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Carnegie Mellon University, USA

Abstract—Modern cyber-physical systems (e.g., robotics sys-
tems) are typically composed of physical and software compo-
nents, the characteristics of which are likely to change over time.
Assumptions about parts of the system made at design time may
not hold at run time, especially when a system is deployed for long
periods (e.g., over decades). Self-adaptation is designed to find re-
configurations of systems to handle such run-time inconsistencies.
Planners can be used to find and enact optimal reconfigurations
in such an evolving context. However, for systems that are highly
configurable, such planning becomes intractable due to the size
of the adaptation space. To overcome this challenge, in this
paper we explore an approach that (a) uses machine learning
to find Pareto-optimal configurations without needing to explore
every configuration and (b) restricts the search space to such
configurations to make planning tractable. We explore this in the
context of robot missions that need to consider task timeliness and
energy consumption. An independent evaluation shows that our
approach results in high-quality adaptation plans in uncertain
and adversarial environments.

Index Terms—Machine learning, artificial intelligence, quanti-
tative planning, self-adaptive systems, robotics systems.

I. INTRODUCTION

Modern software-intensive systems often incorporate com-
ponents that are likely to change their behavior over time
(e.g., third-party web services whose performance or avail-
ability varies due to changes in implementation or software
controllers in cyber-physical systems in which reliability pro-
gressively decrease due to wear and tear of hardware). In such
systems, software might not be able to continue operation as
expected when the assumptions made at design time about
constituent parts of the system do not hold at run time. This
issue also affects self-adaptive systems, in which the effects of
adaptations might become progressively degraded with respect
to their expected behavior.

Robotics software is a particularly good candidate in study-
ing how self-adaptive mechanisms can be compromised when
assumptions about constituent parts of the system break,
because these assumptions are oftentimes more brittle than
in other domains [39]. Examples include those about software
components associated with hardware elements like sensors
that degrade over time, becoming less accurate or consuming
more energy than expected.

To characterize expected system behavior, existing ap-
proaches in self-adaptive systems almost always rely on man-
ual modeling by domain experts [12], which is expensive and
potentially unreliable, or they use small and artificial models
that need to be adjusted as the system evolves [36]. Regardless
of the approach employed, the vast space of configurations and
environmental conditions of such systems almost invariably
lead to strong simplifying assumptions and models that do not
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Fig. 1: Overview of our approach: We use machine learning to iden-
tify optimal configurations that will be used for run-time adaptations.

accurately reflect important interactions among components,
configuration options, and environmental variables.

To make a concrete case, let us consider an example of
a model that informs the robot about its power consumption
under different configurations (cf. Figure 1). This model can
help to determine a new configuration that the robot should
adapt to in order to cope with environmental uncertainties.
If the robot detects, for example, that it is running low on
energy, it may choose to use a less accurate but more efficient
algorithm to determine its location in order to preserve battery
life for the rest of the mission. However, the effectiveness
of this adaptation will only be as good as the underlying
assumptions on which decision-making relies such as accurate
estimation of energy consumption. If, for example, the energy
demand of the configuration is higher than expected, the robot
may run out of battery and fail to complete its mission.

In this work, we consider robotics software as a highly-
configurable system, in which system characteristics (e.g.,
usage of sensors) are treated as configuration options [1], [36].
Our approach can, therefore, choose from many configurations
of the robot at run time based on environmental situations.
For instance, a robot may choose to decrease the localization
accuracy to preserve the battery when it passes through an
area where less sensory input is needed.

To choose an appropriate configuration, a self-adaptive
system must come up with a plan. Although planners can
be used to decide the best way to adapt the configuration
at run time [41], [43], a key challenge to overcome when
tackling highly-configurable systems is that the configuration
space is exponentially large in the number of configuration
options of the system, which can consist of millions or even
billions of possible configurations [36]. In such situations,
planning, based on exhaustive search, becomes intractable
due to the size of the adaptation space. To overcome this



challenge, the core idea behind our approach is to find in-
teresting configurations that provide optimal performance and
also constrain planning to only those configurations. We argue
that this can make the planning problem tractable for run-time
adaptation. We use machine learning to find Pareto-optimal
configurations of the system with respect to the mission
goals (e.g., energy consumption and timeliness) and pass only
those configurations to the planner to constrain its search
space. The novelties of our approach are as follows: (i) the
integration of learning and quantitative planning to enable
run-time self-adaptation of highly-configurable systems, and
(ii) the integration of information from multiple heterogeneous
models in quantitative planning, which enables reasoning that
accounts for multiple quality aspects (e.f., energy consumption
and timeliness) and their interactions. In this paper, we explore
the following hypotheses:

Hypothesis 1: Machine learning can find optimal config-
urations without needing to explore all configurations.
Hypothesis 2: Restricting online planning to search only
Pareto-optimal configurations leads to tractable run time
planning that still results in high-quality adaptation plans.

These hypotheses are not obvious; instead, it is possible
that the space of configurations are too large and performance
behavior is too complex that learning with a limited number of
measurements cannot find optimal configurations and that the
result of using a learned approximation will not yield adequate
plans. This paper tests these hypotheses in the context of a
highly-configurable robot performing missions in an interior
environment. We use established machine learning techniques
to identify Pareto-optimal configurations offline from observa-
tions of a sampling of system executions (Figure 1). We then
exploit the product of learning by using it as one of the inputs
to a planner that is used to reason quantitatively about the
outcome of adaptation decisions in the wider context of the
robot’s mission and its objectives, including tradeoffs among
qualities like timeliness and energy efficiency.

Our results show that our approach allows automated
run-time decision-making for self-adaptation of highly-
configurable systems by enabling a deeper exploration of what
otherwise are intractable solution spaces. Specifically, the main
contributions of this paper are as follows:
• A learning approach that reduces the planning space for

systems that have many possible configurations in a multi-
dimensional trade-space.

• An integration of the learning with online model-based
quantitative verification to enable timely planning for self-
adaptive systems.

• An open source implementation of the infrastructure that
allows us to evaluate the approach in a robotics adaptation
scenario. This infrastructure enabled independent third party
evaluation (conducted by MIT Lincoln Laboratory1), and we
discuss the results of this as well as lessons learned.

• Evaluations via controlled experiments for demonstrating
the effectiveness of the learning approach as well as the
scalability of the online planning.

1https://www.ll.mit.edu/
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Fig. 2: Simple mobile robotics scenario where a robot need to
accomplish multiple tasks by traversing an uncertain terrain.

II. RUNNING EXAMPLE

We illustrate the details of our approach on a robotics
adaptation scenario where the robotic system is considered
as a highly-configurable system and the adaptation concerns
changing the configuration in which the robot is operating at
run time. Mobile robotic systems—sophisticated combinations
of physical hardware and control software that sense and
move through an environment—are increasingly relied upon
in modern society to provide support in domains like health-
care, transportation and logistics, environmental protection,
and assessment and maintenance of infrastructures. In these
domains, mobile robotic systems are expected to perform a
wide variety of long range, long term, and complex missions.
In contrast to industrial robotics, where a continuous energy
supply can be assumed in most scenarios, the management
of autonomous mobile robot missions requires being able
to predict the energy consumption of the robot accurately
to avoid undesirable situations like running out of energy
mid-way through a mission. Moreover, the combined space
of the characteristics of the mission, the conditions of the
operating environment, and the different robot configurations
(sensors, actuators, computation intensive control algorithms,
etc.) exhibits a high degree of variability, making energy
consumption difficult to predict and manage.

Figure 2 shows a Turtlebot,2 which runs ROS (Robotic Op-
erating System)3 compatible components for different robotics
tasks, e.g., localization components that determine the posi-
tion of the robot in a map. These components are highly-
configurable [1]; for example, in Turtlebots we can enable/dis-
able a sensor (e.g., Kinect) or change the number of particles
used by the localization4 [37]. In this scenario, the mission of
the robot is, starting at some location, to navigate to several
locations in sequence to pick up and deliver materials in
the shortest possible time with a limited battery. During the
execution of the mission, the robot has to adapt to some
unpredictable environmental events that include (i) encounter-
ing obstacles that make a particular segment impassable and
(ii) sudden changes in the battery’s energy level (simulating
sensor, battery degradation, or terrains that require more
energy to navigate). To adapt in the face of these changes in
order to avoid failing the mission, the robot can reconfigure
(e.g., to a less energy-demanding configuration) and change
the path (perhaps to reach a charging station).5

2https://www.turtlebot.com/
3ROS (http://www.ros.org) is a framework for writing robot software that

consists of a set of tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across robotic platforms.

4http://wiki.ros.org/amcl
5See https://www.youtube.com/watch?v=ec6BhQp2T0Q

https://www.ll.mit.edu/
https://www.turtlebot.com/
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III. OVERVIEW OF THE APPROACH

The overall goal of our approach is to enable self-adaptation
in highly-configurable systems that operate in dynamic and
uncertain environments, using configuration change as the
main mechanism to enact adaptation. The key challenge in
this context is to overcome the size of the configuration space
by finding a configuration of the system that yields a suitable
adaptation for a situation given at run time. Our intuition is
that not all configurations of a highly-configurable system are
important. In other words, there are dominant configurations
with respect to a system’s characteristics to which we can
constrain the exploration (we call this the interesting part
of the configuration space). Therefore, instead of wasting
resources on searching for an adaptation plan in the whole
space of configurations, we can achieve good results if we
perform exhaustive search only on optimal configurations.

Figure 1 illustrates the overall structure of our approach,
which is divided into two phases: (i) offline, in which we use
machine learning to learn a performance model [35], [36] of
the system and identify optimal configurations and (ii) online,
in which we use planning based on quantitative verification [9]
to decide the best adaptation based on the set of optimal
configurations identified in the design time phase.

The key insight of our approach is that we reduce the
adaptation search space, in the offline phase, by incorporating
information about the optimal configurations into the models
that the adaptation layer employs for planning in the online
phase. To illustrate how our approach works in practice,
Figure 3 shows a few thousand configurations of our robotic
system in which the performance of each configuration is
measured in terms of multiple objectives including localization
error (distance) and the percentage of CPU utilization (a
proxy for energy consumption). Offline, our approach can
identify the Pareto-optimal configurations (highlighted) using
learning. At run time, if adaptation is triggered, because,
for example, the robot suddenly detects that it is running
low on energy when it is in configuration A, the planner
can find an adaptation that includes an alternative (e.g., less
energy-demanding) configuration by looking only among the
Pareto-optimal (green) ones in region B (which is signifi-
cantly constrained subset compared to the overall space of
configurations represented by the blue dots in the figure). This
reduction in the size of the adaptation space leads to drastically
reducing the planning time without compromising the quality
of adaptations.

IV. INTEGRATED MODEL DISCOVERY AND
SELF-ADAPTATION

This section provides the core technical contribution of
this paper. We start by describing the learning mechanism
(Section IV-A) that facilitates finding Pareto-optimal config-
urations. We then proceed with adaptation planning (Sec-
tion IV-B) that enables quantitative reasoning about the out-
come of adaptation decisions. Finally, we discuss the infras-
tructure (Section IV-C) that integrates all components together
and enables end-to-end adaptation.

A. Model Learning
In this section, we introduce our learning approach to

finding Pareto-optimal configurations that are used in planning.
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Fig. 3: Pruning of adaptation space by selecting Pareto front config-
urations of the robot.

We first define some terms to formalize the problem of model
learning followed by detailing the learning machinery as well
as the way we selected Pareto-optimal configurations.

1) Definitions: Let Oi indicate the i-th configuration op-
tion, which ranges over a finite domain Dom(Oi). In general,
Oi may either indicate (i) an integer variable (e.g., the number
of iterative refinements in a localization algorithm), (ii) a
categorical variable (e.g., local vs global localization method),
or (iii) binary options (e.g., enabling/disabling depth sensors).
The configuration space is a Cartesian product of the domains
of the parameters of interest C = Dom(O1)×· · ·×Dom(Od),
where d is the total number of configuration options (or di-
mension of the space). A configuration c then is a vector in the
configuration space c ∈ C that assigns a particular value along
each dimension. For instance, c =< 1, 1, 0, 0, 0 > represents
a configuration with 5 binary options, where the former two
options are enabled and the latter three are disabled.

To predict performance of the system under different con-
figurations, (i) we first build a model using measurements and
learning, and then (ii) we use the learned model to find Pareto-
front configurations with respect to its objectives.

2) Model learning: We formulate model learning as a
multi-objective optimization problem in a configuration space
C given constraints. Formally, we introduce a set of inequality
constraints c(c) = (c1(c) <= b1, ..., cn(c) <= bn), b =
(b1, · · · , bn) to the multi-objective optimization. For example,
if a robot is configured to use a light-sensitive sensor when
traversing a part of the environment with many windows, this
may cause high sensor errors and lead to large localization er-
rors, meaning that the robot cannot successfully localize itself
and so cannot find a path to the target. We define f : C→ R to
be our vector of objective functions f = (f1, · · · , fo) (e.g., f1:
energy, f2: speed of a robot). In practice we know about f via
measurements, i.e., yi = f(ci), ci ∈ C. Our goal is to identify
the Pareto frontier of f ; that is, the set Γ ⊆ C of configurations
which are not dominated by any other configurations (cf.,
Figure 3), i.e., the maximally desirable c which cannot be
optimized further for any single objective without reducing
the value of some other dimension. We aim to approximate
Γ with the fewest possible measurements, since there is an



exponentially large number of configurations.
Our main goal is to learn a reliable regression model, f̂(·),

that can predict the performance of the system, f(·), given a
limited number of observations D = {(ci, yi)}. Specifically,
we aim to minimize the prediction error:

arg min pe = Σc∈C|f̂(c)− f(c)| (1)

To learn a model that represents the performance landscape
of the system, we build a regression model using stepwise
linear regression [30] from observations D. We use stepwise
regression for two reasons: It captures influential options and
interactions, in an iterative manner, that scales to a high-
dimensional space [48]; and it provides a model that end
users can verify and can be reliably used for run-time decision
making. If the measurement data is not representative enough
to learn a credible model (by estimating the prediction power
of the learned model), we could measure more configurations.

A regression model is a polynomial whose terms determine
the performance of the system. Each term may refer to one or
more options (oi ∈ O), describing the influence of that option
or an interaction (oioj) [50]:

f(o1, · · · , od) = β0 +
∑
oi∈O

βioi +
∑

oi,oj∈O
βi..j(oi..oj), (2)

where β ∈ R represents the coefficients of the model, βioi
represents the performance impact of individual options, and
βi..j(oi..oj) represents the performance impact for interactions
among multiple options (comprising not only quadratic terms,
but also higher order terms up to the number of individual
options). In this work, we assume configuration options are
binary, so if an option appears in the performance model,
the option is influential. Note that numeric and categorical
options can be transformed into binary options by selecting
two extreme values corresponding to zero and one; though
in this transformation, we sacrifice precision [35]. Since the
appearance of a term in the model is based on a statistical
analysis, the structure of the model gives us a direct means to
identify influential options and interactions.

3) The mechanics of learning: We use both forward se-
lection and backward elimination to learn the model [30].
Specifically, we use the p-value of an F-statistic [24] to decide
whether to add a term to the model or remove one. Specifically,
the learning includes the following steps:
1) Initialization: A model is fit to the data, and then the

explanatory power of the model will be compared incre-
mentally by forward selection and backward elimination.

2) Forward Selection: If any terms (options, e.g., o1, or their
interactions, e.g., o1o2) not in the model have p-values less
than an entrance threshold (we set it to 0.05), add the one
with the smallest p-value to the model and repeat this step,
otherwise proceed to the next step.

3) Backward Elimination: If any model terms have p-values
larger than an exit threshold (we set it to 0.05), remove the
one with the largest p-value and go to the previous step.

4) Termination: The extraction process stops when neither (2)
nor (3) improve the model.

The final model includes only terms that are statistically
significant with the level of our choice (based on our choice
of threshold for p-value). As an example, consider the robot

in our running example has two configuration options: o1
(enabling/disabling Kinect) and o2 (enabling/disabling Local-
ization). After the learning is finished, we have the following
model:

f(·) = 2 + 3o1 + 20o2 + 17o1o2 (3)

This model (constructed synthetically) shows that enabling Lo-
calization consumes much more energy than enabling Kinect,
and both of these two options are interacting; meaning that
the power consumption of the robot is larger than the con-
sumptions of each of the Kinect and Localization components
individually. Note for learning the model, we implemented a
standard approach [30], but the novelty lies in the integration
with the quantitative planning that will be introduced later.

4) Selecting Pareto front configurations: In the model
learning problem, the multiple objectives (i.e., energy, speed)
are conflicting (e.g., configurations under which the robot
moves quickly will consume more energy than ones moving
slowly) so that finding a single configuration that is the
optimum of all objectives is unlikely. Once we learn a model
for both objectives, we select configurations that lie on the
Pareto front of the objectives. A configuration c1 is said to
dominate c2 if ∀i ∈ {1 · · ·m}, fi(c1) <= fi(c2)&∃j ∈
{1 · · ·m}, fj(c1) < fj(c2). A configuration is Pareto-optimal
if it is not dominated by any other configuration in the
configuration space and dominates at least one point. The
Pareto-optimal set in the configuration space is called the
Pareto set, and the set of Pareto-optimal configurations in the
objective space is called Pareto front. The procedure for iden-
tifying Pareto-optimal configurations includes enumerating all
configurations and checking whether the selected configuration
is dominated by any other configuration in the configuration
space. If the answer is no, this configuration will be put into
the Pareto set; otherwise, it will be discarded.

B. Planning and Adaptation
Adaptation analysis and planning in the robotics domain

poses a challenge in terms of integrating information from
heterogeneous models (with different semantics and represen-
tations) that capture different facets of the domain (e.g., energy
consumption, physical space, and safety).

We tackle this challenge by incorporating in our approach
planning that abstracts relevant pieces of information from
different models and integrates them into high-level mod-
els amenable to quantitative verification. We use the model
checker PRISM in the planner’s back-end to reason quan-
titatively about the outcome of adaptation decisions in a
rich trade-off space. Using this technology is particularly
convenient for the following reasons: (a) it is equipped with
a high-level modeling language that helps in bridging the
representation and semantic gap across multiple heterogeneous
models, and (b) it enables quantitative verification of properties
that can be encoded as rewards/costs (e.g., energy, time).

This approach is distinguished from our other work reported
in [11]–[15], [43], in which we use quantitative probabilistic
model checking for planning purposes, because it is the first
one able to integrate information from heterogeneous models
into richer formal specifications that allow capturing mutual
dependencies among multiple aspects of the domain (e.g.,
energy consumption, speed, etc.).



We illustrate our approach using a simple scenario (Fig-
ure 2), in which we assume that the mission of the robot is
to navigate to a target location (l5) from an initial location
(l1) in the shortest possible time with a limited battery. To
achieve this goal, the robot can move between locations and
change its configuration. Note that carrying out actions in dif-
ferent configurations might yield different results. For instance,
moving between two locations at a higher speed is good in
terms of timeliness but might consume more energy (these
two aspects may also vary between configurations that have
different sets of sensors enabled). This is an important aspect
that enables the system to make trade-offs, like reconfiguring
to reach its target location earlier if it has an energy surplus in
the battery or choosing a more energy-efficient configuration
while sacrificing timeliness if the battery is low on energy.

When synthesizing a specification for the robot behavior to
complete the mission, the planner considers two main concerns
of our scenario: (i) timeliness—the robot should get to the
target in the shortest possible time, and (ii) efficiency—the
robot should try to get to the target location with as much
remaining energy in the battery as possible.

These specifications can be used to produce an initial plan
for the mission as well as for adapting at run time and
synthesizing a new plan whenever there is a situation that
demands it. Specifically, we consider two types of situations
that demand adaptation in this scenario: (i) the robot is unex-
pectedly running low on battery and might not have enough
energy to finish the mission and (ii) the robot is not able to
make progress in going through a corridor (e.g., because there
is an obstacle that cannot be circumvented).

To inform our synthesis process, we have four models that
describe different aspects of the domain.
1) Physical Environment. Describes the physical space that the

robot is navigating. We assume that this model is captured
as a graph, where nodes correspond to physical locations,
and arcs correspond to trajectories between them. Arcs are
tagged with a distance attribute (5m and 3m for horizontal
and vertical arcs in Figure 2, respectively).

2) Architecture. Captures the modes in which the robot can
operate, as determined by the components that can be
employed at run-time (e.g., different sensors, different
navigation algorithms), their connections, and configuration
parameters (e.g., speed, localization accuracy).

3) Operations. Includes the repertoire of behavior primitives
that the robot can execute to carry out an action in the
physical environment. For simplicity, we assume the robot
can carry out three types of action: (i) move between
two locations, (ii) change the robot’s configuration, and
(iii) charge its battery when placed in a charging station.

4) Power. This model is queried to determine: (i) the available
resources (i.e., the amount of energy remaining in the bat-
tery), and (ii) the cost of operations in a given configuration
(e.g., how much energy it takes to move to a given location
at a given speed with a given set of sensors).

5) Task. Describes the task to accomplish, and its progress. In
this scenario, we assume that the progress of the mission
captures the location of the robot, its remaining battery, the
history of actions executed, and the remainder of actions
to be executed.

Analyzing properties of the system requires combining

pieces of information captured in different models, which do
not provide insight if considered individually. For example,
the topology of the environment, the catalog of operations, or
the power model are not useful on their own to obtain metrics
for timeliness and energy efficiency when planning the robot’s
mission, but they can be combined to estimate the time and
energy that the robot will take to complete its mission. To the
best of our knowledge, our quantitative planning technique
is the first that takes a systematic approach to provide such
insights. The approach is divided in:

1) Projection: Each problem domain model is projected
into a view that abstracts its important features in an inter-
mediate language. This translation is model type-specific–for
each type of model a translator is written. For example, an
architecture configuration view exposes a set confs, and a
power view exposes a function pow(bp, c) that returns the
power needed to carry out behavioral primitive bp (e.g., move
between locations l1 and l2) in configuration c ∈ confs. Thus,
the power view can be related to the configuration view.

2) Planning model generation: The views are then com-
bined by an aggregator that composes information from the
different views (e.g., computing the energy consumed when a
robot moves between two locations requires information from
the environment, architecture, and power models).

We carry out model integration into formal specifications
based on the syntax of the PRISM language [40] for Markov
Decision Processes (MDP). Using MDP as the underlying for-
malism for our models allows underspecification of choices via
nondeterminism, which can be resolved by the model checker
via policy synthesis, enabling automated plan generation. A
PRISM MDP model is built as a set of processes or modules
(delimited by keywords module/endmodule that are encoded
as a set of commands:

[action] guard → p1 : u1+ . . . + pn : un,
where guard is a predicate over the model variables (which

can be either boolean or bounded-range integers, c.f., Listing 1,
lines 4-5). Each update ui describes a transition that the
process can make (by executing action) if the guard is true. An
update is specified by giving the new values of the variables,
and has an assigned probability pi ∈ [0, 1].6

Listing 1 shows the encoding for the robot module. The
specification shows the state variables for the battery energy
level (b), the robot’s location (l), software configuration (c),
and heading (r). The commands that encode the operations
to change the robot’s configuration are lines 11-12, and the
actions of the robot to move between locations are specified
in (lines 8-9). Commands l1 to l2 and l1 to l4 (lines 11 and
12) have overlapping guards that introduce nondeterminism.
This nondeterminism will be resolved later by PRISM by
synthesizing a policy that specifies which actions should be
chosen in different states to achieve the system’s goal.

The guard of l1 to l2 is composed by conjunction of the
following predicates: (i) l=l1 specifies that the command can
fire only if l1 is the current location of the system (represented

6Probabilities enable convenient encoding of aleatoric uncertainties that the
system might be subject to, e.g., of collision against obstacles in corridors.
However, probabilistic aspects of modeling/reasoning are not core to the
discussion in this paper, and hence are left out of scope for the sake of
clarity. The interested reader may refer to other works for a comprehensive
description of probabilistic planning in self-adaptive systems [11], [43].



1 formula b upd l1 l2 = c=C HALF SPEED? max(0,b− 357 ) : c=

C FULL SPEED? max(0,b− 628 ) : 0;
2 ...
3 module bot module
4 b:[0..MAX BATTERY] init INITIAL BATTERY; l:[0..5] init

INITIAL LOCATION;
5 c:[C HALF SPEED..C FULL SPEED] init C HALF SPEED; r:[0..8] init

INITIAL HEADING; robot done:bool init false;
6 [] true & (turn=RT) & (!stop) & (robot done) −> (robot done’=false) &

(turn’=ET);
7 // Speed setting change tactics
8 [t set c half speed] (c!=C HALF SPEED) & (!stop) & (turn=RT) & (!

robot done) −> (c’=C HALF SPEED) & (robot done’=true);
9 [t set c full speed] (c!=C FULL SPEED) & (!stop) & (turn=RT) & (!

robot done) −> (c’=C FULL SPEED) & (robot done’=true);
10 // Robot navigation
11 [l1 to l2] (l=l1) & (!stop) & (turn=RT) & (!robot done) −> (l’=l2) & (b’=

b upd l1 l2) & (r’=H SOUTH) & (robot done’=true);
12 [l1 to l4] (l=l1) & (!stop) & (turn=RT) & (!robot done) −> (l’=l4) & (b’=

b upd l1 l4) & (r’=H WEST) & (robot done’=true);
13 ...
14 [l5 to l3] (l=l5) & (!stop) & (turn=RT) & (!robot done) −> (l’=l3) & (b’=

b upd l5 l3) & (r’=H EAST) & (robot done’=true);
15 endmodule

Listing 1: Robot module definition.

by variable l); (ii) !stop specifies that the command can fire
only if the stop condition has not been achieved. The stop
condition in this case is specified by the predicate (goal | b <=
MIN BATTERY), where goal encodes the fact that the robot has
reached its target location (l = TARGET LOCATION), and the
second predicate captures the fact that the robot does not have
enough battery to operate (b represents the remaining battery
energy); (iii) turn=RT specifies that it is the robot’s turn to
act (variable turn alternates turns between the system and the
environment); and (iv) !robot done specifies that the robot has
not finished its turn to act yet.

When executed, each command updates state variables
that include the robot’s location (l) and the battery’s energy
level (b). The battery level update that captures battery de-
pletion is an important example of how different models have
to be integrated to generate a useful formal specification of
the system. The battery update (b’=b upd l1 l2) refers to the
formula defined in line 1 that encodes the depletion of the
battery (357 milliwatt-hours) if the configuration is the one
in which the setting is half speed and a different (higher)
one for full speed. To compute these battery depletion values,
translation has to integrate pieces of information from different
models: (i) from the environment model, the translator needs
the distance dl1−l2 between l1 and l2; (ii) it then computes
the time it takes to move between those two locations as
tl1−l2 = dl1−l2/sc (where sc is the speed that corresponds
to the current configuration c); and (iii) it then computes
the battery depletion value by piecing together the time
needed to move between locations with information about the
configurations supplied by learning (battery discharge rate),
as tl1−l2 ∗ drc, where drc is the battery discharge rate for
configuration c.

To calculate the overall qualities of the system, translation
employs reward/cost structures that assign a reward/cost (a
rational number) when commands are fired in the system.
Listing 2 shows a time reward/cost structure used to quantify
the time required to complete the robot’s mission. Line 4
specifies that, whenever command l1 to l2 is fired, the time
cost accrues times that depend on the speed of the robot’s

1 formula rot time l1 to l2 = r=H NORTH ? 10.4720 : r=H NORTHEAST ?
7.8540 : r=H EAST ? 5.2360 : r=H SOUTHEAST ? −2.6180 : r=
H SOUTH ? 0.0000 : r=H SOUTHWEST ? 2.6180 : r=H WEST ?
5.2360 : r=H NORTHWEST ? 7.8540 : 0;

2 ...
3 rewards ”time”
4 [l1 to l2] true :c=C HALF SPEED? 8.5714 + rot time l1 to l2 :

4.4118 + rot time l1 to l2;
5 ...
6 [l5 to l3] true :c=C HALF SPEED? 14.2857 + rot time l5 to l3 :

7.3529 + rot time l5 to l3;
7 endrewards

Listing 2: Time reward definition.

configuration and the rotation time to make the robot head in
the direction required to go from l1 to l2.

3) Synthesis: The learning model obtained as described in
Section IV-A provides a set of configurations in the Pareto
front, including their energy discharge rate and speed, which
are used to generate the parts of the task planning specification
highlighted in red in Listings 1 and 2, respectively. Hence, the
planner generates a task plan specific to the set of Pareto-
optimal configurations (the range of timeliness and energy
efficiency levels vary with the configurations available at
different points in the task’s execution). Task plan generation is
achieved via MDP policy synthesis. Synthesizing and checking
for the existence of a policy (also called strategy or adversary)
that is able to optimize an objective expressed as a quantita-
tive property in probabilistic computation-tree logic (PCTL)
extended with rewards/costs [3] is a fundamental aspect of
model checking MDPs. An objective expressed in a PCTL
property can state that an MDP has a policy that can ensure
that an expected reward/cost measure meet some threshold or
is maximized (minimized).

Consider the PCTL property (4) that captures the high-level
goal of our mobile robotics scenario.

R{time}min=?︸ ︷︷ ︸
Reward quantifier

[F goal]︸ ︷︷ ︸
Path formula

(4)

This property contains two parts: (i) a reward/cost quanti-
fier, which indicates that the synthesis strategy should mini-
mize the accrued reward time as defined in Listing 2, and (ii) a
path formula, which indicates that the paths in the model over
which the reward has to be optimized are those that lead to
states where the reachability predicate goal is satisfied. This
predicate requires that the robot’s final location is the target
location for the mission.

C. Integrated Learning and Adaptation

To use the model and planning synthesis previously de-
scribed, we need to embed them in a control loop [23] that
runs with the robot and monitors various aspects of the robot
and the environment it encounters, and adapting the robot
configuration to increase the likelihood that a mission will be
successful. To implement the approach described above, we
apply Rainbow [16], [25], which is an extensible framework
for developing self-adaptive systems, while broadly applies the
self-adaptive elements of Modeling, Analysis, Planning, and
Execution, with a Knowledge Base of models, referred to as
MAPE-K [38], and customized as shown in Figure 4:
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Fig. 4: Using the learned model as the Knowledge in MAPE-K.

• Modeling and Analysis. In addition to containing a model
of the robotic software architecture, we also model the en-
vironment (locations of interest in a map, position of charg-
ing stations), mission (instructions for the robot, progress
through the mission), robot state (location in the environ-
ment, speed, battery level), and power consumption models.
The learned power model is consumed by Rainbow on start-
up so that it can be used by the planner. Probes are inserted
into the robotic software to get information into the model.
ROS Kinetic, the robotics software that we use, has tools
for monitoring the messages that are sent between various
components of the robot (including sensed information),
which are sufficient to update the models. The probes report
both periodically (e.g., for location or charge) once every
second, or when some event occurs.
To interpret the model information and determine erroneous
conditions requiring adaptation, we include two Analysis
components. The first analysis is a Mission Analyzer that
determines if the mission is still on track. If the robot
encounters an obstacle or the robot fails to execute some
of its instructions, then this analyzer signals an error in the
mission. The second analysis is an Energy Predictor that
uses the learned power model to determine if the robot has
run out of power or if the robot does not have enough power
to get to the charging station in the current plan (if there is
one). If using the current state of the mission and the current
charge in the battery there is not enough power to do this,
then a new plan will need to be synthesized.

• Planning. Rainbow uses a utility-based strategy selection
method to select from a fixed set of adaptations. In this
work, we integrated the plan synthesizer discussed above
that uses quantitative analysis to combine information from
the multiple models and synthesizes plans that choose opti-
mal mission improvements and reconfigurations to achieve
mission goals as the environment changes (e.g., power con-
sumption is significantly different to that which is predicted).
When a problem is identified by one of the analyzers, the
planner then synthesizes a plan which (a) indicates the robot
configuration to use and (b) specifies the path that the robot
should take in the form of a list of ordered waypoints.

• Execution. We replace the Stitch strategy execution machin-
ery that has previously been used (e.g., [16]) with tactics
to issue new tasks to the robot and that reconfigure the

robot. The plan generated by the planner is translated into an
instruction graph [42], which is a sequence of instructions
that the robot understands and is then forwarded to the robot
to be executed. The current set of instructions is canceled
and the new instruction graph is executed on the robot.

V. IMPLEMENTATION AND INTEGRATION

To evaluate our approach, we implemented the testing
infrastructure in Gazebo,7 which is used to create applications
for a physical robot without depending on the actual machine.
Our testing infrastructure is compatible with ROS and can be
transferred onto the physical robot without modifications.

To enable evaluation, we have specified a rich API for an
evaluator to exercise and explore the robustness of the system.
We have implemented the following components and tools to
evaluate our approach:
• A test harness that specifies the test configurations (start,

target locations, number of tasks in a mission) and pertur-
bations to the environment. The test harness was provided
by an independent evaluator, MIT Lincoln Laboratory.

• A learning component implementing the learning approach
described in Section IV-A. Our code for learning and
extraction, including some tutorials, are available at https:
//github.com/cmu-mars/model-learner/tree/tutorial.

• A set of perturbation scripts to make run-time modification,
e.g., placing obstacles, suddenly changing battery levels.

• A set of backend components including robot models de-
scribing all aspects of Turtlebot, static and dynamic objects,
lighting, terrain, and even physics of the robot. Also, several
Gazebo plug-ins to implement configuration management of
robots and power simulation. Source code can be found here:
https://tinyurl.com/ycketxbb.

• An instruction graph [42] that allows the creation of task
plans. These task plans can be transferred across different
ROS-enabled robotics platforms. This component provides
a standardized interface for interfacing with preemptable
tasks, e.g., moving the robot to a target location.

VI. EVALUATION

To evaluate the two hypotheses formulated in Section I, we
designed and ran experiments using (i) controlled experiments
in a theoretical setting with a large configuration space that
were validated on the real system (to increase internal validity,
explore scalability, and evaluate different environmental char-
acteristics) as well as (ii) independent evaluation on a robotics
scenario that was described in Section II (to ensure external
validity [49]).

A. Hypothesis 1 – Learning identifies optimal configurations
To evaluate whether the learning mechanism we described

in Section IV-A will find Pareto-optimal configurations, we ran
an experiment in which we learned models by taking a small
set of random samples (100 samples) for all 100 synthetically
generated power models and measured (a) rank correlations
between the learned model and the actual model as well as
(b) prediction accuracy of the learned model. Following the
methodology in our previous work in [35], we categorized the
100 synthetic models into 3 categories of Easy, Medium, and

7http://gazebosim.org/

https://github.com/cmu-mars/model-learner/tree/tutorial
https://github.com/cmu-mars/model-learner/tree/tutorial
https://tinyurl.com/ycketxbb
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Fig. 5: Rank correlation and accuracy of the model learning (a and c)
and comparison with CART model (b and d). The results indicate that
our approach is very likely to find Pareto-optimal configurations by
only measuring performance of small portion of the configurations.

Hard models based on the number of interaction terms that
appears in the model. We also compared the results with CART
(Classification and Regression Trees) as a popular learner
in the literature [27]. We used Spearman’s rank correlation
coefficient as a measure to assess how well the learned model
is likely to detect Pareto-optimal configurations. Spearman’s
correlation assesses monotonic relationships (whether linear or
not). A perfect Spearman correlation occurs when the config-
urations ranked by the actual model are a perfect monotone
function of the configurations ranked by the learned model.

The results in Figure 5 show that even with 100 samples
(0.0001% of the configuration space, it could be still a
significant number depending on the size of the space, so
we varied the number of samples [32]), we are able to learn
an accurate model (with prediction error of less than 10%
even for hard models) that is highly-likely (over 99% for
easy models and over 97% for medium and hard models)
to identify Pareto-optimal configurations. By comparing with
a popular approach (CART) for model prediction in highly-
configurable systems, the results indicate that our approach
is able to find Pareto-optimal configurations even when only
exploring a small portion of the configuration space while
CART models were inaccurate (above 40% error for Hard
models) and were not able to find optimal configurations even
for Easy models. The results for a sensitivity analysis can be
found in supplementary material in [32].

B. Hypothesis 2 – Learning leads to higher quality
We evaluate Hypothesis 2 using both controlled experiments

and independent evaluation on a real-world system.
1) Independent Evaluations (Settings): For independent

evaluation of our approach, MIT Lincoln Laboratory used
the testing infrastructure that was described in Section V to
evaluate whether using our approach leads to higher quality
missions of the robot over the use of no or static models.

We characterize severe changes that might be caused by
unanticipated and yet-unknown future environment changes
in order to test the degree to which the system is able to
support a higher-level navigation mission scenario by learning
and adapting to these changes.

We used the scenario that was described in Section II. In
each test, the robot was asked to complete a mission consisting
of N tasks within a map. The learned power model is used
by the planner, but the actual battery levels in the robot
use the ground truth power model. The testing infrastructure
supports two different environmental perturbations: (i) battery
perturbations and (ii) obstacle perturbations. For each test, a
list of tasks is generated by randomly selecting (i) the number
of tasks and (ii) their associated locations in the map. Given
the mission, the following parameters were randomly chosen:
1) the power model of the robot—from a list of 100 synthet-

ically generated power models with different complexity
(i.e., each with different number of option interactions);

2) the learning budget, indicating the maximum queries al-
lowed against actual power model during learning; and

3) the type of dynamic environmental perturbation.
For each parameter, we provided many different values to
allow the evaluator to test how sensitive our technology is
with respect to model complexity, learning budget, and envi-
ronmental perturbations. The tests were run in three stages:
• Baseline A (no perturbations) represents the unadaptive

target system operating in an unperturbed environment.
• Baseline B (perturbations and reactive planning) rep-

resents the reactive target system operating in a perturbed
ecosystem. This stage is used to confirm that the perturba-
tion to the ecosystem actually threatens the target system’s
ability to achieve its intent (i.e., for the robot to reach
its goal). In Baselines A and B, we used threshold-based
reactive planning to go to the nearest charging station.

• Challenge (perturbations and quantitative planning) rep-
resents an adaptive target system where the planner has
knowledge of the mission, environment, and learned power
model, operating in a perturbed ecosystem. This stage is
required to maintain or recover the intended functionality.
We provided a Docker containerized system with a REST

interface for interacting with the test harness. MIT Lincoln Lab
chose a set of experiments, with each experiment forming a
triple containing a run in Baselines A, B, and the Challenge
case. Lincoln Lab were able to run over 280 test triples from
which only 120 tests were valid. A test triple was deemed
Invalid if the following were satisfied:
• Baseline A did not finish the mission or the perturbations

in Baseline B were not severe enough to prevent it from
completing the mission; or

• some condition occurred during test execution that pre-
cluded continuation of the test (i.e., occurrence of an Error8)
or precluded interpretation of the test results (e.g., due to
missing or malformed data or logs).
Each test was evaluated to determine whether the Challenge

case (adaptation with the learned model) was successful, with
the following verdicts:

8Note that since the testing infrastructure comprises of an ecosystem of
independently developed systems deployed over cloud and runs on ROS the
chance of infrastructure errors is not zero.



Fig. 6: Results with obstacles perturbations. The number of Passes is
significantly higher than Failures.

• Pass: The Challenge case was able to adapt the robot to
accomplish all tasks in the mission.

• Degraded: The robot accomplished more tasks in Challenge
than in Baseline B (but not all of them).

• Fail: The robot accomplished fewer tasks in Challenge than
in Baseline B.

• Inconclusive: The test completed, but the test information
was too uncertain to be used as the basis for an outcome.
2) Independent Evaluation (Results): The results for ob-

stacle test cases in Figure 6 show that a high percentage of
the tests produced valid outcomes (Complete). Lincoln Lab
were able to achieve this because of the way they constructed
the tests. In selecting adjacent way points, they were careful
to choose in such a way that when obstacles were placed
between way points, they were highly confident that the robot
would choose the path with the obstruction. Obstacles were
also placed in such a way that it was possible to construct plans
where the robot could achieve a task using an alternative path.
The results show that the adapted system is able to recover
functionality, only producing Degraded and Fail in about 18%
and 9% of the test cases respectively.

Generating valid test cases for the battery tests turned out to
be a bit more challenging. The results in Figure 7 show that a
high number of tests were deemed Invalid. The only way a test
can fail is if the robot runs out of battery. The only way a robot
can run out of battery is if it gets drained during traversal of
the path or if we perturb the battery and drain it more quickly.
Adding too many battery drain perturbation events will result
in a test case where it is impossible for any system to recover
(the robot would shutdown immediately). In contrast, having
too little battery drain results in a test that is too ‘easy’, so
the Baseline B succeeds and it results in invalid test (based on
our definition of a valid test). For the small number of tests
that are valid, the result is promising, i.e., mostly passes with
only a couple of tests failed.

To look at the data from another angle, the results in
Figure 8 show the test identifier against the task completion
score metric. The score metric roughly represents the fraction
of the tasks in the mission that the robot hit during the test
execution. We plot this metric for completed tests. For the
Baseline A stage, the robot successfully achieves all tasks (a
score of 1.0). For the Challenge (Adapted) stage, the scores
tend to be higher comparing with Baseline B, confirming that
our approach can recover the mission.

3) Controlled Experiment: To assess whether restricting
planning to a Pareto-optimal set of configurations makes
planning tractable at run time, we ran an experiment in

Fig. 7: Results with battery perturbations. We faced many invalid test,
most of which were Passed.

Fig. 8: Task recovery as a function of test stage: our approach
recovered more tasks comparing with baseline.

which we supply sets of configurations of increasing size to
our planner (Figure 9) and observe (a) planning time and
(b) whether the planner was able to come up with a solution
(or run out of memory instead). The planner’s backend is
based on Prism 4.3’s explicit state space engine running on
8GB of allocated memory, macOS 10.14.1, and a 2.8GHz
Intel Core i7. In the figure, the horizontal axis displays the
number of configurations, and the vertical axis displays time
in milliseconds (on a logarithmic scale) that it takes to compute
a plan for the path going from l1 to l5 in the map displayed
in Figure 2. We plot times for an increasing number of
reconfigurations allowed, ranging from one to six.

The results show that very moderate numbers of configu-
rations considered (103 is only a tiny fraction of the overall
configuration space) already lead to long planning times (about
10 seconds even when only one reconfiguration is allowed).
This is aggravated in the case of two reconfigurations, in
which planning time jumps to over 100 seconds, and higher
numbers of allowed reconfigurations exhibit a similar expo-
nential increase in computation time as well as the exhaustion
of available memory (marked by red crosses in the figure).
However, if we keep the number of configurations supplied
to the planner in the range 10–180, we can observe how
computation times are kept below 10 seconds, even when
three reconfigurations are allowed. This indicates that adjust-
ing Pareto-optimal set sizes can lead to tractable run-time
planning under a different number of allowed reconfigurations,
achieving tradeoffs that depend on the specific timeliness
requirements of the adaptation scenario.
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C. Threats to Validity
Internal and Construct Validity: To ensure internal validity

of our approach, the evaluations were conducted independently
by a third party evaluator. We defined and implemented an API
for interacting with the experimental platform and Lincoln
Laboratory used the API to run the tests in their internal
testing infrastructure. The results of evaluation were directly
reported to DARPA, the project funding agency, without any
intervention from the researchers. The robustness guarantees
provided by the quantitative planning is partially dependent
on the accuracy of the data provided by machine learning.

External Validity: Even though we expect that the integrated
model learning and quantitative planning would be beneficial
for any configurable systems, the results need to be interpreted
only in the context of robotics systems. For increasing external
validity, we used 100 synthetically generated power models.

VII. RELATED WORK

Configuration optimization. Configurations can affect
functional and extra-functional aspects of systems. The per-
formance of these systems depends on configurations [50].
Several models (e.g., support-vector [56], decision trees [45],
Fourier sparse functions [58]), sampling strategies (e.g., ac-
tive learning [50]), and optimization (e.g., search-based and
evolutionary algorithms [29], [53]) have been used for per-
formance optimization of highly-configurable systems [52].
Configuration optimization search for optimal configurations
given a limited budget considered recursive random sam-
pling [55], hill climbing [54], direct search [59], optimization
via guessing [46], Bayesian optimization [33], and multi-
objective optimization [21], and ablation analysis [6].

In this work, we learn performance models [35], [50]. We
then use the learned model to identify Pareto-optimal config-
urations to enable quantitative planning for self-adaptation of
highly-configurable autonomous robots. However, as opposed
to our previous work [36], we do not perform any particular
experiments with transfer learning involved.

Planning. There exist approaches on finding solutions to
adaptations based on planning and constraint solving [57].
Also, statistical techniques have been used for providing
guarantees in self-adaptive systems [51] with focus on real-
time constraints [47] and continuous learning [8].

Existing approaches that enable self-adaptation of systems
rely on quantitative verification of system properties, including
techniques that can be used to produce formal guarantees about
quantitative aspects of systems, such as performance [11],
[41], [43] as well as appropriate reference frameworks [7].
For example, probabilistic model checking is typically used
to evaluate the result of queries based on an analysis of
a probabilistic model of the system behavior. This requires
exhaustive explorations to check for all possible executions
and then queries are solved via numerical methods [41], [43].

These approaches perform exhaustive search to verify all
the adaptation options to find the best decision. These analyses
happen at run time and the models are often simplified because
this is a very computationally demanding task. The time
and resource demands are directly dependent on the size of
the adaptation space. Therefore, such approaches cannot be
used in resource-constrained devices. However, our approach
restricts the quantitative planning to the Pareto-optimal con-
figurations, therefore, enabling run-time self-adaptations for
highly-configurable autonomous robots.

Machine learning for run-time decision making. There
are studies that use machine learning to support decision
making at run time. Performance reasoning is a key activity.
Time series techniques [17] have proven to be effective in
predicting response time and uncovering performance anoma-
lies. FUSION [18], [20] exploited inter-feature relationships
to reduce the dimensions of configuration spaces making run-
time performance reasoning feasible. Different classification
models have been evaluated for the purpose of time se-
ries predictions [2]. Performance predictions have also been
applied for resource allocations [31], [34] or other related
applications [5], [22]. Note that the approaches above are
referred to as black-box models. However, another category of
models known as white-box can be built early in the life cycle,
by studying the underlying architecture of the system [26],
[28] using Queuing networks and Petri Nets [4]. Constraining
the configuration space has also been explored in other types
of systems, e.g., service-oriented applications [10], [19], [44].

These approaches, especially FUSION [18], [20], bear re-
semblance to our work in their use of learning. While they
have been shown to be useful, they suffer from scalability
(the adaptation space did not exceed to more than a thousand
alternatives, while our approach is tested for over one million
configurations).

VIII. CONCLUSIONS

We proposed an integrated learning and quantitative plan-
ning approach that enables adaptation of robots. The key
novelty of our approach is the integration of learning and
quantitative planning to enable run time self-adaptations, and
integration of information from multiple heterogeneous mod-
els in quantitative planning. Unlike most other research in
adaptive systems community, our work was evaluated by an
independent party. As future work, we envisage online model
learning to account for model update at run time.
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A prediction-driven adaptation approach for self-adaptive sensor net-
works. In Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages
145–154. ACM, 2014.

[3] S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards
model-checked. In Proceedings of the First International Workshop on
Formal Modeling and Analysis of Timed Systems (FORMATS), volume
2791 of Lecture Notes in Computer Science, pages 88–104. Springer,
2003.

[4] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-
based performance prediction in software development: A survey. IEEE
Transactions on Software Engineering (TSE), 30(5):295–310, 2004.

[5] S. Becker, L. Grunske, R. Mirandola, and S. Overhage. Performance
prediction of component-based systems. In Architecting Systems with
Trustworthy Components, pages 169–192. Springer, 2006.

[6] A. Biedenkapp, M. T. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett,
and H. H. Hoos. Efficient parameter importance analysis via ablation
with surrogates. In AAAI, pages 773–779, 2017.

[7] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel.
Morph: A reference architecture for configuration and behaviour self-
adaptation. In Proceedings of the 1st International Workshop on Control
Theory for Software Engineering, pages 9–16. ACM, 2015.

[8] S. S. Buttar. Applying machine learning to reduce the adaptation space
in self-adaptive systems: an exploratory work. Indepentdent Bachelor
Thesis, 2018. Linnaeus University, Faculty of Technology, Department
of computer science and media technology (CM). http://lnu.diva-portal.
org/smash/record.jsf?pid=diva2%3A1240014&dswid=-7566.

[9] R. Calinescu, C. Ghezzi, M. Z. Kwiatkowska, and R. Mirandola. Self-
adaptive software needs quantitative verification at runtime. Commun.
ACM, 55(9):69–77, 2012.

[10] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic qos management and optimization in service-based
systems. IEEE Transactions on Software Engineering, 37(3):387–409,
2011.
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[35] P. Jamshidi, M. Velez, C. Kästner, and N. Siegmund. Learning to sample:
Exploiting similarities across environments to learn performance models
for configurable systems. In Proc. Int’l Symp. Foundations of Software
Engineering (FSE). ACM, 2018.

[36] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar.
Transfer learning for improving model predictions in highly configurable
software. In Proc. Int’l Symp. Soft. Engineering for Adaptive and Self-
Managing Systems (SEAMS). IEEE, 2017.
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influence models for highly configurable systems. In Proc. Europ.
Software Engineering Conf. Foundations of Software Engineering (ES-
EC/FSE), pages 284–294. ACM, August 2015.

[51] D. Weyns and M. U. Iftikhar. Model-based simulation at runtime for
self-adaptive systems. In Autonomic Computing (ICAC), 2016 IEEE
International Conference on, pages 364–373. IEEE, 2016.

[52] M. Woodside, G. Franks, and D. C. Petriu. The future of software
performance engineering. In Future of Software Engineering (FOSE),
pages 171–187. IEEE, 2007.

[53] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke. Deep parameter
optimisation. In Proc. of the Annual Conference on Genetic and
Evolutionary Computation, pages 1375–1382. ACM, 2015.

[54] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart
hill-climbing algorithm for application server configuration. In 13th
International Conference on World Wide Web (WWW), pages 287–296.
ACM, 2004.

[55] T. Ye and S. Kalyanaraman. A recursive random search algorithm for
large-scale network parameter configuration. In Int’l Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), pages
196–205. ACM, 2003.

[56] N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema. Towards machine
learning-based auto-tuning of mapreduce. In Proc. Int’l Symp. on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 11–20. IEEE, 2013.

[57] M. Zeller and C. Prehofer. Timing constraints for runtime adaptation in
real-time, networked embedded systems. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop
on, pages 73–82. IEEE, 2012.

[58] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki. Performance prediction of
configurable software systems by Fourier learning. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages 365–373. IEEE, 2015.

[59] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic configuration of
internet services. ACM SIGOPS Operating Systems Review, 41(3):219–

229, 2007.


