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ABSTRACT
Architecture-based self-adaptation is considered as a promis-
ing approach to drive down the development and opera-
tion costs of complex software systems operating in ever
changing environments. However, there is still a lack of
evidence supporting the arguments for the beneficial im-
pact of architecture-based self-adaptation on resilience with
respect to other customary approaches, such as embedded
code-based adaptation. In this paper, we report on an em-
pirical study about the impact on resilience of incorporating
architecture-based self-adaptation in an industrial middle-
ware used to collect data in highly populated networks of
devices. To this end, we compare the results of resilience
evaluation between the original version of the middleware,
in which adaptation mechanisms are embedded at the code-
level, and a modified version of that middleware in which the
adaptation mechanisms are implemented using Rainbow, a
framework for architecture-based self-adaptation. Our re-
sults show improved levels of resilience in architecture-based
compared to embedded code-based self-adaptation.

Categories and Subject Descriptors
D.2.11 [Software]: SOFTWARE ENGINEERING—Soft-
ware Architectures; D.2.4 [Software]: SOFTWARE ENGI-
NEERING—Software/Program Verification

General Terms
Experimentation, Measurement, Reliability

Keywords
Resilience evaluation, Architecture-based self-adaptation,
Probabilistic model checking, Rainbow
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1. INTRODUCTION
During the last decade, the software industry has seen a

continuous increase in the complexity of software systems, as
well as in the uncertainty of the environments in which they
have to operate. This trend has led to an increasing growth
in the cost of both developing and operating such systems,
but more importantly, has put their resilience (i.e., their
ability to provide service that can justifiably be trusted when
facing changes [24]) in the spotlight as a central concern [13].

Initial approaches to tackle the development and run-time
management of complex systems that must operate in ever-
changing environments consisted either in making use of hu-
man oversight (which is expensive and unreliable), or in em-
bedding low-level error-handling mechanisms in application
code that trigger specific responses to anomalies observed in
the system at run-time (e.g., exceptions, timeouts). How-
ever, although the latter approach can be effective in specific
situations, it lacks flexibility and is not well suited to deal-
ing with more subtle, but important kinds of anomaly (e.g.,
progressive performance degradation).

Autonomic computing, or self-adaptive systems [10, 13,
22], have emerged more recently as an alternative to over-
come the shortcomings presented by the aforementioned ap-
proaches. In particular, architecture-based self-adaptati-
on [17, 23, 25] leverages architecture models to enable high-
level reasoning about the best way of adapting a system, and
is regarded as a promising approach to building resilient soft-
ware systems in a cost-effective manner. However, although
architecture-based self-adaptation has been applied in prac-
tice and recent results indicate its potential benefits in terms
of cost compared to embedded code-based adaptation mech-
anisms [8], there is still a lack of evidence supporting the
arguments for its beneficial impact on system resilience [31].

This paper aims at providing empirical evidence that ar-
chitecture-based self-adaptation has the potential to endow
systems with improved levels of resilience, compared to the
use of embedded code-based adaptation mechanisms. Our
main contribution is an empirical study about the impact of
architecture-based self-adaptation on resilience, which em-
ploys a framework for evaluating resilience in self-adaptive
systems [7] incorporating the notion of changeload [1], which
includes changes in the system and its environment.

In this study, our framework for resilience evaluation is
applied to an adaptive industrial middleware system de-



veloped by Critical Software - called Data Acquisition and
Control Service (DCAS), which is used to monitor and man-
age highly populated networks of devices in renewable en-
ergy production plants. Specifically, we compare the re-
sults of resilience evaluation between the original version
of DCAS in which adaptation is implemented using embed-
ded code-based mechanisms, and a modified version in which
adaptation is implemented using the Rainbow framework for
architecture-based self-adaptation [17]. Rainbow has been
chosen for performing the experiments since its software has
been widely available, its structure facilitates access to its
internal components, its design is amenable to the injection
of faults, and controllers built using it are fairly robust [9].

As a result of our analysis, we demonstrate that incor-
porating architecture-based self-adaptation in DCAS has a
beneficial impact on resilience, mainly due to the: (i) higher
level of abstraction of the information used by architecture-
based self-adaptation, which enables better informed decision-
making and flexibility, and (ii) reduced vulnerability of the
external control layer to changes (e.g., failures) occurring
at the system level (in contrast with embedded code-based
adaptation mechanisms, which are prone to be affected by
system failures, thereby interfering with adaptation).

The rest of this paper is structured as follows. Section 2
presents the general structure and objective of DCAS mid-
dleware, as well as, its two different versions, i.e., Original
DCAS and Rainbow-DCAS, that are implemented using,
respectively, embedded code-based and architecture-based
adaptation mechanisms. Section 3 introduces resilience prop-
erties and their formalization, the notion of changeload, and
provides an overview of the process followed for resilience
evaluation. Next, Section 4 details the design of our ex-
perimental study, whereas Section 5 discusses experimental
results. Section 6 discusses threats to validity. Section 7 de-
scribes related work. Finally, Section 8 presents some con-
clusions and indicates directions for future work.

2. DATA ACQUISITION AND CONTROL
SERVICE

This section presents the general structure and objective
of Data Acquisition and Control Service (DCAS) middle-
ware, as well as, the adaptation mechanisms used in the two
versions of the system employed for our study: (i) embedded
code-based, and (ii) architecture-based.

2.1 Structure and objective
The Data Acquisition and Control Service (DCAS) [8] is a

middleware from Critical Software that provides a reusable
infrastructure to manage the monitoring of highly populated
networks of devices. In particular, the middleware is de-
signed to be seamlessly integrated with Critical’s Energy
Management System (csEMS)1, which is a platform that
provides asset management support for power producing
companies based on renewable energy sources. The over-
all csEMS architecture aims at high scalability, flexibility
and customization with management capabilities that en-
able the operation of control centers independently of the
underlying application (e.g., wind, solar, etc.). The basic
building blocks in a DCAS-based system (Figure 1) are: 2

1
http://solutions.criticalsoftware.com/products services/csems/

2We herein consider a simplified version of the DCAS archi-
tecture. Further details about DCAS can be found in [8].
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Figure 1: Architecture of a DCAS-based system

• Devices are equipped with one or more sensors to obtain
data from the application domain (e.g., from wind towers,
solar panels, etc.). Each sensor has an associated data
stream from which data can be read. Each type of device
has its particular characteristics (e.g., data polling rate,
or expected value ranges) specified in a device profile.

• Processor nodes pull data from the devices at a rate
configured in the device profile, and dispatch this data
to the database server. Each processor node includes a
set of processes called Data Requester Processor Pollers
(DRPPs or pollers, for short) responsible for retrieving
data from the devices. Communication between DRPPs
and devices is synchronous, so DRPPs remain blocked un-
til devices respond to data requests or a timeout expires.
This is the main performance bottleneck of DCAS.

• Database server stores the data collected from devices
by processor nodes.

• Application server is connected to the database server
to obtain data, which can be presented to the operators
of the system or processed automatically by application
software. However, DCAS is application-agnostic, so the
application server will not be discussed in the remainder
of this paper.

The main objective of DCAS is collecting data from the con-
nected devices at a rate as close as possible to the one config-
ured in their device profiles, while making an efficient use of
the computational resources in the processor nodes. Specif-
ically, the primary concern in DCAS is providing service
while maintaining acceptable levels of performance, mea-
sured in terms of processed data requests per second (rps)
inserted in the database, while the secondary concern is op-
timizing the computational cost of operating the system,
measured in number of active DRPPs in the processor nodes.

2.2 Adaptation Mechanisms
DCAS implements two adaptation mechanisms to keep an

acceptable level of performance while making an efficient use
of computational resources: (i) Rescheduling aims at avoid-
ing performance degradation caused by devices which fail to
respond in a timely manner when polled. It consists in de-
creasing the priority of the data streams associated with the
failing devices, so that they are polled less often (thus reduc-
ing the average time that DRPPs remain blocked waiting for
device data).(ii) Scale up aims at improving performance by
exploiting as much as possible CPU and memory in proces-
sor nodes by (de)activating DRPPs as required.
Original DCAS. Scale up and rescheduling run in two sep-
arate control loops embedded in different sub-components of
the processor node. Moreover, the C# adaptation logic that
corresponds to these control loops is scattered across differ-
ent parts of the code, and based on low-level information



that indirectly indicates which aspect of the system needs
to be improved. In the case of scale up, if the size of a data
request queue associated with a particular processor node re-
mains close to zero consistently, the adaptation mechanism
considers this as an indicator of good performance, implying
that there are active DRPPs which probably are not neces-
sary and have to be deactivated. On the contrary, if the
queue size increases consistently, scale up tries to increase
performance by activating new DRPPs.
Rainbow-DCAS. Scale up and rescheduling are implemen-
ted as adaptation strategies inside of a single control loop
running in a controller external to the DCAS system. The
adaptation logic is implemented in Stitch [12], a language
specifically tailored for representing adaptation strategies in
Rainbow. Stitch adaptation strategies make use of system
information reified into an architecture model of the under-
lying DCAS system. Scale up and rescheduling adaptation
strategies replicate functionality of the adaptation logic in
Original DCAS. However, in the case of scale up, the strat-
egy is also informed by a direct performance measure ob-
tained by a probe that measures the rps in the database,
in contrast to the embedded code-based mechanisms, which
make use of an indirect performance indicator.

3. RESILIENCE EVALUATION
This section: (i) introduces some general concepts related

to resilience evaluation, as well as, the kind of resilience
properties that we deal with in our study and their for-
malization, (ii) describes the notion of changeload, which is
central to the framework used for resilience evaluation, and
(iii) describes the process followed for resilience evaluation.

3.1 Resilience Properties
A resilient system is one that delivers a service that can

justifiably be trusted when facing changes [24]. In the con-
text of self-adaptive systems, changes (which can occur in
the system itself, its environment, or even in its goals) can
induce anomalies in the system at run-time, changing its cur-
rent operational profile. Specifically, within a self-adaptive
system, we may distinguish between a conventional opera-
tional profile (COP) that corresponds to the region of the
state-space in which the system is operating without experi-
encing any anomalies, and non-conventional operational pro-
files (NCOPs), associated with anomalies induced by changes
in the system or its environment. NCOPs correspond to re-
gions of the state-space in which the system is experiencing
a particular anomaly [6]. When the self-adaptive system en-
ters a NCOP, this typically triggers adaptation mechanisms
whose purpose is driving the system back into its COP by
performing some actions on the system to correct the experi-
enced anomaly. Once the system has entered into a NCOP,
resilience can be assessed by quantifying the probability of
returning to the system’s COP by a given time deadline.

To express resilience properties about the system, we use
PCTL [3], a logic language inspired by CTL [15]. With the
aid of PCTL, a designer can express properties about the
system that are typically domain-dependent. Furthermore,
to ease the formulation of probabilistic properties, we make
use of property specification patterns [14] that describe gen-
eralized recurring properties in probabilistic temporal logics.
In our case, we are interested in how the system responds
to changes, so we restrict ourselves to properties that can
be instanced by using probabilistic response patterns [19],

PCTL Formulation Description

P≥1[G(Φ1 ⇒ P./p(F≤tΦ2))] Probabilistic Response. Af-
ter state formula Φ1 holds, state
formula Φ2 must become true
within time bound t, with a
probability bound ./ p.

P≥1[G(Φ1 ⇒ P./p(¬Φ2U
≤tΦ3))] Probabilistic Constrained

Response. After state formula
Φ1 holds, state formula Φ3 must
become true, without Φ2 ever
holding, within time bound t,
with a probability bound ./ p.

Table 1: Probabilistic response patterns

adapted to PCTL syntax (see Table 1). These patterns in-
clude a premise Φ1 representing the initial conditions after
a change in the system or its environment occurs, and a
subformula enclosed by the probabilistic operator P./p(.),
representing the response to that change expected from the
system (with a probability bound p and a time bound t).

Example 1. In DCAS, we are interested in assessing how
the system reacts to low responsiveness in part of the devices
connected to the system. Let rps be the variable associated
with performance (defined as the number of requested data
items inserted in the database per second), and drpps be the
cost variable (defined as the number of active DRPPs in the
system). We can then define the following predicates:

rpsViolation , rps < MIN RPS

hiCost , drpps ≥ MAX POLLERS

where MIN RPS is a threshold that establishes the minimum ac-
ceptable level of performance of the system, and MAX POLLERS

determines a maximum acceptable number of active pollers.
Let us also express a predicate associated with the COP in
DCAS as dcasCOP , ¬rpsViolation ∧ ¬hiCost . Based on these
predicates, we may instantiate the following PCTL property,
using the probabilistic response pattern included in Table 1:

P≥1[G(rpsViolation ⇒ P≥0.9(F≤100
dcasCOP ))]

This property reads as: “When performance falls below thresh-
old MIN RPS , the probability of raising performance again above
MIN RPS with a cost below the MAX_POLLERS threshold within 100
seconds is greater or equal to 0.9”. It is worth observing
that the instantiation of the probabilistic response patterns,
as well as, the predicates used for the specification of the
properties can be more general or specific, depending on the
particular aspect of the system resilience that we want to
study (e.g., we can employ ¬rpsViolation instead of dcasCOP

in the property above if we are interested in evaluating re-
silience exclusively w.r.t. the performance of the system).

3.2 Changeload
Evaluating the resilience of a self-adaptive system requires

identifying the most relevant (sequences of) system or envi-
ronmental changes that might affect system resilience. Such
changes always occur under some system and environment
conditions that provide a context for them. A scenario is a
postulated sequence of events that captures the state of the
system, its environment, and its goals during a given time
frame, as well as changes affecting all the aforementioned
elements. It is defined in terms of state (system and envi-
ronment), changes applied to that state, and system goals.

Scenarios fall into two categories: base scenarios and chan-
ge scenarios. A base scenario is defined in terms of typical
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Figure 2: Overview of the resilience evaluation framework

conditions during the execution of the system, which in-
cludes: a typical (stable) state of the system and its envi-
ronment, and a set of goals. 3

The workload of a base scenario should be representa-
tive of the typical amount and type of work assigned to (or
expected from) the system during a specified time period.
Typical operation conditions comprise the typical setup of
systems in the domain, as well as representative characteri-
zation of the system’s environment, including the hardware
and software resources typically used. Hence, a base sce-
nario reflects the operational characteristics of systems in
the domain while running a typical workload and operating
in the absence of changes, setting the baseline for compari-
son with situations in which the system faces with changes
that may drive it into an adaptation process. It should be
noted that “typical” does only imply a stable state of the
system with no abnormal conditions, not that the workload
or operation conditions cannot be dynamic.

Change scenarios are derived from a base scenario, but
include a representative sequence of changes that may affect
the system and its ability to achieve and maintain its goals.

A changeload, is a set of representative change scenarios,
comprising changes both in the system and its environment.

3.3 Evaluation Process Overview
Our framework for evaluating the resilience of self-adaptive

systems consists of two main stages (Figure 2):

1. Changeload identification consists in identifying the
sequence of changes (i.e., the changeload) relevant for the
run-time stimulation of the system and its environment.
This stage requires human intervention and is divided in:

(a) Environment Stimulation, identifies the environ-
mental changes required to drive the environment to-
wards conditions that trigger system adaptations.

(b) System Stimulation, identifies system changes that
can affect the ability of the system to return to its COP
when experiencing an anomaly.

2. Run-time stimulation of the system and its environ-
ment, according to the changeload identified. This stage
is fully automatic and divided into:

(a) Experimentation, during which the system and its
environment are stimulated according to the changeload,

3Our approach to resilience evaluation assumes fixed goals.

and information regarding the system’s execution is col-
lected, according to the metrics, as sets of execution
traces for each scenario in the changeload. The exper-
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Figure 3: Experimental profile

imental profile, depicted in Figure 3, includes a set of
runs, in which run 0 consists only of performing environ-
mental stimulation to trigger adaptation to collect base-
line information about adaptation behavior in the ab-
sence of system changes. This baseline will be used later
as reference to understand the impact of system changes
in the execution of the adaptation strategies. During
Runs 1. . . N the system is run in such a way that: (i) it
executes without stimulation for a steady state period to
reach a steady state condition, (ii) environment stimula-
tion is applied to induce the adaptation trigger condition
required for adaptation (iii) the system detects the adap-
tation trigger condition and starts the execution of adap-
tation after a period of time to react, (iv) system changes
are injected on top of the environmental stimulation dur-
ing the time to adapt, and (v) continues running without
further disturbance after adaptation has finished execu-
tion during a keep period used to collect further data
about the effects of adaptation until some stop condition
is met (e.g., time deadline, etc.). The measurement in-
terval in every run starts when the adaptation trigger
condition is met, and ends with the stop condition.

(b) Scoring, where each set of collected traces for a par-
ticular scenario is transformed into a probabilistic re-
sponse model of the system, and used as input to a prob-
abilistic model-checker in addition to the resilience prop-
erties obtained from system goals to quantify resilience.



Our framework enables the evaluation of adaptation by
comparison, which makes use of relative resilience metrics
to compare how different adaptive solutions respond to a
particular set of (system or environmental) conditions. This
approach for evaluating resilience is intended to be used by
the developer of the system just before its deployment, since
the process often involves putting the system through ad-
verse conditions inadequate for production environments.

4. EXPERIMENTAL DESIGN
Resilience is related to the system’s ability of maintaining

service provision without deviating from the fulfillment of
system goals, despite changes that might affect the system
or its environment. The primary goal in DCAS is maintain-
ing an acceptable level of performance, therefore we designed
our study with a focus on evaluating resilience w.r.t. per-
formance. Hence, our experiments are designed to enable us
to assess the system’s ability to return to its COP, once it
has been driven to the NCOP associated with the low per-
formance anomaly rpsViolation (as defined in Example 1).

In this context, we formalize the following PCTL proper-
ties 4 in accordance with the objective of our study:

• N1. To address the primary performance related goal in
DCAS, we formalize a property that enables us to quan-
tify the probability of eliminating the rpsViolation anomaly
(i.e., raising performance again above threshold MIN RPS )
within t time units as: P(F≤t ¬rpsViolation ).

• N2. Moreover, we also want to evaluate resilience in the
context of the associated cost of improving performance,
so we also quantify the ability of the system to free the
resources used for adaptation once they are not required
anymore (i.e., deactivation of DRPPs below a threshold
α that can be instanced with different values) by a given
deadline t as: P(F≤t

drpps ≤ α ).

In our study, we analyze and compare the levels of re-
silience quantified on the properties described above for both
Original DCAS and Rainbow-DCAS, in order to determine
whether the incorporation of architecture-based self-adapta-
tion in the system improves its resilience.

Moreover, we provide some context for our evaluation of
resilience. We have complemented our study with additional
evidence collected according to some of the run-time eval-
uation criteria proposed in [20] that indicate the ability of
the system to return to its COP after a disturbance:

• WAT. Working vs. adaptivity time of the system, where
the working time is the time needed to perform the usual
function of the system, and the adaptivity time concerns
the time needed to adapt to changes in the system or its
environment. In our specific case, we consider as work-
ing time all the measurement interval in our experiments
(time to react + time to adapt + keep time, Figure 3),
whereas adaptivity time corresponds to “time to adapt”
(working and adaptivity times overlap in DCAS, since the
system continues to work while it is adapting).

WAT = WorkingTime
AdaptivityTime

4Specifically, we evaluate the results obtained from apply-
ing the probabilistic quantifier P(.) to system response ac-
cording to the probabilistic response pattern displayed in
Table 1. The implicit premise in the properties specified is
rpsViolation .

• TA. Time for adaptation, or time required to return to
a nominal behavior after a perturbation. In DCAS, this
is the time required to return to the COP since the time
instant in which the system enters the NCOP associated
to anomaly rpsViolation .

Finally, we also provide further context for resilience eval-
uation by including a measure of experimental availability
taken from dependability benchmarking [28] 5. In this con-
text, a system is considered to be available when it is able
to provide service as specified (e.g., in DCAS, when per-
formance levels are above threshold MIN RPS). We refer to
the sum of the duration of all time periods in which the
system is available during the working time of the exper-
iments as uptime. Experimental availability is defined as:

EA = Uptime
WorkingTime

The rest of this section details the: (i) identification of the
changeload, (ii) procedure followed for run-time stimulation,
and (iii) experimental setup used for our study.

4.1 Changeload Identification
This section details first the environmental part of the

changeload identified to drive DCAS towards adaptation
conditions, followed by system stimulation, in which rep-
resentative system changes that might affect the resilience
of DCAS are identified.

4.1.1 Environment Stimulation
The first step to identify a representative changeload to

compare alternative adaptation mechanisms in terms of re-
silience is determining which environmental changes can trig-
ger adaptations. To this purpose, we need to identify the
anomalies associated to NCOPs. In DCAS, the primary fo-
cus of adaptation mechanisms is recovering from situations
in which the system is running under the acceptable levels of
performance. Therefore, in this case we identified potential
sources of system states in which anomaly rpsViolation holds.

The only representative source of low performance that
can be attributed to the environment in DCAS corresponds
to the case in which connected devices fail to respond data
requests in a timely manner (e.g., due to high network la-
tency, failures in devices, etc.). Specifically, we identified
two representative scenarios to stimulate the environment:

• Device delay, in which devices fail to respond in a timely
manner (inducing a delay of 2 seconds in the response
of 25% of connected devices when they are requested for
data). The number of devices and the amount of delay
applied have been chosen to recreate representative situ-
ations in which high network latency is given in DCAS-
based systems deployed in the field.

• Device failure, where we replicate more extreme situations
in which 25% of de devices fail to respond by inducing a
30-second delay in the devices. This causes a timeout
in data requests performed by the DRPPs in processor
nodes, simulating effectively device failure.

4.1.2 System Stimulation
To identify relevant stimulation of the system, we follow a

risk-based approach based on the Software Risk Evaluation

5Assessing availability in global terms is difficult since it
depends on many factors that influence the system Mean
Time Between Failures (MTBF).



(SRE) method [32] that considers both the probability and
impact of system changes. This is a manual process that uses
field data (if available) and expert knowledge, and consists
in identifying relevant system changes that might impact
system goals during adaptation. Field data was unavailable
for DCAS, so the probability and impact of system changes
was analyzed with the help of field experts.

The candidate system changes for system stimulation were
classified in a risk exposure matrix for the case of the NCOP
associated to the anomaly rpsViolation (Table 2). Grayed-out
cells in the exposure matrix area contain changes which are
left out of the changeload due to their low representative-
ness when considering the combination of their impact and
probability of occurring.

We can observe in the matrix that, when facing perfor-
mance issues, failures in the components involved in adap-
tation have a high probability of occurring. Moreover, these
failures might have a critical impact if they fail to respond
properly since they are used intensively during adaptation.
Such is the case of the effectors used to activate DRPPs or
the probes to check the status of data request queues, which
are intensively used during scale up adaptation. Other ef-
fectors and probes, such as, the ones used for rescheduling
(device delay probe and change rate delay effector) have also
a high probability of occurring, but a marginal or negligi-
ble impact on performance, since the effects of rescheduling
are limited compared to those of scale up. The rest of sys-
tem changes, included in the white area of the exposure ma-
trix, involves failures in different system coarse-grained com-
ponents (e.g., processor node, database server), and finer-
grained sub-components of the processor node (e.g., service
engine, data requester, data persister, polling scheduler) all
with potentially either critical or even catastrophic impact
on service provision6 (e.g., a crash in the database server
would reduce rps to 0 by impeding insertions the database).

4.2 Run-time Stimulation
To evaluate the resilience of the two different versions of

DCAS, we carried out run-time stimulation using a change-
load in which all scenarios include a workload and operating
conditions characteristic of a typical deployment of a DCAS-
based system in production. Scenarios have a duration of 40
minutes (2400s), which is enough to collect sufficient data to
characterize system behavior and synthesize the probabilis-
tic models required to quantify resilience. All experiments
incorporate a workload that includes 100 data streams (de-
vices) with a data polling rate of 1 second.

In our experiments, the system is driven towards the trig-
gering of adaptation to improve performance, and in which
scenarios conform to the following pattern: (i) 600s of nor-
mal activity to let the system achieve a steady state; (ii) 600s
of disturbance, during which we induce low responsiveness
in data streams; and (iii) 1200s of normal activity. Scenarios
in our experiments are divided in two groups:

1. Environment stimulation. Contains 2 scenarios including
only environment stimulation, according to the cases de-
scribed in Section 4.1.1 (device delay and device failure).

2. Environment+System stimulation. Contains 11 scenar-
ios. Each scenario combines environmental stimulation
(device delay) with one of the system changes identified

6A detailed discussion of the functionality of the different
sub-components of the processor node can be found in [8].

as relevant in the exposure matrix shown in Table 2. En-
vironment stimulation is used in these scenarios as a way
to trigger system adaptation without interfering with the
system. This avoids potential interactions between sys-
tem changes triggering adaptation conditions, and those
applied during the execution of adaptation. Specifically,
we have favored the use of device delay over device fail-
ure as environmental stimulation because it is enough to
trigger adaptation, but at the same time has a more mod-
erate impact, enabling us to better assess the contribution
of system changes to variation in resilience levels.

For every scenario, we built a probabilistic model of sys-
tem behavior during a period of 900s, which corresponds to
system traces collected during the time frame [600, 1500] of
every system run, out of which the first 600s correspond to
the disturbance period. Each probabilistic model has a time
discretization parameter of τ = 1s, and quantization param-
eters for the performance and cost variables of ηrps = 10 and
ηdrpps = 1, respectively7. Each model is synthesized from
data obtained from 30 different runs of the same scenario
(i.e., our experiments required (11+2)*30*2=780 runs).

4.3 Experimental Setup
For our experimental setup, we deployed both versions

of DCAS across three different machines. In the case of
Original DCAS (Figure 4, left), dcas-db acts as the back-
end database running on Oracle 10.2.0, dcas-main acts as a
processor node, running DCAS, and (dcas-devs) is used to
simulate the response of network devices from which DCAS
retrieves information (device response simulation is imple-
mented as a simple Web service whose response time can be
set in a configuration file). In the case of Rainbow-DCAS
(Figure 4, right), Rainbow’s master is deployed in an addi-
tional machine (dcas-master). All machines run on Windows
XP Pro SP3 (DCAS is deployed as a Windows service), and
an Intel core i3 processor, with 1GB of RAM.

dcas-main

dcas-db

dcas-devs

dcas-

master

dcas-maindcas-db dcas-devs

Figure 4: Experimental setup: Original DCAS (left)
and Rainbow-DCAS (right)

5. EXPERIMENTAL RESULTS
In line with the system’s goals of keeping an acceptable

performance level while keeping down the cost of running
the system, we study the resilience of Original DCAS and
Rainbow-DCAS in the different scenarios identified in our
changeload. Specifically, in this section we report on: (i) re-
sults regarding general run-time evaluation criteria related
to the system’s ability to return to its COP, and (ii) results
regarding the evaluation of the resilience properties defined
according to DCAS goals, described in Section 4.

5.1 General Run-time Evaluation Criteria
Table 3 displays the experimental results for WAT, TA,

and EA both for Original DCAS and Rainbow-DCAS.

7Details about time sampling, quantization, and the type of
probabilistic models used for our study can be found in [7].



Probability
Very High High Low Very Low

Im
p
a
c
t

Catastrophic DB Crash Processor Node Crash
Service Engine Crash

Critical Add Poller Effector Crash Polling Scheduler Crash
DB-DCAS Conn. Shutdown Data Persister Crash
Queue Status Probe Crash Data Requester Crash

Marginal ChangeRateDelay Effector Crash System Monitor Crash Alarmer Crash
Remove Poller Effector Crash Alarmer Publisher Crash

Negligible Device Delay Probe Crash Device Monitor Crash Alarmer Monitor Crash

Table 2: Exposure matrix for system changes in DCAS non-conventional operational profile rpsViolation

WAT. Working vs. Adaptivity Time TA. Time for Adaptation (s) EA. Exp. Availability (%)
Orig.DCAS Rainbow-DCAS Orig.DCAS Rainbow-DCAS Orig.DCAS Rainbow-DCAS

Device Delay 1.247 6.185 243 80 19 84
Device Failure → 1 → 1 ∞ ∞ 0 0

AddPoller Eff. Crash → 1 → 1 ∞ ∞ 0 0
Remove Poller Eff. Crash 1.200 7.058 362 88 15 45

ChangeRateDelay Eff. Crash 1.242 6.741 336 60 19 85
QueueStatus Probe Crash 1.226 8.695 291 62 18 88

DB-DCAS Conn. Shutdown 1.115 6.818 348 51 10 85
DB Crash → 1 → 1 ∞ ∞ 0 0

Service Engine Crash → 1 → 1 ∞ ∞ 0 0
Polling Scheduler Crash → 1 → 1 ∞ ∞ 0 0

Data Persister Crash 1.176 7.407 357 54 11 86
Data Requester Crash 1.123 6.060 315 72 15 83
Processor Node Crash → 1 → 1 ∞ ∞ 0 0

Table 3: Experimental results for general run-time evaluation criteria and availability

Regarding WAT, it can be observed that Rainbow-DCAS
spends in most cases from 6 to 8 times more time work-
ing than adapting, whereas the original version of DCAS is
prone to spend most of the time adapting to changes, with
WAT values always close to 1. It is worth observing that
some specific cases in which disturbances cannot be dealt
with by adaptation mechanisms in both versions of DCAS
(e.g., device failure, service engine crash) make the system
spend most of the working time also trying to (unsuccess-
fully) adapt to changes, resulting in WAT values that closely
approach 1 (indicated by → 1 in Table 3).

Concerning TA, Rainbow-DCAS also takes considerably
less time to eliminate the anomaly, with times that range
between 50 and 90 seconds vs. the 240-350 seconds required
by Original DCAS, depending on the case. Cases in which
adaptation mechanisms were unable to eliminate the per-
formance anomaly are indicated with an infinite TA in the
table. An interesting phenomenon that can be initially per-
ceived as somewhat strange in the case of Rainbow-DCAS is
that there are cases that yield a shorter TA in the presence of
system and environment changes (e.g. data persister crash)
w.r.t. cases in which there is only environment stimulation
(device delay). This happens because adverse system condi-
tions can influence the decision-making process in Rainbow
(e.g., the controller can try to further compensate the ad-
verse situation by increasing the rate at which DRPPs are
activated), resulting in a more aggressive adaptation w.r.t.
cases in which decision-making is not influenced by such un-
favorable changes. This phenomenon is in line with previous
experience using Rainbow in other case studies [7].

Finally, it can also be observed that availability is much
higher in Rainbow-DCAS, with values ranging between 80-
90% in most cases in which the system is able to adapt,
compared to the 10-20% in Original DCAS.

5.2 Resilience Evaluation
Table 4 shows the experimental results for resilience evalu-

ation in the NCOP associated with the rpsViolation anomaly
for Original DCAS (top), and Rainbow-DCAS (bottom).

Performance-related property N1 is instanced with differ-
ent time bounds (t), in intervals of 50s, and up to time 600s,
coinciding with the end of environmental stimulation. Each

instance of the property describes the probability of recov-
ering an acceptable performance by the given time bound.

Results for property N1 show that in general, resilience
values obtained in Rainbow-DCAS tend to be higher than
in Original DCAS in many of the scenarios.

Regarding scenarios that only include environment stim-
ulation, we can observe that in the case of the device delay
scenario, Rainbow-DCAS reacts much faster to the anomaly
with values for N1 already of 90% by t = 100, whereas
Original DCAS only reaches values above 90% by t = 400.
This is motivated by the fact that in Rainbow-DCAS, the
controller can exploit an explicit model of the system’s ex-
pected behavior (in this case expected performance), as well
as high-level information about the current performance of
the system (updated at run-time in the system’s architecture
model). Having this explicit information readily available to
the controller enables early detection of anomalies in the case
of architecture-based self-adaptation. In contrast, embed-
ded code-based adaptation mechanisms in Original DCAS
do not have a global picture of the system’s state, and for
that, they have to rely on low-level local information that im-
plicitly indicates potential performance problems (e.g., data
request queue size growth rate). In this case, there is a time
gap between the occurrence of the anomaly causing the per-
formance problem, and the time by which queue growth rate
increases enough to trigger adaptation mechanisms. This re-
sults in late detection of the anomaly and increased reaction
time of adaptation, hindering the ability of the system to
recover its intended performance levels in a timely manner.

In the case of device failure, the results obtained are sim-
ilar for both versions of the system since the changeload
cannot be accommodated with the computational resources
available, independently of the adaptation mechanism used.

In the case of scenarios that combine system and envi-
ronment stimulation (device delay), we can observe that in
some of the scenarios that involve component crashes in the
system (e.g., Data Persister and Data Requester), Rainbow-
DCAS does not show any noticeable degradation of perfor-
mance with respect to the device delay scenario. However,
performance in Original DCAS is further degraded, show-
ing values of 50% and 68% by t = 400 in the scenarios for
the Data Persister and Data Requester crashes respectively,



N1.P(F≤t ¬rpsViolation) N2.P(F≤600drpps ≤ α)
t=50 t=100 t=150 t=200 t=250 t=300 t=350 t=400 t=450 t=500 t=550 t=600 α=10 α=20 α=30 α=40

O
ri

g
.

D
C

A
S

Device Delay 0 7 20 37 58 70 85 93 97 97 97 100 0 93 100 100
Device Failure 0 0 0 0 0 0 0 0 0 0 0 0 53 93 100 100

AddPoller Eff. Crash 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100
Remove Poller Eff. Crash 0 0 3 7 26 30 37 50 53 53 56 93 20 33 71 100

ChangeRateDelay Eff. Crash 0 0 0 0 13 26 45 47 53 76 78 98 27 100 100 100
QueueStatus Probe Crash 0 0 7 17 35 40 50 59 88 94 96 100 20 97 100 100

DB-DCAS Conn. Shutdown 0 0 0 3 7 17 23 25 33 49 60 95 100 100 100 100
DB Crash 0 0 0 0 0 0 0 0 0 0 0 0 43 93 100 100

Service Engine Crash 0 0 0 0 0 0 0 0 0 0 0 0 - - - -
Polling Scheduler Crash 0 0 0 0 0 0 0 0 0 0 0 0 - - - -

Data Persister Crash 0 0 0 0 17 28 40 50 60 64 78 100 28 100 100 100
Data Requester Crash 0 7 13 26 40 53 59 68 74 85 90 99 16 95 100 100
Processor Node Crash 0 0 0 0 0 0 0 0 0 0 0 0 - - - -

R
a
in

b
o
w

-D
C

A
S

Device Delay 0 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Device Failure 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100

AddPoller Eff. Crash 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100
Remove Poller Eff. Crash 0 92 100 100 100 100 100 100 100 100 100 100 0 0 10 100

ChangeRateDelay Eff. Crash 0 96 97 100 100 100 100 100 100 100 100 100 100 100 100 100
QueueStatus Probe Crash 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

DB-DCAS Conn. Shutdown 0 91 100 100 100 100 100 100 100 100 100 100 100 100 100 100
DB Crash 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Service Engine Crash 0 0 0 0 0 0 0 0 0 0 0 0 - - - -
Polling Scheduler Crash 0 0 0 0 0 0 0 0 0 0 0 0 - - - -

Data Persister Crash 0 93 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Data Requester Crash 0 77 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Processor Node Crash 0 0 0 0 0 0 0 0 0 0 0 0 - - - -

Table 4: Experimental results for resilience evaluation

v.s. the 93% shown for that same time bound in the device
delay case. Considering that the Data Persister and Data
Requester components are in charge of requesting data to
devices and dispatching the processed data to the database,
respectively, one might expect a radical drop of the values in
N1 to 0% throughout these scenarios. However, both ver-
sions of DCAS include a redundancy mechanism that detects
the absence of a Data Persister or a Data Requester working
properly, and automatically instances a new one, facilitating
the progressive recovery of performance. In Original DCAS,
performance recovery is slower because the implementation
of the scale up adaptation mechanism is embedded within
the failing component, and therefore needs to be restarted
and run for some time until it stabilizes again. In contrast,
scale up in Rainbow-DCAS is implemented in the Rainbow
controller external to the target system, which is not directly
affected by the failure in the component.

Regarding the cost-related property N2, we can observe
that the probabilities of deactivating DRPPs that are not re-
quired is 100% even below the minimum threshold of pollers
(α = 10) almost in all cases of Rainbow-DCAS. There are
two cases which are an exception. First, as expected, in the
case in which the remove poller effector crashes no pollers
can be removed and the system remains at the maximum
level of active pollers that were required while scaling up
(always above 20, as indicated by the probability 0% of N2
when α = 20). Second, in the case in which the database
crashes, the lack of data item insertions in the database is
perceived by the controller as a lack of performance that has
to be corrected, impeding the deactivation of pollers. Cases
in which the number of pollers cannot be monitored due to
the malfunction of the failing processor node (sub)component
(cases service engine crash, polling scheduler crash, and pro-
cessor node crash) are indicated by “-” in the table.

In Original DCAS, the probability of reducing the num-
ber of pollers below all values of threshold α tends to be
smaller than in Rainbow-DCAS, mainly because detecting
when pollers are not needed anymore by looking exclusively
at queue growth rates is not as efficient as factoring in ex-
plicit performance information. However, the cases for the
database crash and the remove poller effector crash are ex-
ceptions. In the database crash, the fact that Original DCAS

does not use performance information probed in the database
to (de)activate pollers avoids the activation of additional
pollers by the scale-up mechanism. For the crash in the re-
move poller effector, these higher probabilities are a conse-
quence of the scale-up mechanism not activating initially as
many pollers as in Rainbow-DCAS for the same situation.

6. THREATS TO VALIDITY
Regarding the internal validity of our study, the main

concern is related to determining whether the improvement
observed in resilience values in the case of Rainbow-DCAS
w.r.t. Original DCAS is indeed caused by incorporating ar-
chitecture based self-adaptation vs. other factors, such as,
the lack of equivalence between the adaptation logic imple-
mented in Original DCAS and the Stitch strategies imple-
mented in Rainbow-DCAS. In this regard, rescheduling and
scale-up adaptation logic in Rainbow-DCAS replicates as
closely as possible the original adaptation logic in their re-
spective embedded code-based counterparts. However, it is
important to identify two main differences between the al-
ternative implementations of adaptation mechanisms:

1. In Original DCAS, each adaptation mechanism resides in
its own independent control loop in different sub-compo-
nents of the processor node. This is an imposition of the
OOP paradigm used to develop DCAS, which enforces en-
capsulation and information hiding, favoring good mod-
ularization, but also constrains the access of embedded
adaptation mechanisms to information (e.g., for anomaly
detection) and restricts actuation to their local scope (ham-
pering coordinated adaptation). In contrast, the two adap-
tation mechanisms in Rainbow-DCAS reside within the
same control loop in the external control layer that de-
cides which one should be used, in a coordinated manner.

2. As a consequence of the limited scope of embedded adap-
tation mechanisms, Original DCAS can only use low-level
information that indirectly indicates the system’s perfor-
mance (e.g., queue sizes). However, Rainbow-DCAS has
access to high level information about whether perfor-
mance goals are being met.

In our opinion, the abovementioned differences in the im-



plementation of adaptation mechanisms in Rainbow-DCAS
w.r.t. Original DCAS do not undermine the internal va-
lidity of the study. Regarding (1), it could be argued that
since Rainbow is a centralized controller, its resilience com-
pared to a decentralized control alternative might be worse,
because it represents a single point of failure. However, in
our study we consider resilience in the presence of changes
only at the target system level and its environment (leaving
controller failures out of the scope of this paper). Moreover,
it is worth emphasizing that in Original DCAS, adaptive
mechanisms are embedded in different target system com-
ponents and are therefore prone to be affected by target sys-
tem failures. Concerning (2), the ability to factor high level
information, like performance, into the decision-making pro-
cess is possible because of architectural descriptions. These
descriptions allow systematical reasoning in terms of the ac-
tual goals of the system, rather than ad-hoc about low-level,
indirect indicators.

Regarding external validity, the main concern might be
the limited scope of our study, since it is restricted to:

1. A particular class of systems. Our results are set in the
context of DCAS and Rainbow. Generalization requires
experimenting with further types of controllers and sys-
tems. However, despite the recent appearance of other
frameworks for developing self-adaptive systems [27, 2],
Rainbow is the only one that has been widely available
and evaluated in real-world scenarios [11, 8].

2. A set of (representative) change scenarios. This restric-
tion stems from the large number of potential changes
(especially in complex systems). This is an issue perva-
sive to many testing techniques in which not all inputs to
or paths through a program can be tested. In practice,
many of the changes identified by DCAS engineers present
a low probability of occurrence or have a low impact in
the system. Hence, the adequate use of a risk-based ap-
proach analogous to the Software Risk Evaluation (SRE)
method, proposed by SEI, enables the selection of the
most representative change scenarios.

7. RELATED WORK
There are some recent contributions that deal with the

evaluation of self-adaptive systems.
The criteria for evaluation of adaptive properties presented

in [20] and [30] aim at assessing the impact of self-* proper-
ties on different aspects of the system, such as, performance,
in addition to comparing the adaptive features of different
systems. Concretely, the criteria in [20] are grouped in dif-
ferent categories, among which “run-time evaluation” is the
one that has a stronger relation with resilience. The defini-
tion of the different criteria relies on concepts such as self-*
situations and nominal situation, comparable to NCOPs and
COP, respectively (even if they are not formally defined).

The set of metrics presented in [26] aims at evaluating the
adaptability of software at the architectural level, defining
a relationship between the values of the proposed metrics
and QoS levels that the system must guarantee. Although
this approach is intended to help architects in the generation
of adaptable architectures at development-time, the authors
propose as future work its integration at run-time, extending
it with the metrics presented in [20].

Other contributions, based either on probabilistic model-
ing or direct measurement of an existing system rely on the

analysis of non-functional properties. Modeling approaches
are useful during development, but heavily rely on param-
eter estimations obtained from domain experts or existing
similar systems. For instance, Calinescu and Kwiatkowska [5]
introduce an autonomic architecture that uses Markov-chain
quantitative analysis to dynamically adjust the parameters
of an IT system according to its environment and goals.
However, this approach requires the specification of Markov-
chains for describing the probabilistic behavior of compo-
nents of the system. Concerning direct measurement, Epi-
fani et al. [16] present a framework to keep models alive
updating their internal parameters with run-time data. The
framework uses Discrete-Time Markov Chains (DTMCs) and
Queuing Networks to reason about reliability and perfor-
mance. The approach by Calinescu et al. [4] combines [5]
and [16] for defining a framework for developing adaptive
service-based systems in which QoS requirements are trans-
lated into probabilistic temporal logic formulae used for iden-
tifying optimal system configurations.

Our resilience evaluation framework focuses on quantita-
tive analysis using measurements, and does not assume the
existence of Markov-chains describing the behavior of sys-
tem components. Moreover, while other proposals deal with
estimates of the future system behavior for optimizing its
operation, our approach focuses on evaluating levels of con-
fidence w.r.t. the self-adaptive capabilities of the system.

Another area related to resilience evaluation is resilience
benchmarking, which encompasses techniques from prior ef-
forts in performance [18], dependability [21], and security
benchmarking [29]. Compared to established benchmarks, a
resilience benchmark is specified following the same basic ap-
proach, but comprising a wide-ranging changeload (includ-
ing, but not limited to, faults) and resilience metrics [1].

In our study, we use an architecture-based framework that
evaluates by comparison the resilience of adaptation mech-
anisms of a self-adaptive software system [7].

8. CONCLUSIONS
In this paper, we have reported on our experience eval-

uating the resilience of a self-adaptive industrial middle-
ware (DCAS) employed for collecting and processing data
in highly populated networks of devices. Concretely, we
have compared the resilience of the original version of DCAS
(Original DCAS) in which adaptation mechanisms are im-
plemented as embedded code-based logic, against a version
in which adaptation is performed by an external controller
implemented using the Rainbow framework (Rainbow-DCAS),
which relies on architecture-based self-adaptation.

The empirical evidence of this evaluation indicates a posi-
tive impact of architecture-based self-adaptation on resilience,
showing a substantial increment in the resilience values ob-
tained in Rainbow-DCAS w.r.t. Original DCAS. In par-
ticular, resilience evaluation results regarding performance
reveal a much faster recovery of acceptable performance lev-
els in half of the scenarios used for our experiments. These
results are consistent with the measures obtained for gen-
eral run-time evaluation criteria and availability, which also
show a remarkable improvement in Rainbow-DCAS, thus
reinforcing the results of resilience evaluation.

We identified two main factors that influence improvement
in resilience evaluation results in the case of Rainbow-DCAS.
First, the controller has access to a global picture of the state
of the system and its environment, reflected in the architec-



ture model of the system updated at run-time. This enables
faster anomaly detection and better-informed decision mak-
ing based on an explicit model of the expected behavior of
the system vs. the use of low-level, local information that is
only an indirect indicator of whether the system goals are
being met. Second, the fact that the adaptation logic resides
within a control layer external to the target system reduces
its vulnerability to failures at the target system. This can
be observed if we consider for instance the crash of a compo-
nent in Original DCAS that includes embedded adaptation
logic. In such cases, not only the capability of proper repair
cannot be relied upon (since part of the adaptation logic
is compromised), but even if the system can recover, the
affected part of the adaptation logic has to be restarted, re-
quiring a ramp-up period until it achieves stable operation.

Regarding future work, we plan on: (i) investigating how
further run-time evaluation criteria for adaptive properties
presented in [20] and [30] can be instanced in the context of
our resilience evaluation framework, and (ii) evaluate these
additional properties in DCAS. Studying such properties in
the context of DCAS will not only enable us to explore any
potential correlations between resilience and adaptive prop-
erties, but will also provide further evidence about the po-
tential improvement on other adaptive properties resulting
from incorporating architecture-based self-adaptation. Fi-
nally, we also plan to include other controller types and sys-
tems to confirm the generality of our results.
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