
Self-Adaptation for Machine Learning Based Systems
Maria Casimiro1,2, Paolo Romano2, David Garlan1, Gabriel A. Moreno3, Eunsuk Kang2 and
Mark Klein3

1Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA
2INESC-ID, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
3Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Today’s world is witnessing a shift from human-written software to machine-learned software, with the rise of systems
that rely on machine learning. These systems typically operate in non-static environments, which are prone to unexpected
changes, as is the case of self-driving cars and enterprise systems. In this context, machine-learned software can misbehave.
Thus, it is paramount that these systems are capable of detecting problems with their machined-learned components and
adapt themselves to maintain desired qualities. For instance, a fraud detection system that cannot adapt its machine-learned
model to efficiently cope with emerging fraud patterns or changes in the volume of transactions is subject to losses of millions
of dollars. In this paper, we take a first step towards the development of a framework aimed to self-adapt systems that rely
on machine-learned components. We describe: (i) a set of causes of machine-learned component misbehavior and a set of
adaptation tactics inspired by the literature on machine learning, motivating them with the aid of a running example; (ii) the
required changes to the MAPE-K loop, a popular control loop for self-adaptive systems; and (iii) the challenges associated
with developing this framework. We conclude the paper with a set of research questions to guide future work.

Keywords
Self-adaptive systems, Machine Learning, Model degradation

1. Introduction
The field of self-adaptive systems (SAS) is an extensive
and active research area that has made steady improve-
ments for years. SAS react to environment changes, faults
and internal system issues to improve the system’s be-
havior, utility and/or dependability [1]. These systems
usually adopt an architecture, known as the MAPE-K
loop, which monitors the system, decides when it needs
adaptation, selects the best course of action to improve
the system, and executes it [2]. The actions available
for the system to execute are usually called tactics. The
literature on SAS spans a broad range of systems such as
enterprise systems, and cyber-physical systems (CPS).

In parallel with the maturing of SAS research, a new
class of systems has emerged: supervised and semi-
supervised machine learning (ML) based systems are now
becoming ubiquitous. Such systems embed one or more
components, whose behavior is derived from training
data, into a larger system containing traditional compu-
tational entities (web services, databases, operator inter-
faces). Examples include: fraud detection, which uses a
classifier to detect fraudulent transactions [3]; medical

SAML’21: International Workshop on Software Architecture and
Machine Learning, September 13–17, 2021, Växjö, Sweden
" maria.casimiro@tecnico.ulisboa.pt (M. Casimiro);
romano@inesc-id.pt (P. Romano); garlan@cs.cmu.edu (D. Garlan);
gmoreno@sei.cmu.edu (G. A. Moreno); eunsukk@andrew.cmu.edu
(E. Kang); mk@sei.cmu.edu (M. Klein)

© 2021 Copyright for this paper by Carnegie Mellon University and the authors.
Use permitted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

diagnosis, which relies on ML for classifying types of
diseases of sick patients [4]; self-driving cars, which use
ML to determine whether they should stop based on how
distant they are from the car in front [5]; robots, which
rely on ML models to predict the amount of remaining
battery power [6]; and targeted advertisement services,
which rely on recommender systems to show users items
that they may find interesting [7].

For such systems, adaptation poses a key concern. In
addition to the reasons that traditional systems must
adapt (faults, changing requirements, unexpected loads,
etc.), ML-based components may fail to perform as ex-
pected, thereby reducing system utility. For instance,
changes in a system’s operating environment can intro-
duce drifts in the input data of the ML models making
them less accurate [8], or attacks may attempt to subvert
the intended functionality of the system [9].

Thankfully, there is a large number of emerging
techniques that have been developed by the ML com-
munity for adapting supervised ML models and that
could in principle be used as adaptation tactics in a
self-adaptive system. These range from off-line, from-
scratch model retraining and replacement, at one ex-
treme, to incremental approaches performed in-situ, at
the other [10, 11, 12, 13, 14, 15]. And more techniques
are being developed constantly.

Unfortunately, determining when and how to take
advantage of such tactics to perform adaptation is highly
non-trivial. First, there is a large number of possible
adaptation tactics that could potentially be applied to
an ML component, but not all approaches work with

mailto:maria.casimiro@tecnico.ulisboa.pt
mailto:romano@inesc-id.pt
mailto:garlan@cs.cmu.edu
mailto:gmoreno@sei.cmu.edu
mailto:eunsukk@andrew.cmu.edu
mailto:mk@sei.cmu.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


all forms of supervised ML models. For example, some
training models may allow a system to selectively “forget”
certain inputs, while others do not. Similarly, some ML
models support transfer learning to incrementally update
a learnt model, but not all do.

Second, the value of investing in improving the accu-
racy of an ML component is strongly context-dependent
– often depending on both the domain and timing consid-
erations. For example, while a medical diagnosis system
may support model retraining at run time, the latency
of this tactic may make it infeasible for self-driving cars,
which rely instead on swifter tactics (such as replacing
the ML component entirely) that can address real-time
system response requirements. In a different mode of op-
eration, however, both types of tactics may be available,
e.g., if the self-driving car is stopped (parked mode of op-
eration), it may be feasible to retrain an underperforming
model without compromising safety.

Third, calculating the costs and benefits of these tactics
is difficult, particularly in a whole-system context, where
improving a particular component’s performance may
or may not improve overall system utility. Costs include
time, resources (processing, memory, power), and service
disruption. Benefits derive for instance from increased
accuracy or fairness of the ML component, which can in
turn lead to better performing down-stream components
and support overall business goals (e.g. by improving ad-
vertisement revenue). Both costs and benefits can be hard
to quantify, however, and hence to reason about when de-
termining whether an ML adaptation tactic makes sense.

We argue, therefore, that in order to harness the po-
tential of the rich space of ML adaptation mechanisms, it
is necessary to develop methods that can reason about
which tactics are available to adapt the ML component,
which are the most effective to employ in a given context
so that system utility is maximized, and how to integrate
them into modern adaptive systems architectures. Specif-
ically, in this paper we attempt to bring some clarity to
this emerging but critical aspect of SAS by outlining (i)
a set of causes of ML component performance degrada-
tion and a set of adaptation tactics derived from research
on ML (§ 3); (ii) architectural and algorithmic changes
required to incorporate effective ML adaptation into the
MAPE-K loop, a popular framework for monitoring and
controlling self-adaptive systems (§ 4); and (iii) the mod-
eling and engineering challenges associated with realiz-
ing the full potential for adaptation of ML-based systems
(§ 4). We conclude with a set of open research questions.

2. Background & Related Work
Current literature on SAS focuses on managed systems
that do not embed (nor rely upon) ML models [16]. That
is, although the self-adaptation mechanism (i.e. manag-

ing system) may rely on ML to perform a given function
(e.g., decide the tactic to execute), the actual system that
is adapted (i.e. the managed system) does not rely on any
ML component. These systems have at their disposal a
set of tactics that, for instance, change a system’s archi-
tecture (e.g., adding/removing servers) or the quality of
the service they provide (e.g., increasing/decreasing the
rendering quality of images) in response to environment
changes. Usually, tactic outcomes have some uncertainty
that can be modeled via probabilistic methods given as-
sumptions on the underlying hardware/software plat-
forms and their characteristics. Further, one can measure
the properties of such systems through the use of metrics
such as latency, throughput and content quality.

Determining the costs and benefits of such adaptation
tactics has been well researched and there are numerous
techniques and algorithms for that end [17]. However,
new challenges arise when considering managed systems
that depend on ML models. Not only are we missing a
well-understood and generally applicable set of tactics
that SAS can use to adapt ML-based systems, but also
the properties of ML components, such as accuracy and
fairness, may not change consistently with the tactic that
is executed. For example, if we retrain an ML model, its
accuracy is not always affected in the same way, but may
depend on the samples available to retrain the model, on
the duration of the retraining process, and on the model’s
hyper-parameters. Similarly, model fairness may also be
affected in different ways due to the training samples
that are fed during re-training [18].

To improve the self-adaptive capabilities of systems
and their performance, recent research has proposed
SASs that rely on ML techniques and models to adapt the
system [19, 20]. Specifically, ML is used in the adaptation
manager to: update adaptation policies, predict resource
usage, update run-time models, reduce adaptation spaces,
predict anomalies, and collect knowledge. Additionally,
learning is typically leveraged to improve the Analysis
and Plan components of the MAPE-K loop [19].

In this paper, we focus on the problem of how to
leverage self-adaptation to correct and adapt supervised
ML components of a managed system, while increas-
ing overall utility of ML-based systems when their ML
components are underperforming. This vision is aligned
with the one presented by Bures [21] in which the au-
thor claims that “self-adaptation should stand in equal-to-
equal relationship to AI. It should both benefit from AI and
enable AI.” Extending this vision further, we argue that
the techniques developed in this context could also be
applied, in a recursive fashion, to self-adapt adaptation
managers that rely on ML components to enhance their
effectiveness and robustness. For instance a planner that
relies on ML to reduce the adaptation space could have
its own self-adaptation manager to ensure that the ML
component is working as expected.



The vision presented in this paper differs from work
on collective SAS since we are targeting systems with
only one agent and with a centralized learning process,
whereas this line of research focuses on systems with mul-
tiple agents that can share knowledge with each other.

Differently, our vision ties in the field of life-
long/continual learning [22, 23], which deals with open-
world problems, with the field of self-adaptive systems. In
fact, dealing with open-world changes was identified by
Gheibi et. al. [19] as an open problem in the SAS domain.
Specifically, Lifelong Learning deals with the problem of
leveraging past knowledge to learn a new task better and
Continual Learning is focused on solving the problem of
maintaining the accuracy of old tasks when learning new
tasks [23]. The techniques developed in this domain can
be leveraged by SASs to improve ML components when
unexpected changes occur in the environment or when
the performance of the ML component is degraded and af-
fects overall system utility. Overall, our focus is on SASs
and on how to integrate techniques from these research
domains into a generic, yet rigorous/principled frame-
work that can decide which ML component to adapt, how
and when. The next section provides details on possible
causes of ML component degradation and repair tactics
inspired by this field of research.

3. Adaptation of ML-based
Systems

We now motivate the need for self-adaptive ML-based
systems through an example from the enterprise systems
domain. Then, we present a set of possible causes for
ML component performance degradation and a set of
adaptation tactics.

3.1. Running Example – Fraud Detection
System.

Consider a fraud detection system that relies on ML mod-
els for scoring credit/debit card transactions. The score
attributed by the ML model is then used by a rule-based
model to decide whether transactions are legitimate or
fraudulent. Typical clients of companies that provide
fraud detection services are banks and merchants. In
this setting, system utility is typically defined based on
attributes such as the cost of losing clients due to in-
correctly declined transactions, fairness (no client is de-
clined more often) [18] and the overall cost of service
level agreement (SLA) violations (these systems have
strict SLAs to process transactions in real time, e.g. at
most 200ms on the 99.999th percentile of the latencies’
distribution [3]). While cost and revenue are directly
affected by ML model’s mispredictions, response time is
affected by model complexity, i.e., more complex models

may introduce higher latencies that compromise SLAs.
However, the impact of these mispredictions varies not
only from client to client, with whom different SLAs may
have been agreed upon, but also in time, since during
specific periods, e.g., Black Friday, the volume of transac-
tions is substantially altered. During busy days such as
these, adapting the ML models responsible for fraud de-
tection so that they are less strict and reduce false alarms
is crucial in order to preserve system utility. However,
this adaptation entails a delicate trade-off, since less strict
models can allow fraudulent transactions to be accepted.
Further, these systems are subject to constantly evolving
fraud patterns, to which the ML models must adapt [24].

3.2. Causes of Degradation of ML
Components’ Accuracy

We now focus on problems that deteriorate the perfor-
mance of ML components such that they are no longer
able to maintain system utility at a desired level. In par-
ticular, we present two classes of problems, which, we
argue, are general enough to be representative of most
of the issues addressed by the existing ML literature.

Data-set Shift. When the distribution of the inputs to
a model changes, such that it becomes substantially differ-
ent from the distribution on which the model was trained,
we find ourselves in the presence of a problem commonly
known as data-set shift [8, 11, 10, 25]. As recent work has
shown, not all data-set shifts are malign [10]. As such,
an effective SAS should not only detect shifts, but also
be able to assess their actual impact on system utility.
In a fraud detection system, data-set shift occurs when
new fraud patterns emerge (e.g., charges at a particular
merchant), or when patterns of legitimate transactions
change, for instance due to busy shopping days like Black
Friday and Christmas [24]. Although the actual features
used for classification may not change, their distribution
does. This means that different values of the features
now characterize legitimate and fraudulent transactions.

Incorrect Data. This problem arises when there are
samples in the model’s training set that are incorrectly
labeled [26] or when test data is tampered with, thus lead-
ing the model to mispredict when certain inputs arrive.
The former can happen, for instance, when unsupervised
techniques are used to label examples in order to boot-
strap the training set of a second supervised model [26].
Incorrect data can also make their way into a model’s
training set due to attackers that intentionally pollute
it so as to cause the ML component to incorrectly pre-
dict outputs for certain inputs [12, 9]. For instance, in
the fraud detection case, security breaches could lead to



Table 1
Examples of general adaptation tactics for ML-based systems with their strengths (‘+’) and weaknesses (‘–’).

Tactic Description Properties

Component
Replacement

Replace an under-performing + Fast and inexpensive, when possible
component by one that better – Non ML-based estimators may not be available in all scenarios
matches the current environment – Alternative estimators, when available, may be more robust but less precise

Human-based
Labeling [14]

Rely on a human to classify some incoming + Accuracy of human-based labels expected to be high
samples or to correct the labeling – Expert knowledge may be expensive to obtain
of samples in the training set and/or introduce unacceptable latency

Transfer
Learning [27]

Reuse knowledge gathered previously + Less data-hungry than plain retrain
on different tasks/problems to – Effectiveness dependent on the similarities between old and new tasks/data
accelerate the learning of new tasks – Computationally intensive process

Unlearning [13]
Remove samples that are no longer representative + Fast when ratio between data to forget and data-set size is small
from the training set and from the model – Cost/latency for identifying examples to unlearn can be large and context-dependent

Retrain [15]
Retrain with new data and maybe
choose new values for the
ML model’s hyper-parameters

+ Generic and robust method
– Effective only once a relatively large number of instances of the new data are available
– Computationally intensive process
– Accuracy and latency of the retrain process may vary significantly

poisoning the data used for training ML models, hence
causing them to make incorrect predictions.

3.3. Repair Tactics
Table 1 illustrates a collection of tactics that can be used
to deal with issues introduced by ML-based components.
These tactics were inspired by research on ML [22, 14,
27, 13, 15]. Next, we describe the tactics presented in the
table, motivating them with scenarios in which they can
be applied and discussing their costs and benefits.

Component replacement. This tactic assumes the
existence of a repository of components and respective
meta-data that can be analyzed to determine if there ex-
ists a component that is better suited for the current
system state. For example, when the volume of transac-
tions changes, for instance in special days such as Black
Friday, ML models may consider the increased frequency
of transactions as an indicator of fraud and erroneously
flag legitimate transactions as fraudulent. Such mispre-
dictions can lead to significant financial losses [3], thus re-
quiring timely fixes and rendering the use of high latency
tactics infeasible (note that in this context, transactions
need to be accepted/rejected within milliseconds [3]). As
such, only low latency tactics can be applied. An example
is to replace the underperforming models with rule-based
models, e.g., developed by experts for specific situations,
and/or to switch to previously trained models that are
known to perform well in similar conditions. A benefit of
this tactic, whenever it is available, is too enable a swift
reaction to data set shifts. Its main cost depends on the la-
tency and resources used for the analysis of the candidate
replacing components available in the repository.

Human-based labeling. Humans are often able to
recognize patterns, problems, and objects more accu-
rately than ML components [14]. Thus, depending on
the domain, humans may play a role in correcting these

components or giving them correct samples [14]. For
instance, whenever the ML component suspects a trans-
action of being fraudulent, it can be automatically can-
celed. Then, the user can be informed of the decision
and asked whether the transaction should be authorized
or declined in the future. Another possibility is to add
humans to the loop when adding samples to the ML com-
ponent’s training set. In this scenario, an expert can be
asked to review the most uncertain classifications so as
to improve the quality of the training samples. In the
former scenario, the benefits are easily quantifiable, since
the risk of accepting a possibly fraudulent transaction
can be measured via its economic value. However, users
may get annoyed if their transactions are canceled too
often, to the extent that they may stop purchasing using
that credit card provider. As for relying on experts to
review uncertain classifications, having an on-demand
expert performing this task is expensive and the latency
of the manual labeling process may be unacceptable.

Transfer learning. Transfer learning (TL) techniques
leverage knowledge obtained when performing previous
tasks that are similar to the current one so that learning
the current task becomes easier [27]. Suppose that: (i)
a fraud detection company has a set of clients (such as
banks), (ii) the company has a unique ML model for each
client, so that it complies with data privacy regulations1 ,
and (iii) one of its clients is affected by a new attack pat-
tern, which is eventually learned by that client’s model.
In this scenario, TL techniques [29, 27] can be used to
improve the other clients’ models so that they can react
to the same attack. Estimating the benefits of executing
this tactic for a given client boils down to estimating
the likelihood that this client may suffer the same attack.
Yet, the execution of this tactic typically implies high
computational costs (e.g., if cloud resources are used)

1Since privacy is important in this domain, there are techniques
that can be used to deal with the problem of ensuring data confiden-
tiality and anonymity in information transfer between clients [28].



and non-negligible latency, which may render this tactic
economically unfavorable, or even inadequate, e.g., if
the attack on a different client is imminent and the TL
process is slow.

Unlearning. This tactic corresponds to unlearning
data that no longer reflects the current environment/state
of the system and its lineage, thus eliminating the effect
of that data on current predictions [13], while avoiding
a full model retrain. A key problem that stands in the
way of the execution of this tactic is the identification of
incorrect labels. For instance, in a fraud detection system,
incorrectly classified transactions may all be eventually
identified for “free”, although with large latencies, when
users review their credit card statements. Conversely, in
scenarios in which the identification of incorrect sam-
ples is not readily available, one may leverage automatic
techniques, such as the one described in [30], which are
faster but typically less accurate. As such, the cost and
complexity of this task vary depending on the context.
Then, after identifying the incorrect samples, the model
must be updated to accurately reflect the correct data. At
this point, the advantage of unlearning techniques with
respect to a typical full model retrain is the time savings
(up to 9.5× 104) that can be achieved [13].

Retrain and/or hyper-parameter optimization.
This is a general tactic that involves retraining the model
with new data that reflects recent relevant data-set
drifts, e.g., a new kind of attack in a fraud detection
system. There are many types of retraining, ranging
from a simple model refresh (incorporate new data
using old hyper-parameters), to a full retrain (including
hyper-parameter optimization, possibly encompassing
different model types/architectures), which imply
different computational costs and can benefit model’s
accuracy at different extents. In the presence of data-set
shift, when there is new data that already incorporates
the new input distribution, this tactic often represents a
simple, yet possibly expensive, approach to deal with
this problem. The benefits of this tactic are dependent on
the type of retrain process and on the quality of the new
data. As for its cost, if retraining is performed on the
cloud, it can be directly converted to the economic cost
of renting the virtual machines and several techniques
exist to predict such costs [31, 32].

4. MAPE-K Loop for ML-Based
Systems

In SAS, the MAPE-K loop typically actuates over a system
composed of non-ML components. To enable the devel-
opment of self-adaptive ML-based systems, in which the

Figure 1: MAPE-K loop over an ML-based system with a mix
of ML and non-ML components, with specific challenges for
each MAPE-K stage. White arrows represent dependencies
between components.

MAPE-K loop actuates over a system composed of non-
ML and ML components (Figure 1) we argue that each
stage of the MAPE-K loop should be revised to effectively
leverage tactics such as the ones mentioned.

4.1. Monitor
The Monitor stage has to keep track of the inputs used
when querying ML components because shifts of the
input distributions may affect the predictions. For in-
stance, the detection of out-of-distribution inputs may
mean that there has been a change in the environment
and thus the model used by some ML component may
no longer be representative of the current environment.
The challenge here is not only detecting the occurrence
of shifts in a timely and reliable fashion, but also how
to effectively characterize them — since different types
of shifts require different reaction methods. As in other
SAS, typical attributes that contribute to the system’s
utility (e.g., latency, throughput) or the satisfaction of re-
quired system properties must be monitored. In addition
to these, the Monitor stage must also gather the outputs
of the ML component to account for situations in which
changes in the inputs go by unnoticed, perhaps because
they are too slow, but that manifest themselves faster in
the outputs [33]. Examples of outputs to monitor are, for
instance, shifts in the output distribution, model’s accu-
racy and error – obtained by comparing predictions with
real outcomes. A relevant challenge here is that often real
outcomes are only known after a long time, if ever. For in-
stance, in fraud detection, false negatives (i.e., undetected



real fraud) are known only when users file a complaint
and false positives are normally undetectable (since no
feedback is obtained for transactions that are legitimate
but rejected by the system). Approaches such as those
proposed in [33, 11, 34] provide a good starting point
for the implementation of a Monitor for self-adaptive
ML-based systems.

Challenges. Monitoring input and output distribu-
tions requires keeping track of a multitude of features
and parameters which would otherwise be disregarded.
This is already challenging due to the amount of data that
needs to be stored, maintained, and analyzed. Finding
suitable frequencies to gather these data and adapting
them in the face of evolving time constraints is an even
bigger challenge in time-critical domains [35, 11].

4.2. Analyze
The Analyze stage is responsible for determining whether
degradations of the prediction quality of ML components
are affecting (or predicted to affect) other system com-
ponents and system utility to such an extent that adap-
tation may be required. To accomplish this, one can
leverage techniques developed by the ML community to
detect possible issues in the inputs and outputs of the
model [8, 11, 10, 33], errors in its training set [36] and the
appearance of new features relevant for prediction [37].
These techniques must then be adjusted for the particular
case of each system, which includes adapting them to
different ML models and tasks.

Challenges. Estimating the impact of an ML compo-
nent on other system components and on system utility
can be challenging because often (mis)predictions affect
the system’s utility/dependability in ways that are not
only application- but also context-dependent. For in-
stance, during periods with higher transaction volumes,
such as on Black Friday, mispredictions have higher im-
pact on system utility, since during these periods it is
more critical to accurately detect fraud, while maximizing
accepted transactions. Architectural models can capture
the information flows among components, but the chal-
lenge is to estimate how the uncertainty in the output of
the ML components propagates throughout the system.

4.3. Plan
The Plan stage is responsible for identifying which adap-
tation tactics (if any) to employ to address issues with
ML components affecting the system. As with other self-
adaptation approaches, this reasoning should consider
the costs and benefits of each viable tactic. Further, most
of the proposed tactics have a non-negligible latency,
which needs to be accounted for as in latency-aware

approaches[38]. An additional concern is that some of
these tactics may require a considerable use of resources
to execute, either in the system itself or offloaded. This
requires Plan to account for this impact or cost.

For ML-based systems that rely on multiple ML com-
ponents, whenever a system property is (expected to be)
violated or when system utility decreases, fault localiza-
tion may be required to understand which component is
underperforming and should be repaired/replaced [39].

Challenges. Although there are several ap-
proaches [31, 40] that attempt to predict the time/cost
of training ML models, this is a complex problem
that is strongly influenced by the type of ML models
considered, their hyper-parameters and the underlying
(cloud) infrastructure. These techniques represent a
natural starting point to estimate the costs and benefits
of adaptation tactics such as the ones presented. Yet,
developing techniques for predicting the costs/benefits
of complex tactics, e.g. unlearning, remains an open
challenge. One interesting direction is to exploit
techniques for estimating the uncertainty [25] of ML
models to quantify both the likelihood of models’ mispre-
dictions as well as the potential benefits deriving from
employing corrective adaptation tactics. Certain ML
models can directly estimate their own uncertainty [41],
or additional techniques (e.g. ensembles [42]) can be
used to obtain uncertainty estimations. Still, existing
techniques can suffer from significant shortcomings in
practical settings [25].

Finally, tactics that modify ML components are compu-
tationally expensive (e.g., non-negligible latency). Thus,
Plan must have mechanisms to verify that the system can
execute the tactic without compromising other compo-
nents/properties, or even the entire system.

4.4. Execute
To execute a given adaptation tactic, the Execute stage
must have access to mechanisms to improve or replace
the ML component and/or its training set. As in the
conventional MAPE-K loop, we require implementations
of adaptation tactics that are not only efficient to execute,
but also have predictable costs/benefits and are resilient
to run-time exceptions.

Challenges. A key challenge is how to enhance the
predictability of the execution of the ML adaptation tac-
tics, which often require the processing of large volumes
of data (e.g., to re-train a large scale model) possibly
under stringent timing constraints. We argue that the
community of SAS would benefit from the availability
of open-source software frameworks that implement a
range of generic adaptation tactics for ML components.



This would allow one to mask complexity, promote inter-
operability and comparability of SAS. Further, it would
also provide an opportunity to assemble, in a common
framework, techniques that have been proposed over
many years in different areas of the AI/ML literature.

4.5. Knowledge
Finally, the Knowledge module is responsible for main-
taining information that reflects what is known about
the environment and the system. For ML-based systems,
the Knowledge component should evolve in order to keep
track of the costs/benefits of each tactic on the affected
ML components and system’s utility. This corresponds
to: gathering knowledge on how each tactic altered an
ML component and on the context in which the tactic
was executed; and meta information on training sets, for
instance characterizing the most important features for
predicting the costs and benefits of the different tactics.
This added knowledge should be leveraged to improve
the decision making process and, thus, improve adapta-
tion. By gathering knowledge on how each tactic altered
an ML component and on the context in which the tactic
was executed, the Analyze and Plan stages can take more
effective decisions on when to adapt and which tactic to
execute, respectively. Finally, for a tactic that replaces
underperforming ML components with non ML-based
ones, Knowledge must contain a repository of the avail-
able components and their meta-data. This meta-data, we
argue, should provide information to enable reasoning
on whether the necessary preconditions to enable a safe
and timely reconfiguration hold.

5. Conclusions and Future Work
This work introduced a vision for a new breed of self-
adaptive frameworks that brings together techniques
developed by the ML literature (used here as adaptation
tactics), and reasons about the cost/benefits trade offs of
each, with the end goal of adapting degraded ML com-
ponents of ML-based systems to maintain system utility.
With the aid of a running example we showed how dif-
ferent adaptation tactics can be applied to repair ML
models when different real-life situations hinder system
utility. Further, we identified a set of key requirements
that should be supported by the various elements of the
classic MAPE-K control loop and a set of challenging
research problems. Finally, we highlight the following
research questions as directions for future work: (i) How
to estimate the costs and benefits of each tactic? (ii) How
to reason about the impact of ML mispredictions on sys-
tem utility? (iii) How do changes to one ML component
impact the other components in the system? (iv) How to
reason about the long-term impacts of adaptation tactics
on system utility?

Acknowledgments
Support for this research was provided by Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) through the Carnegie Mellon
Portugal Program under Grant SFRH/BD/150643/2020
and via projects with references POCI-01-0247-
FEDER-045915, POCI-01-0247-FEDER-045907, and
UIDB/50021/2020. This material is based upon work
funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software
Engineering Institute, a federally funded research and
development center. DM21-0052

References
[1] B. H. C. Cheng, et al., Software Engineering for Self-

Adaptive Systems: A Research Roadmap, Springer,
2009.

[2] J. O. Kephart, D. M. Chess, The vision of autonomic
computing, Computer 36 (2003).

[3] B. Branco, et al., Interleaved sequence rnns for
fraud detection, in: Procs. of KDD, 2020.

[4] B. J. Erickson, et al., Machine learning for medical
imaging, Radiographics 37 (2017).

[5] Z. Chen, X. Huang, End-to-end learning for lane
keeping of self-driving cars, in: Procs. of IV, 2017.

[6] P. Jamshidi, et al., Machine learning meets quan-
titative planning: Enabling self-adaptation in au-
tonomous robots, in: Procs. of SEAMS, 2019.

[7] H.-T. Cheng, et al., Wide & deep learning for rec-
ommender systems, in: Procs. of DLRS, 2016.

[8] J. Quionero-Candela, et al., Dataset shift in machine
learning, The MIT Press, 2009.

[9] T. Gu, et al., Badnets: Evaluating backdooring
attacks on deep neural networks, IEEE Access 7
(2019).

[10] S. Rabanser, et al., Failing loudly: An empirical
study of methods for detecting dataset shift, in:
Procs. of NIPS, 2019.

[11] F. Pinto, et al., Automatic model monitoring for data
streams, arXiv preprint arXiv:1908.04240 (2019).

[12] L. Huang, et al., Adversarial machine learning, in:
Procs. of AISec, 2011.

[13] Y. Cao, J. Yang, Towards making systems forget
with machine unlearning, in: Procs. of S&P, IEEE,
2015.

[14] B. Miller, et al., Reviewer integration and perfor-
mance measurement for malware detection, in:
Procs. of DIMVA, 2016.

[15] Y. Wu, et al., DeltaGrad: Rapid retraining of ma-
chine learning models, in: Procs. of ICML, 2020.



[16] C. Krupitzer, et al., A survey on engineering ap-
proaches for self-adaptive systems (2018).

[17] K. Ervasti, A survey on network measurement:
Concepts, techniques, and tools (2016).

[18] A. F. Cruz, et al., A bandit-based algorithm
for fairness-aware hyperparameter optimization,
CoRR abs/2010.03665 (2020).

[19] O. Gheibi, et al., Applying machine learning in self-
adaptive systems: A systematic literature review,
arXiv preprint arXiv:2103.04112 (2021).

[20] T. R. D. Saputri, S.-W. Lee, The application of ma-
chine learning in self-adaptive systems: A system-
atic literature review, IEEE Access 8 (2020).

[21] T. Bureš, Self-adaptation 2.0, in: 2021 International
Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2021.

[22] D. L. Silver, Q. Yang, L. Li, Lifelong machine learn-
ing systems: Beyond learning algorithms, in: 2013
AAAI spring symposium series, 2013.

[23] B. Liu, Learning on the job: Online lifelong and con-
tinual learning, in: Procs. of the AAAI Conference
on Artificial Intelligence, volume 34, 2020.

[24] D. Aparício, et al., Arms: Automated rules man-
agement system for fraud detection, arXiv preprint
arXiv:2002.06075 (2020).

[25] Y. Ovadia, et al., Can you trust your model's un-
certainty? evaluating predictive uncertainty under
dataset shift, in: Procs. of NIPS, 2019.

[26] D. Wu, et al., A highly accurate framework for self-
labeled semisupervised classification in industrial
applications, IEEE TII 14 (2018).

[27] S. J. Pan, Q. Yang, A survey on transfer learning,
IEEE TKDE 22 (2009).

[28] Y. Liu, et al., A secure federated transfer learning
framework, Procs. of IS 35 (2020).

[29] K. Swersky, et al., Multi-task bayesian optimization,
Procs. of NIPS 26 (2013).

[30] Y. Cao, et al., Efficient repair of polluted machine
learning systems via causal unlearning, in: Procs.
of Asia CCS, 2018.

[31] M. Casimiro, et al., Lynceus: Cost-efficient tuning
and provisioning of data analytic jobs, in: Procs. of
ICDCS, 2020.

[32] P. Mendes, et al., TrimTuner: Efficient optimiza-
tion of machine learning jobs in the cloud via sub-
sampling, in: MASCOTS, 2020.

[33] X. Zhou, et al., A Framework to Monitor Machine
Learning Systems Using Concept Drift Detection,
Springer, 2019.

[34] Z. Yang, M. H. Asyrofi, D. Lo, BiasRV: Uncovering
biased sentiment predictions at runtime, CoRR
abs/2105.14874 (2021). arXiv:2105.14874.

[35] E. Bartocci, et al., Specification-based monitoring
of cyber-physical systems: a survey on theory, tools
and applications, in: Lectures on Runtime Verifica-

tion, Springer, 2018.
[36] Z. Abedjan, et al., Detecting data errors: Where are

we and what needs to be done?, Procs. of VLDB 9
(2016).

[37] D. Papamartzivanos, et al., Introducing deep learn-
ing self-adaptive misuse network intrusion detec-
tion systems, IEEE Access 7 (2019).

[38] G. A. Moreno, et al., Flexible and efficient decision-
making for proactive latency-aware self-adaptation,
ACM Trans. Auton. Adapt. Syst. 13 (2018).

[39] A. Christi, et al., Evaluating fault localization for
resource adaptation via test-based software modifi-
cation, in: Procs. of QRS, 2019.

[40] O. Alipourfard, et al., Cherrypick: Adaptively un-
earthing the best cloud configurations for big data
analytics, in: Procs. of NSDI, 2017.

[41] M. A. Osborne, et al., Gaussian processes for global
optimization, in: LION, 2009.

[42] L. Breiman, Bagging predictors, in: Machine Learn-
ing, volume 24, Springer, 1996.

http://arxiv.org/abs/2105.14874

	1 Introduction
	2 Background & Related Work
	3 Adaptation of ML-based Systems
	3.1 Running Example – Fraud Detection System.
	3.2 Causes of Degradation of ML Components' Accuracy
	3.3 Repair Tactics

	4 MAPE-K Loop for ML-Based Systems
	4.1 Monitor
	4.2 Analyze
	4.3 Plan
	4.4 Execute
	4.5 Knowledge

	5 Conclusions and Future Work

