
Safe Run-time Reconfiguration for Event-driven
Systems with Pub/Sub in ROS

Changjian Zhang1, David Garlan1, and Eunsuk Kang1

Carnegie Mellon University, Pittsburgh PA 15213, USA
changjiz@andrew.cmu.edu, garlan@cs.cmu.edu, eunsukk@andrew.cmu.edu

Abstract. Run-time reconfiguration is a critical feature for enabling
modern software systems to evolve in response to changing requirements
and environmental conditions. There are two challenges to carrying out
run-time reconfiguration in a safe manner: (1) how to avoid anomalous
behaviors that may be introduced by reconfiguration and (2) how to
minimize disruption to the system. Prior work has proposed solutions
for certain classes of systems, such as transactional systems. As far as we
know, however, no existing approach is designed to enable reconfiguration
of event-driven systems where components communicate with each other
indirectly through mechanisms such as a publish-and-subscribe (Pub/-
Sub) pattern. Re-configuring these types of systems is challenging due to
the loosely coupled nature of component interactions, but is nevertheless
becoming increasingly important in emerging domains such as robotics
and the Internet-of-Things (IoT).

This paper presents an approach for safe reconfiguration of event-driven
systems that rely on a publish-subscribe architecture. In particular, the
approach targets a large class of systems that are deployed on the Robot
Operating System (ROS), a popular framework for robotics applications.
A formal specification of the proposed reconfiguration method along with
its desired safety property is provided in the Alloy language. In addition,
a replace algorithm is provided to illustrate how to reconfigure a system
without violating the safety property as well as minimize the system
disruption. Finally, a prototype implementation in ROS is described.

Keywords: Run-time Reconfiguration · ROS · Formal Methods · Alloy.

1 Introduction

Software systems in emerging domains such as robotics, automotive, and the
Internet-of-Things (IoT) are increasingly being deployed into dynamic environ-
ments with changing agent behaviors and requirements. Since shutting down
or re-deploying the entire software is not a desirable option in many of these
systems, they must be able to dynamically adapt to changes. Run-time reconfig-
uraton is a type of adaptation activity that involves modifying the configuration
parameters of a system (e.g., replacing a component with an updated version or
activating a certain feature). For example, in the mobile robotics domain, if a

2 C. Zhang et al.

robot moves from a well-lit area to a darker one, it may need to change its sen-
sor configuration to accommodate this environmental change (e.g., by enabling
a heat motion sensor). Run-time reconfiguration becomes critical for safety and
reliability if engineers cannot access the robot when it is in mission; or even if
they could, it is often more efficient to reconfigure the system dynamically than
to recall it and perform the reconfiguration at the development site.

There are two main challenges to performing run-time reconfiguration in a
safe manner:

(i) Ensuring system safety during run-time reconfiguration: Infor-
mally, safe reconfiguration means a system should not exhibit anomalous
behavior during a reconfiguration process. However, since the system is
still active, a change to the original configuration may disrupt the on-going
computations in an unexpected manner, possibly resulting in anomalous
outputs or failures. For example, when replacing the motion sensor for
a navigational robot, neglecting to stop its movement while the robot is
temporally blind may lead to a crash into a nearby object.

(ii) Minimizing disruption to the system: According to the prior work
[11], part of the system being reconfigured may become unavailable or
degraded, but the rest of the system should remain operational. In the
context of this work, disruption refers to the level of unavailable or degraded
functionalities, and reconfiguration strategies should aim to minimize it. In
the robotics example, its movement may temporarily be disabled when the
motion sensor is being replaced, but its radio communication should remain
fully operational.

Prior research has proposed solutions to these challenges for certain classes of
systems. For example, Kramer and Magee [11] used a transaction-based model
of a system and identified quiescence as a sufficient criterion to ensure the con-
sistency of system behavior during run-time reconfiguration. In their model,
a transaction is a sequence of message exchanges between two nodes. Their
proposed algorithm guarantees that all the initiated transactions can complete
within a bounded period of time, while it requires to block all the dependent
transactions which may cause more disruption than necessary. This work has
been further extended with the approaches that attempt to minimize the dis-
ruption to the system [14,18].

Unfortunately, these existing approaches do not apply to non-transactional
systems directly. In particular, our interest is event-driven systems, where a
set of loosely coupled components interact with each other through indirect
communication mechanisms such as a publish-and-subscribe (Pub/Sub) pattern.
A key added challenge to re-configuring these types of systems is the loosely
coupled nature of their computational model, where components continuously
respond to newly generated system events and where there exists, in general, no
guarantees about the completion of a task. As far as we are aware, no existing
approach to run-time reconfiguration is designed to handle these challenges.

In this paper, we propose a solution for safe run-time reconfiguration of event-
driven systems that employ a Pub/Sub architecture. In particular, our approach

Safe Run-time Reconfiguration for ROS 3

targets a large class of system that are deployed on the Robot Operating System
(ROS), a popular open-source framework for robotics applications. The key idea
behind this approach is a novel algorithm that given an application-specific defi-
nition of a safety, determines the minimal set of components that will be affected
by a configuration change, and places these components into a degraded mode
while ensuring that the safety property remains satisfied.

Specifically, this paper makes the following contributions. First, we propose
a semantic model of the behaviors of an event-driven system and its safety prop-
erty. Second, we define a set of atomic actions for modifying the system structure
and present a novel replacement algorithm, which decomposes a high-level re-
configuration task into a sequence of these atomic actions. Third, we present a
prototype implementation of the reconfiguration algorithm in ROS. Moreover,
previous work did not provide a formal specification or analysis of their re-
configuration strategies. To make our approach more rigorous, we use Alloy [7]
to specify our semantic model and verify its correctness.

The rest of the paper is organized as follows. Section 2.1 uses Quiescence as
an example to identify the key elements of building a reconfiguration strategy for
a particular class of systems. Then, Section 2.2 provides a brief introduction to
ROS. Section 3 presents our model for event-driven systems. Section 4 defines the
safety property of this model and the actions for changing the system structure.
Section 5 discusses the implementation in ROS. Finally, Section 6 studies the
related work and Section 7 concludes the paper.

2 Background

In this section, we first use Quiescence as an example of safe reconfiguration for
transactional systems. In the second part, we give a brief introduction to ROS
architecture and clarify that why prior work on transactional systems cannot
directly apply to ROS systems.

2.1 Definition of Quiescence

Quiescence [11] uses a transaction-based model. A node is a basic processing
unit which can initiate and service transactions, and a transaction is a sequence
of message exchanges between two nodes. A transaction should complete in
bounded time, and the initiator of the transaction should be aware of its com-
pletion. A transaction would cause its participants changing from one consistent
state to another. When a node is consistent, it should satisfy the system’s global
invariants. This property definition is similar to ACID [6] in the database field
where a transaction should be atomic and consistent.

In run-time reconfiguration, the on-going transactions may be interrupted
leaving the system into an inconsistent state. Therefore, it is critical to ensure
all the initiated transactions to complete, and Kramer and Magee identified
Quiescence as a sufficient state to achieve it. In their solution, a node works in
two operation modes: active and passive.

4 C. Zhang et al.

Active: a node in active state can initiate, accept, and service transactions.
Passive: a node in passive state must continue to accept and service trans-

actions, but

(i) it is not currently engaged in a transaction that it initiated, and
(ii) it will not initiate new transactions.

Passive mode ensures that a node would not actively change its state, but
other nodes can still initiate transactions on it. Therefore, Kramer and Magee
defined Quiescence as a stronger state:

Quiescence: a node N is quiescent if:

(i) it is not currently engaged in a transaction that it initiated,
(ii) it will not initiate new transactions,

(iii) it is not currently engaged in servicing a transaction, and
(iv) no transactions have been or will be initiated by other nodes which require

service from this node.

To conclude, Quiescence ensures the correct behavior of a system by letting
affected components not initiate any new transaction. However, this approach
requires the system to be transactional.

2.2 Robot Operating System

ROS [1] is a robot software framework providing the communication infrastruc-
ture for nodes and a set of building and debugging tools. In ROS, a node is a
basic computation unit which should be a process. Then, developers can focus
on building application nodes under standard communication protocols.

ROS defines two communication protocols: topics and services. Topic im-
plements a topic-based Pub/Sub style, and Service implements a RPC-based
SOA style. Developers can apply various computation models, such as event-
driven systems with topics or transaction-based systems with services. Moreover,
developers can also build transactional systems with topics. In fact, ROS pro-
vides Action [1] which is a transaction-like computation model built upon topics,
and [9,16,19] have shown how developers can build more complex transactional
models with the Pub/Sub style.

However, ROS systems mainly use event-driven pattern with the Pub/Sub
style, which is not transactional. According to Kramer and Magee’s definition, a
transaction should complete in bounded time and the initiator should be aware of
its completion. But in event-driven systems, components continuously respond
to system events and the completion of a computation is unclear. Thus, the
transaction model cannot directly apply to event-driven systems.

Pub/Sub is well adapted to scalable and loosely coupled systems [5], and it
is suitable for building event-driven systems [3]. Most often, such systems are
considered to be easily reconfigurable, adding/removing a publisher/subscriber
would not “affect” other nodes. However, this is not always true. Imaging a
robot system with an obstacle detector publishing obstacle information and a

Safe Run-time Reconfiguration for ROS 5

motor controller subscribing to this event to adjust the speed. For this system,
removing the detector would not directly cause an error, but the function of
the motor controller is affected which leads to anomalous behavior or potential
failure.

From the above example, we find the semantic dependencies among nodes
are also critical to ensure the correct behavior of a system. Similarly, in the
transactional model, all the participants of a transaction are semantically related.
However, such relationships in event-driven systems are not clear. Moreover,
prior work on transactional systems used sequence diagrams to analyze such
semantic relationships, but we didn’t find a widely accepted notation for event-
driven systems which we can apply this analysis. Therefore, this paper first
defines a model to specify the semantics for event-driven systems and identifies
its safety property.

3 Semantic Model for Event-Driven Systems

This section introduces the semantic model for event-driven systems. We also
set up an example system to better illustrate the concepts.

3.1 Problem Setting

The architecture of the example robot system is shown in Figure 1. In this
system, an obstacle detector node reads image data from a camera device pe-
riodically to compute whether there are objects in the front. It publishes the
obstacle information to topic t every second. Then, a motor controller node sub-
scribes to this topic and adjusts the speed accordingly. For safety concern, if the
obstacle detector is unavailable (e.g., being removed from the system), then the
motor controller should stop the robot.

Fig. 1: C&C view of the example robot system

6 C. Zhang et al.

3.2 Functionality, Assumption, and Guarantee

A component should provide a set of functionalities. A functionality defines a
computation process which takes input data and produces output. In program-
ming languages, it is often represented as a function. In our example, the obstacle
detector provides the functionality that takes the camera data and produces the
obstacle information every second. The controller takes the obstacle information
and produces the proper motor speed.

To make a functionality work normally, it should have the correct implemen-
tation and the input data should satisfy some predicates. We assume the im-
plementations are always correct and define the predicates over the input data
as assumptions. Then, when a functionality works, it changes the environment
or produces new data through its associated outputs. The output data should
also satisfy some predicates which we define them as guarantees. For example,
the detection functionality may assume that it should receive camera data in a
particular resolution and guarantee to produce the obstacle information every
second through the port out.

(a) (b)

Fig. 2: (a) shows how the assumption made by a functionality is satisfied by the
environment, (b) shows how the assumption is satisfied by an input port.

The system scope delineates the components which can be modified, and
components outside the scope are called environment components. An environ-
ment component can be a hardware device or another system module which
would not be modified. These components provide guarantees which can satisfy
the assumptions made by the functionalities of components in scope. Figure 2a,
for instance, shows the camera device satisfies the detection assumption that it
should receive image data.

In an event-driven system, an input port (a subscriber) receiving data can
trigger the functionalities of a component. Developers often make assumptions

Safe Run-time Reconfiguration for ROS 7

on the data of the input ports, and these assumptions should satisfy the as-
sumptions of the triggered functionalities. For example, Figure 2b shows that
the assumption of input in satisfies the assumption of the motor control func-
tionality that it should receive obstacle information.

Fig. 3: The annotated C&C view with assumptions and guarantees

We define connectors as first-class entities. A connector (a topic) should
provide messages satisfying some guarantee. Hence, an output port (a publisher)
can connect to a connector when its guarantee satisfies the guarantee of the
connector; and an input port (a subscriber) can connect to a connector when
the connector’s guarantee satisfies its assumption.

Finally, it forms a satisfaction chain of assumptions and guarantees. Figure 3
shows all the assumptions and guarantees of the example system. To conclude,
a functionality works iff its assumptions are satisfied. Assumptions made by
a functionality are satisfied by the environmental guarantees or by the input
assumptions. Then, the input assumptions are satisfied by the guarantees of the
connected connectors, and the connectors are satisfied by the connected output
ports. At last, the output ports satisfy the connector guarantees when their
corresponding functionalities work.

4 Reconfiguring the semantic model

This section identifies the safety property of the model and presents how to
ensure this property during reconfigurations.

4.1 Safety Property

We assume that when all the functionalities in a system work (their assumptions
are satisfied), the system should perform the correct behavior. Therefore, we de-
fine the safety property, that the assumptions of all the functionalities should be
satisfied. Apparently, a change to the system configuration may cause violations
against it. For example, when removing the obstacle detector from the system,
the assumption of the control function is not satisfied.

8 C. Zhang et al.

4.2 Degraded Mode

Affected components may become unavailable or work in a degraded mode in
order to ensure the safety property. For example, the passive mode in Quies-
cence requires a node to stop initiating new transactions. In our model, unsat-
isfied assumptions would cause a functionality becomes unavailable. Thus, this
functionality can be degraded by not relying on these assumptions, and its asso-
ciated output ports should provide degraded guarantees. Therefore, we extend
our model as follows:

(i) Each functionality should have a normal mode and a degraded mode.

(ii) A functionality in its degraded mode should not rely on any assumption.

(iii) If the output guarantee of a functionality in degraded mode satisfy an
assumption/a guarantee, then the output guarantee in normal mode should
also satisfy it.

For example, the degraded mode for the motor control function could be stopping
the motor, which does not rely on receiving the obstacle information.

The current definition of degraded mode is a naive solution. Without any
assumption, the functionality is always satisfied but might cause a larger dis-
ruption to the system. Another issue is that the degraded function is defined by
developers. Developers are responsible for ensuring that the degraded functions
can still guarantee the correct behavior of the system.

4.3 Reconfiguration Actions

Previous work [10,15] have identified four primitives for modifying the structure
of systems. For our model, we extend them with two actions, and in total they are
remove, create, detach, attach, upgrade, and degrade. Any reconfiguration process
should be decomposed into a sequence of these actions. Each action must ensure
a system to move from one valid state to another.

We specify the model and the actions in Alloy [7] and check their validity and
consistency with bounded model checking. Alloy is a specification language based
on first-order relational logic. It is suitable for this task because: 1) our model
is mainly about the relations among functionalities, assumptions, and guaran-
tees; 2) the Alloy model checker provides an automated analysis for checking
assertions. We’ve also explored TLA+ [12] to specify the model. However, Alloy
provides an easier way to assert the correctness of the actions under any sys-
tem configuration within a bounded model. The follows describe those actions
in details1.

1 In the following Alloy code, System, Component, Connector, Port, and Functionality
are signatures. A signature defines a set of entities in the universe. The Alloy keyword
pred defines a predicate, and actions are defined as predicates by using pre-post-
conditions. The keyword in refers to operator ⊆, keyword all refers to ∀, keyword
some refers to ∃, and no is the shorthand for ¬∃.

Safe Run-time Reconfiguration for ROS 9

Remove: Remove a component c from the system. Line 3 defines c should be
an existing node in the system2. Then, Line 4 defines that component c should
be isolated. Here, isolated means that the component is not connected to other
components through any connector. When the node is isolated, it cannot affect
other nodes even if it is still producing data. Thus, it is safe to remove it.

1 pred remove[s, s’: System , c: Component] {
2 // Preconditions
3 c in s.comps
4 all p: (c.inputs + c.outputs) | no conn: s.conns | p in conn.roles
5 // Postconditions
6 s’. comps = s.comps - c
7 s’. avail_funcs = s.avail_funcs - c.funcs
8 // Rest unchanged
9 . . .

10 }

Create: Add a component c to the system. Line 4 defines that all the func-
tionalities of component c should be in degraded mode. When a node is created,
it is initially isolated and its functionalities may not be satisfied. Thus, if all its
functionalities are in degraded mode, it is safe to add it to the system.

1 pred create[s, s’: System , c: Component] {
2 // Preconditions
3 c not in s.comps
4 all f: c.funcs | f.degraded = True
5 // Postconditions
6 s’. comps = s.comps + c
7 s’. avail_funcs = s.avail_funcs + c.funcs
8 // Rest unchanged
9 . . .

10 }

Detach: Detach a port p from a connector conn. There are two cases: de-
taching an input port and detaching an output port. For detaching an input
port, Line 5 define that the corresponding component c should be able to work
without it. It means that the functionalities of c should be satisfiable when ex-
cluding this input from the component, as shown in Line 18-19. As a result,
these functionalities should be either in degraded mode or satisfied by other
input ports of the component.

For detaching an output port, if the guarantee of connector conn cannot
be satisfied by other connected outputs excluding p, as shown in Line 25-28,
then all the connected input ports would also become unsatisfied. Thus, all the
components should be able to work without these input ports.

1 pred detach[s, s’: System , conn: Connector , p: Port] {
2 // Preconditions
3 conn in s.conns
4 p in conn.roles
5 p in Input => some c: s.comps | p in c.inputs and safe_no_input[s, c, p]
6 p in Output and not conn_satisfied_no_out[s, conn , p] =>
7 all c: s.comps | safe_no_input[s, c, (conn.roles & Input)]
8 // Postconditions
9 some conn ’: Connector {

10 conn ’.roles = conn.roles - p
11 // Rest unchanged

2 In Alloy, any element is treated as a set. Thus, c is a set of component with one
value, and s.comps returns the all the components in system s.

10 C. Zhang et al.

12 . . .
13 }
14 }
15

16 pred safe_no_input[s: System , c: Component , no_i: Input] {
17 all f: c.funcs , a: f.cur_mode.mode_asms |
18 (some i: (f.assoc_inputs - no_i) |
19 satisfy[i.input_asm , a] and input_satisfied[s, i])
20 or
21 satisfy[s.env_guars , a]
22 }
23

24 pred conn_satisfied_no_out[s: System , conn: Connector , no_o: Output] {
25 some c: s.comps , f: c.funcs , o: (f.assoc_outputs - no_o) {
26 o in conn.roles
27 satisfy[f.cur_mode.mode_guars[o], conn.conn_guar]
28 f in s.avail_funcs
29 }
30 }

Attach: Attach a port p to a connector conn. Line 6-7 define if the port is
an output, then its current guarantee should satisfy the guarantee of conn. Line
9 defines if the port is an input, then the guarantee of connector conn should
satisfy its assumption.

1 pred attach[s, s’: System , conn: Connector , p: Port] {
2 // Preconditions
3 conn not in s.conns => no conn.roles
4 p in (s.comps.inputs + s.comps.outputs)
5 p not in conn.roles
6 p in Output => { some c: s.comps , f: c.funcs | p in f.assoc_outputs and
7 satisfy[f.cur_mode.mode_guars[p], conn.conn_guar]
8 } else {
9 satisfy[conn.conn_guar , p.input_asm]

10 }
11 // Postconditions
12 some conn ’: Connector {
13 conn ’.roles = conn.roles + p
14 // Rest unchanged
15 . . .
16 }
17 }

Degrade: Degrade a functionality f of a component c. The associated out-
puts of f would produce their degraded guarantees. If the degraded guarantee
of an output does not satisfy the guarantee of its connected connector (Line 6-7)
and the connector cannot be satisfied by other outputs excluding the associated
of f (Line 4), then this connector and all its connected input ports become un-
satisfied. Therefore, all the components should be able to work without these
input ports.

1 pred degrade[s, s’: System , c: Component , f: Functionality] {
2 f.degraded = False
3 let aff_conns = { conn: s.conns |
4 not conn_satisfied_no_out[s, conn , f.assoc_outputs]
5 and
6 no o: f.assoc_outputs | o in conn.roles and
7 satisfy[f.degrad_mode.mode_guars[o], conn.conn_guar]
8 }
9 | all c: s.comps | safe_no_input[s, c, (aff_conns.roles & Input)]

10 some c’: Component , f’: Functionality {
11 f’. cur_mode = f.degrad_mode
12 f’. degraded = True
13 // Rest unchanged

Safe Run-time Reconfiguration for ROS 11

14 . . .
15 }
16 }

Upgrade: Upgrade a functionality f of a component c to its normal mode.
Line 6 defines that all the assumptions made by the normal mode of the func-
tionality should be satisfied by the current system configuration.

1 pred upgrade[s, s’: System , c: Component ,
2 f: Functionality]
3 {
4 // Preconditions
5 f.degraded = True
6 all a: f.norm_mode.mode_asms | asm_satisfied[s, f, a]
7 // Postconditions
8 some c’: Component , f’: Functionality {
9 f’. cur_mode = f.norm_mode

10 f’. degraded = False
11 // Rest unchanged
12 . . .
13 }
14 }

Finally, we use assert and check keywords to verify the validity of the
above actions, that is from any valid system configuration with 5 elements, after
executing an action, the system still satisfies the safety property. Then, we use
run keyword to check the consistency, that is it is possible to generate an instance
of an action to demonstrate that its preconditions are reachable. The following
code use detach as an example:

1 assert SafeDetach {
2 all s, s’: System , conn: Connector , p: Port |
3 valid_sys[s] and detach[s, s’, conn , p] => valid_sys[s’]
4 }
5 check SafeDetach for 5
6 run Detach {
7 some s, s’: System , conn: Connector , p: Port |
8 valid_sys[s] and detach[s, s’, conn , p] and valid_sys[s’]
9 } for 3 but exactly 2 System

4.4 Replace Algorithm

With the formal specification of the model and the actions, we are confident
that when the preconditions are satisfied, executing the actions won’t violate
the safety property. Thus, a reconfiguration process should change the system
in a proper sequence where the preconditions of each step are satisfied. There
may be more than one possible sequences to change from one configuration to
another, and the algorithms to generate such sequences should minimize the
system disruption. As a counterexample, an algorithm which degrades all the
functionalities can still satisfy the safety property.

This section introduces an algorithm to replace a node c with c′. In general,
it defines the following process:

1. Detach all the ports of c, and before each detaching, degrade the affected
functionalities.

2. Remove c.

12 C. Zhang et al.

3. Start the new node c′ in its degraded mode.
4. Attach all the inputs of c′ to their corresponding connectors.
5. Upgrade functionalities of c′.
6. Attach all the outputs of c′ to their corresponding connectors, and upgrade

the degraded functionalities of other nodes.

Algorithm 1 Replace algorithm

1: procedure DegradeByConn(conn)
2: inputs← connected inputs of conn . conn could be a set of connectors
3: cs← corresponding components of inputs
4: for all c in cs do
5: for all f in AffectedFuncs(c, inputs) do
6: Degrade(c, f)
7: end for
8: end for
9: end procedure

10:
11: procedure Degrade(c, f)
12: conns← AffectedConns(f)
13: DegradeByConn(conns)
14: ExecDegrade(c, f)
15: end procedure

The pseudo-code in Algorithm 1 shows the most critical procedures for de-
grading functionalities. In a system without cyclic dependencies, the algorithm
finds the affected functionalities recursively by reusing the expressions defined
in Section 4.3. In particular, these functions are:

– AffectedFuncs(c, i) in line 5 returns the set of functionalities of component
c which cannot be satisfied when excluding the input(s) i, that is

{ f: c.funcs |
some a : f.cur_mode.mode_asms |

(no i2: (f.assoc_inputs - i) |
satisfy[i2.input_asm , a] and input_satisfied[s, i2])

and not satisfy[s.env_guars , a]
}

– AffectedConns(f) in line 12 returns the set of connectors which cannot be
satisfied when f is degraded, that is

{ conn: s.conns |
not conn_satisfied_no_out[s, conn , f.assoc_outputs]
and
no o: f.assoc_outputs | o in conn.roles and

satisfy[f.degrad_mode.mode_guars[o], conn.conn_guar]
}

Justification of correctness: Degrading a functionality won’t violate the safety
property. This theorem is trivially true because the algorithm finds out and

Safe Run-time Reconfiguration for ROS 13

degrades the functionalities which violate the preconditions before executing an
action.

Justification of minimized disruption: According to the algorithm, if a node
is not connected to the node to change through any connector path, it is not
in the search space, and thus would not be degraded. If a node is connected,
the algorithm finds out the ones which violate the preconditions and only de-
grades these functionalities. Thus, functionalities that are still satisfiable are not
degraded.

However, it is not guaranteed to always find out the minimal set. The algo-
rithm removes the old node first and then adds the new one, yet it is not always
necessary. It may not need to degrade the connected nodes if adding and attach-
ing the new node first. But if the system defines a constraint over the connector
such as it should only have one output port connected, then this strategy would
not work. The trade-off is that the current algorithm does not need to deal with
such constraints which reduces its complexity.

5 Implementation in ROS

This section presents the ROS implementation of the reconfiguration strategy,
which is developed in Python.

5.1 Assumptions and Guarantees

The most critical concepts in our semantic model are guarantees, assumptions,
and their satisfaction relations. Assumptions and guarantees are in fact predi-
cates against data. There are two common characteristics of data in ROS: (1)
each topic is associated with a specific message type; (2) developers often specify
a publisher producing messages in a particular rate. Therefore, we can use these
two factors to compose predicates, such as:

(i) An output port produces nothing.
(ii) An output port produces messages in type T .

(iii) An input port receives messages in type S at x Hz ...

Then, we can build the satisfaction rules:

(i) A predicate (a guarantee or an assumption) p satisfied another predicate q
iff p and q have the same message type, and the message rate of p is greater
or equal to it of q or q does not rely on the rate.

(ii) If a guarantee p defines it produces nothing, it does not satisfy any predi-
cate.

5.2 ROS Reconfiguration Framework

The implementation is based on the work of a CMU MSE-ESE student team in
2017. It introduces a configuration management node to manage the run-time

14 C. Zhang et al.

model of the current system configuration and to accept and execute reconfig-
uration commands. The user API registers the model information of each node
to the management node and then invoke the ROS API to initialize the nodes
and connectors.

We refactor the ROS tutorial [1] project as a demo system. The tutorial
includes a talker node which publishes “hello word” messages at 10Hz and a
listener node which subscribes to this topic. The following code show how to
construct the talker node in our framework:

1 def talker ():
2 comp = Component("talker") # Initialize node
3 pub = comp.create_output("out", String) # Initialize ports
4 # Initialize functionalities
5 talk = comp.create_functionality("talk", outputs=[out])
6

7 def normal ():
8 hello_str = "this is %s %s" % (rospy.get_name (), rospy.get_time ())
9 rospy.loginfo(hello_str)

10 out.write(hello_str)
11

12 def degraded (): # In degraded mode , the talker is silent.
13 pass
14

15 talk.set_normal_mode(normal , rate=10, outputs=[out])
16 talk.set_degraded_mode(degraded)
17 comp.start() # Run the component

Component in Line 2 initializes the node with name “talker”. In Line 3, comp
.create_output adds an output port with its name and message type3. Also,
comp.create_input adds an input port with its name and relied assumptions.
comp.create_functionality in Line 5 adds a functionality with its name and
associated outputs and inputs. set_normal_mode and set_degraded_mode in
Line 15 and 16 set the normal and degraded behavior of the functionality. In sum,
our API requires developers to explicitly identify system structures and their
semantic information. Then, it sends this model information to the configuration
manage node, and the management node uses it to build the model.

We implement the replace algorithm defined in Section 4.4. It simply trans-
forms the pseudo-code and Alloy expressions to Python code. Then, when re-
ceiving a command, it takes the current model, generates, and executes the re-
configuration process. For example, in the tutorial example, replacing the talker
node with a new one would result in the following process: (1) degrade the lis-
tener node; (2) detach output out of the talker from its connector; (3) remove
the talker; (4) create the new talker; (5) upgrade the new talker; (6) attach the
output port of the new talker to its connector; (7) upgrade the listener.

In addition, we implement the feature to verify the current system configu-
ration against our semantic model by dumping the model into an Alloy specifi-
cation. Also, it can verify the correctness of a sequence of actions by checking
the model after each reconfiguration step. This is useful when we have more
sophisticated algorithms which are hard to proof or verify. For these algorithms,
we can verify their generated sequences instead.

3 create_output and create_input would not connect the port to its connector. We
consider the attaching action should be managed by our framework.

Safe Run-time Reconfiguration for ROS 15

6 Related Work

Kramer and Magee [11] first used a transaction-based model and identified Qui-
escence. However, it is too conservative which requires all the affected nodes to
stop initiating any new transaction. With the same model, [14, 18] focus on the
current progress of each transaction. They identified that it is safe to change
a node if it has not begun its participation in a transaction or has completed
its participation. Thus, affected components do not have to completely stop ini-
tiating new transactions, and the level of disruption is reduced. [2] considered
transaction to be a too strong restriction. They focused on the direct interac-
tions between two connected components and identified dynamic dependency to
minimize the disruption.

For run-time reconfiguration of Pub/Sub systems, [4,8,17] assumed a broker
network for dispatching messages in distributed Pub/Sub systems. Then, they
focused on ensuring the safety properties of the broker network in run-time
reconfigurations. However, our work focus on the safe reconfiguration of the
components topology in Pub/Sub. [20] also focused this problem and analyzed
how DDS (Data Distribution Service for Real-Time Systems) can preserve the
system correctness in dynamic reconfiguration. However, it does not provide
a general solution to this problem. [13] presented a formal model of Pub/Sub
architecture style in Z and proved its safe reconfiguration strategy which can
preserve the stylistic constraints.

7 Conclusion & Future Work

In this paper, we have introduced a solution for safely re-configuring event-
driven systems with respect to the two challenges. For the first challenge that
how to ensure the safety of a system, we find that the correct behavior of a
system relies on its semantic dependencies among nodes. Thus, we present a
model which specifies such relations through functionalities, assumptions, and
guarantees. Then, we identify that safe reconfiguration means to ensure all the
assumptions of functionalities being satisfied.

For the second challenge that how to minimize the disruption, we first define
a set of actions to change the system structure and then present the replace
algorithm to show how to find the minimal set of functionalities to be degraded.
However, according to our justification, it is not guaranteed. In fact, finding the
minimal set of affected functionalities of any reconfiguration becomes a more
complex searching problem, which could be studied in future work.

Future work would first focus on a more complex demonstration of the strat-
egy and the implementation. Second, we are exploring more fine-grained de-
graded modes which allow a functionality to work with assumptions which are
still satisfiable in reconfigurations. Finally, we plan to design a DSL for ROS
which allow developers to specify the system architecture as well as the seman-
tic model. With such DSL, we may check a system’s validity in design time,
generate code, and initialize and reconfigure the system from the specification.

16 C. Zhang et al.

References

1. Ros - wiki, http://wiki.ros.org/
2. Chen, X., Simons, M.: A component framework for dynamic reconfiguration of

distributed systems. In: International Working Conference on Component Deploy-
ment. pp. 82–96. Springer (2002)

3. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.:
Documenting software architectures: views and beyond. Pearson Education (2002)

4. Cugola, G., Picco, G.P., Murphy, A.L.: Towards dynamic reconfiguration of dis-
tributed publish-subscribe middleware. In: International Workshop on Software
Engineering and Middleware. pp. 187–202. Springer (2002)

5. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM computing surveys (CSUR) 35(2), 114–131 (2003)

6. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
computing surveys (CSUR) 15(4), 287–317 (1983)

7. Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press (2012)
8. Jaeger, M.A., Mühl, G., Werner, M., Parzyjegla, H.: Reconfiguring self-stabilizing

publish/subscribe systems. In: International Workshop on Distributed Systems:
Operations and Management. pp. 233–238. Springer (2006)

9. Jergler, M., Zhang, K., Jacobsen, H.A.: Multi-client transactions in dis-
tributed publish/subscribe systems. Proceedings - International Confer-
ence on Distributed Computing Systems 2018-July, 120–131 (2018).
https://doi.org/10.1109/ICDCS.2018.00022

10. Kramer, J., Magee, J.: Dynamic configuration for distributed systems. IEEE Trans-
actions on Software Engineering (4), 424–436 (1985)

11. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Man-
agement. IEEE Transactions on Software Engineering 16(11), 1293–1306 (1990).
https://doi.org/10.1109/32.60317

12. Lamport, L.: Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

13. Loulou, I., Jmaiel, M., Drira, K., Kacem, A.H.: P/s-com: Building correct by design
publish/subscribe architectural styles with safe reconfiguration. Journal of Systems
and Software 83(3), 412–428 (2010)

14. Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna, V., Lu, J.: Version-consistent
dynamic reconfiguration of component-based distributed systems. In: Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. pp. 245–255. ACM (2011)

15. Magee, J., Kramer, J., Sloman, M.: Constructing distributed systems in Conic.
IEEE Transactions on Software Engineering 15(6), 663–675 (1989)

16. Michlmayr, A., Fenkam, P.: Integrating distributed object transactions with wide-
area content-based publish/subscribe systems. In: 25th IEEE International Con-
ference on Distributed Computing Systems Workshops. pp. 398–403. IEEE (2005)

17. Parzyjegla, H., Mühl, G., Jaeger, M.A.: Reconfiguring publish/subscribe overlay
topologies. Proceedings - International Conference on Distributed Computing Sys-
tems (2006). https://doi.org/10.1109/ICDCSW.2006.88

18. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low disrup-
tive alternative to quiescence for ensuring safe dynamic updates. IEEE Transac-
tions on Software Engineering 33(12), 856–868 (2007)

19. Vargas, L., Pesonen, L.I.W., Gudes, E., Bacon, J.: Transactions in content-based
publish/subscribe middleware. In: 27th International Conference on Distributed
Computing Systems Workshops (ICDCSW’07). p. 68. IEEE (2007)

Safe Run-time Reconfiguration for ROS 17

20. Zieba, B., van Sinderen, M.: Preservation of correctness during system reconfigura-
tion in data distribution service for real-time systems (dds). In: 26th IEEE Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW’06).
p. 30. IEEE (2006)

