
ISSN 2186-7437

NII Shonan Meeting Report

No. 2017-10

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

The 2nd Controlled Adaptation of
Self-Adaptive Systems Workshop

CASaS2017

David Garlan
Nicolas D’Ippolito

Kenji Tei

July 24–28, 2017

The 2nd Controlled Adaptation of Self-Adaptive
Systems

CASaS2017

Organizers:
David Garlan (Carnegie Mellon University)

Nicolas D’Ippolito (Universidad de Buenos Aires)
Kenji Tei (National Institute of Informatics)

July 24–28, 2017

Self-adaptive systems are required to adapt its behaviour in the face of
changes in their environment and goals. Such a requirement is typically achieved
by developing a system as a closed-loop system following a Monitor-Analyse-
Plan-Act (MAPE) scheme. MAPE loops are a mechanism that allows systems
to monitor their state and produce changes aiming to guarantee that the goals
are met. In practice it is often the case that to achieve their desired goals,
self-adaptive systems must combine a number of MAPE loops with different
responsibilities and at different abstraction levels.

Higher-level goals require decision-level mechanisms to produce a plan in
terms of the high-level system actions to be performed. Various mechanisms
have been proposed and developed for automatically generating decision-level
plans (e.g., event-based controller synthesis), providing guarantees about the
satisfaction of hard goals (e.g., providing a certain level of service), and sup-
porting improvements in soft goals (e.g., doing this in an efficient or cost-effective
manner). These decisions are often made at a time scale of seconds to minutes.

Lower-level goals, on the other hand, typically require control mechanisms
that sense the state of the system and environment and react at a fine time
granularity of milliseconds. Solutions to this problem are typically based on
classical control theory techniques such as discrete-time control.

A successful adaptive system, then, must find ways to integrate these multi-
ple levels of control, leading to an important question of how best to do that, and
what concepts. Additionally, concepts from classical control theory (typically
applied at low levels of control) can also be useful in understanding higher-level
control.

Recently the software engineering community has begun to study the appli-
cation of control theory and the formal guarantees it provides in the context of
software engineering. For example, the 2014 Dagstuhl Seminar “Control The-
ory meets Software Engineering”, is an example of such recent interest. That
seminar discussed a variety of possible applications of control theory to software
engineering problems.

Also, and perhaps more relevant, is the first CASaS Shonan seminar held
in 2016. The seminar focused on formal guarantees that can be provided in
self-adaptive systems via the use of control theory (e.g., event-based controller
synthesis and discrete-time control). The seminar was a success in many re-
spects. It had over 30 attendees from more than 10 countries. The seminar was
an active gathering of outstanding researchers in both control theory and soft-
ware engineering, and provided a forum in which discussions on the connections
between control theory and software engineering for self-adaptive systems could
be held. Most of the attendees expressed their intention to continue studying
and discussing the relation between control theory and software engineering,
which was highlighted as key to address with the requirements of self-adaptive
systems.

As in the first edition we expected to involve a group of active researchers in
key areas such as Self-Adaptive Systems, Control theory, Game theory, Software
Engineering, and Requirements Engineering, creating an ideal environment to
discuss current and future applications and possibilities of control theory as a
mechanism to provide formal guarantees for self-adaptive systems (e.g., con-
vergence, safety, stability). Encouraged by the success of the first CASaS, we
expected to have a number of participants from a wide variety of research areas
to further explore the benefits of incorporating the application capabilities and

1

formal framework provided by control theory to self-adaptive systems.
Among the research questions that we expected to discuss are: How to

coordinate multiple levels of adaptive control? What kinds of properties from
classical control theory can be applied at higher levels to guarantee certain
properties? To what extent does the domain and contest of use influence the
design of a control regime for adaptation? In what ways can AI techniques of
planning and machine learning be applied to adaptive systems? How can one
deal with uncertainty in a systematic fashion? How can control theory inform
our decisions about ways to incorporate humans into self-adaptive systems?

We envisaged the 5-day meeting to be organised in two main parts. During
the first day, participants presented their background and what they are inter-
ested in, and there were three lectures about continuous control, discrete-event
control, and hybrid approach were given. Then, for the remaining four days, we
identified and discussed the most relevant topics selected by the participants in
working groups. In the end, we decided to discuss about two topics: “coopera-
tion and coordination” and “properties”. The first topic is concerned with ways
to incorporate components with ‘’classical” control implementation into larger
systems, which will typically be a mixture of discrete and continuous control,
and may need to adapt at an architectural level at run time in response to en-
vironmental conditions. The second topic is concerned with ways to formalize
properties that are used in control theory in terms that would be useful for
systems that reason in terms of discrete control. We divided into two groups,
discussed the topics, and created draft reports about the discussion. These re-
ports were further edited and improved, and now constitute the main body of
this report.

2

List of Participants

• Martina Maggio, Lund University, Sweden

• Nir Piterman, Univerity of Leicester, UK

• Thomas Vogel, Humboldt-Universität zu Berlin, Germany

• Alessandro Vittorio Papadopoulos, Mälardalen University, Sweden

• Hiroyuki Nakagawa, Osaka University, Japan

• Javier Camara, Carnegie Mellon University, USA

• Joel Greenyer, Leibniz Universität Hannover, Germany

• Yasuyuki Tahara, The University of Electro-Communications, Japan

• Masako Kishida, National Institute of Informatics, Japan

• Alberto Leva, Politecnico di Milano, Italy

• Shihong Huang, Florida Atlantic University, USA

• Alan Colman, Swinburne University of Technology, Australia

• Amel Bennaceur, The Open University, UK

• Danny Weyns, KULeuven/Linnaeus, Belgium

• Paul Harvey, National Institute of Informatics, Japan

• Lukas Esterle, Aston University, UK

• Patrizio Pelliccione, University of Gothenburg | Chalmers University of
Technology, Sweden

• Romina Spalazzese, Malmö University, Sweden

3

Meeting Schedule

Check-in Day: July 23 (Sun)

• Welcome Reception

Day1: July 24 (Mon)

• Lightning Self-Introduction

• Mini-lecture 1: A Visit to the Control Zoo, Alberto Leva

• Mini-lecture 2: DES and Reactive Synthesis, Nir Piterman

• Mini-lecture 3: Bridging Continuous and Discrete Control, Alessandro
Papadopoulos

Day2: July 25 (Tue)

• Topic selection and group building

• Group discussion

• Synchronization

Day3: July 26 (Wed)

• Group discussion

• Synchronization

• Excursion and Main Banquet

Day4: July 27 (Thu)

• Group discussion

• Report writing

• Synchronization

Day5: July 28 (Fri)

• Group discussion

• Report writing

• Wrap up

4

Group 1

Composition

Composition and Cooperation of Multiple Control Strate-
gies: Automating Control Switch with High-Level Guaran-
tees
Martina Maggio, Nir Piterman, Joel Greenyer, Alberto Leva, Alan Colman,
Amel Bennaceur, Paul Harvey, Lukas Esterle, Patrizio Pelliccione, Romina
Spalazzese, Nicolas D’Ippolito, David Garlan

1.1 Introduction
By being able to adapt to our environments, humans have been able to not just
survive, but to thrive. It is time for software to be able to do the same. As
computations find themselves operating in the real world, it is now necessary
for them to be able to interpret the world around them, reacting and adapting
as necessary. By doing so, such systems become more versatile and useful.
The ability for these systems to do this autonomously is required to achieve
scalability.

The control of systems and their reactions to their environments is well
studied in control theory. Rather than going back to first principles, the use of
control theory is perfectly placed to aid and complement the future directions
of such self adaptive systems research.

The Controlled Adaptation of Self Adaptive Systems (CASaS) Shonan meet-
ing has provided the time to enable researchers from the Software Engineering
(SE) and Control Engineering (CE) communities to determine future research
challenges and opportunities in the area of CASaS. Some of these challenges
are introduced in this document, with a particular focus on the appropriate
organisation of control in adaptive systems.

To more fully explore the fruitfulness of these research challenges, one par-
ticular topic – Guarantees and Assumptions of the Combination of Multiple
Controllers – has been expanded upon. In particular the group focused on devel-
oping an approach whereby a model-driven discrete controller could guarantee
high-level objectives by switching between a number of continuous controllers
that control the plant in various operating regions. By working together, the SE

5

and CE members of the group were able to better understand the issues faced
by the respective researchers, both in isolation and with respect to the problem
at hand.

The initial part of the meeting discussed the broad challenges involved in
integrating research from the SE and CE communities. These topics include ab-
stracting controllers and controlled components so they are readily composable,
distributed control, ad hoc control synthesis, handling disruptive and emergent
behaviour, and how discrete control techniques from SE can be combined with
the continuous control techniques common in CE. The identified problems and
challenges are outlined in the last section of this report.

Within this broader set of research challenges, we then focused on one aspect
of combining multiple control strategies, namely how discrete control can be
used to select and switch between multiple continuous controllers that have
been developed to handle both varying operating conditions and varying control
objectives.

1.2 Switching Between Controllers at Runtime
Among all the challenges that we have identified, we discussed one specific
problem, which is the switch between different controllers at runtime. This con-
strained our discussion to a general subset of the systems and of the challenges
that we may face when multiple systems have to cooperate. In this section, we
motivate the need for control switching at runtime.

The need to switch controller during runtime may arise due to changes in
operation conditions or due to a change in the goals that the controller is not
aware of. For example, an increase in wind speed for a drone or start of rain
for a car. Such occurrences may change the operation conditions and force a
switch to a controller that provide different guarantees or operates in a different
manner. A drone may be scanning an area in fast flight and may be required
to switch to a more stable controller in order to investigate something that the
drone detected. As another example, a robot may need to change from visual
navigation to tracking (a wall, for example) due to a decrease in power.

Moreover, we would also like to avoid continually tuning controllers and
readjusting them to match the specific operational conditions. From this stand-
point, two different simple controllers that implement the same control logic
with two different sets of parameters (for example the gains of a Proportional,
Integral and Derivative controller [1]) can be seen as two completely different
controllers that the high-level logic may want to switch between. One of these
two controllers may be more aggressive in responding to the current error (higher
proportional gain), while the other is more conservative (lower gain). Two con-
trollers can have the same code, with different parameters, and for the sake of
the analysis, these can be seen as two completely different entities.

Another limitation of simple controllers is that they assume a linear response
of the system across its operating region. However, many systems, particularly
software systems, exhibit significant non-linear behaviour making them difficult
to control using standard continuous-control techniques. For example, a Web
Service that is being controlled for response time might automatically change the
plant (scale out with extra VMs) in response to demand. One approach to han-
dling this problem is to segment the operating region into a number of smaller

6

domains, each of which can better approximate linear behaviour and have its
own controller. This, however, then raises the problem how to implement a
higher-level control that switches between these controllers while maintaining
desirable stable system-level behaviour.

Instead of having a single controller at hand, our proposed system has a
comprehensive set of controllers at hand. While this allows for dealing with
various situations and non-linearities, it also gives rise to the question on how
to switch between these different controllers at runtime. Switching controllers
requires a clear description of the capabilities, assumptions, and guarantees of
the individual controller. Analysing this information allows us to identify areas
of operation, defining the validity of each individual controller given the plant’s
current state. Furthermore, this enables us to pinpoint those states that enable
transition between different controllers, and hence, define a high level discrete
state machine for transition. Having such a capability allows the system not
only to cope with different, potentially unforeseen, situations but also to reflect
on its own performance and therefore determine the most efficient controller
during runtime.

In order to achieve this, we first require an extensive set of controllers able
to handle a wide variety of situations. Each individual controller must be de-
scribed in a comprehensive fashion allowing for identification of the operation
regions. In addition, the description has to include assumptions and guarantees
such as potential overshoot, settling, and dwell times. Having this information
allows us to determine overlapping areas in the regions of operation, i.e. sit-
uations or states where multiple controllers will provide valid control output,
yielding expected behaviour of the system for a given input. From here, we
can define transition strategies, that is represented as state machine describ-
ing which controller is used in what situation and what triggers the transition
to another controller. Optimally, this is achieved through automatic analysis
of the description and the respective regions of operations and overlap. The
result is a system operating with an initial controller able to handle simple on-
line variations. Introducing high level switching strategies enables the ability to
change controllers in case the situation changes and makes the current controller
inappropriate.

1.3 Background

1.3.1 Principles of designing physical controllers
There are different techniques that can be used to design a controller (in control
engineering terms: to do control synthesis). These techniques differ in the
amount of information required to set up the control strategy, in the design
process itself, and in the guarantees that they can offer.

The technique that requires the least amount of information is called syn-
thetic design. Synthetic design consists in taking pre-designed control blocks
and combining them together. It often relies on the experience of the control
specialist, who look at experiments performed on the system to be controlled
and then decide upon which blocks are necessary. For example, when the output
signal is very noisy, a block to be added could be a filter to reduce the noise
and captures the original signal. Synthetic design usually starts with a basic

7

control block and adds more to the system as more experiments are performed.
Although the information required to set up the control strategy is very low,
the expertise necessary to effectively design and tune such systems is high, and
both controller design experience and domain-specific knowledge are required.
Despite not requiring much information, the formal guarantees that this tech-
nique offers are limited [2]. This is due to the empirical nature of the controller’s
design, where trial and error is applied and elements are added and removed.
The main obstacle to formal guarantees is the interaction between the added
elements, which is hard to predict a priori.

The technique that requires the most amount of information is often re-
ferred to as analytical design, and it is based on the solution of an analytical
problem [3]. The amount of necessary information greatly increases, since a
model of the controlled entity is required. Given on the equation-based model,
the controller synthesis selects a suitable equation to link the output variables
to the control variables. Depending on which analytical problem is used (the
optimisation of some quantities, the tracking of a setpoint, the rejection of “dis-
turbances”), different guarantees are enforced with respect to the controlled
system.

In the following, we will use the term “disturbance”. A disturbance is some-
thing that affect the behaviour of the system under control during the normal
operation. For example, suppose we have a drone that is using a control system
that is trying to make the drone fly keeping a precise altitude setpoint. The
engine’s throttle of the motors of the drone determines the height and during
the operation the controller is capable of determining a specific value for the
throttle that ensures that the drone flies at the prescribed altitude. In this sce-
nario, an example of a disturbance is a gust of wind. The disturbance affects the
behaviour of the drone and - ultimately - its altitude. The amount of throttle
that must be applied then changes, to reflect the effect of the wind. Depend-
ing on the wind direction, the necessary force to be applied to compensate for
the wind effect could be different. Controllers can be designed with the aim of
rejecting disturbances.

1.3.2 Principles of synthesising software/discrete controllers
Synthesis of discrete event systems is a form of planning that supports decision
making in a situated dynamic settings in which programming becomes a difficult
or expensive endeavour. The problem of automatically synthesising event-based
controllers from environment models and qualitative goal specifications has been
widely studied [4, 5, 6]. Given a model of the environment’s behaviour (E), a
set of system goals (G) and a set of controllable actions (AC), the controller syn-
thesis problem is to automatically generate a controller (C) that only restricts
controllable actions and its parallel execution with the environment (E‖C) is
guaranteed to satisfy the goals (E‖C |= G).

Typical approaches use a combination of automata-based and temporal log-
ics for specifying an environment and system goals.

In this work we use labelled transition Kripke structures to describe the
behaviour of the environment and the system. Transitions are labelled with
names of actions, some of which the system can monitor or control. States have
associated propositions which also may be monitored by the system.

8

Labelled Transition Kripke Structure. A labelled transition Kripke struc-
ture (LTKS) is E = (S, A, P, ∆, v : S → 2P , S0), where S is a finite set of states,
A = AC]AM is the communicating alphabet which we assume is partitioned into
controlled and monitored actions, P is a set of propositions, ∆ ⊆ (S×A×S) is
a transition relation, v : S → 2P is a valuation function for states, and S0 ⊆ S
is the set of initial states. A trace of E is π= s0, `0, s1, `1, · · · , where s0 is an
initial state of E and, for every i ≥ 0, we have (si, `i, si+1) ∈ ∆. We denote the
set of infinite traces of E by tr(E).

The synthesis problem requires a notion of concurrent execution of the con-
troller with the environment, to model such interactions we use the concept of
parallel composition.

Parallel Composition. LetM = (SM , AM , PM , ∆M , vM , SM0
) and E = (SE ,

AE , PE ,∆E , vE , SE0) be LTKSs with AM = AMC] AMM and AE = AEC ∪ AEM .
Parallel composition ‖ is a symmetric operator such that E‖M is the LTKS
E‖M = (S,AE∪AM , PM]PE ,∆,v, S0), where S = {(se, sm) ∈ SE×SM |v(sm)∩
PE = v(se) ∩ PM}, S0 = {(se, sm) ∈ S|se ∈ SE0

∧ sM ∈ SM0
}, v((se, sm)) =

vM (sm) ∪ vE(se), and ∆ is the smallest relation that satisfies the rules below,
where ` ∈ AE ∪AM :

E⇒`E′

E‖M⇒`E′‖M `∈AE\AM
M⇒`M ′

E‖M⇒`E‖M ′ `∈AM\AE

E⇒`E′,M⇒`M ′

E‖M⇒`E′‖`M ′ `∈AE∩AM

We restrict attention to states in S that are reachable from S0 using transi-
tions in ∆.

Discrete event controllers should guarantee the satisfaction of the desired
system goals by only restricting controllable behaviour, formally we ground this
intuition with the notion of legality, inspired in that of Interface Automata.

Legal LTKS. Given E = (SE , AE ,∆E , sE0),M = (SM , AM ,∆M , sM0) LTKSs,
and AEu

⊆ AE . We say that M is a Legal LTKS for E with respect to AEu
, if

for all (sE , sM) ∈ E‖M the following holds: ∆E‖M ((sE , sM))∩AEu
= ∆E(sE)∩

AEu

Intuitively, an LTKS M is Legal for and LTS E with respect to an alphabet
AEu

, if for all states in the composition (sE , sM) ∈ SE‖M hold that, an action
` ∈ AEu

is disabled in (sE , sM) if and only if it is also disabled in sE ∈ E. In
other words, M does not restrict E with respect to AEu

.
We formally specify the controller goals using a variation of Linear Temporal

Logics [7] called Fluent Linear Temporal Logics [8].
Linear temporal logics (LTL) are widely used to describe behaviour require-

ments [8, 9, 10, 11]. The motivation for choosing an LTL of fluents is that it
provides a uniform framework for specifying state-based temporal properties in
event-based models [8]. Fluent Linear Temporal Logic (FLTL) [8] is a linear-
time temporal logic for reasoning about fluents. A fluent Fl is defined by a pair
of sets and a Boolean value: Fl = 〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the set of
initiating actions, TFl ⊆ Act is the set of terminating actions and IFl ∩ TFl = ∅.
A fluent may be initially true or false as indicated by InitFl. Every action
` ∈ Act induces a fluent, namely ˙̀ = 〈`, Act \ {`}, false〉. Finally, the alphabet
of a fluent is the union of its terminating and initiating actions.

9

Let F be the set of all possible fluents over Act. An FLTL formula is de-
fined inductively using the standard Boolean connectives and temporal opera-
tors X (next), U (strong until) as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ,

where Fl ∈ F . As usual we introduce ∧, F (eventually), and G (always) as
syntactic sugar. Let Π be the set of infinite traces over Act. The trace π =
`0, `1, . . . satisfies a fluent Fl at position i, denoted π, i |= Fl, if and only if one
of the following conditions holds:

• InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ `j /∈ TFl)

• ∃j ∈ N · (j ≤ i ∧ `j ∈ IFl) ∧ (∀k ∈ N · j < k ≤ i → `k /∈ TFl)

Given an infinite trace π, the satisfaction of a formula ϕ at position i, denoted
π, i |= ϕ, is defined as shown in Figure 1.1. We say that ϕ holds in π, denoted
π |= ϕ, if π, 0 |= ϕ. A formula ϕ ∈ FLTL holds in an LTS E (denoted E |= ϕ)
if it holds on every infinite trace produced by E.

π, i |= Fl , π, i |= Fl
π, i |= ¬ϕ , ¬(π, i |= ϕ)

π, i |= ϕ ∨ ψ , (π, i |= ϕ) ∨ (π, i |= ψ)

π, i |= Xϕ , π, 1 |= ϕ

π, i |= ϕUψ , ∃j ≥ i · π, j |= ψ ∧ ∀ i ≤ k < j · π, k |= ϕ

Figure 1.1: Semantics for the satisfaction operator

1.4 The Framework
In this section we propose a framework that enables switching between an ar-
bitrary number of continuous controllers - as distinct from the composition of
discrete controllers. Our goal is to solve a control problem that is composed
of both continuous control aspects and discrete control objectives. The plant
(i.e., the set of objects that have to be controlled) can operate by selecting one
controller at a time from a pool of multiple controllers to deal with the continu-
ous goals. These controllers are designed to modify the behaviour of the plant,
while achieving slightly different objectives, e.g., minimisation of consumed en-
ergy, maximisation of accuracy, minimisation of time to traverse two points in
space.

The motivation for the presence of multiple controllers comes from either
changing goals (e.g. from maximising travel speed to minimising battery con-
sumption) or changing operating conditions, possibly because of a disruptive
event. The assumption that we make in our discussion is that there is some
high level goal that the individual control strategies are not aware of and can-
not be guaranteed by any single control strategy over the operational space.
For example, there might be a controller that maximises travel speed with wet
asphalt, and another controller that maximises travel speed with dry asphalt.
None of the two controllers alone can optimise the speed of the vehicle in all

10

c1

c2

. . .

cnc−1

cnc

Switch

u1

Plant
r ~u ~y

Figure 1.2: The Continuous Control Architecture.

the operating conditions, but the composition of the two controllers can achieve
the high level goal of optimising travel speed in all the operational space, with
additional knowledge.

As system designers, we want the plant to expose some guarantees on its
behaviour, some of which are control-oriented and some of which are related to
the discrete objectives. We denote the set of guarantees that the system has to
expose at the global level by Gg.

1.4.1 Continuous Control Design
Control Engineers provide a set C = {c1, c2, . . . , cnc

} of nc controllers, that uses
measurements from the plant y, and the reference value (setpoint) r, to produce
the control signal u. Figure 1.2 shows the continuous control architecture of the
framework, the grey box representing the set of controllers C. Notice that the
output of the plant, ~y, is a vector and is distributed to the active controller. The
active controller may use only some elements of the vector and neglect others,
depending on its design. Similarly, the input of the plant – the control signal
that the active controller produces, ~u – is also a vector. Some controllers may
not prescribe elements of this vector, that are then kept constant during the
execution.

A controller ci is a tuple ci = {Xi,Ai,Gi}, where Xi is the controller code,
Ai is a set of assumptions that should be verified for the controller to run
properly and Gi is a set of guarantees. Guarantees Gi are encoded as control
properties, e.g., stability, settling time, overshoot [12] and in terms of design
concerns, e.g., minimising operational time, minimising energy. The assump-
tions Ai of controller i are provided as the region of the operational space in
which the guarantees Gi are valid, i.e. the parameters of the system (states and
disturbances) that the controller is designed for.

To give a simplified example, assume that the state of the plant to be con-
trolled is the height of a drone, denoted by x and the only disturbance that acts
on the plant is the amount of wind, denoted by δ. A controller c1 may be de-
signed to fly fast at high altitude (optimise speed), but not be resistant to high
wind. The operational region of the controller is A1 = {δ ≤ δmax,1, x ≥ xmin,1},

11

0 20 40 60 80100
0

20

40

60

80

100
xmin,1

δmax,1

A1

x

δ

(a) A1 for controller c1.

0 20 40 60 80100
0

20

40

60

80

100
xmax,2

A1

A2

x

δ

(b) A1 for controller c1 and A2 for con-
troller c2.

Figure 1.3: Illustration of assumption (operational region) for controllers.

where δmax,1 is a given threshold for the wind and xmin,1 is the threshold for
the height. Figure 1.3a shows such an assumption region when δmax,1 = 70 and
xmin,1 = 40.

At the same time, the controller c2 is a slow flying controller, that is resilient
to high winds, c2 is designed to take off and should be used only when the drone’s
height is less than a prescribed threshold, A2 = {x ≤ xmax,2}. In our example,
xmax,2 = 50. Figure 1.3b shows the operating regions of both the controllers
and displays the overlap between the two.

The operational space S of the controlled system is defined as the union

S = ∪ci∈CAi

and contains all the possible system operating points for which there exist con-
trol solutions. The problem then becomes: given the specification of the set of
controllers C, how to synthesise a high-level controller to achieve the objectives
in the set of guarantees Gg that the system is desired to have, both in terms
of continuous control guarantees and of high level objectives? Figuratively, this
means how to design the logic behind the Switch component in Figure 1.2, that
selects the active controller at runtime1?

If the control regions Ai are all disjoint, the problem of designing the high-
level controller has a trivial solution. At every point in time, the high level
controller should select the single controller ci for which the current operation
point belongs to the regionAi, this being a unique solution. While this simplifies
answers to questions like which controller to select in a given situation, it gives
rise to the question how to prepare and perform smooth transitions between
different controllers. That is, how to prepare different controllers before they are
required to actively control the system? Provided that an initialization function
is included in the code Xi of every controller, the transition between different
controllers requires calling the initialization function and then the control code
at every step. We assume the necessary work to activate a controller can be
modelled as a small activation delay and, for now, we focus on the assumption
that different controllers overlap in their operational space to make the setting

1Notice that the logic, here, could be much more complex, including for example the
generation of additional controllers and the corresponding assumptions and guarantees at
runtime.

12

c1

c2

. . .

cnc−1

cnc

Switch

u1

Plant
r ~u ~y

which ci?

Figure 1.4: The Framework Architecture.

more realistic and the problem interesting. This means further assuming that

∃i, j, i 6= j, s.t.Ai ∩ Aj 6= ∅

i.e., that at least the operational regions of two controllers overlap. Figure 1.4
illustrates the system with the high-level controller that selects between con-
trollers. The grey circle represents the discrete event logic that is the subject of
Section 1.4.2 and determines the switching signal.

Finally, for each controller, the system should be kept in the given controller
state for a certain amount of time in order to guarantee stability (dwell time).
The controller ci is then complemented with the information νi that represent
the minimum amount of time to be spent executing it before being able to
perform a new switch. The controller then becomes ci = {Xi,Ai,Gi, νi}.

1.4.2 Discrete Event Design
The task of the discrete control design is to support the continuous control
by supplying the logic for the dotted circle in Figure 1.4. Here we describe
how this task would be completed using model-driven development approaches
with a framework that could also support automated synthesis from higher-level
specifications. We start with an explanation regarding the state space of the
discrete controller.

Consider a list of controllers C = {c1, . . . , cnc} as introduced in Section 1.4.1.
The controllers C define an operational space S =

⋃
ci∈C Ai. The different

assumptions on the different controllers {A1, . . . ,Anc
} induce a partition of S

to operational regions based on the controllers that are applicable in a region.
That is, for every subset I ⊆ C the operational region

⋂
ci∈I A〉 is the region

where all the controllers in I are applicable. Clearly, for some subsets I ⊆ C
we have that

⋂
ci∈I Ai = ∅. In such a case, it is impossible to be in a situation

where the set of controllers I are all applicable simultaneously.
For effective discrete control, the notion of which controllers are applicable,

i.e., those that are currently possible to apply, is a feature of which the higher-
level controller needs to be aware. Thus, part of the state of the controller

13

will have to relate to the set I of controllers that are currently applicable.
Furthermore, the discrete controller has to “know” which controller is operational
at a given time. It follows that the coarsest possible set of states that would
enable discrete design would be {(I, i) |

⋃
j∈I Aj 6= ∅ and i ∈ I}. That is, the

controller should know which controllers are applicable (the set I) and which
controller is operational (the controller ci for i ∈ I). 2

The description so far does not take the action of the operational controller
into account. Indeed, while a controller is operational, it affects and changes
some of the measurable parameters relating to the “location” of the plant. It
follows that the operational regions above have to be further refined in order
to take into account the changes induced due to the operation of the active
controller and its dynamics. This refinement needs to take place at runtime and
might require the discrete controller to explore the potential region. This gives
rise to the question on how to perform such an exploration without jeopardizing
the stability of the system?

As an example, consider the case of a drone that has to take off, explore
a region (with some low resolution analysis), and when low-resolution analysis
discovers something interesting, take high-resolution images. There are available
controllers for take-off and landing, for sweeping flight, and for stable flight,
which enables high resolution photography. We are ignoring in this example the
actual trajectories for sweeping and for the low-resolution analysis. Both flight
controllers require a certain height in order to be operational. It follows that
when on the ground only the take-off controller is suitable. When applying this
controller, the drone increases in height and enters the operational regions for
the two flight controllers. From the point of view of the discrete controller, this
change is the result of applying the controller but not a change that it applies
directly out of its own volition. It may be more appropriate to consider this kind
of change as an uncontrollable event that the controller has to be aware of but
cannot actively force. On the other hand, once reaching photography altitude,
both flight controllers are enabled. It follows that the discrete controller has to
take an active decision to switch from the take-off controller to one of the flight
controllers. Then, having identified an object that requires further analysis, the
discrete controller has to initiate a change of flight controller. In this case, the
operational region remained the same, both flight controllers are applicable and
the choice which one to actually employ is related to additional information (that
is the result of the low-resolution scan). A similar process occurs for landing.
There is a high level decision that exploration has ended and an initiation of the
landing controller. This happens in an operational region that allows all three
controllers (i.e. sweeping flight, stable flight, and landing) to operate. Once the
drone lowers down below operational height of the flight controllers there is a
perceived (uncontrollable) change of operational region as the flight controllers
are no longer applicable.

The refinement of the state space of the discrete controller may depend on
the general goal (see below) or on the actual approach to the construction of
the discrete controller. For example, when considering the possible changes
of state of the discrete-controller, it may be the case that the coarse analysis
of the state as done above would not be sufficient. For example, consider an

2We store the currently operational controller in the state space of the discrete controller.
However, other options are possible, e.g., by considering events that "initialize" controllers
and implicitly taking the last controller to have been initialized.

14

0 20 40 60 80 100
0

20

40

60

80

100

xmax,2

A1

A2

A3

A4

x

δ

Figure 1.5: Different operational regions for various available controller.

operational region A1 that borders more than multiple other operational region,
namely, A2, A3, and A4. It may be important to distinguish parts of A1 where
operation of controller c may lead to transfer to both neighbours (i.e. A2 and
A3 as illustrated in Figure 1.5) vs parts of A1 where operation of c may lead
to only one of the neighbours (i.e. A4). Such distinction would allow to finer
choices over which controllers to apply. Indeed, it could be the case that by
switching which controller to apply within a region where multiple controllers
are possible would enable the discrete controller to drive such a choice. Going
back to our drone example, the discrete controller should “know” a priori that
applying the take-off controller would eventually lead to a situation where either
of the two flight controllers is possible to apply.

When considering the features from which the high-level description of the
behavior of the plant can be designed we again must consider the operational
regions of the controllers. We can treat these operational regions as propositions
relating to world state and follow the change of these propositions over time.
This goes in both directions. Going top-down, a behavior that is defined by a
sequence of truth values of propositions can be extended to possible continuous
evolutions of the entire plant. The global correctness of the plant can be deduced
from the completion of the discrete trajectories that are possible in the discrete
controller with the guarantees over continuous behavior that is provided by the
individual controllers applied. Going bottom-up, a continuous behavior can be
broken down to the different operational regions that the plant passes through
and defines a sequence of propositional values, which can be reasoned about in
high level.

1.5 Challenges and future work
Having now discussed the challenge of runtime controller orchestration and high-
level design, this section discusses in greater detail the other challenges which
were referenced in the introduction. Additionally, this section outlines the pos-
sible future directions which may be taken, based on the ideas presented.

15

1.5.1 Grand challenges integrating SE and CE
Beyond the proposed techniques for switching control, many challenges remain
to bridge the gap between (i) the world of Software Engineering,where change-
able components/services/behaviors are modularised for reuse and then com-
posed/coordinated, potentially at runtime, to create larger systems, and (ii)
the world of Control Engineering where the behaviour of relatively unchanging
physical plant can be modelled as black boxes and rigorous analytical control
methods applied.
Abstracting Basic Building Blocks. The design of complex systems can be
broken down into the design of their basic components. An interesting research
direction is the definition of models to abstract the behaviour of control com-
ponents. This item includes topics such as how to design interfaces between
control systems that should belong to a hierarchy, and where the interaction
between different components should be designed and engineered. For exam-
ple, the international standard IEC61499 defines a generic model for a control
system function block, which includes data, events, input, and output sources.
To properly design the coordination of multiple control components, this speci-
fication is lacking some fundamental knowledge, like the assumptions that need
guaranteeing for the controller to work properly and the specification of formal
guarantees that the controller is capable of providing in case these assumptions
are met. Also, the standard does not include runtime reconfiguration. Is it
possible to add it? And what if the plant is another piece of software?
Distributed Controllers and Emergent Behaviour. From the design of
distributed controllers to the emergence of coordinated behaviour - and - from
the desire of a global behaviour to the synthesis of distributed controllers: as-
suming that a given number of controllers have been synthesised and each of
these controllers has a goal and has been verified to fulfil its goal, the inter-
ference between different control strategies can still be disruptive. While the
benefits of heterogeneous strategies has been shown [13], a remaining research
challenges in this case is what can be guaranteed on the behaviour of the “ensem-
ble" of controllers once they are run in a distributed fashion. In a dual manner,
it is interesting to understand how to synthesise and/or select and compose at
runtime different distributed control loops to achieve a global behaviour, and
how to distribute the workload to each of the single controllers. Note that this
applies to both the case of configuration and reconfiguration at runtime due to
some unforeseen change.
Control of composite systems. Above we make the point that controllers
may need to be both componentized and distributed. When a number of con-
trolled SAS systems (as opposed to multiple controllers of a single pre-defined
plant) are composed or collaborate, it may also be desirable that the resultant
composite entity be also encapsulated as a component. As such its interface
would not only express its higher-level function and behaviour but would also
expose its aggregated assumptions and control guarantees. For example, a num-
ber of heterogeneous drones may form a ’squadron’ which can exhibit emergent
behaviour beyond the capability of any single drone and for which we want to
define high-level goals, guarantees and supervisory interfaces. In such a case,
we need to synthesize not only the capabilities of the individual drones but also
synthesize their control interfaces. Theories and techniques for such synthesis
need to be developed.

16

Design methodologies. Practical design methodologies need to be developed
that integrate SE and CE with their respective formal guarantees. For example,
from a practical standpoint, controllers are usually designed following a waterfall
approach: requirements are identified, control synthesis is carried out, formal
assessment of the system’s properties is then verified. If something changes in
the specification of the desired behaviour, the design process often should be
carried out again. Can software engineering techniques help in reducing the
overhead? Also, the design process is usually carried out manually and is error
prone (notice that multiple tools and standards are available to support the
process). Can the process be automated and/or improved?
Ad-hoc control (existing control strategies learning to cooperate). A
common interface (in the form of a system designer, shared knowledge, or of
a coordinator) may not always be available. Controllers that “meet” in their
working environment should learn how to interact with each other and even-
tually integrate their behaviours towards a common goal. This might be done
in a fully autonomous way, be guided by some indication from the program-
mer at design time, or be supported by some higher level software entity. This
poses many challenges, among which include: (a) the definition of a communi-
cation protocol, (b) the definition of common knowledge, (c) the definition of
the concept of trust, (d) the definition of the concept of privacy, (e) the con-
cept of non-functional comparability, (f) the ability to deal with the transitory
nature of the “meeting”. While the controllers have to operate together in an
environment, they may want to avoid sharing sensitive information.
Disruptive changes. Usually control systems are designed having in mind
a “physically-grounded” use case, which includes boundaries for variables like
disturbances. Control theory has found solutions (e.g., robust control), to handle
certain degrees of variability at design time and be ready at runtime to react
to these variations. The variability may come from different sources (e.g., in
the case of a cruise control it may come from a sudden uphill that reduces
the car speed or from a motor fault that has a similar effect), provided that
their effect has been accounted for in the modelling phase. However, controllers
are not able to react to changes that are disruptive to the system and have
not been taken into account in the controller design phase. A challenge when
dealing with multiple cooperating controllers is to account for disruptive changes
and coordinate to handle unforeseen situations. A keyword in control theory
is lights off control (control when you can turn off the light - if something
disruptive happens, usually the entire plant is turned off by the controller by
design). For software, this “lights off control” approach may not be suitable in
all approaches, and the challenge is how to achieve this, or be able to move
the plant to a situation in which is it achievable. One example of this is a
self-driving car. In a situation where the car is faced with an unknown (and
detectable) disruption, it will move to the side of the road and stop, as opposed
to simply stopping in the middle of the street.

1.5.2 Future Challenges for Discrete Switching Control
The proposed approach to switching control based on identification of operating
regions raises a number of further challenges that need to be addressed, par-
ticularly with regard to the transition between regions/controllers. It has been
assumed that there is an overlap between operating regions to enable the smooth

17

transition between controllers. In the areas where regions overlap there are at
least two controllers that are ‘good enough’ to control the plant. A number of
questions follow:

• Can a ‘best’ controller be determined for such intersects, say, based on re-
spective distance from the boundaries of the plant in the operating space?
Is there a general way in which such locations of the plant within the
operating space could be modelled and calculated?

• Likewise, can the trajectory of the plant through the operating space be
used to predict what controller should be selected, say, based on the ve-
locity vector?

• Can controllers be used to ‘drive’ the behaviour of the plant away from
boundaries with regions that are not controlled, or into regions that better
fulfil high-level non-functional requirements of the system?

• Is it necessary that operating regions overlap, or could they be contiguous
but disjoint? Can the velocity of the plant through the operating space be
used to accurately anticipate the transition point for switching control?

• Is it even necessary that controlled regions be contiguous? If there are
white-box models of behaviour in an uncontrolled region it may still be
possible to transition between controlled regions via an uncontrolled space.
For example, a drone may have controllers for flying in a horizontal ori-
entation either upright or upside-down, but not in a vertical orientation
(on edge). Flipping the drone requires that it change from the upright
to upside-down controller (or vice-versa), and to be temporarily ‘uncon-
trolled’ while on edge. However, the physics of the rotational moment
is likely to be able to be well modelled, enabling transition through the
uncontrolled space. In this case the controller would deliberately force the
plant towards the current region’s boundary with an uncontrolled space.

• Operating regions are not just defined by the physical operating conditions
but by the control objectives. These objectives may change, necessitating
the system be driven to transition between regions. How is such higher-
level control to be best achieved?

• Switching controllers will result in a change of behaviour relative to the
control objectives. Is there a way to avoid unstable oscillating behaviour?
As argued above, one way to enable this is to specify a ‘dwell-time’ to
apply to the time after a new controller has taken effect so as to ensure
convergence to the control objective. However, control objectives may
be multi-dimensional with no one controller having a globally optimal
solution. How can switching of controllers be best controlled in such cases?

• If additional continuous controllers need to be added at runtime, either
because of unanticipated environmental conditions or changing require-
ments, how can the high-level discrete controller be dynamically adapted
to incorporate this new operating region?

18

The robust composition of components is a key concern of SE, with run-
time composition (or reconfiguration) being a key concern of SAS. This requires
well-defined encapsulated components/services/agents etc.. In the context of
the discussion in Section 1.5.1, if we encapsulate, as a self-controlled compo-
nent, our system consisting of a plant and control-switching mechanisms, what
management interface(s) would such a component need? As well as express-
ing its control characteristics, assumptions, and guarantees, the interface might
need to include management operations, for example, to alter set points, change
operating modes, or tune continuous control parameters. The interface should
also allow the internal discrete controller to interrogate external sensors to de-
termine its ’location’ within the operating space. Interfaces for supervisory
control or exception handling might also be needed if the component can go,
or can anticipate going, into an uncontrolled operating region. If the compo-
nent is capable of structural adaptation, interfaces would be needed for injecting
additional continuous controllers along with appropriate meta-data. More ad-
vanced interfaces might enable such self-controlled components to collaborate
with other self-controlled components to achieve higher level goals.

1.5.3 Future work
As a first step, the proposed framework for switching control needs to be eval-
uated. In principle, we would like to devise a case study that has a very small
number of tunable parameters, which are easy to relate to the dimensional-
ity/complexity of the case to generate for a particular evaluation test—examples
of such parameters can be the number of controllers, each one with its validity
region, and the overlapping of the said regions. If this is achieved, not only the
satisfaction of high-level goals, but also scalability can be evaluated.

19

Group 2

Properties

Bridging the Gap between Control and Self-Adaptive Sys-
tem Properties: Identification, Characterization, and Map-
ping
Javier Cámara, David Garlan, Shihong Huang, Masako Kishida, Alberto Leva,
Hiroyuki Nakagawa, Alessandro Vittorio Papadopoulos, Yasuyuki Tahara, Kenji
Tei, Thomas Vogel, and Danny Weyns

Context: Two of the main paradigms used to build adaptive software em-
ploy different types of properties to capture relevant aspects of the system’s
run-time behavior. On the one hand, control systems consider properties that
concern static aspects like stability, as well as dynamic properties that capture
the transient evolution of variables such as settling time. On the other hand,
self-adaptive systems consider mostly non-functional properties that capture
concerns such as performance, cost, and reliability.

Problem: In general, it is not easy to reconcile these two types of properties or
identify under which conditions they constitute a good fit to provide guarantees
about relevant aspects of the system at run-time. There is a need of identifying
the key properties in the areas of control and self-adaptation, as well as of
characterizing and mapping them to better understand how they relate and
possibly complement each other.

Method: (1) Identify key properties in the two areas, (2) express them rig-
orously in a common language, (3) map properties in the two areas, and (4)
analyze commonalities, differences, and potential complementarities among the
different properties. We will use a simple use case to illustrate all the steps.

Expected Results: Obtain a catalog of key properties in control and self-
adaptive systems, a set of patterns for specification of (possibly a subset of)
those properties in a temporal logic language, a mapping between properties
in both areas, and some insights into how to better combine formal guarantees
obtained from control and other approaches.

20

2.1 Introduction
Two of the main paradigms used to build adaptive software employ different
types of properties to capture relevant aspects of the system’s run-time behavior.
On the one hand, control systems consider properties that concern static aspects
like stability, as well as dynamic properties that capture transient aspects such
as settling time. On the other hand, self-adaptive systems consider mostly non-
functional properties that include different concerns such as performance, cost,
and reliability.

Self-adaptive software can clearly benefit from the potential that control
theory provides in terms of enabling the analyzability of run-time system be-
havior. Being able to formally reason about the non-functional concerns of a
system (e.g., security, energy, performance) in the presence of an oftentimes
unpredictable environment can optimize operation and improve the level of as-
surances that engineers can provide about the systems they build.

However, applying control theory to software systems poses a set of chal-
lenges that do not exist in other domains [14]. One of the main challenges is
that control-based solutions demand the availability of precise mathematical
models that capture both the dynamics of the system under control, as well as
the properties that engineers want to impose and reason about. When control
is applied to physical plants, the laws that govern the system are captured by
accurate mathematical models that are well-understood, and relevant properties
like stability or performance are formally characterized by definitions that are
precise and standard in the control community [15].

While obtaining accurate models of non-functional aspects of software behav-
ior can to some extent be achieved using different methods like system identifi-
cation [16], the self-adaptive software systems community still lacks a standard
repertoire of run-time properties formally characterized in a way that makes
them amenable to formal analysis using techniques applied by software engi-
neers in self-adaptive systems (e.g., run-time verification, model checking).

Solving in software the kind of problems that control solves in other do-
mains entails understanding how control properties relate to software require-
ments, and formally characterizing such properties in a way that facilitates their
instantiation and automated analysis using standard tools.

To improve on the current situation, our goal is to develop a preliminary
catalog of key properties in control and self-adaptive systems, a set of patterns
for specification of those properties in a temporal logic language, a mapping
between properties in both areas, and some insights into how to better combine
formal guarantees obtained from control and other approaches.

In the remainder of this document, we first introduce in Section 2.2 some
background on control and self-adaptive systems, as well as about the kind
of discrete models employed to capture system behavior. Moreover, we also
include a brief overview of the temporal logic language employed to formalize
properties. Next, Section 2.3 presents an overview of RUBiS [17], a self-adaptive
web multi-tiered system that we employ as a running example to illustrate
properties. Section 2.4 presents an overview of key properties in the areas
of control and self-adaptive systems, which are later expanded in Sections 2.5
and 2.6, respectively. Finally, Section 2.7 presents a roadmap that discusses
directions for future work.

21

Controller Plant
y◦ + e ũ u + y

+

−

l
+

d
+

n
+

Figure 2.1: Control scheme.

2.2 Preliminaries and terminology
In this section, we first present a basic set of concepts in control systems, fol-
lowed by a general model of self-adaptive system. The remainder of the section
presents the kind of discrete abstraction employed to capture the non-functional
behavior of self-adaptive systems at run-time, as well as the formal language em-
ployed to characterize properties.

2.2.1 Control Concepts
This section is devoted to basic definitions and to the terminology used in this
document. The focus will be mainly on continuous-time systems, but simi-
lar concepts can be found for discrete-time systems. As a main reference the
interested reader is referred to the publicly available book [15].

First, consider the control scheme represented in Figure 2.1.
The two main blocks represent the Controller and the Plant respectively.

The Plant is the object that we want to control. The inputs of the plant
are represented as u(t) ∈ Rm, and in computing systems are typically referred
as control parameters, or tuning parameters. The outputs of the plant are
typically represented as y(t) ∈ Rp, and in computing systems are typically
referred as measurements.

For every output y(t) of the plant, one defines a desired behavior for it,
which in control terms is called a setpoint, and it is typically represented as
y◦(t) ∈ Rp.

The difference between the desired behavior and the actual behavior of the
plant is called error, and is typically represented as e(t) ∈ Rp :

e(t) = y◦(t)− y(t).

The controller is a decision-making mechanism that given the error, decides
what is the value of the control signal ũ(t) ∈ Rm in order to make the error
converge to zero. In principle, the control signal and the plant input should be
the same, i.e., ũ(t) = u(t), but in practice, there might be a load disturbance
l(t) ∈ Rm, that affects the controller decision. Therefore, it holds that

u(t) = ũ(t) + l(t).

The load disturbance is one of the main disturbances that affect the performance
of control systems.

22

In addition, there might be a disturbance that is acting directly on the
output of the plant, which is called output disturbance, and it is represented
as d(t) ∈ Rp. Finally, there is noise n(t) ∈ Rp that affects the measurements
that one takes of the output. These two last sources of disturbances are typically
“high-frequency” disturbances, and can be counteracted by a suitable filtering
at design time of the controller.

Table 2.1 summarizes the mentioned quantities.

Name Description
u(t) ∈ Rm Plant inputs
y(t) ∈ Rp Plant output
y◦(t) ∈ Rp Setpoint
e(t) ∈ Rp Error
ũ(t) ∈ Rm Control signal
l(t) ∈ Rm Load disturbance
d(t) ∈ Rp Output disturbance
n(t) ∈ Rp Noise

Table 2.1: Names and notation.

2.2.2 Self-Adaptive Systems
We consider the model of a self-adaptive system depicted in Figure 2.2. The
environment consists of all non-controllable elements that determine the oper-
ating conditions of the system (e.g., hardware, network, physical context, etc.).

Self-Adaptive Software System

Controller

Environment
Non-controllable software, hardware,

network, physical context

Target System

Effectors

Adapt

Probes

Monitor

MonitorAffect

M
o

n
it
o

r

Probes

Figure 2.2: Self-adaptive software system.

Regarding the system itself, we distinguish two main subsystems: a tar-
get system (or managed subsystem), which interacts with the environment
by monitoring and affecting relevant variables associated with operating con-
ditions, and a controller (or managing subsystem) that manages the target
system, driving adaptation whenever it is required. Concretely, the controller
carries out its function by: (i) monitoring the target system and environment

23

through probes (or sensors) that provide information about the value of rel-
evant variables, (ii) deciding whether the current state demands adaptation,
and if this is the case, and (iii) applying a sequence of control actions through
system-level effectors (or actuators).

Some of the key concerns with respect to the run-time behavior of self-
adaptive systems are related to their non-functional attributes that include per-
formance and cost, as well as attributes of dependability and resilience like
availability, and reliability. Another major dimension of concern refers safety,
that is, the absence of catastrophic consequences on the user and the environ-
ment, which can be caused by the self-adaptation [18].

2.2.3 Discrete Models
We consider the self-adaptive system as a black-box on which a set
of output variables can be monitored over time. Concretely, we model
the non-functional run-time behavior of a self-adaptive system as a transition
system that captures the evolution over time of a set of relevant variables (i.e.,
state is characterized by a collection of n real-valued random variables Y =
{y1, . . . , yn}). These variables can be considered to be analogous to
the outputs y(t) in a control system. Sampling these variables in time and
space results in their quantization and time-discretization.

Let [αi, βi] be the range of yi, with αi, βi ∈ R, and ηi ∈ R+ be its quantiza-
tion parameter. Then, yi takes its values in the set:

[R]yi = {r : R | r = kηi, k ∈ Z, αi ≤ r ≤ βi }.

Hence, given an observed value of yi at time t (denoted as yi(t)), the corre-
sponding quantized value is obtained as:

quant(yi(t)) = min(arg min
r∈[R]yi

(|yi(t)− r|)).

Variables in Y define a state-space [Rn]Y = [R]y1× . . .× [R]yn . Furthermore,
we assume a time discretization parameter τ ∈ R+ associated with the sampling
period established for the observation of variables, determining the transition
time.

Figure 2.3 compares an arbitrary continuous system output y(t) with its
quantized counterpart yq(t)1 in the discrete timeline. yq(t) takes values only
in multiples of ηy, and is represented in the figure as constant for intervals of
duration τ .2

Discrete models can be enriched with rewards and costs that help capture
quantitative aspects of system behavior (e.g., elapsed time, energy consumption,
cost) in a precise manner. These rewards can be employed as building blocks
to reason about sophisticated properties that capture quantitative aspects of
system behavior over time.

A reward structure is a pair (ρ, ι), where ι : [Rn]Y → R≥0 is a function
that assigns rewards to system states, and ρ : [Rn]Y ×[Rn]Y → R≥0 is a function
assigning rewards to transitions.

1For convenience, we write in the following yq(t) instead of quant(y(t)).
2For illustration purposes, we represent the discretized system output with a large dis-

cretization parameter.

24

yo

5τ 10τ 15τ 20τ 25τ 30τ 35τ

t

y(t) yo

y(t)

yq(t)

Figure 2.3: Example of discrete quantized vs continuous output.

State reward ι(s) is acquired in state s ∈ [Rn]Y per time step, that is, each
time that the system spends one time step in s, the reward accrues ι(s). In
contrast, ρ(s, s′) is the reward acquired every time that a transition between s
and s′ occurs.

For illustration purposes, we assume that rewards are defined as sets of
pairs (pd, r), where pd is a predicate over states [Rn]Y , and r ∈ R≥0 is the
accrued reward when s ∈ [Rn]Y |= pd. If the pair (pd, r) corresponds to a
transition reward, the reward is accrued when a transition from a source state
s ∈ [Rn]Y |= pd occurs.

2.2.4 Temporal Logic
Temporal logic is used to specify properties of transition systems, and in partic-
ular to claim something about the time at which a specific property holds. The
term “time” here refers to the number of transitions that the transition system
has taken so far, e.g., “after three steps.” Note that in general, this notion of
“time” can be related to statements about a discrete notion of real time by asso-
ciating a fixed amount of time elapsed to every transition in the system (via the
time discretization parameter τ described in Section 2.2.3).3 For example, if we
assume that τ=1ms, “after three milliseconds” would mean “after three transi-
tions.” Hence, we will see that temporal logic can be used in general to reason
about the ordering of events in a system without introducing time explicitly
(Section 2.2.4), although extensions can be employed to reason explicitly about
quantitative aspects of systems that include time or probabilities (Section 2.2.4).

3Oftentimes, the amount of (real) time that a particular transition requires to occur is
not fixed. For those cases, there are extended temporal logic languages that include clocks
to represent real-time properties (e.g., Metric Linear Temporal Logic (MLTL) is an extension
of LTL with clocks). We will not deal with such extensions in this document for the sake of
simplicity.

25

Linear Temporal Logic (LTL)

Linear Temporal Logic or LTL is used to make claims about a trace, considered
as a sequence of states produced by a state machine describing a system.

Given a set of atomic propositions AP , any ap ∈ AP is an LTL formula.
Given two LTL formulas φ and ψ, then the following are also LTL formulas:

¬φ | φ ∧ ψ | φ ∨ ψ | φ =⇒ ψ | φ⇔ ψ |
�φ | ♦φ | © φ | φUψ

If we focus on the first of the two lines above, we can observe that it looks
very much like propositional logic, including all its standard logical operators,
which have exactly the same semantics here. The line in the bottom is the
part of LTL that corresponds to its temporal operators, that is, operators
that enable us to express properties about the ordering of the satisfaction of
propositions in traces.

Informally, �φ states that φ will always hold in subsequent positions of the
trace, ♦φ indicates that φ will eventually hold in a future position, ©φ states
that φ holds in the next position, and φUψ indicates that ψ holds in the current
or a future position, and φ has to hold until that position (from that position
onwards, φ does not necessarily have to hold).

In the variant of LTL that we employ in this document, we require sequences
of states to be infinite, in order to simplify the interpretation of formulas.4
However, the state machines that we have presented so far can produce finite
execution sequences, since we allow states that do not have any successors. We
interpret these finite traces as infinite traces by simply repeating the last state
of the sequence. Alternatively, you can think of this as a change to the state
machine in which we add self-loops to all states that do not have a successor:

A B A B

For example, the state machine above can produce the sequences:

1. A, A, A, . . . (infinitely many A’s),

2. A, . . ., A, B, B, . . . (finitely many A’s, then infinitely many B’s).

We denote the sequence by σ. Given such a sequence, we indicate that some
property P holds for the ith state in this sequence by writing:

(σ, i) |= P

The first state of the sequence is state 1. As an example, consider the following
transition system with two variables x and y:

4There are variants of LTL that are interpreted over finite traces. However, they introduce
additional considerations that fall out of the scope of this document.

26

x=1
y=1

x=0
y=1

Consider the property P = (x ≥ y). The transition system in the example can
produce only one sequence. In this sequence, P holds on the first (initial) state,
but not on any later state. Thus, (σ, 1) |= x ≥ y is satisfied, but (σ, 2) |= x ≥ y
is not.

We introduce the following shorthand: if we just write a property P without
giving a state, we refer to the first state of the sequence, i.e., P is a shorthand
for (σ, 1) |= P . If the state machine can produce more than one sequence, the
claim is about the first state of all the sequences, i.e., about all the initial states.

In the remainder of this section, we will go over the main temporal operators
of LTL, looking into their semantics and examples of how they are used.

The Box Operator. If we want to assert a safety property about a system, we
can use the notation above in combination with a universal quantifier to specify
that P holds in all the states of a sequence:

∀j ∈ N : (σ, j) |= P

LTL offers a convenient shorthand for this type of property: the box operator.
It is applied as follows:

(σ, i) |= �P

The expression above asserts that P holds in all subsequent positions of a trace,
starting in the ith state, or formally:

∀j ∈ N|j ≥ i : (σ, j) |= P

The box operator can be intuitively interpreted as “from now on, P holds”.
The box operator is sometimes written as “G”, which stands for “Globally”.
As a shorthand, we write �P for (σ, 1) |= �P (i.e., �P means that P is an
invariant).

Example: Concurrent access to shared resources in multi-threaded programs
can sometimes lead to erroneous program behavior. In order to avoid that, a
common mechanism is to implement a critical section that will allow only one
thread to access the shared resource at a time. Let us assume a program with
two threads t1 and t2. Propositions cst1 and cst2 indicate that threads t1 and
t2 are in the critical section, respectively. If we want to assert that the critical
section is never accessed concurrently by more than one thread in this system,
we can write the following invariant in LTL:

�¬(cst1 ∧ cst2)

According to the semantics that defined for the box operator, this invariant can
be interpreted as:

∀i ∈ N|(σ, i) |= ¬(cst1 ∧ cst2)

27

The Diamond Operator. If we want to specify a liveness property to assert
whether some desirable condition P will eventually hold in our system, we can
state the following:

∃j ∈ N : (σ, j) |= P

Again, LTL offers a shorthand for this kind of property: (σ, i) |= ♦P denotes
that there is a state in the sequence at or after the ith position that satisfies P ,
or formally:

∃j ∈ N|j ≥ i : (σ, j) |= P

This is called diamond operator, and can be informally interpreted as “eventually,
P holds”. The diamond operator is sometimes written as “F”, which stands for
“Finally”.

Consider for instance the sequence σ = (A,A,B,B, . . .). For this sequence,
(σ, 1) |= ♦B is true, but (σ, 3) |= ♦A is not.

Example: Suppose we want to claim that a program terminates. Let us denote
a terminating state using the proposition terminates. We could say that the
program eventually terminates by claiming that there exists some position j in
the sequence in which terminates holds:

∃j ∈ N : (σ, j) |= terminates or equivalently, ♦terminates

Probabilistic Computation Tree Logic with Rewards (PRCTL)

Probabilistic Computation Tree Logic or PCTL [19] is employed in probabilistic
model checking to quantify properties related to probabilities, as well as reward
and costs in system specifications described using probabilistic state machines
like discrete-time Markov chains (DTMC), Markov decision processes (MDP),
or probabilistic timed automata (PTA).

In this document, we build on a version of PCTL extended with a reward
quantifier targeted at checking properties over DTMCs extended with reward
structures (PRCTL) [20]. Furthermore, we abstract away from probabilities and
focus on the deterministic version of discrete transition systems, considering only
the reward quantifier of PRCTL.

In the syntax definition below, Φ and φ are respectively, formulas interpreted
over states and paths of a DTMC extended with rewards (D, ρ). Properties in
PCTL are specified exclusively as state formulas. Path formulas have only an
auxiliary role on probability and reward quantifiers P and R:

Φ ::= true| a | ¬Φ | Φ ∧ Φ | P∼pb[φ] | Rr∼rb[φ] φ ::=©Φ | Φ U Φ,

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, pb ∈ [0, 1], rb ∈ R+
0 , and

r ∈ ρ.
Intuitively, P∼pb[φ] is satisfied in a state s of D if the probability of choosing

a path starting in s that satisfies φ (denoted as Prs(φ) 5) is within the range
determined by ∼pb, where pb is a probability bound.

Quantification of properties based on Rr∼rb works analogously, but consid-
ering rewards, instead of probabilities. Concretely, an extended version of the
reward operator Rr

=?[♦ φ] enables the quantification of the accrued reward r
along paths that lead to states satisfying φ.

5See [21] for details. In the following, we write Prs(φ) as Pr(φ) for simplicity.

28

The intuitive meaning of path operators © and U is analogous to the ones
in other standard temporal logics like LTL. Additional boolean and temporal
operators are derived in the standard way (e.g., ♦Φ ≡ true U Φ, �Φ ≡ ¬♦¬Φ).

2.3 Case Study
We illustrate our formalization of properties on the Rice University Bidding
System (RUBiS) [17], an open-source application that implements the function-
ality of an auctions website. Figure 2.4 depicts the architecture of RUBiS, which
consists of a web server tier that receives requests from clients using browsers,
and a database tier that acts as a data provider for the web tier. Our setup of
RUBiS also includes a load balancer to support multiple servers in the web tier,
which distributes requests among them following a round-robin policy. When
a web server receives a page request from the load balancer, it accesses the
database to obtain the data required to render the dynamic content of the page.
The only relevant property of the operating environment that we consider in
our adaptation scenario is the request arrival rate prescribed by the workload
induced on the system.

c0

c1

c2

lbproxy

s0

s1

s2

s3

db

Figure 2.4: RUBiS architecture.

The system includes two actuation points that can be operationalized by a
controller to make the system self-adaptive and deal with the changing loads
induced by variations in the request arrival rate:

• Server Addition/Removal. Server addition has an associated latency, whereas
the latency for server removal is assumed to be negligible.

• Dimmer. The version of RUBiS used for our comparison follows the
brownout paradigm [22], in which the response to a request includes manda-
tory content (e.g., the details of a product), and optional content such as
recommendations of related products. A dimmer parameter (taking val-
ues in the interval [0, 1]) can be set to control the proportion of responses
that include optional content.

The goals of the target system are summarized in two functional and three
non-functional requirements (Table 2.2). There is a strict preference order
among the non-functional requirements that deal with optimization, so trade-
offs among different dimensions to be optimized are not possible (i.e., no solution
should compromise maximization of the percentage of requests with optional
content to reduce cost). The imposition of a preference order is aimed at better
capturing real scenarios and is not a limitation imposed by any of the compared
approaches, which are also able to capture non-strict preference orders among
requirements.

29

Functional Requirements
R1 The target system shall respond to every request for serving its content.
R2 The target system shall serve optional content to the connected clients.

Non-Functional Requirements
NFR1 The target system shall demonstrate high performance. The average

response time r should not exceed T .
NFR2 The target system shall provide high availability of the optional content.

Subject to NFR1, the percentage of requests with optional content (i.e.,
the dimmer value d) should be maximized.

NFR3 The target operating system shall operate under low cost. Subject to
NFR1 and NFR2, the cost (i.e., the number of servers s) should be
minimized.

Table 2.2: Requirements for RUBiS.

2.4 Overview of Properties in Control and Self-
Adaptive Systems

In this section we introduce a formalization of some key properties in control
systems, and explore their potential use on self-adaptive systems. We start this
exercise by identifying key properties in control (Table 2.3) that include:

• Static properties, which capture aspects about the steady-state (or the
lack thereof) towards which the system evolves in the absence of external
stimuli (e.g., stability, steady-state error).

• Dynamic properties that capture the transient aspects of system evo-
lution before reaching the steady-state (e.g., oscillations, overshoot).

Control Self-Adaptive
Static Dynamic
Stability Settling Time Performance

Asymptotic Stability Oscillations Cost
Steady state error Overshoot Reliability

. . . Integrated Squared Error Availability
. . . Security

Resilience
. . .

Table 2.3: Key properties in control and self-adaptive systems.

On the self-adaptive systems side, we can consider the quantitative attributes
of the different non-functional concerns over time (e.g., response time for per-
formance) as analogous to the outputs y(t) in a continuous-time control system.
However, it is worth considering that discretization of time will require averag-
ing the measurement of values per time period, rather than considering their
instantaneous value over the continuous timeline (e.g., average response time
per τ -period).

We can employ the formalization of control properties with respect to self-
adaptive system concerns to assess sophisticated properties about the system’s

30

run-time behavior (e.g., stability of system with respect to performance-response
time).

2.5 Control Properties
Control systems are usually concerned about four main objectives [14]:

• Setpoint Tracking. The setpoint is a translation of the goals to be achieved.
For example, the system can be considered responsive when its user-
perceived latency is below a given time threshold. In general, a self-
adaptive system should be able to achieve the specified setpoint whenever
it is reachable. Whenever the setpoint is not reachable, the controller
should make sure that the measured value y(t) is as close as possible to
the desired value yo.

• Transient behavior. Control theory is not only concerned about the fact
that the setpoint is reached, but also about how this happens. The be-
havior of the system when an abrupt change happens is usually called the
transient of the response. For example, it is possible to enforce that the
response of the system does not oscillate around the setpoint yo, but is
always below (or above) it.

• Robustness to inaccurate or delayed measurements. Oftentimes, in a real
system, obtaining accurate and punctual measurements is very costly, for
example because the system is split in several parts and information has
to be aggregated to provide a reliable measurement of the system status.
The ability of a controlled system (in control terms a closed-loop system
composed by a plant and its controller) to cope with non-accurate mea-
surements or with data that is delayed in time is called robustness. The
controller should behave correctly even when transient errors or delayed
data is provided to it.

• Disturbance rejection. In control terms a disturbance is everything that
affect the closed-loop system other than the action of the controller. Dis-
turbances should be rejected by the control system, in the sense that the
control variable should be correctly chosen to avoid any effect of this ex-
ternal interference on the goal.

These high level objectives have can be mapped into the “by design” satisfaction
of the following properties:

• Stability. A system is asymptotically stable when it tends to reach an
equilibrium point, regardless of the initial conditions. This means that
the system output converges to a specific value as time tends to infinity.
This equilibrium point should ideally be the specified setpoint value.

• Absence of overshooting. An overshoot occurs when the system exceeds
the setpoint before convergence. Controllers can be designed to avoid over-
shooting whenever necessary. This could also avoid unnecessary costs (for
example when the control variable is a certain number of virtual machines
to be fired up for a specific software application).

31

• Guaranteed settling time. Settling time refers to the time required for the
system to reach the stable equilibrium. The settling time can be guaran-
teed to be lower than a specific value when the controller is designed.

• Robustness. A robust control system converges to the setpoint despite
the underlying model being imprecise. This is very important whenever
disturbances have to be rejected and the system has to make decisions
with inaccurate measurements.

A self-adaptive system designed with the aid of control theory should provide
formal quantitative guarantees on its convergence, on the time to obtain the
goal, and on its robustness in the face of errors and noise.

To enable the analyzability of of these properties in software-intensive adap-
tive systems, making use formal verification techniques that are typically em-
ployed for software systems (e.g., model checking), we formally characterize
some of them in the remainder of this section in terms of temporal logic lan-
guages, based on their mathematical definition.

2.5.1 Stability
The concept of stability in control theory is a bit different with respect to the
concept of stability that is used in self-adaptive software and similar contexts.
A control system is stable even if the error e(t) is not converging to zero, but it
is bounded:

stby ≡ ∀ε > 0 ∃δ(ε) | ‖y(0)− yo‖ < δ(ε)⇒ ‖y(t)− yo‖ < ε,∀t > 0 (2.1)

In addition to the bounding of the error e(t) required for stability (captured
in the expression above as the norm of the difference between the output and
the setpoint ‖y(t)−yo‖), asymptotic stability is a stronger notion of stability
that introduces an additional constraint related to the convergence of the error
to zero:

astby ≡ stby ∧ ‖y(t)− yo‖ → 0, for t→∞ (2.2)

Figure 2.5 shows the response of a system that eventually stabilizes within
an error band (gray box) of width 2ε.

Characterization in Temporal Logic. Characterizing stability in temporal
logic requires casting into a temporal formula the constraints imposed by the
definition stability in the continuous case given in Expression 2.1. Such char-
acterization can be given on a quantized version of the variables and constants
required to define the notion of stability captured in the continuous case:

[stby] ≡ ‖yq − yoq‖ < δq ⇒ �(‖yq − yoq‖ < εq) (2.3)

In Expression 2.3, the subscript q indicates that the constant or variable on
which it appears is the quantized version of its continuous counterpart (i.e.,
yq(t) ≡ quant(y(t)), c.f. Section 2.2.3). Moreover, the absence of explicit time
indexes is consistent with the implicit notion of time introduced by the tempo-
ral operators. For instance, when yq is not within the scope of any temporal
operator (like in the antecedent of the implication given in the formula), the
expression refers to the value of the variable in the first state of the trace (i.e.,

32

ts,ε

2ε

t

y(t) y◦(t)

y(t)

Figure 2.5: Example of system output stabilization.

yq ≡ yq(0)). However, if the same term is within the scope of a temporal opera-
tor as it happens with the � on the right hand side of the expression, then the
same yq is referring to the value of yq(t) in all the states of the discrete timeline
(i.e., yq(t) when t = 0, t = τ, t = 2τ, . . .).

For asymptotic stability, we encode the definition of stability we employ in
Expression 2.3, but we add an extra term to the consequent of the implication
stating that the system will eventually reach a state from which the error will
be bound by the minimum value that we can represent in the quantized version
of the variable (i.e., its discretization parameter denoted by ηy):

[astby] ≡ ‖yq − yoq‖ < δq ⇒ (�(‖yq − yoq‖ < εq) ∧ ♦�(‖yq − yoq‖ < ηy)) (2.4)

This characterization is weaker than the actual notion of stability, and can be
considered analogous to a more stringent version of non-asymptotic stability in
which the error is bound by the finest granularity that can be distinguished in
the discrete model.

2.5.2 Settling Time
Dynamic performance captures how the system is reaching the goal, so it ac-
counts for the transient towards a steady-state. The dynamic performance can
be associated with different key indicators, one of which is settling time ts,
which is the time needed by the system to reach a new steady-state equilibrium.

For an arbitrary ε ∈ R+, the ε-settling time is defined by:

ts,ε ≡ inf{δ s.t. ‖y(t)− yo‖ < ε,∀t ∈ [δ,∞]} (2.5)

In Expression 2.5, the settling time is captured as the infimum of the set of
time values in the continuous timeline for which the error is bounded by ε in the
following. Note that the infimum is the greatest lowest bound that always exists,
meaning that it takes the value ∞ if the stability condition is never satisfied.

33

Characterization in Temporal Logic. In contrast with stability, which is
a boolean property that is either satisfied by the system or not (c.f. Expres-
sions 2.3 and 2.4), settling time is a quantitative property and therefore we
characterize it as a temporal logic expression that employs a reward quantifier.
Since in this case the reward captures time, we assume the existence of a transi-
tion reward function [time] ≡ (true, τ) that accrues the time quantum employed
for time in the discrete model whenever a transition in the discrete timeline is
taken:

[ts,ε] ≡ R
[time]
=? [♦�‖yq − yoq‖ < εq] (2.6)

Expression 2.6 characterizes the settling time as the time reward accrued until
the system reaches a state from which the error is bounded by εq. There are
two aspects of this characterization that are important to highlight. First,
the reachability formula accrues reward until it reaches a state that satisfies the
reachability predicate, but the reward in the latter state is not included. Second,
when the reachability predicate is not satisfied, the semantics of the reward
quantifier in PRCTL assign an infinite reward as the value that is obtained
when the expression is quantified. These two aspects make this characterization
consistent with the definition given in Expression 2.5, which characterizes the
settling time as the time instant immediately prior to the one in which the error
is already bound by ε, and becomes infinite if the error is not always bound by
ε, starting at some arbitrary point in the timeline.

2.5.3 Performance
A performance index is a quantitative measure of the performance of a system.
It is chosen so that emphasis is given to the important system specifications. A
system is considered an optimum control system, when the system parameters
are adjusted so that the index reaches an extremum value, commonly a minimum
value.

There are several performance indices, and they are always based on the
behavior of the error e(t). We consider here the Integral of the Square of the
Error (ISE) as a representative performance index to characterize using temporal
logic.

ISE ≡
∫ T

0

e2(t)dt (2.7)

ISE integrates the square of the error over time (see Figure 2.6). ISE will
penalize large errors more than smaller ones (since the square of a large error
will be much bigger). Control systems specified to minimize ISE will tend to
eliminate large errors quickly, but will tolerate small errors persisting for a long
period of time. Often this leads to fast responses, but with considerable, low
amplitude, oscillation.

Characterization in Temporal Logic. Similar to settling time, ISE is a
quantitative property and therefore we characterize it as a temporal logic ex-
pression employing a reward quantifier. Since in this case the reward has to
capture accrued error over time, we assume the existence of a transition reward
function [error] ≡ (true, (‖yq − yoq‖)2) that accrues the square of the instanta-
neous error whenever a transition in the discrete timeline is taken.

34

yo

ts,ε

2ε

t

y(t) y◦(t)

y(t)

Figure 2.6: Illustration of integral squared error.

Then, we can write an expression that accrues the error reward over the
discrete timeline before stability is achieved:

[ISE] ≡ R
[error]
=? [♦�‖yq − yoq‖ < εq] (2.8)

2.6 Self-Adaptive System Properties
The non-functional run-time behavior of self-adaptive systems can be captured
by an external observer as a set of quantitative indicators that represent at-
tributes of different concerns such as performance, cost, or availability. In this
section, we characterize performance as an example of non-functional concern
in a self-adaptive system, employing an adapted version of the integral squared
error (ISE, Section 2.5.3) as a property to indicate how well the system adapts
after a disturbance and achieves stability again.

We assume that RUBiS is working on steady state, but suddenly receives a
spike on the request arrival rate that causes the average response time r to go
above the threshold T (Figure 2.7). After violating the threshold, the system
adds a server to drive down the response time below T . Before the system
stabilizes, the response time may experience some oscillations that make r go
above and below T several times. For simplicity, we assume that the setpoint
yo = T , although this is not necessarily true in the general case.

To obtain an indication of how well the system is adapting, we can employ
an adapted version of the integral squared error (ISE) property described in
Section 2.5.3.

In this case, we are only interested in accruing a penalty whenever the output
of the system is above the threshold T , therefore we adapt the reward structure
for the error, constraining it to accrue reward only whenever r > T :

[penalty] ≡ (r > T, (r − T)2) (2.9)

Then, we can employ an expression analogous to Expression 2.8 to quantify the
accrued penalty while the system adapts:

35

T

t

r(t) T

r(t)

Figure 2.7: Example of RUBiS performance response with accrued positive
squared error.

R
[penalty]
=? [♦�‖r − T‖ < εq] ≡ R

[penalty]
=? [♦ t = [ts,ε]] (2.10)

We can observe that the accrued error corresponds to the colored areas
enclosed by T and r(t) in the Figure 2.7. Since negative error (i.e., when r < T)
does not constitute a violation of the response time threshold, we do not accrue
it, in contrast with the more general property described in Section 2.5.3.

2.7 Roadmap and Future Work
In this document, we have identified key properties in control that can consti-
tute a valuable resource to quantify relevant aspects of non-functional run-time
behavior in self-adaptive systems. Furthermore, we have discussed the kind of
abstractions that can help us bridge the gap between the world of continuous
system dynamics in which control properties are typically characterized, and
the world of discrete state spaces on which self-adaptive system attributes are
measured. Basing on these abstractions, we have presented a possible char-
acterization of a core set of key control properties captured in temporal logic
languages that can be employed as input for off-the-shelf run-time verification
tools and model checkers. Finally, we discussed an example of how the charac-
terization of control properties that we have given can be adapted to capture
properties of concerns in the context of self-adaptive systems.

The material in this document covers an exploratory effort that tackles two
of the broad initial goals set to bridge the gap between control and self-adaptive
system properties (identification and characterization).

However, our long term goal is understanding if control theory can be used
as a formal foundation for self-adaptation, and if so, under what conditions it
can be applied. To move towards that goal, further work is needed in terms of

36

identifying correspondences and complementarities between properties in con-
trol and self-adaptive systems.

Apart from mapping such correspondences and complementarities, our next
steps will involve identifying use cases for properties both on the control and
self-adaptation sides, as well as exploring them on an end-to-end application in
a real system.

Other related items for further discussion that dovetail with some of the
questions discussed in this document include:

• Real-time guarantees in self-adaptive systems. Is it possible to adapt
parts of the theories and mechanisms employed in control to provide real-
time guarantees in self-adaptive systems operating under different types
of uncertainty?

• Formal assessment. Can we employ the characterization of control prop-
erties to formally assess the correctness of implementation of controllers?
What kind of guarantees can we provide about controllers employing for-
mal verification tools?

• Reconciling multi-step adaptation and control properties. Some control
properties like stability only make sense when inputs to the system are
fixed. However, self-adaptive systems are typically subject to changing
conditions during which the system needs to perform multiple changes
on the controlled system that may include driving it to a quiescent state
before further changes can be applied, and ultimately, the system can
be stabilized. For an effective use of control theory in self-adaptation, it
is important to understand how some properties in control map to self-
adaptive systems that involve complex multi-step adaptations.

• Transparency. Understanding the rationale for system adaptation. An im-
portant emerging quality of autonomous systems (including self-adaptive
systems) is the ability to know what the system is doing and why. Rather
than functioning as a black box it is critical for such as system to be able
to “explain” its actions. Thankfully, when using formal models (either
from control theory or from adaptive systems) the system should be able
to translate its calculations of control actions into terms that an operator
of the system would understand. Finding systematic ways to explain the
kinds of models, properties and actions considered in this report require
additional research.

• Evolvability/Openness. In the context of software-intensive adaptive sys-
tems, change is the rule not the exception. Changes can include require-
ments for the system, preferences on system qualities, possible control ac-
tions that might be taken, and new operating conditions. In many cases
such changes cannot be forseen at system design time. Hence it is impor-
tant for adaptive systems to be easily evolved. This raises the question of
how best to architect adaptive systems to enable ease of change. A crit-
ical component of that is keeping a system open to further modification,
although the nature of that openness is an important research question.

37

Bibliography

[1] R. Vilanova and A. Visioli. PID Control in the Third Millennium: Lessons
Learned and New Approaches. Advances in Industrial Control. Springer
London, 2012.

[2] S. Boyd, C. Baratt, and S. Norman. Linear controller design: limits of
performance via convex optimization. Proceedings of the IEEE, 78(3):529–
574, Mar 1990.

[3] K.J Åström and R.M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[4] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and
Yaniv Sa’ar. Synthesis of reactive(1) designs. J. Comput. Syst. Sci.,
78(3):911–938, 2012.

[5] Nicolás D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchi-
tel. Synthesising non-anomalous event-based controllers for liveness goals.
ACM Tran. Softw. Eng. Methodol., 22, 2013.

[6] Amel Bennaceur and Valérie Issarny. Automated synthesis of media-
tors to support component interoperability. IEEE Trans. Software Eng.,
41(3):221–240, 2015.

[7] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’89, pages 179–190, New York, NY, USA,
1989. ACM.

[8] Dimitra Giannakopoulou and Jeff Magee. Fluent model checking for event-
based systems. In Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium
on Foundations of software engineering, ESEC/FSE-11, pages 257–266,
New York, NY, USA, 2003. ACM.

[9] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engi-
neering, 26:978–1005, October 2000.

[10] Emmanuel Letier and Axel van Lamsweerde. Agent-based tactics for goal-
oriented requirements elaboration. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 83–93, New York,
NY, USA, 2002. ACM.

38

[11] Raman Kazhamiakin, Marco Pistore, and Marco Roveri. Formal verifica-
tion of requirements using spin: A case study on web services. In Proceed-
ings of the Software Engineering and Formal Methods, Second International
Conference, SEFM ’04, pages 406–415, Washington, DC, USA, 2004. IEEE
Computer Society.

[12] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás
D’ippolito, Ilias Gerostathopoulos, Andreas Berndt Hempel, Henry Hoff-
mann, Pooyan Jamshidi, Evangelia Kalyvianaki, Cristian Klein, et al. Con-
trol strategies for self-adaptive software systems. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 11(4):24, 2017.

[13] Peter R. Lewis, Lukas Esterle, Arjun Chandra, Bernhard Rinner, Jim
Torresen, and Xin Yao. Static, dynamic, and adaptive heterogeneity in
distributed smart camera networks. ACM Trans. Auton. Adapt. Syst.,
10(2):8:1–8:30, June 2015.

[14] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás
D’Ippolito, Ilias Gerostathopoulos, Andreas Berndt Hempel, Henry Hoff-
mann, Pooyan Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip
Krikava, Sasa Misailovic, Alessandro Vittorio Papadopoulos, Suprio Ray,
Amir Molzam Sharifloo, Stepan Shevtsov, Mateusz Ujma, and Thomas
Vogel. Control strategies for self-adaptive software systems. TAAS,
11(4):24:1–24:31, 2017.

[15] K.J. Åström and R.M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2010.

[16] A. Simpkins. System identification: Theory for the user, 2nd edition (ljung,
l.; 1999) [on the shelf]. IEEE Robotics Automation Magazine, 19(2):95–96,
2012.

[17] Rice University Bidding System. http://rubis.ow2.org.

[18] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper An-
dersson, Marin Litoiu, Bradley R. Schmerl, Gabriel Tamura, Norha M. Vil-
legas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly
Bencomo, Yuriy Brun, Bojan Cukic, Ronald J. Desmarais, Schahram Dust-
dar, Gregor Engels, Kurt Geihs, Karl M. Göschka, Alessandra Gorla, Vin-
cenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Antónia Lopes,
Jeff Magee, Sam Malek, Serge Mankovski, Raffaela Mirandola, John My-
lopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm
Schäfer, Richard D. Schlichting, Dennis B. Smith, João Pedro Sousa, Ladan
Tahvildari, Kenny Wong, and Jochen Wuttke. Software engineering for self-
adaptive systems: A second research roadmap. In Rogério de Lemos, Holger
Giese, Hausi A. Müller, and Mary Shaw, editors, Software Engineering for
Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Ger-
many, October 24-29, 2010 Revised Selected and Invited Papers, volume
7475 of Lecture Notes in Computer Science, pages 1–32. Springer, 2010.

[19] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

39

[20] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-
time rewards model-checked. In Formal Modeling and Analysis of Timed
Systems: First International Workshop, FORMATS, volume 2791 of LNCS,
pages 88–104. Springer, 2003.

[21] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Stochastic
model checking. In Formal Methods for Performance Evaluation, 7th In-
ternational School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM, volume 4486 of LNCS, pages
220–270. Springer, 2007.

[22] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco
Hernández-Rodriguez. Brownout: building more robust cloud applications.
In 36th International Conference on Software Engineering, ICSE ’14, Hy-
derabad, India - May 31 - June 07, 2014, pages 700–711, 2014.

40

