
Model-Based Analysis
of Microservice Resiliency Patterns

Nabor C. Mendonça, Carlos M. Aderaldo
Post Graduate Program in Applied Informatics

University of Fortaleza
Fortaleza, CE, Brazil

Email: {nabor,carlosmendes}@unifor.br

Javier Cámara
Department of Computer Science

University of York
York, UK

Email: javier.camaramoreno@york.ac.uk

David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
Email: garlan@cs.cmu.edu

Abstract—Microservice application developers try to miti-
gate the impact of partial outages typically by implementing
service-to-service interactions that use well-known resiliency
patterns, such as Retry, Fail Fast, and Circuit Breaker. However,
those resiliency patterns—as well as their available open-source
implementations—are often documented informally, leaving it up
to application developers to figure out when and how to use those
patterns in the context of a particular microservice application.
In this paper, we take a first step towards improving on this
situation by introducing a model checking-based approach in
which we use the PRISM probabilistic model checker to analyze
the behavior of the Retry and Circuit Breaker resiliency patterns
as continuous-time Markov chains (CTMC). This approach has
enabled us to quantify the impact of applying each resiliency
pattern on multiple quality attributes, as well as to determine
how to best tune their parameters to deal with varying service
availability conditions, in the context of a simple client-service
interaction scenario.

Index Terms—microservices, resiliency patterns, probabilistic
model checking

I. INTRODUCTION

Designing reliable distributed systems requires accounting
for several types of operational uncertainties, such as service
failures and network delays [1]. Anticipating and dealing with
different types of failures is part of a fundamental design
paradigm commonly referred to as design for failure [2], which
is one of the tenets of the microservices architectural style [3].

Microservices, like any type of distributed system, are
typically fragile. Multiple reasons, such as network, hardware,
or application-level issues, might render them unavailable,
inaccessible, or simply make them fail. Owing to service
dependencies, any service can become temporarily inaccessi-
ble to its consumers. At the application level, communication
failures will likely occur often because of the sheer number
of services involved and of messages being exchanged [4].

To mitigate the impact of partial outages, microservice
application developers must build resilient services that can
gracefully respond to failure. One common way to do this is by
implementing service-to-service interactions using resiliency
patterns, such as Retry, Fail Fast, and Circuit Breaker [5].
There are several open-source service invocation libraries

This material is based upon work supported by CNPq under grants
313553/2017-3 and 424160/2018-8, and the NSA under Award No.
H9823018D0008.

currently available that implement such resiliency patterns,
most of them derived from production-grade solutions orig-
inally developed by industry, like Hystrix [6], Finagle [7],
and Resilience4J [8]. Those libraries can be used to deal
with different types of failures (e.g., transient and non-
transient service failures), requiring careful configuration of
their invocation parameters (e.g., timeout duration and failure
thresholds). However, the existing documentation on those
service invocation libraries—as well as on their underlying
resiliency patterns—is largely informal, usually provided in
the form of general rules of thumb and usage guidelines, e.g.:

“Use [the Retry] pattern when an application could
experience transient faults as it interacts with a
remote service or accesses a remote resource. These
faults are expected to be short lived, and repeating
a request that has previously failed could succeed
on a subsequent attempt” [9].

In the documentation quoted above, the exact meaning of
terms such as transient and short-lived, used to qualify systems
faults, is left open to interpretation. As a consequence, it’s
mostly up to application developers to figure out the environ-
mental conditions upon which a given resiliency pattern should
be used, and how to configure its invocation parameters to deal
with the expected failure types of a particular microservice
production environment.

Despite recent interest in microservices as a research
topic [4], there has been surprisingly little interest in the study
of existing resiliency patterns by the research community.
Works by Montesi and Weber [10] and Preuveneers and
Joosen [11] on circuit breakers are two notable exceptions,
but even those works do not consider how a particular circuit
breaker implementation should be configured in terms of its
timeout and failure threshold parameters.

In this paper, we take a first step towards improving on
this situation by shedding some light on the proper use and
configuration of two popular microservice resiliency patterns.
Specifically, we describe a model checking-based approach in
which we use the PRISM probabilistic model checker [12] to
analyze the behavior of the Retry and Circuit Breaker patterns
captured as continuous-time Markov chains (CTMC) [13].
This approach enables us to quantify the impact of choosing a

particular resiliency pattern and its configuration on multiple
quality attributes, under varying service availability conditions,
in the context of a simple client-service interaction scenario.
To the best of our knowledge, this is the first approach that
applies probabilistic model checking to analyze the behavior
of popular microservice patterns.

The rest of the paper is organized as follows: Section II
gives an overview of the Retry and Circuit Breaker patterns.
Section III describes how we modeled those patterns as
CTMC. Section IV reports on the method and results of a
quantitative analysis of the behavior of the patterns using
the PRISM model checker. Section V discusses related work.
Finally, Section VI presents conclusions and future research
directions.

II. MICROSERVICE RESILIENCY PATTERNS

Some of the most well-known microservice resiliency pat-
terns (e.g., Retry, Fail Fast, Bulkhead, and Circuit Breaker)
were introduced over a decade ago in the book “Release
It!” [14] by Michael Nygard. Since then, those patterns
have grown in popularity, especially in industry, where they
have been implemented and used in production as part of
a number of fault-tolerant service invocation libraries (e.g.,
Hystrix [6]) and service mesh tools (e.g., Istio [15]). Here,
we briefly describe the Retry and Circuit Breaker patterns,
which are the focus of our work, using a simple client-service
interaction scenario to illustrate their use and configuration.
Details on these, as well other resiliency patterns, can be found
elsewhere [5], [14].

A. Example Scenario

We consider an example scenario in which a single client
service sequentially invokes an operation provided by a target
remote service (see Fig. 1). The target service serves requests
from the client service with a given response rate, and may
fail and recover from failure with some given failure rate and
recovery rate. Each request may either succeed, in which case
the client service receives an “OK” response from the target
service, or fail due to the target service being either unavailable
or too slow, in which case the client service receives an error
message from its underlying service invocation mechanism. In
the latter case, the invocation mechanism typically has to wait
until either a connection timeout (e.g., when the target service
is unavailable) or a response timeout (e.g., when the target
service is too slow) occurs before returning the error message
to the client service.

An important challenge related to the implementation of
the client service in this scenario is how to deal with a non-
responsive target service. There are two undesirable cases that
should be avoided under such circumstances:

1) If the client service continually retries each failed re-
quest, it increases its resource contention, thereby con-
tributing to further overloading the network and/or the
target service;

process
request

process
request

:ClientService :TargetService

request

OK

request

error

request

OK

Fig. 1: ClientService-TargetService interaction scenario.

process
request

:ClientService :RetryMechanism :TargetService

request

error

request

OKOK

increase retry
delay

request

Fig. 2: Retry pattern example.

2) If the client service waits too long for the target service
to respond, it increases its own execution time, poten-
tially delaying the execution of all other services that
depend on it.

The Retry and Circuit Breaker patterns are well-known
design solutions to cope with (the consequences of) failures
during service interactions, and that can be used to establish
a trade-off between resource contention and execution time,
as discussed above. In the following, we describe those two
patterns in terms of their purpose, context, and implementa-
tion considerations. To this end, we largely draw from the
documentation provided in [5].

B. Retry Pattern

Purpose: Enable an application to handle transient failures
when it tries to invoke a remote service, by transparently
retrying a failed operation.

Context: A distributed application is required to be resilient
to the transient faults that can occur in a distributed environ-
ment. These faults (e.g., momentary loss of network connec-
tivity, temporary unavailability of a service, and timeouts that
occur when a service is busy) are typically self-correcting, and
if the action that triggered a fault is repeated after a suitable
delay, it is likely to be successful.

Solution: If an application detects a transient failure when
it tries to send a request to a remote service, it should wait
a suitable amount of time (“backoff”) before retrying the
request. This process is repeated until the request succeeds
or a failure threshold is reached, in which case the operation
is considered to have failed definitely. Fig. 2 shows an example
of the Retry pattern being used in the context of the client-

service interaction scenario shown in Fig. 1. In this example,
the retry mechanism attempts to invoke the target service twice
before receiving a successful response. Note that the retry
mechanism increases the retry delay after the first attempt,
thus allowing a longer period of time for the target service to
recover.

Implementation considerations: The period between retries
should be chosen to spread requests from multiple instances of
the application as evenly as possible. This reduces the chance
of a busy service continuing to be overloaded. If necessary,
the retry mechanism can increase the delays between retry
attempts, until some maximum number of retries have been
attempted. The delay can be increased incrementally or expo-
nentially, depending on the type of failure and the probability
that it will be corrected during this time. If a request still
fails after a significant number of retries, it is better for the
retry mechanism to prevent further requests going to the same
resource and simply report a failure.

An alternative strategy to deal with less-transient failures is
using a circuit breaker.

C. Circuit Breaker Pattern

Purpose: Enable an application to handle faults that might
take a variable amount of time to recover from, when invoking
a remote service or resource.

Context: In a distributed environment, calls to remote re-
sources and services can fail due to unanticipated events (e.g.,
loss of connectivity, service failure), and might take much
longer to fix than typically self-correcting transient faults. In
these situations, it might be pointless for an application to con-
tinue to retry an operation that is unlikely to succeed: instead,
the application should quickly accept that the operation has
failed and handle this failure accordingly.

Additionally, if the calling operation implements a timeout,
all concurrent requests to that operation will be blocked until
the timeout period expires, possibly leading to cascading fail-
ures in other parts of the system. In these situations, it would
be preferable for the calling operation to fail immediately, and
only attempt to invoke the service if it is likely to succeed.

Solution: A circuit breaker acts as a local proxy for opera-
tions that might fail. The proxy should monitor the number of
recent failures that have occurred, and use this information to
decide whether to allow the operation to proceed, or simply
return an error immediately.

The proxy can be implemented as a state machine with the
following states that mimic the functionality of an electrical
circuit breaker: Closed, Open, and Half-Open (see Fig. 3) [16].
Initially, the circuit is Closed, which means that the proxy
will forward every incoming request to the target service.
The circuit will remain Closed until a certain number of
consecutively failed requests is reached, in which case the
circuit moves to the Open state. In this state, the circuit will
immediately return an error message to the client service
for every new incoming request without invoking the target
service, until a timeout expires, in which case the circuit moves
to the Half-Open state. Once in this state, the circuit resumes

Closed Open

failure

failure [threshold reached]

failure
[under threshold]

success

success
[under threshold]

Half Open

timeout expired

return
failure

success
[threshold reached]

Fig. 3: Circuit breaker state machine (adapted from [16]).

process
request

open

:ClientService :CircuitBreaker :TargetService

request
request

OK

request

error

OK

request

error

request

error

request

error

request

error

start circuit
timeout

failure threshold
reached

process
request

half-open

close

request

OK

request

OK

circuit timeout
expires

success threshold
reached

Half Open

Open

Closed

Fig. 4: Circuit Breaker pattern example.

forwarding incoming requests to the target service and then
either moves to the Closed state, if a number of consecutive
successful requests is reached, or goes back to the Open state
if a specified number of requests fail.

Fig. 4 shows an example of the Circuit Breaker pattern
used in the context of the client-service interaction scenario
shown in Fig. 1. In this example, the failure threshold (used
to determine when the circuit should switch from Closed to
Open) is set to two consecutive requests, while the success
threshold (used to determine when the circuit should switch
from Half-Open back to Closed) is set to one request.

Implementation considerations: The Circuit Breaker pattern
is customizable and can be adapted according to the type and
expected duration of the possible failure. For example, one
could place the circuit breaker in the Open state for a few
seconds initially, and then if the failure has not been resolved
to increase the timeout to a few minutes, and so on. In some
cases, rather than the Open state returning failure and raising
an exception, it could be useful to return a default value that

is meaningful to the application.
An application invoking an operation through a circuit

breaker must be prepared to handle the exceptions raised if
the operation is unavailable. The way exceptions are handled
will be application-specific. For example, an application could
temporarily degrade its functionality, invoke an alternative
operation to try to perform the same task or obtain the same
data, or report the exception to the user and ask them to try
again later.

III. RETRY AND CIRCUIT BREAKER PATTERN MODELS

In this section, we give a brief overview of probabilistic
model checking and the CTMC formalism, and then present
our CTMC models for the Retry and Circuit Breaker patterns.

A. Probabilistic Model Checking

Probabilistic model checking (PMC) [13] is a set of formal
verification techniques that enable (a) modeling of systems
that exhibit probabilistic behavior, and (b) the analysis of
quantitative properties concerning costs/rewards (e.g., resource
usage, time) and probabilities of certain events happening in
the system (e.g., of reaching a state that violates a safety
invariant).

In PMC, systems are modeled as state-transition systems
augmented with probabilities such as discrete-time Markov
chains (DTMC), Markov decision processes (MDP), and
continuous-time Markov chains (CTMC). CTMC are particu-
larly useful in performance analyses, as they allow specifying
the rates of transition from one state to another. Probabilistic
choice, in this type of model, arises through race conditions
when two or more transitions in a state are enabled. These
properties make CTMC a perfect fit to capture the behavior of
microservice architectures with high time fidelity, in a natural
way:

Definition 1: A labeled Continuous-Time Markov
Chain (CTMC) extended with rewards is a tuple
C = (S, si, R, L, ρ, ι), where S is a finite set of states,
si ∈ S is the initial state, R : S × S → R+ is the transition
rate matrix, L : S → 2AP is a labeling function which assigns
to every state s ∈ S a set L(s) of atomic propositions valid
in that state, ρ : S → R+ is a function that defines the rate
at which reward is acquired in a state (t · ρ(s), with time
t ∈ R+, s ∈ S), and ι : S × S → R+ is a transition reward
function that assigns a reward every time a transition occurs
in the CTMC.

In the definition above, the transition rate matrix R deter-
mines how transitions between states (e.g., message exchange
between services) are triggered in the CTMC. Concretely, the
probability of a transition being triggered within t time units
is equal to 1 − e−R(s,s′)·t (a transition of rate 1/t will take
on average t time units to be triggered). Moreover, the reward
assignment function can be used to encode rewards and costs,
e.g., to quantify the number of messages exchanged, or the
time elapsed during system execution.

System properties are expressed using some form of prob-
abilistic temporal logic, such as Continuous Stochastic Logic

(CSL) or Probabilistic Computation Tree Logic (PCTL), which
enable quantifying some probability or reward, or stating
that they meet some threshold. In particular, CSL reward
quantification properties can be employed to analyze times
in a microservice architecture described as a CTMC. For
instance, the class of property Rr

=?[F φ] allows quantifying
the reward r accrued along system paths leading to states
that eventually satisfy the state formula φ. An example of
a property employing this operator for quantifying contention
time in the system might be Rcontention time

=? [F end], meaning
“accrued contention time along paths that lead to the end
of the system’s execution.” This property assumes a state
reward function contention time in the model, defined as
(under contention, 1), where under contention is a predicate
over system states capturing those in which network resources
are being held. A more in-depth discussion of CTMC and their
theoretical underpinning can be found in [13].

In the remainder of this paper, we illustrate our approach
using the high-level syntax of the PRISM language [12]
to describe CTMC. A PRISM CTMC model is built as a
set of processes or modules (delimited by keywords mod-
ule/endmodule) that are encoded as a set of commands:

[action] guard → r1 : u1+ . . . + rn : un,

where guard is a predicate over the model variables (which
can be either booleans or bounded-range integers). Each
update ui describes a transition that the process can make (by
executing action) if the guard is true. An update is specified
by giving the new values of the variables and has an assigned
transition rate ri. Multiple commands with overlapping guards
introduce transition race conditions in the model [13].

The probabilistic model corresponding to a CTMC spec-
ification is constructed as the parallel composition of its
modules. In every state of the model, there is a set of actions
(belonging to any of the modules) which are enabled, i.e.,
whose guards are satisfied in that state. The choice of which
action is triggered by the model is captured as a “race”
between transitions in different modules.

CTMC reward (or cost) structures containing one or more
reward items can be defined using the syntax:

rewards reward label
[action] guard : reward;

endrewards

In transition-based reward definitions, reward is accrued
under reward label for every transition that executes action
from a state that satisfies guard. State rewards are specified
using a similar syntax, but removing the [action] component
of the definition.

Fig. 5 shows an example of a CTMC model specified in
the PRISM language, represented both textually (left) and
graphically (right), for a simplified version of the client-service
interaction scenario shown in Fig. 1, in which the target
service does not fail.1 This model is specified in two modules:

1In the remainder of the paper, we will show only CTMC models in their
graphical representations, as these are more compact and easier to explain.

ctmc

const intMAX_REQ; // maximum number of requests
const double REQ_RATE; // request rate
const double RES_RATE // response rate
const double IR=9999; // instantaneous rate

module client_service
cs:[0..2] init 0; // state variable (0 - INIT; 1 - REQ; 2 - DONE)
crs:[0..MAX_REQ] init 0; // request counter variable

[req] (cs=0) & (crs<MAX_REQ) -> REQ_RATE: (cs'=1);
[res] (cs=1) & (crs<MAX_REQ) -> 1: (cs'=0) & (crs'=crs+1);
[end] (cs=0) & (crs=MAX_REQ) -> IR: (cs'=2);

endmodule

module target_service
ss: [0..1] init 0; // state variable (0 - INIT; 1 - REQ)

[req] (ss=0) -> 1: (ss'=1);
[res] (ss=1) -> RES_RATE: (ss'=0);

endmodule

IR

INIT

1

REQ

[res]

DONE

[end] [req] REQ_RATE

crs'=0 crs'=crs+1

crs<MAX_REQcrs=MAX_REQ

crs<MAX_REQ

RES_RATE

INIT REQ

[res]

[req] 1

client service module

target service module

Fig. 5: A simple CTMC model in the PRISM language: textual representation (left) and graphical representation (right).

one captures the behavior of the client service and the other
captures the behavior of the target service.

Both modules start in their respective INIT states. The client
service module uses a local variable (crs) to count the total
number of requests served by the target service, which is
initially set to zero. Whenever the client service is in the INIT
state and the request count is less than the maximum number
of requests allowed (MAX REQ), the shared action req is
enabled and both modules move to their respective REQ states
with rate REQ RATE (note that action req is specified with
rate 1 in the target service module, which means that the rate
of that transition is always dominated by the corresponding
rate specified in the client service module).

Once the modules are in their respective REQ states, the
shared action res is enabled and both modules return to their
INIT states with rate RES RATE, which is specified in the
target service module. Finally, when the client service module
is in the INIT state and the maximum number of requests is
reached, the action end is enabled and that module moves to
the DONE state with an instantaneous rate IR.2

A CTMC reward for computing the expected total execution
time of the client service module can be specified as follows:

rewards total time
true : 1;

endrewards

The above specification instructs PRISM to accrue reward
at rate 1 in every state of the model, enabling quantification
of total execution time.

B. Basic ClientService-Proxy-TargetService Model

To make the Retry and Circuit Breaker CTMC models
easier to describe, we have decoupled the specification of
the client service from that of the target service using a
proxy as a mediator. The proxy encapsulates the invocation
mechanism used by the client service to send requests to the

2In PRISM, an instantaneous transition can be encoded in a CTMC by
using a large value for its rate.

target service and to receive its corresponding responses. This
mechanism is also responsible for handling possible failures
of the target service, which are detected by means of either a
connection timeout or a response timeout. The proxy abstracts
the behavior of the invocation mechanism from both the client
service and the target service, facilitating their composition
with different implementations of the invocation mechanism
(e.g., with or without the Retry and Circuit Breaker patterns).

Fig. 6 shows the CTMC modules for the client service,
the target service, and a basic version (i.e., with no resiliency
strategy) of the proxy. The client service module (Fig. 6a)
is similar to the module of the same name shown in Fig. 5:
the only difference is the renaming of the request (p req) and
response (p res) actions, which are now shared with the proxy
module, and the inclusion of a new action (p fail), which is
triggered when the proxy fails to either, connect to, or to get
a response from the target service.

The target service module (Fig. 6b) has been extended with
the inclusion of a new state, FAILED, which captures the fail-
ure of the target service, and of three new actions: fail, which
is triggered whenever the number of requests received by
the target service reaches a threshold (MAX RBF); recover,
which is triggered whenever the target service recovers from
a failure with a recovery rate (RECV RATE); and s reset,
which is shared with the proxy and is triggered to force the
target service to return to its initial state whenever the proxy
detects a response timeout.

The proxy module (Fig. 6c) captures the behavior of the
proxy, receiving a request from the client service (CREQ
state), connecting to and getting a response from the target
service (CONN and SREQ states, respectively), and, finally,
forwarding the response to the client service (RES state). This
module also captures the two cases in which the proxy must
handle possible failures of the target service. The first case
is captured by the con timeout action, which is enabled in
the CONN state and triggered after a fixed amount of time
(CONN TO) whenever the target service is in the FAILED
state. The second case is captured by the res timeout action,

IR

INIT REQ

[p_fail]

[p_res]

DONE

[end]

[p_req] REQ_RATE

IR

crs'=0 crs'=crs+1

crs<MAX_REQ
crs=MAX_REQ

crs<MAX_REQ

crs<MAX_REQ

IR

(a) Client service module.

INIT REQ

RECV_RATE [fail] [recover] IR

RES_RATE [s_res]

[s_req] 1

1 [s_reset]

crq'=crq+1

crq<=MAX_RBF

crq=MAX_RBF
crq<MAX_RBF

crq'=0

crq'=0

crq<MAX_RBF

crq<=MAX_RBF

FAILED

(b) Target service module.

CONN

[con_timeout]

[p_req]

SREQ
[s_req]

[s_res]

1

1

1 [p_res]
RES

IR

IR

FAILED
[p_fail] IR [s_reset] IR

NO RES

[res_timeout] 1

CREQ
[p_con] IR

INIT

(c) Proxy module.

INIT ITERATE

[con_timeout]

[s_req]

k/m

1

[p_con] 1 []

k'=100
m'=CONN_TO

i'=1
i'=1

i'=1

i'=i+1

i<=k & m>0

i=k & m>0

i<k & m>0

i<=k & m>0

(d) Connection timeout module.

Fig. 6: ClientService-Proxy-TargetService CTMC model.

which is enabled in the SREQ state and triggered whenever
the target service takes longer than a fixed amount of time
(RES TO) to serve a request it has received from the proxy.
In the latter case, the proxy has to force the target service to
return to its initial state by triggering the s reset action.

To model fixed time delays in a CTMC, which are not
currently supported by PRISM, but are required for capturing
the connection and response timeout behavior of the proxy,
we use an approximation strategy suggested in the PRISM
FAQ [17]. This strategy is based on the generation of iterative
transitions following an Erlang distribution with shape k
(corresponding to the number of transitions to be generated)
and mean m (corresponding to the expected fixed delay to
be modeled). The greater the value of k, the better the fixed
delay approximation, but the larger the size of the resulting
model. In our work, we have set k = 100, which establishes a
reasonable trade-off between fixed delay accuracy and model
growth [17]. The CTMC module capturing the connection
timeout delay (CONN TO) and action (con timeout) used by
the proxy module is shown in Fig. 6d. In that module, shared
actions p con (triggered when the proxy attempts to connect
to the target service) and s req (triggered when the proxy
successfully connects to the target service) are used to start
and interrupt the timeout iterations, respectively. The response
timeout behavior of the proxy (not shown here) is captured in
an analogous way.

C. Retry Pattern Model

The Retry pattern is modeled as a direct extension of the
proxy module shown in Fig. 6c. The key idea is to specify
its behavior in a way that can play the role of the client
service from the perspective of the proxy, and the role of
the proxy from the perspective of the client service. To allow
the parallel composition of the new retry module (shown in

INIT CREQ

[p_fail]

[p_res]

IR

IR [r_res]
RES

IR

[r_req] 1

FAILED

[]

RETRY

1/BO [backoff]

[r_fail] IR

IR

SREQ
[p_req] IR

BO'=BO_formula

crt'=0

crt<=MAX_RET
crt<=MAX_RET

crt<MAX_RET

crt<MAX_RET

crt=MAX_RET

crt<=MAX_RET crt<=MAX_RET crt'=0

crt'=crt+1 crt'=0

crt<=MAX_RET

Fig. 7: Retry pattern CTMC model.

Fig. 7) with the client service module and the proxy module
presented in the previous subsection, the three actions that the
client service module shares with the proxy were renamed
to r req, r res and r fail, so that those actions are now
shared with the retry module. The retry module shares with the
proxy module actions p req, p res and p fail (which were
previously shared by the proxy and the client service module).

In essence, the retry module captures the loop behavior
of the Retry pattern, as explained in Section II-B, in which
a failed request (FAILED state) is retried (RETRY state)
until the request succeeds (RES state), or a retry threshold
(MAX RET) is reached. In the latter case, a failure action
(r fail) is immediately triggered to notify the client service of
the failure and to return the retry module to its initial state.
Before each new retry, the retry module updates the backoff
delay (BO) according to a backoff formula (BO formula), and
then triggers a backoff action with a rate computed as the
inverse of the backoff delay. This causes the module to wait

for a variable amount of time determined by an exponential
distribution with the backoff delay as its mean [12]. Therefore,
by providing the CTMC model with different formulas for
computing the backoff delay, one can configure the retry
module to behave differently at each retry iteration, e.g., using
linear or exponential backoff increments.

D. Circuit Breaker Pattern Model

The Circuit Breaker pattern model (shown in Fig. 8) is also
specified as a direct extension of the proxy module shown
in Fig. 6c. This is done by renaming the set of actions that
the client service module originally shared with the proxy
module to cb req, cb res and cb fail, and by having the
circuit Breaker module share the same set of actions with the
proxy module, as previously explained for the Retry pattern
model.

The circuit breaker module (Fig. 8a) only forwards requests
from the client service to the proxy when it is not in the OPEN
state; otherwise, the circuit immediately moves to the FAILED
state, which triggers a cb fail action to notify the client service
of the failure and to make the circuit return to its initial state.
The circuit breaker state machine module (Fig. 8b) captures
a dynamic version of the pattern described in Section II-C,
where the timeout used to half-open the circuit is reset to
a given minimum value every time the circuit opens (i.e.,
moves from CLOSED to OPEN), and increases exponentially
until a given maximum value when the circuit is continuously
reopened (i.e., moves from REOPEN to OPEN).

The circuit breaker timeout module (not shown here due
to space constraints) is specified similarly to the connection
timeout module shown in Fig. 6d. However, the former module
has no “interrupt” action, as the circuit has to remain open for
the duration of the timeout. The circuit breaker timeout value is
given in the global variable TO. This variable is exponentially
increased by the circuit breaker state machine module using
a timeout formula (TO formula), which is a function of the
value of the reopen counter (cropen).

IV. MODEL ANALYSIS

In this section, we report on the objectives, method, and
results of an analysis of the CTMC models presented in
Section III, using the PRISM model checker.

A. Objectives

We analyzed the behavior of four different CTMC models,
each capturing a different version of the client-service scenario
depicted in Fig. 1, in which a client service has to complete a
required number of successful invocations of a target service.
The Simple Proxy (SP) model captures the scenario where
the client service invokes the target service using only the
proxy, i.e., with no resiliency pattern implemented. The Retry
Pattern (RP) model captures the scenario where the client
service invokes the target service using the Retry pattern.
Finally, the Static Circuit Breaker (SCB) and Dynamic Circuit
Breaker (DCB) models capture two variations of the scenario
where the client service invokes the target service using the

INIT CREQ

[p_fail] IR

[cb_res]
RES

IR

[cb_req] 1

[cb_fail] IR

SREQ
[p_req] IR

cbs'=CLOSED

cbs=!OPEN

FAILED

cbs=OPEN

cbs=!OPEN

cbs=!OPEN [] IR

cbs=!OPEN

[p_res] IR

(a) Circuit breaker module.

CLOSED OPEN

[cb_timeout] 1

[] IR

HALF
OPEN

[p_fail] 1

csuc'=0
cerr'=0

cropen'=0
TO'=MIN_TO

1
cerr'=cerr+1

cerr<MAX_ERR

[p_fail] 1

[p_res]

[p_res] 1

cerr=MAX_ERR

csuc'=csuc+1
csuc<MAX_SUC

csuc=MAX_SUC

csuc'=0

[] IR
cerr'=0

cerr<MAX_ERR

cropen<MAX_ROPEN

cropen<=
MAX_ROPEN TO’=MIN_CBTO & cropen'=0

REOPEN

cropen'=cropen+1

[] IR

TO'=TO_formula

cropen<=MAX_ROPEN

(b) Circuit breaker state machine module.

Fig. 8: Circuit Breaker pattern CTMC model.

Circuit Breaker pattern: in the static variation, the circuit
breaker timeout is statically defined as one of the parameters
of the model, whereas in the the dynamic variation the circuit
break timeout is exponentially increased when the circuit is
reopened, as explained in Section II-C.

Our analysis was meant to shed some light on the following
research questions:

RQ1 What is the impact of using different SP model con-
figurations on the client service’s quality attributes?

RQ2 Compared to the best SP model configuration, what
is the impact of using different RP model configura-
tions on the client service’s quality attributes?

RQ3 Compared to the best SP and RP model configu-
rations, what is the impact of using different SCB
and DCB model configurations on the client service’s
quality attributes?

B. Method

All four CTMC models were analyzed with respect to the
same quality attributes: namely Expected Total Time, computed
as the total time the client service needs to complete the
required number of successful invocations of the target service,
and Expected Contention Time, computed as the total time
the client service spends holding network resources, either by
attempting to connect to, or by waiting to get a response from
the target service. For the analysis with PRISM, these quality
attributes were calculated using two CTMC reward structures,

TABLE I: Model Analysis Parameters

Model Parameter Description
SP MAX REQ=100 Required number of successful requests

IR=9999 Instantaneous rate
MIRT=1 Mean inter-request time
REQ RATE=1/MIRT Request rate
MRT=5 Mean response time
RES RATE=1/MRT Response rate
MAX RBF=10 Maximum number of requests between failures
MTBF=MAX RBF*MRT Mean time between failures
AV=[0.5,0.6,0.7,0.8,0.9,1.0] Target service availability
MTTR=((1/AV)-1)*MTBF Mean time to repair
RECV RATE=MTTR=0?IR:1/MTTR Mean recovery rate (MRR)
CONN TO=[2,10,20,40] Connection timeout (CTO)
RES TO=2*MRT Response timeout

RP MAX RET=5 Maximum number of retries per request
MIN BO=5 Minimum mean backoff delay
MAX BO=[10,20,40] Maximum mean backoff delay (MBO)
BO formula=min(MAX BO, MIN BO*2ˆcrt) Exponential backoff formula

SCB & DCB MAX ERR=2 Maximum number of failed requests before opening the CB
MAX SUC=2 Maximum number of successful requests before closing the CB
MIN TO=[5,10,20,40] Minimum CB timeout
MAX TO=[10,20,40] Maximum CB timeout (CBTO)

DCB (only) TO formula=min(MAX TO, MIN TO*2ˆcropen) Exponential CB timeout formula

one for each attribute. The expected total time reward was
specified as shown in Section III-A. The expected contention
time reward was specified as follows:

rewards contention time
(ps = CONN) : 1;
(ps = SREQ) : 1;

endrewards

The above reward accrues a reward at rate 1 in states where
the proxy module holds network resources waiting for the
target service: i.e, whenever that module is in either the CONN
state or the SREQ state. We use PRISM to quantify these two
rewards in our four CTMC models by checking the following
two properties, respectively:

Rtotal time
=? [F crs = MAX REQ]

and
Rcontention time
=? [F crs = MAX REQ]

Both properties use the same predicate defined over the
client service module’s successful request counter as their
reachability state predicate.

In an ideal scenario, the client service would complete the
required number of successful invocations as quickly as possi-
ble without holding network resources for too long. However,
the client service’s quality attributes might be affected by the
possibility of the target service temporarily being unavailable
or taking too long to respond, as well as by the different
invocation strategies the client service may use to handle those
types of failure. For instance, if the client service simply
retries all failed requests without any backoff strategy, it may
reduce its total execution time while increasing total contention
time. If, in contrast, the client service backs off for too long
waiting for the target service to recover every time a request
fails, it may reduce its total contention time while increasing
its total execution time. In that respect, the use of (different

configurations of) the Retry and Circuit Breaker patterns may
result in different quality trade-offs for the client service when
compared to a naive invocation strategy (i.e., one in which all
failed requests are immediately retried with no backoff).

Table I shows the set of CTMC parameters used in our
analysis. Parameters that are assigned multiple values, e.g.,
the SP model’s connection timeout (CTO) and the RP model’s
maximum mean backoff delay (MBO), were used as varying
model configuration parameters during the analysis, while the
remaining single-value parameters were treated as constants.
All time-dependent model parameters and analysis results are
represented in CTMC time units.

For each CTMC model we considered six availability values
for the target service, as prescribed for the availability (AV)
parameter in Table I.

Given an availability value AV (0 ≤ AV ≤ 1), the mean
recovery rate MRR of the target service is given by:

MRR =

AV

MTBF ∗ (1−AV)
for 0 ≤ AV < 1;

IR for AV = 1;
(1)

where MTBF is the target service’s mean time between
failures [18] and IR is the instantaneous rate.

C. Results

Fig. 9 shows the results of all configurations analyzed for
the SP model. Those results, which answer RQ1, reveal that
increasing the connection timeout (CTO) has no negative effect
on the expected total execution time of the client service,
independently of the target service’s availability. The reason
is that in the SP model the client service is always waiting
for the target service to respond, which means that it will
get a successful response from the target service as soon

(a) Expected total time. (b) Expected contention time.

Fig. 9: Results of all configurations of the SP model.

(a) Expected total time. (b) Expected contention time.

Fig. 10: Results of all configurations of the RP model and the best configuration of the SP model.

as a response is available. In contrast, the client service’s
expected contention time is clearly affected by larger CTO
values, especially when the target service has low availability.
This result is justified because a larger CTO forces the client
service to hold network resources for a longer period when
the target service is not responsive. Since all SP model
configurations produced similar results with respect to the
expected total execution time, and configurations with a larger
CTO negatively affect the expected contention time, we select
the configuration with the lowest CTO (i.e., CTO=2) as the
best SP model configuration overall.

Fig. 10 shows the results of all configurations analyzed for
the RP model, along with the results of the best SP model
configuration. The results, which answer RQ2, show that using
an exponentially increasing backoff delay, as prescribed by the
Retry pattern, directly affects the client service’s expected total
execution time when the target service has low availability.
This happens because the retry mechanism forces the client
service to wait increasingly longer for the target service to
recover after a sequence of failed requests. However, the
retry mechanism causes a noticeable reduction (over 30%)
in the client service’s expected contention time compared
to the best SP model configuration, as the client service no
longer retries every failed request. While the different values
analyzed for the retry mechanism’s maximum backoff delay
(MBO) parameter had a very similar impact on the expected

contention time, higher MBO values had a higher impact on
the expected total time. This means that increasing the retry
mechanism’s maximum backoff delay may not be a good
invocation strategy because this is likely to have a large impact
on the client service’s total execution time without a significant
gain in its expected contention time. For this reason, we select
the configuration with the lowest MBO (i.e., MBO=10) as the
best RP model configuration overall.

Finally, Fig. 11 shows the results of all configurations
analyzed for the SCB and DCB models, along with the results
of the best configurations of the SP and RP models. Those
results, which answer RQ3, convey a number of interesting
findings. First, the SCB model configuration with the largest
circuit breaker timeout (CBTO) value (i.e., CBTO=40) has
by far the worst impact on the client service’s expected total
time, while producing only a minor gain in terms of its
expected contention time, as compared to the other SCB and
DCB model configurations. That configuration is followed
by the DCB and SCB model configurations with CBTO=40
and CBTO=20, respectively, as the worst configurations for
the expected total time. The RP model configuration with
MBO=10 and the DCB model configuration with CBTO=20
are next with similar expected total time results. The best SCB
and DCB model configurations in that respect are those with
the lowest CBTO values (i.e., CBTO=10), which produced
only a minor increase (less than 5%) in the client service’s

(a) Expected total time. (b) Expected contention time.

Fig. 11: Results of all configurations of the SCB and DCB models and the best configurations of the SP and RP models.

expected total time compared to the SP model configuration
with CTO=2. In terms of the expected contention time, the
SCB and DCB models configurations, as well as the best
RP model configuration, had comparable results, all being
significantly better than the best SP model configuration under
low to moderate availability values.

Based on the above results, we single out the SCB and
DCB model configurations with the lowest CBTO, followed
by the RP model configuration with the lowest MBO, as the
service invocation strategies that offer the best trade-offs in
terms of the expected total time and the expected contention
time quality attributes, under varying availability conditions,
over all models analyzed.

V. RELATED WORK

There is an extensive body of research and development in
the areas of system reliability engineering [1], [18], software
reliability modeling and prediction [19]–[23], and software ar-
chitecture analysis [24]. Although early work in these areas has
not been specifically developed targeting modern microservice
architectures, many of the proposed ideas are still relevant. For
example, the automated translation of failure-retry blocks in
the Palladio Component Model [21] offers a similar solution
to the Retry pattern.

Despite the recent popularity of microservices, only a few
research works have thus far studied microservice resiliency,
in general, and resiliency patterns, in particular. Montesi
and Weber [10] discuss the use and implementation of sev-
eral microservice design patterns [25] in the context of the
Jolie microservice language [26], including three variants of
the Circuit Breaker pattern. Heorhiadi et al. [27] present
a systematic resiliency-testing framework that can be used
to capture high-level failure scenarios in microservice-based
applications. Preuveneers and Joosen [11] describe a Circuit
Breaker framework enhanced with the notion of Quality of
Context to improve the resiliency of context-aware distributed
applications. Finally, Yin et al. [28] present a Microservice
Resilience Measurement Model (MRMM) and framework,
which can be used to elicit resiliency requirements and to
quantify resilience metrics in a microservice-based system.

Our work differs from these works in that we apply prob-
abilistic model checking to analyze the behavior of different
configurations of the Retry and Circuit Breaker patterns, in
terms of different quality attributes, under varying availability
conditions. Even though our probabilistic models are only sim-
plified representations of the microservice interaction scenar-
ios typically found in real-world production environments [29],
[30], we believe that, by capturing the behavior of critical
resiliency design concepts at an appropriate level of abstraction
such a model-based approach can be a promising companion
to performing microservice resiliency tests in production [31].

VI. CONCLUSION

There is a growing interest in applying resiliency patterns to
improve the reliability of microservice-based distributed sys-
tems. This paper presented a model-based analysis of two pop-
ular resiliency patterns—namely Retry and Circuit Breaker—
in the context of a simple client-service interaction scenario,
using the PRISM model checker. Overall, the analysis results
show that properly configured, both patterns can significantly
reduce resource contention at the client-side compared to a
naive approach of continuously retrying failed requests, with
only a moderate increase in execution time. We made our
models publicly available3 to facilitate the replication of our
study and to promote further research in this area.

This paper is admittedly an early step towards a more
systematic evaluation of the resiliency of microservice-based
applications. The main limitation of our work is that our
models capture only the behavior of a single client service
interacting with a single target service, and they ignore
possible network failures and delays. This was a deliberate
decision to avoid cluttering the exposition, and to tame state
explosion during model checking. Moreover, our analysis
results have not been validated empirically. Finally, we left out
of the analysis other popular resiliency patterns that rely on
asynchronous communication, e.g., Event Sourcing [32] and
Queue-Based Load Leveling [33]. We plan to address these
limitations in future work.

3https://github.com/ppgia-unifor/resiliency-patterns

REFERENCES

[1] B. Beyer et al., Site Reliability Engineering: How Google Runs Produc-
tion Systems. O’Reilly, 2016.

[2] B. Lindsay, “Designing for failure may be the key to success—interview
by Steve Bourne,” ACM Queue, vol. 2, no. 8, 2004.

[3] J. Lewis and M. Fowler, “Microservices: a definition of this new
architectural term,” https://martinfowler.com/articles/microservices.html,
2014, [Online; last access on February 25, 2020].

[4] P. Jamshidi et al., “Microservices: The journey so far and challenges
ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35, 2018.

[5] Microsoft Azure, “Resiliency patterns,” https://docs.microsoft.com/en-
us/azure/architecture/patterns/category/resiliency, 2017, [Online; last ac-
cessed on February 25, 2020].

[6] Netflix, “Hystrix: Latency and Fault Tolerance for Distributed Systems,”
https://github.com/Netflix/Hystrix, [Online; last accessed on February
25, 2020].

[7] Twitter, “Finagle: A fault tolerant, protocol-agnostic RPC system,”
https://github.com/twitter/finagle, [Online; last accessed on February 25,
2020].

[8] Resilience4j, “Resilience4j: A Fault tolerance library designed for func-
tional programming,” https://github.com/resilience4j/resilience4j, [On-
line; last accessed on February 25, 2020].

[9] Microsoft Azure, “Retry Pattern,” https://docs.microsoft.com/en-us/
azure/architecture/patterns/retry, 2017, [Online; last accessed on Febru-
ary 25, 2020].

[10] F. Montesi and J. Weber, “Circuit breakers, discovery, and api gateways
in microservices,” arXiv preprint arXiv:1609.05830, 2016.

[11] D. Preuveneers and W. Joosen, “QoC2 Breaker: intelligent software
circuit breakers for fault-tolerant distributed context-aware applications,”
Journal of Reliable Intelligent Environments, vol. 3, no. 1, pp. 5–20,
2017.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[13] ——, “Stochastic Model Checking,” in Formal Methods for the De-
sign of Computer, Communication and Software Systems: Performance
Evaluation (SFM’07), ser. LNCS (Tutorial Volume), M. Bernardo and
J. Hillston, Eds., vol. 4486. Springer, 2007, pp. 220–270.

[14] M. Nygard, Release It!: Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[15] Istio.io, “Istio: Connect, secure, control, and observe services,” https:
//istio.io/, [Online; last accessed on February 25, 2020].

[16] M. Fowler, “CircuitBreaker,” https://martinfowler.com/bliki/
CircuitBreaker.html, 2014, [Online; last access on February 25,
2020].

[17] Prism FAQ, “How can I add deterministic time delays to
a CTMC model?” http://www.prismmodelchecker.org/manual/
FrequentlyAskedQuestions/PRISMModelling#det delay, 2010, [Online;
last accessed on February 25, 2020].

[18] A. Birolini, Reliability Engineering: Theory and Practice. Springer
Science & Business Media, 2013.

[19] V. S. Sharma and K. S. Trivedi, “Reliability and performance of
component based software systems with restarts, retries, reboots and
repairs,” in 2006 17th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2006, pp. 299–310.

[20] ——, “Quantifying software performance, reliability and security: An
architecture-based approach,” Journal of Systems and Software, vol. 80,
no. 4, pp. 493–509, 2007.

[21] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Reliability
prediction for fault-tolerant software architectures,” in Proceedings of
the joint ACM SIGSOFT Conference and ACM SIGSOFT Symposium
on Quality of Software Architectures (QoSA) and Architecting Critical
Systems (ISARCS), 2011, pp. 75–84.

[22] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Architecture-
based reliability prediction with the palladio component model,” IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp. 1319–1339,
2011.

[23] R. Mirandola, P. Potena, E. Riccobene, and P. Scandurra, “A reliability
model for service component architectures,” Journal of Systems and
Software, vol. 89, pp. 109–127, 2014.

[24] L. Dobrica and E. Niemela, “A survey on software architecture analysis
methods,” IEEE Transactions on software Engineering, vol. 28, no. 7,
pp. 638–653, 2002.

[25] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: a systematic mapping study,” in 8th Int. Conf. Cloud
Computing and Services Science (CLOSER), 2018.

[26] Jolie Language, “Jolie: The first language for Microservices,” https://
www.jolie-lang.org/, [Online; last accessed on February 25, 2020].

[27] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS), 2016, pp. 57–66.

[28] K. Yin, Q. Du, W. Wang, J. Qiu, and J. Xu, “On representing and
eliciting resilience requirements of microservice architecture systems,”
arXiv preprint arXiv:1909.13096, 2019.

[29] The Netflix Tech Blog, “Fault Tolerance in a High Volume, Dis-
tributed System,” https://medium.com/netflix-techblog/fault-tolerance-
in-a-high-volume-distributed-system-91ab4faae74a, 2012, [Online; last
accessed on February 25, 2020].

[30] B. Ibryam, “It takes more than a Circuit Breaker to create a resilient ap-
plication,” https://developers.redhat.com/blog/2017/05/16/it-takes-more-
than-a-circuit-breaker-to-create-a-resilient-application/, 2017, [Online;
last accessed on February 25, 2020].

[31] A. Schaffer, “Testing of Microservices,” https://labs.spotify.com/2018/
01/11/testing-of-microservices/, 2018, [Online; last accessed on Febru-
ary 25, 2020].

[32] M. Fowler, “Event Sourcing,” https://martinfowler.com/eaaDev/
EventSourcing.html, 2005, [Online; last access on February 25, 2020].

[33] Microsoft Azure, “Queue-Based Load Leveling Pattern,”
https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-
based-load-leveling, 2019, [Online; last accessed on February 25,
2020].

