to directly control the windows in the home; therefore, it has to
request the occupant to open the windows for ventilation.
There are 3 concerns regarding this task:

1. Air quality — When the home is occupied, higher air quality is always preferred
to lower air quality. When the home is vacant, the air qualities moderate and
good are equally desirable, and are preferred to the air quality bad.

2. Energy consumption — Running air purifier consumes energy, while wind ven-
tilation does not. AQC-sys should be energy-efficient.

3. Human annoyance — The occupant may get annoyed if AQC-sys requests her
to open the windows when she is not willing to do so (e.g., the occupant
is busy with other activity). AQC-sys should avoid being intrusive to the
occupant.

Task Planning of Cyber-Human Systems 297

Additionally, there is uncertainty due to the occupant’s involvement in the
task. When the occupant will be at home is uncertain, which affects when AQC-
sys can request for the windows to be opened for ventilation. The occupant’s
willingness to cooperate with AQC-sys is also uncertain — the occupant may
agree or refuse to open the windows when AQC-sys requests her to, and factors
such as whether she is busy with other activity may affect that outcome.

The strategy of AQC-sys to control the air quality must make trade-off among
the 3 concerns outlined above and must consider the uncertainty due to the
human involvement. We will use this example throughout the paper to illustrate
our approach.

4 System-Human Delegation Model

Cooperation between the cyber system and the human occurs through delegation.
The system makes decisions about how to perform a given task, and it may
request help from the human to perform some sub-tasks along the way. This
section describes our approach to model system-human delegation.

4.1 Delegation

Delegation is an action denoted as Delegate(A, B, T), where A is the delegator,
B is the delegatee, and 7 is the task being delegated. For simplicity, we only
consider 7 to be a goal with no utility function. Thus, the performance of 7
refers to whether or not the goal is achieved.

To specify Delegate(A, B,T), we need to define the state space of the dele-
gation context, and the precondition and effect of the delegation.

Delegation Context. The precondition and effect of delegation are defined in
terms of the states of the delegation context. The delegation context is an
abstraction of the state of A, B, and their environment, at time of delegation.
We denote the state space of the delegation context as .S g4¢;.

Precondition. The precondition of Delegate(A, B,7), denoted as pre, is a
necessary condition under which A may delegate 7 to B. That is, action
Delegate(A, B,) is applicable in s € S 4¢; if and only if s |= pre.

Effect. The effect of Delegate(A, B,7) is modeled as a performance function
fpers : Saet — B, where S 4 C Sge is the set of all states s = pre,
and B is a set of Bernoulli random variables, each representing the (binary)
outcome of 7’s performance. The performance function f,.,s represents A’s
belief about the outcomes of delegation, i.e., B’s performance of 7, in dif-
ferent states of the delegation context. Since the performance of 7 is binary,
its outcome can be modeled as a Bernoulli random variable, whose success
probability is the probability that A believes B will perform 7 as a result of
delegation.

The system may request the human to cooperate in performing the task
by means of delegation. In addition to its direct actions (i.e., the actions that

298 R. Sukkerd et al.

affect the environment directly), the system has a set of delegation actions of the
form Delegate(sys, hum, T), where 7 is a sub-task that the system may need the
human to perform. Identifying the precondition and effect of delegation action
requires knowing what factors affect the human’s performance of the task and
in what way.

Next, we discuss the approach to model the precondition and effect of system-
human delegation, and illustrate it through the running example.

4.2 Human Model

To capture factors that may influence the human’s performance of a task and
how, we employ the opportunity-willingness-capability (OWC) ontology [5],
which classifies a set of factors on which the task’s performance is conditioned.
For each task 7 which the system may want to delegate to the human, we create
an OWC model by identifying the factors for each of the following categories:

Opportunity. Opportunity captures the prerequisites for task performance.
Opportunity elements (OE) are variables relevant to such prerequisites.
Opportunity function fo is a boolean formula of the states of OE, deter-
mining whether the task performance is possible.

Running Example: The opportunity of window-opening task is that the occupant
must be at home. The opportunity element is OE = {occupant_at_home}.
The opportunity function is fo = (occupant_at_home == true).

Willingness. Willingness captures the desire of the human to perform the
task. Willingness elements (WE) are variables that influence such desire.
Willingness function is fyy : Swg — B, where Sy g is the state space of
WE and B is a set of Bernoulli random variables. The success probability of
each Bernoulli random variable x € B represents the willingness probability
pw associated with the state of WE to which x is mapped.

Running FEzample: The willingness of window-opening task is influenced
by whether the occupant is busy. The willingness element is WE =
{occupant_busy}. The willingness probabilities for when occupant_busy and
—occupant_busy are 0.1 and 0.95, respectively.

Capability Capability captures the humans’ ability to perform the task,
given opportunity and willingness. Capability elements (CE) are variables
that influence such ability. Similar to willingness, capability function is
fc : Scg — B, where Scp is the state space of CE and B is a set of
Bernoulli random variables. The success probability of each Bernoulli ran-
dom variable x € B represents the capability probability pc associated with
the state of CE to which x is mapped.

Running Fxample: For window-opening task, we assume that the capability is
trivial, i.e., CE = ().

4.3 From OWC Model to Delegation Model

We use the OWC model of task 7 to derive the specification of Delegate
(sys, hum, 1) as follow:

Task Planning of Cyber-Human Systems 299

Delegation Context. We represent the delegation context of Delegate
(sys, hum,) using the OWC elements, i.e., defining S 4o; to be the state
space of OE U WE U CE.

Precondition. We define the precondition pre of Delegate(sys, hum,T) to be
the opportunity function fo of the OWC model of 7.

Effect. The effect of Delegate(sys, hum, 7), i.e., the performance function fper s,
is derived from the OWC model of 7 as follow. Recall that fpe,f : S 41 — B.
For each state s € S gei, fpers(s) is a Bernoulli random variable with success
probability pw - pc, where py and po are the willingness and the capability
probabilities associated with WE and CE components of s, respectively.

Running Erample: For window-opening task 7, S 4. is the state space built
over the state variables occupant_at_home and occupant_busy. The precon-
dition of Delegate(sys, hum,) is: occupant_at_home == true. The effect of
Delegate(sys, hum,T) is: if occupant_at_home A occupant_busy, the prob-
ability of 7’s performance is 0.1; if occupant_at_home A —occupant_busy,
the probability of 7’s performance is 0.95. Otherwise, the effect of
Delegate(sys, hum, T) is undefined.

5 System-Human Cooperative Task Planning

In this section, we present a formalization of system-human cooperative task
planning problem as strategy synthesis of SMG. We also provide a description
of our running example’s SMG model implemented in the probabilistic model-
checker PRISM-games [4].!

5.1 SMG Model

The SMG representing the interactions among the cyber system, the human,
and the environment is G = (II, S, A, (S;)icm, 4, AP, x, r), where:

— II = {sys, hum, env} is the set of players, representing the system, the human,
and the environment.

= 8 = Ssys U Shum U Seny is the set of states, where Ssys, Shum, and Seny
are the states controlled by the players sys, hum, and env, respectively, and
Ssys N Shum N Senv = @

! We illustrate our approach to modeling the SMG using the syntax of the PRISM
language [3] for SMG, which are encoded as commands:

[action] guard — > p1:ul + ... + Pn t Un

where guard is a predicate over the model variables. Each update u; describes a
transition that the process can make (by executing action) if the guard is true. An
update is specified by giving the new values of the variables, and has an assigned
probability p; € [0,1]. Multiple commands with overlapping guards (and probably,
including a single update of unspecified probability) introduce local nondeterminism.

300 R. Sukkerd et al.

— A= Asys UApum U Aeny is the set of actions, where Agys, Apym, and Aep, are
the actions available to the players sys, hum, and enwv, respectively.

- r: 5 — Ry is the utility function capturing the qualities of concern of the
task.

Players sys, hum, and env take alternating turns of the control of the game.
We use a special state variable turn to distinguish between the states Seys, Shum,
and Sey,,- When there is no delegation, the control of the game evolves in a round-
robin fashion: the control is transferred from env to hum, to sys, and back to
env. When there is delegation, instead of yielding the control to env, sys yields
the control to hum. Next, if the delegated task is successfully performed, then
hum yields the control to env. Otherwise, the delegated task is not performed
and hum yields the control to sys. Next, sys yields the control to env, and
the transfer of the control goes back to the round-robin fashion until the next
delegation.

To incorporate our system-human delegation model in G, we must first
include, in the set of state variables that define S, all the OWC elements asso-
ciated with all the tasks which the system may delegate to the human.

Running Example: There is only 1 task which AQC-sys may delegate to
the occupant: opening the windows. The OWC elements for the task are
occupant_at_home and occupant_busy.

5.2 Environment

Player env controls the actions Aey,, available in S¢,,. Conceptually, env models
potential occurrences of events that are out of the system’s and the human’s
control. Each action a € A.,, available in a state s € S¢,, updates 0 or more
environment variables and always yields the control of the game to player hum.

Running Example: Player env models the evolution of time, and the effects
of running the air purifier and wind ventilation on the indoor air quality. The
game ends when the time reaches the defined planning horizon. We simplify the
running example by assuming that within the planning horizon, the outdoor air
quality remains constant and the indoor air quality does not decrease.?

1 module environment

2 t : [0..MAX_TIME] init 0;

3 aqi_out : [GOOD..BAD] init GOOD;

4 aqi_in : [GOOD..BAD] init MODERATE;

5

6 // effect of running air purifier

7 [purify] turn=ENV & t<MAX_TIME & purifier_on -> (aqi_in’=G00D) & (t’=t+TAU) & (turn’=
HUM) ;

9 // effect of wind ventilation

10 [vent] turn=ENV & t<MAX_TIME & window_open -> (aqi_in’=aqi_out) & (t’=t+TAU) & (turn
’=HUM) ;

11

2 In this example, player env only has deterministic behavior. However, in general, it
can have probabilistic and nondeterministic behavior as well.

Task Planning of Cyber-Human Systems 301

12 // no change in air quality

13 [env_none] turn=ENV & t<MAX_TIME & !purifier_on & !window_open -> (t’=t+TAU) & (turn
>=HUM) ;

14 endmodule

Listing 1.1. Environment module

Listing 1.1 shows the encoding of the environment. The variable t (line 2)
keeps track of time, which increments by a discrete value TAU (e.g., 10min).
The variables aqi_out and agi_in (line 3 and line 4) represent the indices of
the outdoor and indoor air quality, respectively. The transition purify (line 7)
models the effect of running the air purifier on the indoor air quality — if the
air purifier is turned on, then in the next TAU, the indoor air quality will be
at level GOOD. Similarly, the transition vent (line 10) models the effect of wind
ventilation on the indoor air quality — if the windows are open, then in the next
TAU, the indoor air quality will be at the same level as that of the outdoor air
quality. The transition env_none (line 13) models the indoor air quality when
the air purifier is off and the windows are closed — no change. All transitions
yield the turn to player hum (line 7, 10, and 13).

5.3 System

Player sys controls the actions of the system A,y available in Sgys. Asys consists
of 2 disjoint subsets: direct actions Agys air, and delegation actions Agys de-

To represent delegation, we use a special state variable delegation. Let the
system have k tasks 71, 7o,..., 7% that it may delegate to the human, we have
that:

1. delegation € {&, 11,72, ..., Tk}, where delegation = & means that the system
is not currently delegating any task, and delegation = 7; means that the
system is delegating 7; to the human.

2. Agys_der = {a1,a2, ..., ar }, where ; sets delegation = 7;. That is, a; represents
Delegate(sys, hum, ;).

The precondition of each @; € Agys ger is the opportunity function fo of the
OWC model of 7;. Thus, if @, is available in s € Sgys, then s = f5. However, we
also want to avoid scenarios in which the system keeps delegating the same task
to the human after they failed to perform it. One way to achieve this is to set a
bound on the maximum number of times the system can delegate each task to
the human. That is, for all s € Seys, @; € Agys_der is available in s if and only if
s = f& and the count on the number of times the system has delegated 7; to
the human is less than the bound.

If player sys chooses a delegation action @ € Agys_der, the control of the game
is yielded to player hum, i.e., the next state of the game is s’ € Sp,y,,,. Otherwise,
if it chooses a direct action a € Agys_air, the control of the game is yielded to
player enwv, i.e., the next state of the game is s’ € Sep,.

Running Example: Player sys has 3 direct actions: turn on and turn off the
air purifier, and do nothing; and a delegation action to request the occupant to
open the windows.

302 R. Sukkerd et al.

module aqc_system
purifier_on : bool init false;
delegation : [0..0OPEN_WINDOW] init O;
count : [0..MAX_COUNT] init O;

1

2

3

4

5

6 // turn on/off air purifier

7 [turn_on] turn=SYS & !purifier_on -> (purifier_on’=true) & (turn’=ENV);

8 [turn_off] turn=SYS & purifier_on -> (purifier_on’=false) & (turn’=ENV);

9

10 // delegate task OPEN_WINDOW

11 [delegate] turn=SYS & count<MAX_COUNT & occupant_at_home -> (delegation’=0PEN_WINDOW)
& (count’=count+1) & (turn’=DEL);

13 // do nothing
14 [sys_none] turn=SYS -> (turn’=ENV);
15 endmodule

Listing 1.2. System module

Listing 1.2 shows the encoding of AQC-sys. The variable purifier_on (line 2)
represents whether the air purifier is turned on and running. The variable
delegation (line 3) represents the currently delegated task — either OPEN_WINDOW
or none. The variable count (line 4) keeps track of the number of times AQC-sys
has delegated the task OPEN_WINDOW to the occupants. The transitions turn_on
(line 7) and turn_off (line 8) model the actions of AQC-sys to turn on and
turn off the air purifier, respectively. The transition delegate (line 11) models
the delegation of OPEN_WINDOW. This transition can only occur when there is
an opportunity for OPEN_WINDOW and AQC-sys has not exceeded the maximum
number of times it can delegate OPEN_WINDOW to the occupant. The transitions
turn_on, turn_off, and sys_none yield the turn to player env (line 7, 8, and 14).
The transition delegate yields the turn to player hum (line 11).

5.4 Human

Player hum controls the actions Apy., available in Sp,,,. Conceptually, hum
models potential human actions and changes in the human’s physical and cog-
nitive states. We model the behavior of human when there is no delegation (i.e.,
the human behaves independently of the system) as well as when there is dele-
gation. To this end, we partition Shqm, into 2 disjoint subsets: S pgr and Syya,
representing the states in which the system is delegating a task to the human,
and the states in which there is no delegation, respectively.

When player hum gains the control of the game from player env, the game is
always in a state s € Sy . Each state s € Sy has 1 or more available actions
a € Apum- These actions always yield the control of the game to player sys.

When player hum gains the control of the game from player sys (that is, the
system decided to delegate a task 7 to the human), the game is in a state
s € SpgL, where s | delegation = 7. We model the effect of delegation
Delegate(sys, hum,T) as follow:

Let the system have k tasks 7, 73, ..., 71 that it may delegate to the human, we
have the set of actions Apum C Anum, where Apum = {a1,a2,...,a;}. Each a; €
Apum represents the human’s performance of ;. For each s € S ppy, in which

Task Planning of Cyber-Human Systems 303

s = delegation = 7, the only action available in s is a;. (s, a;) probabilistically
transitions to either:

1. ¢ € Senw, where s’ |= performed(r). That is, the human successfully per-
formed 7, and the control of the game is yielded to player env.

2. s € Sgys, where s” }= performed(r) That is, the human failed to perform 7,
and the control of the game is yielded to player sys.

The probabilities of (s, ;) transitioning to s’ and s” are obtained from the
performance function f;ér 5 in the system-human delegation model of ;.

Running Example: Player hum has probabilistic as well as nondeterministic
behavior. The probabilistic behavior models the schedule of the occupant — when
they are at home and when they are busy, and the effect of window-opening
delegation. The nondeterministic behavior models the occupant’s decision to
open and close the windows (when it was not requested by AQC-sys).

1 module human

2 occupant_at_home : bool init false; // opportunity element

3 occupant_busy : bool init false; // willingness element

4 upd : bool init false;

5

6 // at t=0, occupant is more likely to be at home and busy

7 [t0] turn=HUM & t=0 & 'upd ->

8 0.6 : (occupant_at_home’=true) & (occupant_busy’=true) & (upd’=true) +
9 0.2 : (occupant_at_home’=true) & (occupant_busy’=false) & (upd’=true) +
10 0.2 : (occupant_at_home’=false) & (upd’=true);

11

12 // at t=10,

13 [t10] turn=HUM & t=10 & 'upd ->

14

15

16 // open/close windows

17 [open] turn=HUM & upd & occupant_at_home & !window_open -> (window_open’=true) & (upd
’=false) & (turn’=SYS);

18 [close] turn=HUM & upd & occupant_at_home & window_open -> (window_open’=false) & (upd
’=false) & (turn’=SYS);

19

20 // do nothing

21 [hum_none] turn=HUM_TURN & upd -> (upd’=false) & (turn’=SYS);

22

23 // receive OPEN_WINDOW when not busy

24 [receivel] turn=DEL & delegation=0PEN_WINDOW & occupant_at_home & !occupant_busy ->

25 0.95 : (window_open’=true) & (turn’=ENV) +
26 0.05 : (turn’=SYS);
27

28 // receive OPEN_WINDOW when busy

29 [receive2] turn=DEL & delegation=0PEN_WINDOW & occupant_at_home & occupant_busy ->
30 0.2 : (window_open’=true) & (turn’=ENV) +

31 0.8 : (turn’=SYS);

32 endmodule

Listing 1.3. Human module

Listing 1.3 shows the encoding of the human. turn=HUM indicates state in
S gua and turn=DEL indicates state in S pgr. The variables occupant_at_home
(line 2) and occupant_busy (line 3) represent whether the occupant is at home

304 R. Sukkerd et al.

(the opportunity element of OPEN_WINDOW) and whether the occupant is busy
(the willingness element of OPEN_WINDOW), respectively. Finally, the variable upd
(line 4) is a flag indicating whether occupant_at_home and occupant_busy are
updated for the current time t.

When turn=HUM, player hum makes a move in 2 steps. First, it updates the
state of occupant_at_home and occupant_busy at the current time t, based on
some prediction. The transition t0 (line 7 - 10) encodes the probability distrib-
ution over the possible states of occupant_at_home and occupant_busy at time
t=0 — there is 0.6 probability that the occupant is at home and busy (line 8),
0.2 probability that the occupant is at home and not busy (line 9), and 0.2
probability that the occupant is not at home (line 10). Once the transition t0 is
taken, the state of occupant_at_home and occupant_busy at time t=0 become
known — upd is set to true.

Second, player hum nondeterministically chooses among actions opening the
windows (line 16), closing the windows (line 17), and do nothing (line 20). These
actions yield the turn to player sys.

When turn=DEL, player hum makes a move in 1 step. The transition
receivel (line 20 - 22) models the effect of OPEN_WINDOW delegation when the
occupant is at home and not busy — there is 0.95 probability that the windows
get opened. Similarly, the transition receive2 (line 25 - 27) models the effect of
OPEN_WINDOW delegation when the occupant is at home and busy. These transi-
tions yield the turn to player env if OPEN_WINDOW is successful (line 24 and 29),
and to player sys otherwise (line 25 and 30).

5.5 Utility Function

Utility function of the task r : S — R assigns rewards to states of the system-
human-environment. It is designed to incentivize certain kinds of behavior of
the system. Utility function is sensitive to the context and allows for trade-offs
among multiple potentially conflicting objectives, concerning different qualities
such as performance and cost. In addition to the qualities associating with the
task and the system, the utility function must capture qualities regarding the
human’s experience in working with the system, such as annoyance, cognitive
and physical loads.

Running Example: The utility function defines the relative costs associated
with the indoor air quality, the energy consumption, and the annoyance of the
occupant. We define annoyance to be when AQC-sys requests the occupant to
open the windows but the occupant refuses. The objective of the task is to
minimize this utility function.

Table 1 shows the relative costs associated with different levels of the indoor
air quality, per a time period of TAU (e.g., 10 min). The cost of indoor air quality
is sensitive to whether or not the occupant is at home (e.g., the cost of bad air
quality is higher when the occupant is at home than when he/she is not). Table 2
shows the relative costs associated with energy consumption of running the air
purifier and wind ventilation per TAU, and annoyance of the occupant per each
refusal.

Task Planning of Cyber-Human Systems 305

Table 1. Costs associated with indoor air quality per 10 min

Whether occupant is at home

Air quality index | occupant_at_home | ~occupant_at_home
good 0 0
moderate 10 0
bad 30 2

Table 2. Costs associated with energy consumption and human annoyance

Running air purifier 15 (per 10 min)

Wind ventilation 0 (per 10 min)

Annoyance of occupants | 2 (per each refusal)

To augment SMG model with utility function, we assign numeric utility val-
ues to the states of SMG. Listing 1.4 shows the encoding of the utility function,
as defined in Tables 1 and 2. To define utility values for a duration (e.g., cost of
air quality per 10min, cost of running air purifier per 10 min), we assign those
utility values to states in which player env controls the game, since we use player
env to model the evolution of time.

rewards"total_cost"
turn=ENV & aqi_in=GO00D & occupant_at_home : O;
turn=ENV & aqi_in=MODERATE & occupant_at_home : 10;
turn=ENV & aqi_in=BAD & occupant_at_home : 30;

1
2
3
4
5
6 turn=ENV & aqi_in=GO00D & !occupant_at_home : O0;

7 turn=ENV & aqi_in=MODERATE & !'occupant_at_home : O;
8 turn=ENV & aqi_in=BAD & !occupant_at_home : 2;

9

10 turn=ENV & purifier_on : 15;

11 turn=ENV & window_open : 0;

12

13 turn=DEL & occupant_annoyed : 2;

14 endrewards

Listing 1.4. Utility function

5.6 SMG Strategy Synthesis

To generate a system-human cooperative plan for a task T' = (goal,), we use
model checking of rPATL property to synthesize a strategy in G for player sys
that has the objective of reaching a state satisfying goal and optimizes for the
utility function 7.3

3 We do not generate strategies for a coalition of players sys and hum because, in
addition to the cooperative behavior between the human and the system, we also
want the planning model to capture the human behavior that is independent of the
system. Such behavior can also affect how the task must be performed.

306 R. Sukkerd et al.

mnvolve human (68.69%)
oNot involve human (31.31%)

15 [m) o o [m) [m) o n]] n n
[m) o o [m) [m) n n]] n n
= [m) o o [m)] n n]] n n
§ 10
9 s [m) o o [m)] n n]] n n
=}
2 % [m) o o [m)] n n]] n n
= =
ﬁ é 5 [m) o o]] n n]] n n
=] <
2 [m) o n]] n n]] n n
|93
é’- a o n n n n n n n n n
H 0
a n n n n n n n n n n
0 02 04 06 08 1
Willingness Probability (pw)
Fig. 1. Expected total costs of system- Fig.2. Decisions of system-human
human strategies vs. system-only strategies

strategy

The rPATL property specification for strategy synthesis is in the form
((sys))Rr. . _o[F goal], or alternatively ((sys))R! . _,[F goal]. The resulting
strategy may include delegation actions, representing the cooperation between
the human and the system.

Running Example: The goal of the air quality control task is defined as a
fixed time horizon t=MAX_TIME, and the utility function is the “total_cost” as

defined in List 1.4. The rPATL property representing the task is:
Unnin = ((sys)) R, totk05" [[£=MAX_TIME]

where i, is the minimum expected utility of the generated strategy.

6 Results

In this section, we demonstrate how our SMG approach makes decisions about
how to perform task in cyber-human system — especially, how decisions on del-
egation are made.

We implement SMG of cyber-human system for the indoor air quality control
task, as described in the running example. However, instead of constant values,
we vary the values of willingness probability (pw)* and annoyance cost, with
values in the range [0,1] and [0,16], respectively. We synthesize system-human
strategies for all pairs of py, and annoyance cost values. Additionally, we syn-
thesize a system-only strategy, which does not have delegation action. Figure 1
shows the expected total costs of system-human and system-only strategies, for
all values of py and annoyance cost. Figure2 shows the decisions of system-
human strategies on whether to involve human in performing the task.

4 To simplify the analysis, we use a single value of py for both when the occupant is
and is not busy.

Task Planning of Cyber-Human Systems 307

In Fig. 1, the expected total cost of the system-only strategy (represented by
the plane) is 17.4, independently of py and annoyance cost, and it is the upper
bound of the expected total costs of the system-human strategies (represented
by the curved surface) for all values of py and annoyance cost. The region of
pw-annoyance cost in which the expected total costs of system-only and system-
human strategies are equal are the region in which system-human strategies do
not use delegation (shown as white dots in Fig.2) — AQC-sys always runs air
purifier when it needs to improve the air quality. Whereas in the rest of the
region, system-human strategies use delegation (shown as black dots in Fig. 2)
when the opportunity exists.

Decision on whether AQC-sys should use delegation is sensitive to the energy
cost of running air purifier, the occupant’s annoyance cost, and py . Since the
costs associated with the air quality dominate the costs of energy annoyance,
AQC-sys must always choose between running air purifier or delegating window-
opening task to the occupant, and if the occupant refuses to open the windows,
AQC-sys must run air purifier as a fallback. In the white region in Fig. 2, the
expected cost of delegation is higher than the cost of running air purifier for
TAU, because it is more likely that both annoyance cost and energy cost incur
as a result of delegation. Thus, the better decision is to run air purifier — only
energy cost incurs (shown as the flat region of the curved surface in Fig.1). On
the other hand, in the black region in Fig. 2, the expected cost of delegation is
lower than the cost of running air purifier, because it is more likely that no cost
incurs as a result of delegation. Thus, the better decision is to use delegation.
The expected cost of delegation decreases as py increases, and as annoyance
cost decreases except when py = 1. This analysis shows the average 32.93 %
decrease in the expected total cost of system-human strategy compare to that
of system-only strategy.

7 Related Work

Eskins and Sanders [5] introduce a definition of a cyber-human system (CHS)
and the opportunity-willingness-capability (OWC) ontology for classifying CHS
elements with respect to system tasks. This approach provides a structured and
quantitative means of analyzing cyber security problems whose outcomes are
influenced by human-system interactions, reflecting the probabilistic nature of
human behavior.

There are some existing approaches for controller synthesis of systems with
human operators. Li et al. [8] propose an approach for synthesizing human-
in-the-loop discrete controller from temporal logic specification. They address
the issue of devising a controller that is mostly automatic and requires only
occasional human interaction for correct operation. Our work differs from theirs
in that, while they focus on predicting the system’s failure and notifying the
human operator ahead of time, we focus on analyzing human factors to create
cooperative strategy of the system and the human. Fu and Topcu [7] propose an
approach for synthesizing shared autonomy policy that coordinates human oper-
ator and autonomous controller, by solving a multi-objective Markov decision

308 R. Sukkerd et al.

process with temporal logic specification. Their approach captures the evolution
of the operator’s cognitive state during control execution, and trades-off the
human’s effort and the system’s performance level. While the trade-off analysis
is similar to that of our work, our approach considers a more general notion
of human factors, and thus it is appropriate for cyber-human systems of which
humans are not necessarily have the system’s operator.

Camara et al. [6] propose a framework for analyzing the trade-offs of involving
human operators in self-adaptation. Their work employs the OWC model to
capture human factors, and uses model checking of SMG for analysis of how
the human factors affect the outcome of adaptation, given a fixed adaptation
strategy of the human operator. Our work has similar approach; however, we use
strategy synthesis of SMG for devising cooperative strategy of the human and
the system. Moreover, we emphasize on the interaction between the human and
the system through delegation, and modeling of system-independent behavior
of the human.

8 Conclusion

We explore the use of automated planning to design cooperation between cyber
systems and humans in performing tasks, in which human participants have
the role of actuators. We investigate how explicit modeling of human partic-
ipants can be used in planning to generate cooperative strategies which best
and appropriately utilize the humans. Specifically, our contributions are: (1) a
formal framework for modeling cooperation between cyber systems and humans
under uncertainty, with an explicit modeling of human participants based on
opportunity-willingness-capabiity (OWC) ontology, and (2) a formalization of
cyber system-human cooperative task planning as strategy synthesis of stochas-
tic multiplayer game.

References

1. Chen, T., et al.: Automatic verification of competitive stochastic systems. Formal
Methods Syst. Des. 43(1), 61-92 (2013)

2. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5—22. Springer, Heidelberg (2013)

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification. Springer, Berlin (2011)

4. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games:
a model checker for stochastic multi-player games. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 185-191. Springer,
Heidelberg (2013)

5. Eskins, D., Sanders, W.H.: The multiple-asymmetric-utility system model: a frame-
work for modeling cyber-human systems. In: 2011 Eighth International Conference
on Quantitative Evaluation of Systems (QEST). IEEE (2011)

Task Planning of Cyber-Human Systems 309

6. Camara, J., Moreno, G.A., Garlan, D.: Reasoning about human participation in self-
adaptive systems. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2015) (2015)

7. Fu, J., Topcu, U.: Pareto efficiency in synthesizing shared autonomy policies with
temporal logic constraints (2014). arXiv preprint arXiv:1412.6029

8. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop control
systems. In: Abrahdm, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol.
8413, pp. 470-484. Springer, Heidelberg (2014)

http://arxiv.org/abs/1412.6029

	Task Planning of Cyber-Human Systems
	1 Introduction
	2 Preliminaries
	2.1 Task Representation
	2.2 Stochastic Multiplayer Games
	2.3 Strategy Synthesis of SMGs

	3 Running Example
	4 System-Human Delegation Model
	4.1 Delegation
	4.2 Human Model
	4.3 From OWC Model to Delegation Model

	5 System-Human Cooperative Task Planning
	5.1 SMG Model
	5.2 Environment
	5.3 System
	5.4 Human
	5.5 Utility Function
	5.6 SMG Strategy Synthesis

	6 Results
	7 Related Work
	8 Conclusion
	References

