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Abstract—Modern software systems are often compositions
of entities that increasingly use self-adaptive capabilities to
improve their behavior to achieve systemic quality goals. Self-
adaptive managers for each component system attempt to provide
locally optimal results, but if they cooperated and potentially
coordinated their efforts it might be possible to obtain more
globally optimal results. The emergent properties that result
from such composition and cooperation of self-adaptive sys-
tems are not well understood, difficult to reason about, and
present a key challenge in the evolution of modern software
systems. For example, the effects of coordination patterns and
protocols on emergent properties, such as the resiliency of the
collectives, need to be understood when designing these systems.
In this paper we propose that probabilistic model checking
of stochastic multiplayer games (SMG) provides a promising
approach to analyze, understand, and reason about emergent
properties in collectives of adaptive systems (CAS). Probabilistic
Model Checking of SMGs is a technique particularly suited
to analyzing emergent properties in CAS since SMG models
capture: (i) the uncertainty and variability intrinsic to a CAS
and its execution environment in the form of probabilistic and
nondeterministic choices, and (ii) the competitive/cooperative
aspects of the interplay among the constituent systems of the
CAS. Analysis of SMGs allows us to reason about things like
the worst case scenarios, which constitutes a new contribution
to understanding emergent properties in CAS. We investigate
the use of SMGs to show how they can be useful in analyzing
the impact of communication topology for collections of fully
cooperative systems defending against an external attack.

I. Introduction

Modern software systems are often compositions of large
and complex entities that increasingly use self-adaptive capa-
bilities to improve their behavior against defined quality stan-
dards. For example, Netflix software is composed of separate
deployments in multiple regions, each controlled by a self-
adaptation manager, Scryer, to provision the resources required
to handle changing customer traffic in an effort to maintain a
scalable and resilient system [1], [2].

These individual deployments and self-adaptive managers
attempt to provide locally optimal results. For example, the
self-adaptive manager in each deployment improves the re-
liability and scalability of that deployment. However, local
optimality does not guarantee that quality targets are achieved
globally. In such cases, it would be advantageous for each
self-adaptive system to cooperate, and potentially coordinate,
to obtain more globally optimal results. For example, if Netflix
undergoes a security attack, deployments that are under attack

could communicate this fact to the collective so other members
could be prepared in case the attack migrates to other de-
ployments. In designing the collective, there are many choices
about the protocol of communication between elements of the
collective and the structural topology of the communication
that need to be reasoned about.

In order to effectively reason about these choices it is
important to account for the complex relationship between the
environment and the CAS that is often nondeterministic along
multiple dimensions. For example, Netflix was motivated to
build Scryer and have multiple geographic deployments to
maintain quality standards in an environment that is subject
to redundant unpredictable spikes in traffic, which resulted
in increased reliability and resiliency. Therefore, accounting
for the nondeterminism along multiple dimensions in both the
environment and the CAS is an important factor to consider
in understanding the emergent properties of CASs.

In this paper we propose an approach to reasoning about
emergent properties of collective adaptive systems that uses
probabilistic model checking (PMC) of stochastic multiplayer
games (SMG). Probabilistic Model Checking of SMGs is a
technique particularly suited to analyzing emergent properties
in CAS, since SMG models are expressive enough to capture:
(i) the uncertainty and variability intrinsic to the CAS and
its execution environment in the form of probabilistic and
nondeterministic choices, and (ii) the competitive/cooperative
aspects of the interplay among the constituent systems of the
CAS (as well as of the CAS with its environment). These
cooperative/competitive behaviors can be modeled as players
in a game whose behavior is independent (i.e., not controlled
by other entities).

We illustrate our approach on a model of a CAS with
identical fully cooperative systems that are attempting to
defend against an external attack. The model enables us to
explore the emergent properties of resiliency and reliability that
result from the selection of different communication topologies
(line, ring, mesh, tree, star, and full) to disseminate security
information for preemptive adaptation. In the scenario, an
external attacker uses a defined amount of available resources
to attempt to breach members of the CAS. Each member of the
CAS has the ability to detect the attack, defend itself against
it by employing a fixed set of defense resources, and has the
ability to notify other members of the CAS of the attack.
Once a CAS member is notified, it will adapt and become
invulnerable to the attempted breach. The metric for evaluation



is the percentage of members of CAS that survive the attack.
Performing a PMC analysis of this model allows us to reason
about questions such as topologies that are most appropriate
for a given CAS, and what is a worst case scenario for each
topology under consideration.

Our results show distinct differences in the resiliency and
reliability properties of the network topologies, demonstrating
that stochastic multiplayer games and probabilistic model
checking can enable developers to reason about emergent prop-
erties in representative scenarios utilizing cooperative CAS.

The remainder of this paper is organized as follows: Section
2 highlights background and related work, Section 3 discusses
a motivating scenario, Section 4 details the model and analysis
technique employed in our study, Section 5 presents the results,
and Section 6 addresses conclusions and future work.

II. Background & Related Work

Network topologies or the “geometrical arrangement of
computer resources, remote devices, and communication fa-
cilities” [3] are well studied with defined advantages and
disadvantages. Figure 1 illustrates the six different possible
communication topologies. While it is possible to compose
more topologies by mixing these six topologies, in this work
we consider only these “pure” topologies. Two critical proper-
ties that are often in conflict based upon the scenario, and
therefore traded off, are the performance and reliability of
the messages sent across a topology. For example, in disaster
scenarios the reliability of the messages is a critical concern
which has made “mesh” topologies a popular choice [4].
However, in other scenarios, like security, performance and
reliability might be equally important leading to the choice of
a different network topology, like a “star” or “full”.

Fig. 1. Common Network Topologies [5]

Our approach to analyzing emergent properties in CAS
builds upon a recent technique for modeling and analyzing
SMGs [6]. In this approach, systems are modeled as turn-
based SMGs, meaning that in each state of the model only
one player can choose between several actions, the outcome
of which can be probabilistic. Players can either cooperate to
achieve the same goal, or compete to achieve their own goals.

The approach includes a logic called rPATL for expressing
quantitative properties of stochastic multiplayer games, which
extends the probabilistic logic PATL [7]. PATL is itself an
extension of ATL [8], a logic extensively used in multiplayer
games and multiagent systems to reason about the ability
of a set of players to collectively achieve a particular goal.
Properties written in rPATL can state that a coalition of players
has a strategy which can ensure that either the probability of

an event’s occurrence or an expected reward measure meets
some threshold.

rPATL is a CTL-style branching-time temporal logic that
incorporates the coalition operator 〈〈C〉〉 of ATL, combining
it with the probabilistic operator P./q and path formulae
from PCTL [9]. Moreover, rPATL includes a generalization
of the reward operator Rr

./x from [10] to reason about goals
related to rewards. An extended version of the rPATL re-
ward operator 〈〈C〉〉Rr

max=?[F φ] enables the quantification of
the maximum accrued reward r along paths that lead to
states satisfying state formula φ that can be guaranteed by
players in coalition C, independently of the strategies fol-
lowed by the rest of players. An example of typical usage
combining the coalition and reward maximization operators
is 〈〈car〉〉Rdistance

max=? [F fuel level = 0], meaning “value of the
maximum distance that a car can guarantee to have travelled
before its fuel tank is empty.” Notice that in this example, the
rPATL expression is capturing the maximum distance that the
car can travel in the worst case, regardless of disturbances or
the action of other agents present in its environment.

Reasoning about strategies is a fundamental aspect of
model checking SMGs, which enables checking for the ex-
istence of a strategy that is able to optimize an objective
expressed as a property including an extended version of
the rPATL reward operator. The checking of such properties
also supports strategy synthesis, enabling us to obtain the
corresponding optimal strategy. An SMG strategy resolves the
nondeterministic choices in each state, selecting actions for
a player based on the current state and a set of memory
elements.1

Probabilistic model checking of SMGs has been applied
to a variety of analysis and synthesis problems [11], [12]. In
the context of self-adaptive systems, we presented in previous
work [13] an analysis technique based on model checking
of SMGs to quantify the potential benefits of employing
different types of algorithms for self-adaptation. Specifically,
the paper shows how the technique enables the comparison
of alternatives that consider tactic latency information for
proactive adaptation with those that are not latency-aware.
We have also applied this analysis technique to reason about
human-in-the-loop adaptation [14], extending SMG models
with elements that encode an extended version of Stitch adap-
tation models [15] with constructs that capture information
about humans interacting with the system. In all of this prior
work we were concerned with a single adaptive system. In this
paper we show how the same techniques can be used to reason
about CASs.

In [16], the authors describe a similar approach in which
they introduce a four step process that includes modeling,
simulation, formal verification, and tuning in an effort to
“drive design choices until the required quality attributes are
obtained.” While similar in mechanics, our approach is more
focused on the use of these techniques to improve run-time
adaptation of the CASs to improve both local and global
quality attributes.

1See [6] for more details on SMG strategy synthesis.



III. Example Scenario

To illustrate our approach, consider a global enterprise,
similar to Netflix, that has deployed multiple customer and
transaction management systems, one in each of their distinct
operating geographies (North America, South America, Eu-
rope, and Asia-Pacific). Each of these deployments is similar
in its functional and non-functional requirements as well
as its physical deployments, with some minor variations in
software packages and versions. To ensure quality standards
are met, each deployment has a self-adaptation manager with
a locally defined set of tactics and strategies specific for that
deployment.

Due to the sensitive nature of the data contained within the
systems and the global profile of the enterprise, these systems
are under constant attack by external parties. As such, the self-
adaptive mechanisms are being modified to include the ability
to detect and identify potential malicious behavior and appro-
priately adapt the system to mitigate the threat. For example, if
the self-adaptation manager in one deployment determines that
the deployment is compromised, it can adapt the deployment
to a new, more secure configuration (e.g. blocking traffic
from a malicious IP). However, the engineers implementing
the system are concerned that an attacker could potentially
attempt to breach a system, trigger an adaptation, and in the
process gain enough information to make an attack on one
of the other systems more effective. Therefore, the engineers
want the self-adaptation managers to share information about
current breach attempts and mitigation strategies to promote
preemptive adaptation increasing resiliency and reliability.

In this scenario nondeterminism arises from the uncertainty
relating to (i) which of the component systems an attacker
will attempt to breach, (ii) the likelihood that an adaptation
manager will detect an attack, (iii) whether a message sent
by an adaptation manager will successfully reach other adap-
tation managers, and (iv) the resources that an attacker can
deploy to breach the system. This scenario also presents multi-
dimensional variations in the form of the number of adaption
managers in the CAS, the reliability of the communication
channels, and the amount of resources available to the attacker.

The run-time selection of the appropriate communication
topology for the sharing of information becomes an important
decision as it needs to balance the performance and reliability
of information dissemination assuming the system could be
compromised at any moment. For example, a system that
detects a breach could select a “star” pattern in which it quickly
notifies all other members, but if it is compromised and the
system is unable to send further messages, a subset of systems
will remain permanently unaware of the breach. However, a
“mesh” topology could improve reliability of the messages, but
might be slower to achieve complete dissemination. Further,
the preferred option could potentially vary with several of the
scenario factors including the number of adaptation managers
in the collective and the reliability of the communication
channels. We therefore require an approach that allows us to
explore and examine the resilience properties of each of these
possibilities.

IV. Model & Analysis

The approach that we use to examine the resilience
properties of different communication patterns is stochastic
multiplayer games. Specifically, we model all self-adaptive
managers as one player and attackers as a separate player
in a turn-based game. Although self-adaptive managers could
have been modeled as individual players, we chose to model
them as a coalition of different stochastic processes under
the control of a single player, which is enough to capture
the description of a CAS with fully cooperative behavior.
CASs in which self-adaptive managers have to compete for
shared resources demand modeling of self-adaptive managers
as separate players. This section describes the mechanics of
the model including the players and the turn-based semantics,
as well as the analysis methods used to produce the reported
results.

A. Game Model

The game includes two players: the attacker (ATT) and the
defenders (CAS). The game alternates between the defenders
and the attacker until all of the members of the CAS are in
either a “Compromised” or in “Adapted” state. How these
states are achieved is discussed below, along with the turn-
based semantics of the attacker and defenders. Furthermore,
the communication topology for the defenders is a global prop-
erty of the model and is encoded by setting which members
of the CAS an individual member can communicate with. The
reliability of the communication channels is also a variable
of the model which is an important factor with large-scale
globally distributed systems.

1) Defender: The defenders, a CAS, are modeled as a
collection of individual entities with a fixed amount of defense
resources available to repel attacks. Each of the adaptive
systems also detects attack attempts that are dependent upon
the amount of resources the attacker has deployed; the more
resources deployed as a percentage of the total attack resources
available the greater the likelihood of detection. In the event
that the attack is detected, the system will attempt to alert
other members in the collective in accordance with the defined
topology. The success of notification is controlled by the
reliability of the communication channel.

For example, in a “star” topology the detecting system will
attempt to alert all of the other members in the network. In
a “mesh” topology the system will alert a predefined subset
of partner systems which will then adapt and alert additional
members of the network. If a system is notified of an attack,
it must wait until its next turn to start the adaptation and the
adaptation itself takes one turn. If the attack resources deployed
against a particular adaptive system exceed the defense re-
sources available that system will be considered compromised
at which point the system has one last opportunity to send
notification messages with a lower probability of success.

The defender’s mechanics model the scenario in which
individual members of the CAS have some resources available
to detect and repel attacks as well as notify other members,
all of which are nondeterministic in nature.

2) Attacker: The attacker is modeled as a single entity with
a fixed amount of attack resources available per turn to breach



target systems. These resources can be deployed against any
number of targets, as the attacker sees fit. The selection of
the amount of resources employed and the system targeted
for the attack during a turn are specified as non-deterministic
choices in the model. This is accomplished by establishing the
set of candidate target systems and cycling through the list
assigning a block of available attack resources to the selected
target system. There are only two conditions under which the
attacker would not choose to target a specific system: (i) the
system has already been compromised, or (ii) the system has
already successfully adapted.

The attacker’s mechanics model the scenario in which an
intelligent attacker will not target adapted or compromised
systems allowing themselves to efficiently deploy available
resources, attack any system on any turn and do so with
varying levels of resources. These varying levels of resources
will also influence the defender’s ability to detect the attack
and the likelihood of the attack being successful.

The stop condition for the game is given when all the
defenders are either adapted or compromised, or alternatively,
the attacker’s resources are exhausted. To enable the quantifi-
cation of the outcome of the game, we explicitly label end
states of the game as stop, and define a reward structure
compromised that maps each end state to the number of
compromised defenders in that state.

B. Analysis

The established model was analyzed both as an SMG and
as a Discrete Time Markov Chain (DTMC), each yielding
different, but complementary, results. The SMG analysis is
used to perform a comprehensive model check to provide a
worst case scenario analysis, but suffers from an explosion in
the state-space for large networks, greater than 6 members in
the CAS for this particular model. The DTMC analysis uses
statistical model checking to analyze larger network sizes, the
results of which correspond to the average behavior of the
network.

The SMG analysis evaluated each of the six network
topologies with a CAS composed of 6 members and varied the
amount of attacker resources. Similarly, the DTMC analysis
evaluated each of the network topologies with CASs composed
of 6, 12, and 24 members. Two parameters were varied: the
amount of attacker resources available and the notification
probability, to determine the percentage of compromised sys-
tems.

1) Stochastic Multiplayer Game (SMG): To analyze the
worst case scenario, we model checked the following rPATL
property on the SMG version of our models employing
PRISM-games [17]:

〈〈ATT〉〉Rcompromised
max=? [F stop]

The property quantifies the maximum number of compro-
mised systems in stop states that the attacker can guarantee,
regardless of the strategy followed by the defenders in the
CAS.

2) Discrete Time Markov Chain (DTMC): To analyze the
average behavior, we model checked the following PCTL

property on the DTMC version of our models employing the
statistical model checking engine of PRISM [18]:

Rcompromised
=? [F stop]

In this case, the PCTL property above quantifies a prob-
abilistic estimate of the number of compromised systems in
stop states. Note that in the DTMC version of the models,
the behavior of the attacker and the CAS is specified in a
fully probabilistic fashion, therefore player strategies are not
considered for this kind of analysis.

V. Results

Both the SMG and DTMC analyses demonstrated clear
differences in the reliability and resiliency properties of the
various network topologies when applied to a CAS of systems
defending against and cooperating to share information about
security attacks.

A. SMG Analysis

The results of the SMG analysis (Figure 2) show the worst
case scenario for each of the network topologies, with a 6
member CAS, given a varying level of attacker resources. As
depicted, the “line” topology has a bleak worst case scenario
with 100% (6/6) of the systems being compromised (the first
system compromised preventing the rest from being notified)
resulting in poor resiliency within the CAS. However, the
“full” network topology has much better resiliency with only
38.7% (2.32/6)2 of the members compromised. The other
topologies have varying degrees of resiliency between these
two extremes.
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Fig. 2. Compromised systems for different topologies

Another interesting pattern develops when the attacker’s
resources cross a specific threshold, specifically 1100. At this
point it is possible for the attacker to compromise more than
one member of the CAS during the initial attack. This leads to
a much higher number of compromised systems but the general
pattern of resiliency of the network topologies remaining con-
sistent. Similarly, at 1800, the attacker has enough resources
to compromise enough of the CAS to be able to compromise
the complete CAS.

2Note that a worst case can result in fractional number of servers down due
to probabilistic choices that are not under the control of any of the players in
the game (e.g., successful notification based on channel reliability).
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Figure 1: Compromised systems for di↵erent topologies
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B. DTMC Analysis

The results of the DTMC analysis (Figure 3) show the
average case scenario for each of the network topologies for
CASs with 6, 12, and 24 members. The first set of analyses (the
top row of Figure 3) varies the amount of attacker resources
in order to determine the survival rate of the CAS. The second
set of analyses (bottom row of Figure 3) varies the probability
of successful notification to examine the relationship between
the reliability of the communication channel and the survival
rate of the CAS.

Varying the attacker resources and the number of members
in the the network yielded interesting results. Specifically,
while the “full” topology generally presents the best survival
rate, there are places in which it might not be preferred, such
as when attacker resources are low for large network sizes, in
which case the “star” topology is preferred. Additionally, the
“tree” topology is generally equivalent to a “star” topology in
networks of 6 nodes, but becomes dramatically less preferred
as the size of the networks grow.

Varying the notification probability produced equally inter-
esting results. Specifically, in situations in which notification
success is unreliable or uncertain, like with Internet of Things
(IoT) use cases, a “star” topology clearly presents the best
chance for survival in the CAS. This analysis once again shows
a general pattern in which the “tree” topology becomes less
preferable as the size of the members in the CAS grows.

The two analyses can be combined to understand the re-
siliency and reliability properties of the individual topologies.
Figure 4 combines the results of the DTMC and SMG analysis,
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case scenario

for network size of 6, of the “full” topology to demonstrate
the differences between the average and worst case scenario.

C. Reflection

While none of these analyses present conclusive results
due to the simplifying assumptions in our models, they do
demonstrate the potential for SMG and DTMC analysis to
enable software engineers to discover, understand, and reason
about emergent properties in CAS. For example, the results
present the possible conclusion that a hierarchical or “tree”
based decomposition of a CAS may be inappropriate, espe-
cially with increasing network size, in security based use cases.



Conversely, the “full” topology is potentially the most effective
selection, despite the network size and attacker resources
available.

VI. Conclusions & Future Work

In this paper we have shown how emergent resilience
properties can be analyzed using SMGs and DTMCs. While
the model contains many of the same nondeterministic factors
inherent in realistic situations, the model currently contains
several simplifying assumptions such as (1) the network dis-
tance between the components is ignored, leading to identical
message transmission times, (2) the systems are nearly identi-
cal leading to identical adaptation times, (3) the defenders each
have a pool of resources available instead of a pool of shared
resources and (4) turn based semantics of the model limit
evaluation of concurrent executions among CAS components.
Relaxing each of these assumptions are targets for future work.
However, the results of the SMG and DTMC analyses of this
model clearly demonstrate differences in the resiliency and
reliability properties of the various network topologies and,
as a consequence, shows the potential of these methods to
discover, understand, and reason about emergent properties in
CAS.

We also intend to extend our work by studying the interplay
among systems within collectives in which behavior is not
fully cooperative. This includes collectives in which some
systems give preference to their local goals over the global
goals of the collective, as well as those in which systems
compete for shared resources. A second research avenue is
investigating the synthesis of topologies to satisfy emergent
properties in the CAS. In the simplest case, synthesis can be
employed to generate an optimal allocation of resources within
a pre-established network with respect to a given property
(e.g., resiliency), although we also plan to explore optimal
topology synthesis. Another possible extension to this work
is investigating different communication protocols between
different adaptive systems, for example whether to adapt first
and then share the information, or whether to share first and
then adapt. In fact, we hypothesize that the approach could also
be used to generate the optimal communication protocol for
different topologies. Finally, we also intend to explore the use
of formalisms that support the modeling of real-time behavior
for investigating the impact of time (e.g., to adapt, notify) on
the properties of the CAS.
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