
1

SWiFT: A Tool for Constructing Workflows
for Dynamic Network Analysis

David Garlan, Bradley Schmerl, Vishal Dwivedi, Aparup Banerjee, Laura Glendenning, Mai Nakayama, Nina Patel
School of Computer Science, Carnegie Mellon University

Pittsburgh, PA, USA, 15213
{garlan,schmerl,vdwivedi}@cs.cmu.edu, {aparup,lglendenning,m2.nakayam,nina.patel.82}@gmail.com

Abstract—Dynamic Network Analysis is a domain of computation
that refers to the analysis of complex social systems that change
over time. Within this domain, analysts need to be able to carry
out workflows, involving composition of various tools and proce-
dures that they use to extract and analyze social systems. Typical-
ly these workflows require the incorporation of heterogeneous
tools in distributed locations, are interactive in that they allow
dynamic parameterization and exploration, and can be shared
with and reused by other analysts in different contexts. Further-
more, because such analysts are not computer programmers,
they require an approach for constructing workflows that allows
them to focus on their analysis task, and that provides them with
appropriate guidance in constructing and reusing workflows. In
this paper, we describe a tool, called SWiFT, that provides a
workflow construction environment for dynamic network analy-
sis, built on a service oriented architecture, that provides these
features.

Keywords-dynamic network analysis, workflows, service
oriented architectures.

I. INTRODUCTION1

An important emerging computationally-centered domain is
the study of complex information using Dynamic Network
Analysis (DNA). DNA refers to the analysis of rich relational
models that represent entities, relations, their properties, and
how all of those change over time. For example, social net-
works are a special case involving people and relationships.
Other more complex networks may include entities like loca-
tions, ideas, times, artifacts, etc. and corresponding relations
[1][2].

DNA is increasingly being used in a variety of fields in-
cluding anthropology, sociology, business planning, law en-
forcement, and national security. Analysts in these fields typi-
cally extract entities and relations from unstructured text (such
as web sites, blogs, email, etc.) to create network models, and
then use those models to gain insight about social phenomena
through analysis and simulation.

This work was supported in part by the Office of Naval Research -
ONR-N000140811223, and the center for Computational Analysis of
Social and Organizational Systems (CASOS). The views and conclu-
sions contained herein are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Office of Naval Research, or the U.S. government.

Over the past decade a number of powerful tools have been
developed to assist DNA analysts, and many more are being
built every day. Such tools support extraction of models from a
variety of unstructured text formats; provide mechanisms to
massage, filter, analyze, and visualize networks and the infor-
mation extracted from them; and enable simulation of behavior
and investigation of “what if” scenarios.

Unfortunately, today these tools tend to run as stand-alone
interactive desktop applications. This has a number of negative
consequences. Each tool typically has an idiosyncratic interface
with a steep learning curve. Composition of functionality from
several tools is often not possible. And when it can be accom-
plished it is usually done in an ad hoc fashion using interme-
diary files and scripts, leading to brittle configurations and re-
quiring analysts to have detailed, low-level knowledge of mod-
el formats and storage conventions. Analyses, once performed,
are hard to share with other analysts, or to even record in a re-
peatable fashion what was done to obtain some analytical result
from a given input. Evidentially what is needed is a way for
non-technical analysis (i.e., those without detailed knowledge
of tool implementation, file systems, or programming) to com-
bine capabilities of existing and future analysis tools in a flexi-
ble, intuitive, and repeatable way.

Similar problems have been addressed in other domains
such as scientific computing. However, as we detail later, DNA
has a number of requirements that in combination make such
existing solutions inappropriate. These include the need to sup-
port (a) end-user composition of a wide variety of tools running
on many different platforms in a distributed setting; (b) a varie-
ty of analysis interaction modes – from “pushbutton” operation
to highly interactive exploration; (c) task-oriented guidance to
help analysts create appropriate analysis compositions; and (d)
reusable analysis templates that can be shared with others and
flexibly tailored to a new analysis tasks.

In this paper we describe a system, called SWiFT, that ad-
dresses these requirements.

SWiFT provides a web-based graphical workflow construc-
tion environment, similar in spirit to mash-up languages like
Yahoo! Pipes, but houses this on top of a SOA that supports
composition of heterogeneous tools running in a distributed
setting. Key to this environment are the engineering decisions
that allow SWiFT to support a variety of interaction modes
(including use of desktop applications) within a uniform
workflow model; provide extensible, task-oriented assistance

2

(such as mismatch repair, privacy analysis, and machine-
learning based guidance); and provide the ability to create
sharable analysis templates that can be tailored to new contexts.

II. DYNAMIC NETWORK ANALYSIS

A. Context

Dynamic network analysis involves understanding, analyz-
ing and predicting relationships in complex social systems.
Dynamic multi-mode social networks are typically used to
represent these social systems. These networks relate entities in
the system (e.g., people, knowledge, places, actions) to each
other. Within this field, computational techniques, such as
machine learning and artificial intelligence, are combined with
traditional graph social network theory, and empirical research
on human individual and group behavior to develop and test
tools, theories and actions that are enabled and constrained by
relations in the network.

Dynamic network analysis typically entails a series of steps.
First, an analyst gathers data from disparate sources. One
common approach to this is to extract networks from a corpus
of texts, such as web pages, news articles, journal papers, stock
holder reports, community rosters, etc. Second, the extracted
networks need to be analyzed. That is, given the data, analysis
identifies key actors and sub-groups, points of vulnerability,
and so on. Third, given a set of vulnerabilities, an analyst may
ask what would happen to the networks were the vulnerabilities
to be exploited. How might the networks change with and
without strategic intervention? This kind of analysis is similar
across different sub-communities of dynamic network analysis.
For example, military intelligence may use news reports, intel-
ligence reports, etc., to build a network to understand the “hu-
man terrain” of a field of operations, and then use simulation to
determine how best to communicate with a population; federal
agencies may use news stories and crime reports to understand
gang-related drug activities in a city and use simulation to plan
the best courses of action to fight them; sociologists may use
interviews and other sources to understand a population and
then use simulation to work out the best strategies for educating
them about policy changes.

Unfortunatley, today it is difficult to capture common sets
of procedures so that they can be re-executed, shared, and
reused by analysts in different settings. Analysts typically need
to be expert users of a range of existing tools, and need to re-
member what they did in each of these tools in order to repro-
duce results, or train new analysts. Thus, an approach that al-
lows analysts to specify these common workflows, reproduce
them, or share them with others who might use them in differ-
ent contexts is sorely needed.

B. Domain Requirements

The domain of dynamic network analysis, has a number of
requirements, the combination of which pose a set of challeng-
ing engineering problems for automated support.

1) Compositionality
A capability allowing analysts to automate their tasks is one

that enables different analysis steps to be composed into larger
procedures. Within dynamic network analysis, a large variety
of tools have been developed to help analysts produce and ana-

lyze networks. For example, the Analyst’s Notebook (I2) 2 ,
ORA [3], and UCINET [4] are tools to help conduct network
analysis. Additionally analysts use general-purpose tools for
activities like web scraping, text mining, data mining, statistical
analysis, geo-spatial analysis, decision support, simulation, and
gaming. However, these tools are typically coarse-grained and
feature-rich (often running as desktop applications), and they
do not provide support for automating steps of an analyst’s task
that require linking a set of such tools. This leads to the compo-
sitionality requirements of:

a. Heterogeneity. Having invested time and money in exist-
ing tools, analysts are reluctant to abandon those tools. Ra-
ther, they desire to easily compose the functionality of dif-
ferent existing tools. Some of the tools are highly interac-
tive; some tools provide simple batch procedures for
processing text or annotating networks with more informa-
tion. Analysts need to use a wide variety of tools written
by multiple organizations running on a variety of plat-
forms. Furthermore, we require a platform on which the
fine-grained steps of an analyst’s workflow can be ex-
ecuted individually. We therefore need an approach that
allows us to decompose the tools into their constituent fea-
tures. Furthermore, analysts want to be able to use the
functions of diverse set of tools in conjunction to provide
end-to-end analysis. Composition, therefore, needs to in-
volve a mixture of batch-oriented procedures and interac-
tive standalone tools.

b. Orchestration. In addition to having access to a wide va-
riety of tools, analysts must be able to compose them as
workflows that can be automatically executed. Ideally
these workflows would match the pattern of steps that an
analyst might manually execute, directly reflecting the
high-level flow of analysis.

2) Interactivity
The range of skills of analysts is quite diverse, and so au-

tomation needs to cater to different levels of interaction. Along
this spectrum, we identified three key interactivity require-
ments:

a. Turnkey automation. Some novice analysts simply want to
use existing workflows produced by more expert analysts
to produce reports that are consumed by their superiors.
These can be considered as batch processes, where the
analyst can specify input data, and simply produce results.

b. Parameterization. In some cases it is necessary to ask the
analyst to enter parameters dynamically as a workflow ex-
ecutes. For example, in a workflow that generates a net-
work and produces a report, the user may be asked to spe-
cify which agents to focus on in the report. The set of
agents to choose from will only be known once the net-
work is generated, and so it is not possible to enter this in-
formation in the manner described in (a). It is therefore ne-
cessary that a workflow be able to ask for and receive this
information from the user as part of its execution.

c. Exploration. Another sub-community includes analysts wo
are authoring novel workflows. In such instances, analysts

2 www.i2group.com/us/products-services/analysis-product-line/analysts-notebook

3

are exploring the design space for workflows, setting up
correct data for processing, and testing the workflows. In
such a mode, users may want to pause the workflow and
inspect intermediate data produced as part of the workflow
to ensure that steps have executed correctly. In fact, some
analysts may want to examine intermediate results to de-
termine the source of conclusions made by steps later in
the workflow, even as part of their normal workflow ex-
ecution. Furthermore, analysts will want to interact with
the interfaces of their existing tools to conduct additional
analysis, finesse presentations and reports, and gain further
insight into the results.

3) Guidance
In order to further support analysts, human-centered guidance
is required to and provide advice on solving these problems.
This requirement of guidance can be divided into two areas:
a. Authoring guidance, which advises analysts in creating

their workflows. Such guidance might range from simple
syntactic checks, to advice on common ordering of steps,
to providing advice on how to repair a workflow in the
presence of data mismatches.

b. Execution guidance, which advises analysts on choosing
appropriate workflows for their tasks. The meaning of
“appropriate” may differ in different contexts, but it ranges
from providing information about common workflows for
given sets of data, to execution quality of service advice
for qualities such as performance, security, provenance,
etc.

4) Sharing and Reuse
As noted earlier, a key requirement is to allow analysts to spe-
cify workflows that can be shared with other analysts and
reused in similar contexts. For example, an analyst might de-
fine a workflow to analyze the disaster relief effort immediate-
ly following the 2010 earthquake in Haiti. When a nearly iden-
tical problem arises, such as analyzing humanitarian relief for
the Chile earthquake also in 2010, the (different) analyst
should be able to locate this workflow and use it in this new
context, but with slightly different data. For example, the
source data for Chile may have been scraped from the web
instead of from a news source as for Haiti, and requiring addi-
tional steps to remove HTML tags.

While today’s analysts can share the results of different
analyses (for example, through standardized reports), sharing
the workflows that enabled those analyses is almost impossible
because typically there is no formal description of those
workflows or mechanisms to repeat them verbatim, tailor them
to a new context, or incorporate them into other workflows.

In summary, dynamic network analysts require tool support
for composing workflows to automate their analysis tasks.
Such tasks involve a heterogeneous mixture of fine-grained
steps and feature rich tools. Workflows need to support a num-
ber of interactivity modes. Tool support needs to enable sharing
and reusing these workflows with other analysts, and in differ-
ent contexts. Finally, domain-specific guidance in constructing
and executing workflows is required.

III. RELATED WORK

The use of workflow compositions is not new to the DNA
domain. However, what is different is the requirement for he-
terogeneity and the interactivity, and the various guidance
mechanisms, and capabilities for sharing and reuse of
workflows. In this section we trace how workflow composi-
tion tools used in other domains have addressed such con-
cerns.

A. Service Oriented Architecture (SOA)

 Service-Oriented Architecture (SOA) is a widely used me-
chanism for developing large-scale distributed systems
through the composition of loosely-coupled services available
over the Internet. To migrate various heterogeneous systems
into the SOA domain, they are typically modified (often
through wrappers or adapters) to provide a service-based inter-
face, which is registered with a SOA. These services can then
be invoked using standard web protocols such as SOAP or
REST, or they can be combined with other services to produce
more complex applications. SOA enables such compositions
via languages such as BPEL, BPML and XLANG that can be
executed in an orchestration [5].

Figure 1. BPEL orchestrations for some standard DNA tasks

 However, these languages and the other SOA infrastructure
services (such as registries and support for provenance) require
writing scripts that are typically too low-level for human-
centered computation where analysts who write them are tech-
nically naïve. For example, as illustrated in Figure 1,
even a relatively simple workflow (here containing five logical
analysis steps) requires the specification of many BPEL steps
involving assignment of variables to prepare a service invoca-
tion, invoking the service using the service APIs, and dealing
with errors. Not only is writing such representations difficult
for non-technical users, but they also impose additional com-
plications such as inability in dealing with user interaction and
lack of guidance beyond syntactic checks.

Current SOA based composition languages were designed
for automated execution in business scenarios, and not for de-

Sequence

X

Invoke

Assign

Invoke

While

Sequence

Invoke

Wait

X

Catch

Sequence

Assign

Assign

Invoke

Reply

Throw

4

sign by end-users. It is therefore not surprising that they lack
capabilities to incorporate human interactions during the execu-
tion of workflows. BPEL4People [6] is a recent proposal to
address the problem of interaction, by providing a special- pur-
pose construct named WS-Human-Task, but it still does not
address the overall issue of the complexity of a BPEL process.

As we discuss later, in our implementation of SWIFT - we
build on SOA, but add additional layers to bridge the gap be-
tween technology and users.

B. Scientific Computing

 Scientific Computing, in contrast to SOA provides high-
level domain-specific support for composition – primarily
through workflows. These workflows involve executing pipe-
lines of parallel data-processing implemented by heterogene-
ous tools, as opposed to procedural control flow executions in
BPEL [7]. Scientific workflows on the other hand, contain
many tasks, involve large data sets, and often require support
for analysis and provenance that requires iterative execution of
workflows rather than an automated turn-key based execution
as in BPEL.
 It is also quite common in scientific computing applications
to have workflows involving heterogeneous, independent
components, running in a distributed setting. Examples of such
systems include MeDICi [8] and VistA [9] in the healthcare
domain, SORASCS [10] in the social-sciences domain, and
Galaxy [11] for genome and bio-informatics.
 Recently in the scientific community there has been some
effort to integrate data and computation resources using SOA
infrastructure. For example, Taverna [12] and Kepler [13] are
popular workflow design that can integrate web-services de-
veloped for scientific computing. This has led to the existence
of eco-systems that promote sharing of workflows and web
services through communities such as MyExperiment [14] or
through service registries such as Biocatalogue [15] where
users can register web-services for others’ use.
 However, most workflow tools in the scientific computing
domain offer only limited support for interactivity. Also, the
existing scientific-computing platforms assume homogenous
granularity of components that are composed– these are either
web services, or tool APIs, but never both, as scenarios that
involve mix and match of capabilities of tools and services are
simply not supported.

C. Mashups

 Mashups are applications that combine data, presentation
or functionality from two or more sources to create new ser-
vices. Data-mashups in particular, can combine similar types
of media and information from multiple sources into a single
representation. Mashups support composition and distribution,
but lack support for combining heterogeneous data-sources, as
their model is mostly based on pull-based mechanisms relying
on RSS or Atom feeds.

Unlike workflow composition tools, mashups have been
successful in handling interactivity by providing support for
parameterization and displaying intermediate results. One pop-
ular mashup tool is Yahoo! Pipes [16] that inspired the design
of SWIFT.

D. Dynamic Network Analysis (DNA)

As we discussed before, most DNA tools today involve ex-
ecuting analysis procedures implemented by various stand-
alone tools. Currently it is extremely difficult to compose func-
tionalities across different tools as they often involve human-
centered workflows using intermediary steps of data-
processing, and sharing. Some tools provide scripting interfac-
es to automate some parts of the dynamic network analysis
task. For example, Automap [17] provides a scripting interface
for processing raw text into networks, organizing steps into
phases such as ingestion, cleaning, processing, generation and
so on. However, such support is limited to only the functionali-
ty provided by a single tool. Moreover, such scripting does not
support the requirements for interactivity, outlined earlier. Nor
does it support the requirements of guidance.

IV. SWIFT

SWiFT is a tool to support DNA, that is built on top of the
Service ORiented Architecture for Socio-Cultural Systems
(SORASCS) [10]. SORASCS incorporates standard open-
source SOA technologies (mostly from the Apache Founda-
tion). SORASCS provides access to heterogeneous services for
dynamic network analysis, that may be either fine-grained
processing steps that run on remote servers, or as standalone
tools that run on a client’s machine. As such, it addresses the
requirements of heterogeneity, outline above.

However, as we argued earlier, SOA technology by itself is
not sufficient. To bridge the gap and thereby directly support
human-centered computing in the DNA domain, SWiFT pro-
vides a user interface, inspired by Yahoo! Pipes, that allows
SORASCS services to be connected together into workflows.
These workflows are then compiled into BPEL orchestrations,
which can then be registered as new services in SORASCS.
Once registered, they can be shared and reused just like any
other services provided by SORASCS. In this section, we de-
scribe the user interface features of SWiFT, and in Section V
we elaborate on the underlying architecture and implementa-
tion challenges in realizing this interface.

The user interface of SWiFT is organized around a design
based on perspectives. Currently there are three perspectives –
Compose, Execute, and Analyze – which organize the different
UI features into related categories. Figure 2 shows a screenshot
of SWiFT in the compose perspective. Users can easily switch
between the perspectives using a tabbed widget, and each pers-
pective uses a similar layout consisting of a central canvas,
showing the workflow(s) currently being worked on, toolbars,
and other panels as needed. The following sections discuss the
perspectives and how they address the requirements and chal-
lenges previously discussed.

A. Compose Perspective

The compose perspective allows a user to compose and or-
chestrate a workflow from services. Services that are available
to the user on SORASCS are displayed in a palette; these ser-
vices can then be dragged-and-dropped onto the canvas. The
user can use a number of heterogeneous tools as components in
their workflow, such as primitive services, saved workflows,
and composite services. On the canvas, these components can
then be connected and ordered to form a fully orchestrated

5

workflow. Figure 2 shows an orchestration containing three
primitive services, two pieces of data, and a special service
called the UI service (described later).

From this perspective the user can create new workflows,
edit existing workflows, and save their workflows. They have
access to not only their own work, but also any shared
workflows for which they have permissions in SORASCS.
The goal is to promote building upon the expertise of others by
having knowledge repositories where users can share
workflows and data with others.

To facilitate the reuse and sharing of workflows, the com-
pose perspective also includes features for packaging a
workflow as a reusable entity. This involves three steps: 1)
expose internal ports and parameters of services inside the
workflow to the workflow’s boundary, 2) give the workflow
meta-information such as a name, description, and tags, and 3)
set the permissions of the workflow to specify who will have
read-access and write-access to it.

The SWiFT palette orders services hierarchically based on
meta-data such as tags and service type. This categorization
hierarchy can be changed by the user to dynamically reorganize
the services. The palette also provides searching and sorting
capabilities. Because the number of services is expected to
grow large, it is important to have UI features to allow users to
easily find and user the particular service(s) that he or she
wants. Once found, another useful feature is to mark a service
as a favorite, which then shows up in the favorites section of
the palette for easy access.

The compose perspective also has some guidance in terms
of syntactic checks of the workflow. Before a workflow can be
executed, it must be syntactically valid. SWiFT has a number
of rules that define what a “valid” workflow is, and these are
interactively presented to the user in terms of syntactic checks.

Some of these checks happen while the user is composing a
workflow; for example, if a user tries to connect two ports that
have different types, the port will glow red and the user cannot
connect them. Some of the checks happen when the user vali-
dates the workflow or tries to execute it; for example, a
workflow is not valid if it has a dangling port that is required to
be connected, and the port is highlighted in red when the user
validates the workflow (the lower port of the Delete service in
Figure 2 is such an example).

B. Execute Perspective

The execute perspective allows the user to run a workflow
that they have composed. In most cases the user will just want
to execute the workflow straight by simply clicking the “Run”
button. However, SWiFT also supports more advanced execu-
tion modes. The user can set debugging breakpoints in the
workflow to pause and resume during execution. Additionally,
the user can set viewpoints where he or she wants to see any
intermediate results of the workflow up until that point. The
combination of these features allows for a powerful execution
environment for more expert users.

Another feature that is valuable in the execute perspective
is the use of UI services. Any parameters that are connected to
a UI service will prompt the user for any necessary values
while the workflow is executing. In Figure 2 we can see that
the adjacency parameter of the Delete service is connected to th
UI service. This means that, prior to execution of the Delete
step in the workflow, the user will be queried for a value for
this parameter. By using viewpoints and UI services appro-
priately, they can inspect the output and enter in the correct
value during the workflow execution.

C. Analyze Perspective

The analyze perspective allows the user to more deeply ex-
amine their workflow beyond the rules of syntactic correctness

Figure 1. SWiFT Compose Perspective.

6

SORASCS Invocation API

Component Interface
Local Call

Web Service Call

Bridging Compo-

Legend

Figure 3. SORASCS System Organization.

Data Call
Configuration Port

Client Side Invocation

Applications

Data
Transformers

SORASCS
Workflows History Intelligence

Data Services

Data Services
Orchestration Engine Registry

U
se

r

In
te

rf
a

ce

L
ay

er

D
yn

a
m

ic

N
et

w
o

rk

A
n

al
ys

is

L
ay

er

S
er

vi
ce

s

L
ay

er

T
o

o
ls

L

ay
er

Client

CONSTRUCT

… … …

SWiFT

described above. Using an extensible analysis plugin frame-
work, the user has access to any public plugins that are availa-
ble on SORASCS. These plugins have access to the current
workflow, SORASCS services, execution history, etc. and can
thus perform much more thorough and customizable analyses
of workflows.

One such example plugin uses a simple bigram algorithm to
make suggestions to the user based on existing workflows. For
example, if the user has ordered service A before service B, but
in most other workflows service B is before service A, the bi-
gram analysis will suggest switching the order of the two ser-
vices. It can also suggest a “next” service, based on the current
services and the workflow history.

V. SWIFT IMPLEMENTATION AND ENGINEERING

SWiFT is built upon the SORASCS architecture, which
provides services specific to dynamic network analysis. Figure
3 shows the SORASCS architecture, highlighting where
SWiFT is positioned within it. The Tools layer of SORASCS
contains the existing legacy systems that have been wrapped as
services in SORASCS. The Services layer houses foundational
services such as the Registry (for finding services), the orches-
tration engine (for executing workflows), and data services for
accessing data stored in SORASCS. The Dynamic Network
Analysis layer contains domain-specific services, including
those used by SWiFT to compile and analyze workflows. The
User layer contains user-facing parts of SORASCS, including
the SWiFT front end.

The user interface for SWiFT is implemented as a web ap-
plication using several JavaScript libraries, and uses AJAX for
communication between the interface and the other layers of
SORASCS on the SORASCS server.

There were several engineering challenges faced during de-
sign and implementation of SWiFT when implementing some
of its requirements. Such challenges include providing appro-
priate levels of abstraction to bridge the gap between users and
low level SOA concepts, how to provide sharing and reuse,

balancing ease of use with version and state management, and
how to provide for interactivity in a web environment.

A. Dynamic Network Analysis Layer

The first challenge that we needed to address was how to
bridge the gap between human-centered abstractions for
workflows and the lower level SOA concepts of orchestration
and service calls. This challenge is addressed within
SORASCS, by providing a domain-specific layer for dynamic
network analysis. This layer contains models and services tar-
geted specifically at the end user. One challenge in engineer-
ing this layer was how to provide abstractions that are formal
enough to be used for analysis, guidance, and to be elaborated
as orchestrations and service calls in the lower level, but still
be amenable to end users. We have found that using compo-
nent and connector architectural views at this level provides
sufficient balance between these requirements. Workflows in
SWiFT are mapped to architectural representations in the dy-
namic network analysis layer. A large array of architectural
analysis can be performed on these models, including well-
formedness checks, stylistic guidance, and quality of service
analyses. The results of these analyses can then be mapped to
the wiring model used in SWiFT. Additionally, the architec-
tural models are formal enough that they can be used to gener-
ate BPEL scripts in the SOA layer, hiding the low level minu-
tiae of forming service invocations, dealing with exceptions,
and processing asynchronous calls. We believe that engineer-
ing any human centered platform for workflows will require a
similar layer.

B. Sharing and Reuse of Workflows in SWiFT

One of the key requirements in SWiFT was for analysts to
be able to reuse workflows created by other analysts and to
incorporate them into other workflows. One consequence of
this was the need to manage permissions of the workflows, as
well as keep additional state in the GUI of opened workflows
as users navigated between parent and child workflows. In

7

essence, there was a trade-off between achieving usability
while hiding the workflow’s version management and state
management complexity.

First, SWiFT has an open workflows list in the palette of
the GUI in the compose perspective. This allows the user to
open several workflows at the same time so that the user can
refer to other workflows during workflow orchestration. Also,
SWiFT has three perspectives; compose, execute, and analyze.
Users can move to any workflow tab or perspective, which
requires state management of the workflow parameters on the
GUI side and server side. We decided to keep all the informa-
tion in GUI once after the workflow is opened, rather than ac-
cessing it from the server every time the user switches the tab
or perspective. This improved the tool’s responsiveness being
on the web.

Second, SWiFT allows users to incorporate workflows
within another workflow as one of its steps. Such a grouping is
particularly helpful if a set of related activities occur repeated-
ly. SWiFT displays workflows in the palette, where they can be
dropped onto the canvas in the same way as the other web ser-
vices. SWiFT then allows the users to drill down to the internal
workflow in any perspective to see its details on the canvas.
Keeping the relationship of parent-child workflows and the list
of open workflows in three perspectives was a challenging
problem. Our initial attempt was to provide a generic solution.
However, it led us to complexity that can be compared to sup-
porting recursive types in programming languages. In order to
manage the trade-off between the complexity of inter-workflow
relationships and managing SWiFT's performance, we decided
to enforce two constraints on the user’s operation. First, the
user cannot drill down an internal workflow unless the current
workflow is saved. Also, the user needs to save the child
workflow before he/she closes it, else the modification made to
the child workflow will be lost. Second, we restricted opening
multiple internal workflows at the same time. These constraints
reduced the amount of information which SWiFT needed to
keep on the GUI side.

Third, to tackle the issue of version management of the
workflows as they are being shared with multiple users the
following decisions were made. When a user is in execute or
analyze perspective, the workflow is read only. Hence, the user
is free to navigate between child and parent workflows in these
two perspectives but cannot modify them. However, when the
user is in the compose perspective, they may make changes to
both children and parent workflows, depending on permissions.
To get this right, we used a Z Specification [20][20] to help
define the interface between the frontend and the backend as
well as to understand the relationship between
root/child/original workflow with infinite levels of workflow
hierarchy.

C. User feedback and Interactivity

One of the engineering challenges for SWiFT was to sup-
port user interaction and to provide effective feedback to the
user during various stages of workflow construction and execu-
tion. In this section we will describe how SWIFT handles this.

1) Feedback mechanism in SWiFT

SWiFT is built using Web 2.0 paradigm using AJAX tech-
nology. SWiFT’s UI is based on single page model and is total-
ly asynchronous when it comes to its interaction with middle
tier. This makes the UI highly responsive. However this brings
in the challenge of how to effectively communicate the feed-
back back to the user from the middle tier, for example during
workflow execution and debugging. Web 2.0 doesn't provide a
direct guidance for this, and leaves to the individual AJAX
frameworks to provide a programming model. SWIFT uses
Direct Web Remoting (DWR) [18] as its AJAX framework and
effectively uses its Reverse AJAX programming model to send
information back from middle tier to the GUI. Reverse AJAX
[19] refers to an AJAX design pattern that uses long-lived
HTTP connections to enable low-latency communication be-
tween a web server and a browser.

2) User Interaction in SWIFT
SWIFT's workflow execution engine is based on BPEL.

User interactions are currently not supported by BPEL, which
is primarily designed to support automated business processes
based on Web services. However the spectrum of activities that
makes up general purpose business processes is broader than
this, because people often participate in the execution of busi-
ness processes. To support a broad range of scenarios involving
people within business processes, a BPEL extension is re-
quired. BPEL4People [6] has been a recent proposal to address
this via a special purpose construct named WS-Human-Task,
however many BPEL engines do not yet support it (including
Apache ODE, SWiFT’s BPEL engine). As mentioned in the
requirements, DNA workflows supported by SWIFT are typi-
cally long running and can require user interaction at various
steps during execution. Apache ODE lacks support for interac-
tive workflows. Given this as well as its asynchronous nature
as described above, it makes the task of supporting user inte-
raction during workflow execution challenging for SWIFT.
SWIFT attempts to solve this using existing BPEL constructs
and using Reverse AJAX [19] in the following manner:

 User Interaction is modeled as a special type of utility ser-
vice called as UI Service. This service can be hooked up to
parameters of any other service in the workflow. SWIFT 's
UI model has a type system to map service parameters to
appropriate UI elements. This enables generation of a UI
widget at runtime from a UI service based on the mapped
parameters.

 The UI service is implemented as a stateless service in
SWIFT 's middle tier. It has operations to check if the in-
put is already provided by the user. During execution
Apache ODE makes a call back to the UI service, which
generates and pops up the UI to the end user (using the UI
information captured as mentioned above). The UI is pre-
sented to the user by Reverse AJAX mechanism as de-
scribed above. BPEL wait construct is used to poll the sta-
tus of the UI service (using the operation of status check in
UI Service mentioned above). We believe that this ap-
proach of handling works well for current workflows
which are being developed using SWIFT. However this
needs to be evaluated more, and needs more investigation
into a task and inbox based approach, for example as is
proposed in BPEL4People.

8

VI. DISCUSSION

Analysts conducting dynamic network analysis require a
way to compose workflows that provides support for modeling
heterogeneous, interactive workflows that are supported with
special-purpose guidance, and can be shared and reused. In this
paper, we describe a tool that supports such composition of
workflows, called SWIFT.

Analysts can use SWIFT to combine various kinds of ser-
vice components – ranging from web-services, tool APIs, data,
and pre-existing workflows, where these are designed by mul-
tiple tool creators, running on a variety of distributed hosts.
SWIFT also supports interactivity by not only allowing turnkey
automation, where users can execute workflows as batch
processes by providing required input parameters, but it also
supports more complex workflows that need to ask the user for
information dynamically as they get executed, and provides
users visibility over intermediate results. This is extremely
helpful for domains that have long running transactions, or
have scenarios where users need to dynamically change para-
meters of workflows during their execution.

The plugin based architecture of SWIFT allows incorpora-
tion of various guidance mechanisms that can provide analyses
for quality-attributes such as performance, security and execu-
tion time. These analyses help users to answer questions such
as: `How long will it take for this workflow to execute?’ or `Do
all the services used in this workflow meet the security poli-
cies?’. This loosely coupled architecture not only allows easy
incorporation of new analyses, but also ensures easy addition of
new capabilities.

SWIFT supports the sharing and reuse of workflows and
services by packaging and exporting them in a common reposi-
tory along with their meta-information that are provided as
tags.

Engineering SWiFT to address the requirements for this
domain presented a number of key challenges that are likely to
be encountered when designing workflow tools for other simi-
lar domains. We described how inserting a domain-specific
layer that provides models and analyses that map between hu-
man-centered abstraction and implementation abstractions
enabled us to provide tools that allow users to focus on their
analysis tasks. We also described how the need for interactivity
and reuse led to engineering challenges that required us to be
careful to balance usability and engineering complexity.

Our evaluation of SWiFT has so far been informal. Yearly,
as part of the development of SORASCS, we host community
meetings where prototypes of SWiFT have been shown to
about 50 people in the dynamic network analysis community,
including tool developers and analysts. The feedback on this
approach has been encouraging, and we look forward to more
formal evaluations of our approach.

Future work on SWiFT includes providing additional forms
of guidance such as automatic workflow repair, for example to
automatically apply data transformations so users can be less
concerned with data compatibility. Furthermore, we plan to
provide additional analysis and advice concerning security and
privacy issues with workflows, as well as staging advice for
optimal performance in a distributed setting.

REFERENCES
[1] Carley, K. A Theory of Group Stability. American sociological Review,

56, 331-354, 1991.

[2] Carley, K.M., A Dynamic Network Approach to the Assessment of
Terrorist Groups and the Impact of Alternative Courses of Action. In
Visualizing Network Information Meeting Proceedings RTO-MP-IST-
063, France, 2006.

[3] Carley, K.M., Reminga, J., Storrick, J., and Columbus, D., ORA User’s
Guide 2010. Carnegie Mellon University School of Computer Science
Institute for Software Research Technical Report CMU-ISR-10-120,
2010.

[4] Borgatti, S., Evrett, M. and Freeman, L., UCINET 6 for Windows:
Software for Social Network Analysis User’s Guide. Analytic
Technologies. 2002.

[5] Chris Peltz: Web Services Orchestration and Choreography. IEEE
Computer 36(10): 46-52 (2003)

[6] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von
Riegen, P. Schmidt, and I. Trickovic. WS-BPEL Extension for People –
BPEL4People.
http://www.ibm.com/developerworks/webservices/library/specification/
ws-bpel4people

[7] Wei Tan, Paolo Missier, Ravi K. Madduri, Ian T. Foster: Building
Scientific Workflow with Taverna and BPEL: A Comparative Study in
caGrid. ICSOC Workshops 2008: 118-129

[8] Gorton, I., Wynne, A.S., Almquist, J.P., Chatterton, J. The MeDICi
Integration Framework: A Platform for High Per-formance Data
Streaming Applications. In Proc the 7th IEEE/IFIP Working Conference
on Software Architecture, 2008.

[9] Department of Veterans Affairs. VistA – HealtheVet Mono-graph. 2008.
http://www4.va.gov/VISTA_MONOGRAPH/docs/2008_2009_VistAHe
altheVet_Monograph_FC_0309.pdf

[10] Bradley Schmerl, David Garlan, Vishal Dwivedi, Michael Bigrigg and
Kathleen M. Carley. SORASCS: A Case Study in SOA-based Platform
Design for Socio-Cultural Analysis. In Proceedings of the 33rd
International Conference on Software Engineering, Hawaii, USA, 2011.
In Press.

[11] Giardine B et al, Galaxy: a platform for interactive large-scale genome
analysis. Genome Res. 2005;15:1451-1455.

[12] Hull D., Wolstencroft K., Stevens R., Goble C., Pocock M.R., Li P.,
Oinn T. Taverna: a tool for building and running workflows of services.
Nucleic Acids Res. 2006;34:W729–W732.

[13] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones,
M., Lee, E. A., Tao, J. and Zhao, Y. (2006), Scientific workflow
management and the Kepler system. Concurrency and Computation:
Practice and Experience, 18: 1039–1065. doi: 10.1002/cpe.994

[14] Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D,
Newman D, Borkum M, Bechhofer S, Roos M, Li P, De Roure D:
myExperiment: a repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Res 2010, 38:W677-682.

[15] Goble CA, Belhajjame K, Tanoh F, Bhagat J, Wolstencroft K, Stevens
R, Nzuobontane E, McWilliam H, Laurent T, Lopez R: Biocatalogue: A
Curated Web Service Registry for the Life Science Community.
Microsoft eScience conference: 7-9 December 2008; Indianapolis

[16] Yahoo Pipes http://www.pipes.yahoo.com

[17] Carley, K.M., Columbus, D., DeReno, Bigrigg, M. and Kunkel, F.
AutoMap User’s Guide 2010. Carnegie Mellon University School of
Computer Science Institute for Software Research Technical Report
CMU-ISR-07-121, 2010.

[18] Direct Web Remoting. (2010). Retrieved from DWR - Easy Ajax for
JAVA: http://directwebremoting.org/dwr/index.html

[19] Reverse Ajax. Retrieved from DWR - Easy Ajax for JAVA:

http://directwebremoting.org/dwr/documentation/reverse-
ajax/index.html

[20] SWIFT Drilldown Zed Specification -
http://dogbert.mse.cs.cmu.edu/MSE2010/projects/faceo5/documents/Arc
hitecture/ArchitectureDocument/Drilldown%20Zed%20Spec/Workflow
Spec%20%28cloning%29.pdf

