
Breaking the Vicious Circle: Self-Adaptive
Microservice Circuit Breaking and Retry

Mohammad Reza Saleh Sedghpour ∗, David Garlan †, Bradley Schmerl †, Cristian Klein ∗, Johan Tordsson ∗
∗ Department of Computing Science, Umeå University, Umeå, Sweden. {msaleh, cklein, tordsson}@cs.umu.se
† School of Computer Science, Carnegie Mellon University, Pittsburgh, USA. {garlan, schmerl}@cs.cmu.edu

Abstract—Microservice-based architectures consist of numer-
ous, loosely coupled services with multiple instances. Service
meshes aim to simplify traffic management and prevent mi-
croservice overload through circuit breaking and request retry
mechanisms. Previous studies have demonstrated that the static
configuration of these mechanisms is unfit for the dynamic
environment of microservices. We conduct a sensitivity analysis
to understand the impact of retrying across a wide range of
scenarios. Based on the findings, we propose a retry controller
that can also work with dynamically configured circuit breakers.
We have empirically assessed our proposed controller in various
scenarios, including transient overload and noisy neighbors while
enforcing adaptive circuit breaking. The results show that our
proposed controller does not deviate from a well-tuned configura-
tion while maintaining carried response time and adapting to the
changes. In comparison to the default static retry configuration
that is mostly used in practice, our approach improves the carried
throughput up to 12x and 32x respectively in the cases of transient
overload and noisy neighbors.

Index Terms—reliability, retry mechanism, circuit breaker
pattern, service mesh, microservices

I. INTRODUCTION

In recent years, microservices have emerged as a popular
architectural style for designing and building software systems.
This architectural style involves building applications that
comprise hundreds (or even thousands) of small services with
multiple instances that function as independent and cohesive
processes communicating via messages [1]. Due to their per-
ceived benefits, such as flexibility, simplicity, and scalability,
over traditional approaches, there has been a surge of interest
in adopting microservices in various areas, including IoT
applications [2], [3], [4], big data processing [5], [6], [7], and
high-performance computing (HPC) [8], [9], [10].

In a microservice architecture, network latency, resource
overutilization, and service failures can cause short-term is-
sues. These types of failures can impact the overall perfor-
mance of the application. While transient failures are not
exclusive to microservices, the distributed nature of their archi-
tecture makes them more prone to such failures, particularly
when compared to monolithic applications [11]. Thus, manag-
ing inter-service communication and traffic in microservices
architecture can be challenging due to the high degree of
complexity and interdependence of the services.

Service meshes provide an infrastructure layer that inte-
grates directly into microservices, abstracting the network
and providing functionalities such as service discovery, load
balancing, traffic management, security, observability, and

policy enforcement [12]. Circuit breaking and retry mech-
anisms are among the various traffic management policies
offered by service meshes. The retry mechanism improves
application performance and service availability, preventing
permanent failures due to transient failures of services or
network congestion, while circuit breaking rejects incoming
requests to maintain latency at the expense of availability,
increasing the application’s robustness and resilience against
transient failures of dependent services [13], [14].

Despite the recent interest in service meshes both in
academia and industry [15], few studies have investigated
performance tuning of such resiliency patterns during (tran-
sient) failures. In a previous study, we demonstrated the diffi-
culty of configuring the circuit breaker and retry mechanism
to achieve maximum throughput while keeping the carried
response time at a minimum level [13]. This challenge is
particularly pronounced in dynamic application environments
where changes such as increased workload, variations in the
number of replicas, or the release of new replica versions with
higher resource utilization are frequent. In another study, we
proposed an adaptive circuit breaker mechanism that improves
the throughput of a single service application, while maintain-
ing the carried response time [14].

When using both retry and circuit breaker mechanisms
together, there are complex, non-linear interactions between
their configuration parameters that are often complex and
counterintuitive. Therefore, it is essential to develop automated
techniques for configuration optimization that accounts for
these interactions. To address such challenge for all services
in a microservice-based application for a transient failure
scenario, this work seeks to answer two research questions:

RQ1. How should the retry mechanism be configured to
improve the resiliency of a microservice, in particular
when circuit breaking is used?

RQ2. How is the answer to RQ1 affected for complex
architectures with multiple microservices?

To address these questions, we performed a series of exper-
iments to extract a dataset containing multiple features (See
Table II) as the input of sensitivity analysis. We conducted a
sensitivity analysis using Structural Equation Modeling (SEM)
to determine the impact of configuration parameters of both the
circuit breaker and retry patterns, and environmental changes
on the performance of the application (Section III). Based on
our findings from the sensitivity analysis, we propose a con-



troller that improves throughput by dynamically adjusting the
number of retry attempts and retry timeout without negatively
affecting carried response time (Section IV). We evaluate the
proposed controller against multiple static configurations in
various experiments and traffic scenarios (Section V).

The presented experiments spanned 85 hours and involved
generating more than 4.9 million requests. The proposed
controller effectively mitigates overload and failures in down-
stream services and helps prevent the occurrence of limp lock
problems [16]. In general, the proposed controller improved
the carried throughput throughout the experiments (10 min-
utes) up to 12x and 32x in comparison to the static default retry
configuration that is mostly used in practice in case of transient
overload and noisy neighbors respectively while maintaining
the carried response time. Our code and tools1 are publicly
available.

II. BACKGROUND AND RELATED WORKS

In this section, we discuss previous studies relevant to the
work presented herein and our previous work on adaptive
circuit-breaking mechanism.

A. Traffic engineering

1) Network level traffic engineering:
a) Dropping requests: Dropping requests as a means of

managing system performance is a technique that has been
in use for many years. For example, the random early detec-
tion (RED) algorithm has been used to manage congestion
and prevent packet loss [17]. RED is designed to randomly
drop packets before the router’s buffer becomes full, thereby
reducing the likelihood of congestion and improving overall
network performance. Similar load-shedding techniques have
been applied to data stream processing systems to improve
system scalability and maintain response times under over-
loads [18], [19]. The idea behind load shedding is to selec-
tively drop requests or reduce the quality of service for low-
priority requests to prioritize more important ones. Several
load-shedding techniques have been proposed in the literature,
including probabilistic load shedding, feedback control, and
adaptive filtering. These techniques are designed to dynami-
cally adjust the load-shedding policy based on system work-
load and performance metrics, thereby maximizing system
performance while maintaining a high level of service quality.

b) Retransmission (retry): In the early days of packet
network intercommunications, the idea of retransmission
(retrying) a failed or not delivered request was essential for en-
suring reliable data transmission. This concept was developed
to overcome the limitations of early networking technology,
which suffered from poor reliability due to network conges-
tion, hardware failures, and other factors [20].

2) Application level traffic engineering:

1https://doi.org/10.5281/zenodo.8189211

a) Circuit breaker: The circuit breaker design pattern
is extensively employed in software development to detect
failures and encapsulate the process of avoiding recurring
failures in situations such as maintenance, temporary out-
ages of external systems, or unforeseen system issues. This
facilitates quicker failure of the system. This pattern was
officially introduced in [21]. From an industrial perspective,
the earliest library that implemented the circuit breaker pattern
was Hystrix. It entails enveloping Java code in a mechanism
that can be regulated by the circuit breaker [22]. Surendro
and Sunindyo present a comprehensive summary of current
research on circuit breakers, maps the subject of research, and
identify potential directions for future research [23].

Several studies focus on different implementations of such
patterns. For instance, Montesi et al. distinguish three discrete
circuit breaker patterns [24]. The first one is known as the
client-side circuit breaker pattern, where each client features
a distinct circuit breaker that intercepts calls to all external
services the client may invoke. The second one is the service-
side circuit breaker pattern, where all client requests received
by a service are initially processed by an internal circuit
breaker, which determines whether the request should be
processed or not. The third pattern is called the proxy circuit
breaker pattern, in which circuit breakers are employed in a
proxy service that acts as an intermediary between clients and
services and manages all incoming and outgoing messages.
The latter category includes service mesh-based technologies
as they introduce a sidecar proxy.

Some studies model the behavior of circuit breaker pattern
alongside other resiliency patterns for a single service applica-
tion [25], [26], while another work illustrated the advantages of
employing Envoy as a sidecar proxy to enhance the resiliency
of microservices via mechanisms such as retry, circuit breaking
patterns, and rate limiting [27].

Finally, many use cases have explored the benefits of service
meshes, including research conducted in the context of the
5G core [28], [29], as well as efforts to enhance scheduling
algorithms [30], [31].

b) Retry mechanism: Retry mechanisms are a well-
known strategy in distributed systems that generate a new
request in response to a failed initial request, either to the same
instance of the called service or to a different one [32]. This
process can occur multiple times, with the maximum number
of attempts specified by a retry attempt parameter and the time
interval between consecutive retries set by a retry timeout.

Heorhiadi et al. introduced Gremlin, a framework that en-
ables systematic testing of the failure-handling capabilities of
microservices [33]. Gremlin facilitates the design of tests that
incorporate resiliency patterns, including retry mechanisms,
thereby simplifying the task for the operator. In previous
work, we conducted an empirical investigation to uncover
the effects of various resiliency patterns, including circuit
breaking and retry mechanisms, in different scenarios [13].
Raj Karn et al. emphasized the utilization of resiliency patterns
within the Istio service mesh to enable automated testing and
enhancement of the resiliency of microservices [34].



Listing 1 Overview of the study process.
1- Conduct a series of experiments with

the experimental space in Table I to
extract a dataset.

2- Perform the SEM on the extracted
dataset in the previous step to explore
the relation between variables.

3- Design and implement the retry
controller based on the results
from step 3.

4- Evaluate the controller.

B. Adaptive circuit breaking

In a previous study, we proposed an adaptive circuit breaker
mechanism that improves application throughput without com-
promising carried response time [14]. This controller con-
siders multiple performance metrics to monitor the system’s
behavior and adjust the circuit breaker configuration accord-
ingly. Among these metrics, the carried response time of
the service is crucial as it indicates the current system load
and helps identify any potential bottlenecks that may lead to
slow response times. Additionally, tracking the current circuit
breaker configuration enables the identification of the number
of pending requests waiting to be processed by the service and
provides a historical record of the configuration. By leveraging
these performance metrics, the circuit breaker controller can
adjust the circuit breaker thresholds to ensure reliability and
availability while preventing overloading or underutilization.

Algorithm 1 uses the smoothened historic ratio of carried
response time and circuit breaker configuration to compute a
new circuit breaker configuration based on the target carried
response time. By using a smoothed average of the response
time to set the circuit breaker threshold, the algorithm ensures
that the circuit breaker is neither too restrictive, which can lead
to false positives, nor too lenient, which can lead to overload
situations. This approach allows the algorithm to adapt the
circuit breaker threshold to the service’s current performance
and ensure responsiveness and availability under varying load
conditions. However, the performance of the circuit breaker
can be influenced by parameter selection, such as the target
carried response time and the smoothing factor p, which should
be carefully considered when designing the adaptive controller.
The p parameter can affect the controller’s responsiveness by
determining the weight of current measurements compared to
previous measurements. In the current study, we employ this
controller to maintain the latency of the services.

While there has been an increase in academic attention
toward microservices, there are few research studies that
have focused on microservice resiliency patterns. This study
distinguishes itself from prior work in microservice resiliency
by presenting an adaptive controller for retry mechanisms in
the presence of adaptive circuit breaking. The development of
this controller was informed by a sensitivity analysis that drew

upon empirical data regarding various circuit breaker patterns
and retry mechanisms.

III. METHODOLOGY

This section discusses the methodology used in this paper. It
begins with a discussion of the overview of the study process.
Then the experimental methods are discussed. We then present
the sensitivity analysis and its results.

Large microservice-based applications are distinguished by
their dynamic attributes, implying that services and infras-
tructure can undergo frequent changes. Consequently, the
interdependencies between microservices may change rapidly,
leading to complex and unpredictable transient failure pat-
terns. Microservice architectures must be capable of scaling
and adjusting to changing circumstances, which presents a
fundamental challenge in such dynamic environments. In
this context, we conduct a sensitivity analysis on the retry
mechanism and circuit breaker pattern to determine the impact
of each configuration parameter. Subsequently, we utilize the
outcomes of the sensitivity analysis to devise the controller,
which is later assessed through an additional set of experi-
ments. (See Listing 1 for the overview of the study process).

A. Experimental method

1) Subjects and experiments: In this study, we utilized
the two most well-known microservice benchmarks, Online
Boutique and DeathStarBench, as the sample application for
all experiments. Online Boutique is a web-based e-commerce
app that consists of 11 microservices, allowing users to browse
items, add them to a cart, and purchase them [35]. The
architecture of this application is depicted in Fig. 1(a). Our
focus was on one of the application’s endpoints, frontend/cart,
which triggers a chain of three microservices. The frontend
service receives the initial request and then sends one request
to the recommendation service, while the product catalog ser-
vice receives four requests. Additionally, the recommendation
service sends a request to the product catalog service. Thus, six
internal requests are necessary to provide a successful response
to the external client.

The DeathStarBench is a benchmark suite designed to
evaluate the performance of datacenter-scale systems [36]. One
of the applications in the suite is the Hotel Reservation, which
models a hotel reservation system. For this application, our
focus was on frontend/ endpoint, which triggers a chain of 5
services excluding the databases. The frontend service receives
the initial requests and then sends one request to the search
service. The search service then calls Geo service to search
for nearby hotels. The Geo service responds with three hotels
initially and then the search service sends three requests to
profile and rate services for all three hotels. Thus, eight internal
requests are necessary to provide a successful response to the
external client.

To conduct the experiments, we created a tool that deploys
the HTTPmon load generator and applications, along with all
controllers for each service on a repeated basis.



Algorithm 1: Adaptive circuit breaking design [14]
Result: Circuit breaker configuration
Parameters: targetCarriedResponseT ime, p;
while Controller is running do

wait for observation interval (5 seconds);
retrieve currentCarriedResponseT ime, currentCircuitBreakerConfiguration;
notSmoothAlpha = (currentCarriedResponseT ime/max(currentCircuitBreakerConfiguration, 1));
smoothAlpha = (p ∗ smoothAlpha) + (1− p) ∗ notSmoothAlpha;
newCircuitBreakerConfiguration = targetCarriedResponseT ime/smoothAlpha;
setnewCircuitBreakerConfiguration;

end

Frontend

Recommendation

Checkout

Ad Service

Product
Catalogue

Email

Payment

Shipping

Currency

Cart Redis
(Cache)

(a) The Online Boutique application is composed of 11 microservices
that are developed in various languages.

Frontend

Recommendation

Search

Reservation

User

Profile

Geo

Rate

MongoDB
(Database)

Memcached
(Cache)

MongoDB
(Database)

Memcached
(Cache)

MongoDB
(Database)

Memcached
(Cache)

MongoDB
(Database)

MongoDB
(Database)

MongoDB
(Database)

(b) The Hotel Reservation (DeathStarBench) is composed of 17 mi-
croservices that are developed in GoLang.

Fig. 1. The architecture of sample applications used in this study.

TABLE I
EXPERIMENTAL SPACE: THE SELECTED VALUES FOR DIFFERENT

PARAMETERS.

Parameter Selected Values
Traffic ratio 0.6, 0.8, 1.0, 1.2, and 1.4

Max requests 1, 5, 10, 20, 50, 500, and 1000
Retry attempts 1, 2, 5, 10, and 20

Timeout per attempt 1ms, 5ms, 10ms, 50ms, and 100ms

2) Testbed setup: Eight bare metal machines running
Ubuntu 20.04 LTS constitute our testbed. Using Kubernetes
1.23.7, Docker 20.10.16 [37], and Istio 1.14.0 [38], we created
a cluster that comprises of one control plane node and seven
worker nodes. Each worker node possesses two Intel Xeon
E5430 2.66 GHz CPUs (with four cores and hyper-threading
enabled), 16GB of RAM, and a 256 GB NVMe drive.

3) Tools and instrumentation:

a) HTTPmon: An open-source tool named HTTP-
mon [39] is utilized to produce HTTP traffic and simulate
load. This tool allows customization of parameters such as
the number of concurrent requests, duration, and think time.
To model short-lived sessions with concurrent clients, this tool
employs an open model.

b) Monitoring stack: Resource utilization metrics are
collected using the Prometheus 2.31.1 [40]. In addition, traffic
performance metrics are gathered using Istio sidecar proxies’
monitoring capabilities along with Prometheus.

c) Important definitions: Here we present the definitions
we used in our experiments.

Capacity: This refers to the maximum number of successful
requests per second that the system can handle while keeping
the response time below a threshold of 100 ms.

Latency: This refers to the carried response time of requests
at the 95th percentile, which is considered a good indicator of



TABLE II
THE DEFINITION OF EACH CONFIGURATION PARAMETER AND METRIC.

Feature/Column Type Description
traffic Configuration Parameter The incoming traffic to the application.

retryAttempt Configuration Parameter The maximum number of times the sidecar proxy attempts to connect to a
service if the initial call fails.

retryPerTryTimeout Configuration Parameter The interval between retries when attempting to connect to a service.
circuitBreakerMaxRequests Configuration Parameter It specifies the size of the queue in the circuit breaker’s configuration.

successRate Monitored metric It shows the number of successful requests.
failureRate Monitored metric It shows the number of failed requests.

circuitBrokenRate Monitored metric It shows the number of circuit broken requests (rejected due to circuit breaker
configuration).

carriedResponseTime Monitored metric It shows the 95th percentile carried response time.
retryRate Monitored metric It shows the number of retried requests.

user experience [41] while also being less affected by outliers
than higher percentiles.

d) Important tuning parameters: We utilized Istio to
enforce and evaluate the configuration of circuit breaker and
retry mechanisms. Here we present the parameters we used
for the circuit breaker and retry mechanism.

circuitBreakerMaxRequests: This parameter represents the
maximum number of requests per second that can be trans-
mitted through the circuit breaker to the service [42].

retryAttempt: This parameter specifies the number of times
a sidecar proxy should retry establishing a connection to a
service in case the initial attempt fails [43].

retryPerTryTimeout: This parameter sets the duration of the
timeout for each retry attempt, including the initial attempt.

B. Sensitivity analysis

To answer RQ1, we perform a sensitivity analysis. It enables
us to determine the impact of various factors on the perfor-
mance of services in a microservice application. Specifically,
we focus on the effects of circuit breakers, retry patterns and
changes in environmental parameters such as traffic on the
performance of services.

To gather data for the sensitivity analysis, we set up
various values for different parameters in the load generator,
retry mechanism, and circuit breaker pattern. These selected
values are presented in Table I. Each experiment spanned five
minutes, with the first minute of each experiment serving as
a warm-up phase. Throughout the experiments, we monitored
the throughput and latency of each service within the Online
Boutique and Hotel Reservation.

1) Model specification: After completing the experiments,
we assembled a dataset containing multiple features, as out-
lined in Table II. Subsequently, we employ covariance-based
structural equation modeling (CB-SEM) as a statistical tech-
nique to analyze the relationships between the input param-
eters and measured values. By utilizing the CB-SEM, we
can analyze multiple dependencies concurrently and model
the causal relationships between variables while accounting
for measurement errors and the covariance structure of the
data [44], [45]. It also enables us to estimate latent variables,
which are unobservable variables that are inferred from ob-
servable indicators [46].

Observed Variable

Configuration Parameter

Latent Variable

service_time

carriedResponseTime

1.000

circuitBrokenRate

-0.018
p-val: 0.00

failureRate

-0.436
p-val: 0.00

-0.025
p-val: 0.00

retryRate

8.651
p-val: 0.00

0.005
p-val: 0.00

-0.040
p-val: 0.00

successRate

-0.120
p-val: 0.01

-0.003
p-val: 0.00

circuitBreakerMaxRequests

-0.004
p-val: 0.00

retryAttempt

7.474
p-val: 0.00

-2.073
p-val: 0.00

retryPerTryTimeout

-150.490
p-val: 0.00

817.719
p-val: 0.00

traffic

0.014
p-val: 0.00

0.132
p-val: 0.00

0.477
p-val: 0.00

1.669
p-val: 0.00

Fig. 2. The structural model represents the relationship between configured
parameters (light green) and measured throughput and latency (light yellow).

In this study, a structural model is employed for SEM
analysis to test the proposed relationships between variables
and latent variables (The latent variable is extracted using prin-
cipal component analysis). The model verifies the conceptual
representation of these relationships and determines whether
the proposed model is suitable for representing them.

2) Model analysis: The initial idea is to see how input
parameters (traffic,circuitBreakerMaxRequests, retryAttempt,
and retryPerTryTimeout) impact the throughput and latency
(successRate, failureRate, circuitBrokenRate, retryRate, and
carriedResponseTime). The definition of each parameter is
shown in Table II. To this end, we tried various models, and the
best model/relationship with the minimum error is reported in



TABLE III
DESCRIPTIVE INFORMATION OF MODEL FIT INDEX [47].

Statistic Recommended Value Obtained Value
Degrees of Freedom(DoF ) - 22
χ2 - 33.398
χ2/DoF <3.00 1.518
χ2 − p >0.05 0.056
Comparative Fit Index (CFI) >0.90 0.984
Goodness of Fit index (GFI) >0.90 0.957
Adjusted Goodness of Fit index (AGFI) >0.90 0.922
Normed Fit Index (NFI) >0.90 0.957
Tucker-Lewis Index (TLI) >0.90 0.972
Root Mean Square Error of Approximation (RMSEA) <0.08 0.051

Fig. 2 and Table. III. Fig. 2 shows that the model includes five
endogenous variables (output variables) and four exogenous
variables (input variables) and two latent variables for Online
Boutique. The relationships in the model include direct effects.
The direct effects are represented by the arrows. For example,
the arrow from variable circuitBrokenRate is regressed onto
traffic with an estimated coefficient of 0.132. This means that
a one-unit increase in traffic is associated with a 0.132 unit
increase in circuitBrokenRate, holding all other variables in the
model constant. The most important point about this model is
that it shows the direction of the impact of tuning parameters
on performance metrics. This means that we can use SEM to
determine how changes in a given parameter affect the overall
performance of the model.

However, it is important to note that while SEM can provide
insight into the direction of impact, the magnitude of the effect
depends on the application and other factors. For instance, we
also extracted the best-fit model for all services in the Hotel
Reservation application. The results showed that the models
had consistent and similar directional relationships between
the variables, although the magnitudes of these relationships
differed between the two applications. These findings suggest
that the SEM models used in this study are generalizable,
and can be applied to other microservice applications to
gain insights into the impact of these variables on service
performance. With this in mind, the key points to consider
for the retry mechanism based on Fig. 2 are:

• Increasing the number of retry attempts, referred to as the
retryAttempt, is found to have a detrimental impact on the
successRate and a beneficial impact on the retryRate.

• Increasing the value of retryPerTryTimeout has a notable
negative impact on the failureRate, but a positive effect
on the successRate.

• To counteract the impact of retryRate on successRate,
which is caused by the positive effect of failureRate on
retryRate, it is recommended to configure the retryAt-
tempt in the opposite direction of the failureRate.

• If the failureRate is on the rise, it would be logical to in-
crease the retryPerTryTimeout to counteract the negative
influence of failureRate on both successRate (indirectly)
and carriedResponseTime (directly).

With an understanding of the effects of input parameters on
system outputs, the necessary information has been obtained
to enable the design of a controller that can maintain input
parameters at the desired target values.

IV. CONTROLLER DESIGN

While circuit breakers have shown to be effective in im-
proving the reliability and availability of microservices (See
Section II-B), simply employing them may not be enough to
improve the overall throughput of the system. In fact, in a
complex microservice-based architecture, employing a circuit
breaker may even lead to decreased throughput due to its
restrictive nature. To address this issue, a retry controller can
be employed to improve the throughput by allowing failed
requests to be retried in a controlled and efficient manner.
In this context, we present a retry controller that works in
conjunction with a circuit breaker controller to enhance the
performance of microservice-based architectures. Fig. 3 shows
the overview of the flows between components in our study.

To design an effective controller for the retry mechanism in
a microservice-based architecture, several critical performance
metrics must be considered, as detailed in Section III-B. While
a circuit breaker controller can help maintain system reliability
and availability by adjusting the circuit breaker threshold
based on observed performance metrics, simply employing
a circuit breaker controller may not be enough to improve
the throughput in a complex microservice-based architecture.
Instead, a retry controller must be employed to optimize the
performance of the service. One of the key metrics that a retry
controller should consider is the service carried response time,
which has a direct impact on the user experience. Monitoring
the carried response time allows the controller to adjust the
retry configuration and prevent users from experiencing long
wait times or timeouts due to failed requests. Additionally,
the number of failed requests and the circuit breaker state
must also be taken into account to avoid overloading the
service with excessive retry requests. By dynamically adjusting
the retry configuration based on these performance metrics,
the controller can optimize the performance, reliability, and
availability of the service.

Our control design draws inspiration from the additive
increase, multiplicative decrease algorithm, which was ef-
fectively employed for Transmission Control Protocol (TCP)
congestion control. We believe that incorporating proven tech-
niques that have been used for over three decades and are easy
to implement, can lead to a more robust solution [48].

The presented Algorithm 2 outlines an adaptive retry mech-
anism controller that aims to configure the retry timeout and
retry attempt based on the observed service performance. The
controller takes in the target carried response time as input and
proceeds to a loop that waits for an observation interval of 5
seconds. It is because the scrape interval in our monitoring
stack (Prometheus) is configured to be 5 seconds which is
the minimum possible configuration. This timing affects the
responsiveness of our controller to the changes. Within this
loop, the current number of failed requests and the current
number of circuit-broken requests are retrieved and treated as
not responded requests. The controller also obtains the current
carried response time. If the current carried response time
exceeds the target carried response time or if there are unan-



Service A

Metric Collection
Sidecar
Proxy

Service A Pod

Configuration
Monitoring

Monitroing

Istio Control Plane
ConfigurationCircuit Breaker

Controller

Configuration
Retry Controller

Traffic
HTTPMon

(Load Generator)

Fig. 3. The overview of different flows between proposed controllers and applications/services.

Algorithm 2: Adaptive retry mechanism design considering the circuit breaker configuration
Result: Retry mechanism configuration
Parameters: targetCarriedResponseT ime ;
// As the minimum possible retry timeout is 1ms
maximumRetryAttempt = targetCarriedResponseT ime;
while Service is running do

wait for observation interval (5 seconds);
retrieve currentFailedRequests, currentCircuitBrokenRequests, currentCarriedResponseT ime;
notRespondedRequests = currentFailedRequests+ currentCircuitBrokenRequests;
if (currentCarriedResponseT ime > targetCarriedResponseT ime)or(notRespondedRequests > 0) then

retryAttempt = int(retryAttemp/2);
else

retryAttempt = retryAttemp+ 1;
end
retryPerTryT imeout = max(1, int(targetCarriedResponseT ime/retryAttempt));
set retryAttempt,retryPerTryT imeout;

end

swered requests (notRespondedRequests), the controller cuts
the retry attempt by half, implementing an exponential backoff
for retry attempts. Conversely, if the current carried response
time is less than or equal to the target carried response time,
the controller increases the retry attempt by one. The retry
timeout is then calculated as the target carried response time
divided by the retry attempt, with a minimum retry timeout of
1 ms. The maximum retry attempt initially matches the target
response time. Finally, the controller sets the retry attempt and
retry timeout. By dynamically adjusting the retry configuration
based on important performance metrics such as the carried
response time and the number of unanswered requests, the
controller can optimize the performance of the application.

V. PERFORMANCE EVALUATION

We conducted a series of experiments to assess the effec-
tiveness of the suggested controller. During these experiments,
we enforced the circuit breaker controller for all services and
compared the retry controller to static retry configurations.
To ensure that the proposed retry controller architecture can
handle unexpected or abnormal situations that may occur in a
production environment, we evaluated it in two different sce-
narios, transient failures, and noisy neighbors [49]. Transient
overload refers to a temporary surge in traffic that exceeds
the capacity of a service, which can lead to degradation in
performance or even service failure. Noisy neighbors, on the

other hand, refer to situations where a service is impacted by
the resource usage of other services, which can also result in
degraded performance or failure.

A. Transient overload

As microservices are dynamic systems, the controllers for
circuit breaker pattern (See Section II-B) and retry mechanism
must be able to adapt to changes to maintain resiliency. To test
the effectiveness of our proposed controller for the retry mech-
anism, we present a series of experiments with the incoming
loads that include spikes in traffic. These experiments were
conducted to evaluate the performance of our controller under
conditions that more closely resemble real-world scenarios.

In these experiments, the incoming traffic was set at 60%
of capacity most of the time, jumping directly to 140%
of capacity for 10 seconds at 50 seconds intervals. Both
controllers for the retry mechanism and circuit breaker pattern
were enforced for each service. We repeated each experiment
10 times but as there were no significant differences between
the results of replicated experiments we only discuss the
results of individual experiments. Levene’s test is used to
compare similarities across repeated experiments by assessing
the equality of variances [50]. (The achieved p-values are in
the range of 0.72 to 0.78, which is higher than 0.05.)

The results, as shown in Fig. 4 and Table IV, indicate that
the adaptive retry mechanism is more effective than static



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ob
ab

ilit
y Adaptive Retry

1 att. - 1ms TO
1 att. - 25ms TO
1 att. - 50ms TO
2 att. - 1ms TO
2 att. - 25ms TO (Default)
2 att. - 50ms TO
5 att. - 1ms TO
5 att. - 25ms TO
5 att. - 50ms TO

(a) Cumulative density function of carried response times for Online
Boutique.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y Adaptive Retry
1 att. - 1ms TO
1 att. - 25ms TO
1 att. - 50ms TO
2 att. - 1ms TO
2 att. - 25ms TO (Default)
2 att. - 50ms TO
5 att. - 1ms TO
5 att. - 25ms TO
5 att. - 50ms TO

(b) Cumulative density function of carried response times for Hotel
Reservation.

Fig. 4. Performance of both Online Boutique (first column) and Hotel Reservation (second column) in terms of carried response time (a, b) when there are
load spikes (transient overload) and adaptive circuit breaking is enforced.

TABLE IV
THE ACHIEVED THROUGHPUT REGARDING THE RATIO OF SUCCESSFUL

REQUESTS TO TOTAL REQUESTS FOR BOTH APPLICATIONS WHEN THERE
ARE LOAD SPIKES (TRANSIENT OVERLOAD) AND ADAPTIVE CIRCUIT

BREAKING IS ENFORCED.

Retry Configuration Carried Throughput
Online Boutique Hotel Reservation

Adaptive Retry 53.27% 98.52%
1 attempt with 1 ms timeout 52.15% 97.61%

1 attempt with 25 ms timeout 2.00% 82.16%
1 attempt with 50 ms timeout 45.56% 93.78%
2 attempts with 1 ms timeout 0.65% 96.82%

2 attempts with 25 ms timeout
(Default Configuration) 4.41% 59.81%

2 attempts with 50 ms timeout 47.55% 98.51%
5 attempts with 1 ms timeout 0.57% 97.79%

5 attempts with 25 ms timeout 0.63% 98.18%
5 attempts with 50 ms timeout 51.00% 98.41%

retry configurations in improving throughput with 53.27%
and 98.52% for Online Boutique and Hotel Reservation in
DeathStarBench respectively while maintaining carried re-
sponse times during load spikes. Moreover, the static retry
configurations tested included the default retry mechanism
(most are used with 2 retry attempts and 25 milliseconds
of timeout) and additionally, we explored several fine-tuned
retry configurations which were customized for specific appli-
cations. These fine-tuned configurations involved adjusting the
number of retry attempts, timeout values, and other relevant
parameters to optimize the retry behavior for different use
cases. Despite the optimization efforts, the adaptive retry
mechanism still outperformed the static configurations.

Furthermore, there is a significant difference between the
success rate of the Online Boutique and Hotel Reservation in
DeathStarBench. It is because of their different implementa-
tion strategies. Despite the difference, the proposed adaptive
retry mechanism, improved the throughput while maintaining
the response time in comparison to all static retry configura-
tions.

B. Noisy neighbours

In a microservice architecture, the term noisy neighbor
is used to refer to a neighboring service that is causing
poor performance and negatively impacting other services
within the application. When encountering a noisy neighbor, a
common strategy is to retry failed requests. With this approach,
if a request fails due to the noisy neighbor, the system can
attempt to redirect the request to another instance of the same
service. This can potentially improve the overall performance
of the system by reducing the number of failed requests and
minimizing the impact of the noisy neighbor on other services.

In order to replicate the effects of noisy neighbors in the
Online Boutique application, we introduced three versions
of the productCatalogue service. In order to simulate a sce-
nario where one version of the application (v1) is resource-
constrained, we intentionally limited the resources available
to v1 to only one-third of the resources available to the other
versions. This was achieved by applying resource limits in
Kubernetes deployments. By creating a bottleneck in this way,
we aimed to evaluate the performance and resilience of v1
under conditions of resource scarcity. In these experiments, the
incoming traffic was set at 100% of capacity most of the time.
The circuit breaker controller was enforced for each service
in the application. We tested different scenarios where either
a static retry configuration or the proposed retry controller
was enforced for each service. We repeated each experiment
10 times but as there were no significant differences between
the results of replicate experiments we only discussed the
results of individual experiments. Levene’s test is used to
compare similarities across repeated experiments by assessing
the equality of variances (The achieved p-values are in the
range of 0.68 to 0.83, which is higher than 0.05.).

The carried response times and carried throughput ratio of
these experiments are shown in Fig. 5 and Table V. The
results show that the proposed retry mechanism improves
throughput (86.73%) while maintaining the response time at
the minimum possible when there is a noisy version of the
Product Catalogue service and the circuit breaker controller



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Response Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ob
ab

ilit
y

Adaptive Retry
1 att. - 1ms TO
1 att. - 25ms TO
1 att. - 50ms TO
2 att. - 1ms TO
2 att. - 25ms TO (Default)
2 att. - 50ms TO
5 att. - 1ms TO
5 att. - 25ms TO
5 att. - 50ms TO

Fig. 5. Performance of the application in terms of cumulative density function
of carried response time when there is a noisy version of product catalogue
service with limited resources and adaptive circuit breaking is enforced.

TABLE V
THE ACHIEVED THROUGHPUT REGARDING THE RATIO OF SUCCESSFUL

REQUESTS TO TOTAL REQUESTS FOR ONLINE BOUTIQUE WHEN THERE IS A
NOISY VERSION OF product catalogue SERVICE WITH LIMITED RESOURCES

AND ADAPTIVE CIRCUIT BREAKING IS ENFORCED.

Retry Configuration Carried Throughput
Adaptive Retry 86.73%

1 attempt with 1 ms timeout 86.20%
1 attempt with 25 ms timeout 10.71%
1 attempt with 50 ms timeout 52.38%
2 attempts with 1 ms timeout 1.65%

2 attempts with 25 ms timeout
(Default Configuration) 2.62%

2 attempts with 50 ms timeout 48.81%
5 attempts with 1 ms timeout 0.78%

5 attempts with 25 ms timeout 0.74%
5 attempts with 50 ms timeout 0.59%

is enforced.

To sum up, our proposed controller yielded up to 12x
and 32x improvement in carried throughput during the 10-
minute experiments, as compared to the static default retry
configuration that is mostly used in practice, when faced
with transient overload and noisy neighbors, respectively.
This improvement was achieved while maintaining the carried
response time. Additionally, the performance of our controller
does not deviate from the well-tuned retry configuration.

VI. THREATS TO VALIDITY

Despite the careful research design, empirical studies such
as the one presented here inevitably have limitations and
factors that can potentially undermine their validity.

A. External validity

The research was conducted on specific versions and con-
figurations of the study subject – in particular Istio. It is import
to acknowledge that the Istio data-plane has recently seen a
lot of change and can be configured in three main flavours:
side-car, daemonset and ambient (eBPF-based). Variations
in performance between these data-planes could affect the
generalizability of the findings. While we cannot directly apply
our results to other data planes or future versions thereof,

given that we focus on their functionality and not on their
exact implementation, we anticipate that comparable outcomes
could be seen even if alternate data-planes were utilized.
Additionally, the scale of the microservices under investigation
may be perceived as limited in complexity, potentially raising
concerns about the extent to which the findings can be gener-
alized to more complex systems. To address this threat, future
research should encompass a broader range of microservices,
ideally involving hundreds of instances by using tools such as
HydraGen [51] in real-world cloud environments, to ensure the
results’ applicability to real-world scenarios where parameter
space mapping becomes inherently challenging.

B. Internal validity

Internal validity is inevitably affected by the fact that some
design decisions must be made when defining the configura-
tion values to test. Although empirical data analysis practices
suggest that there are no significant differences in the behavior
of the entire stack when using different values, it is impossible
to definitively prove this.

A potential internal validity threat is that a significant
portion of the experiments was performed on bare-metal
servers, which might have impacted the obtained results.
Nevertheless, we deem it unlikely that the specific hardware
chosen for the study would compromise the validity of the
findings. Virtualized platforms are usually utilized to deploy
microservices, which may have performance variations from
bare-metal platforms due to the presence of an additional
scheduling layer and shared hardware resources. Nevertheless,
we do not foresee that the overall validity of the outcomes
would be impacted by employing a bare-metal platform.
https://www.overleaf.com/project/63e627d7349cdf6c63d8c2f1
Another threat to validity is a large number of traffic scenarios.
Due to space limitations, we can only report on a handful
of traffic scenarios, which helped increase the breadth of
conditions tested and improved the reliability and robustness
of our findings. Additionally, we conducted experiments using
different values to further enhance the validity of our results.
Despite these efforts, we did not observe any meaningful
differences from the findings presented in this paper.

VII. DISCUSSION

RQ1 asks ”How should the retry mechanism be configured
to improve the resiliency of a microservice, in particular when
circuit breaking is used? ”

To understand the magnitude of the effect of different tuning
parameters, we conducted a sensitivity analysis using SEM.
Using SEM, we were able to derive the relationship between
the configured parameters of the circuit breaker pattern and
retry mechanism and the measured throughput and latency in
a sample microservice application.

The study revealed several important points about the
retry mechanism. Increasing the number of retry attempts,
or retryAttempt, had a negative impact on the successRate,
while positively affecting the retryRate. Similarly, increasing
the value of retryPerTryTimeout had a negative impact on



the failureRate, but a positive effect on the successRate. To
counteract the impact of retryRate on successRate, which
is caused by the positive effect of failureRate on retryRate,
it is recommended to configure the retryAttempt inversely
proportional to the failureRate. Finally, if the failureRate is
increasing, it is advisable to increase the retryPerTryTimeout to
counteract the negative impact of failureRate on both the suc-
cessRate (indirectly) and the carriedResponseTime (directly).

According to the SEM analysis in a dynamic environment,
adjusting the retryAttempt in the opposite direction of the
failureRate is suggested to mitigate the impact of retryRate on
successRate, which is caused by the positive effect of failur-
eRate on retryRate. Additionally, in case of an increasing fail-
ureRate, increasing the retryPerTryTimeout is recommended
to counteract its negative impact on both the successRate
(indirectly) and the carriedResponseTime (directly).

RQ2 asks ”How is the answer to RQ1 affected for complex
architectures with multiple microservices?”

Based on the findings from answering RQ1, we designed an
adaptive controller that can cope with both transient overload
and the existence of noisy neighbors even when there is an
adaptive circuit breaker mechanism.

The results obtained confirm those reported in [13]. Specif-
ically, our observations indicate that the circuit breaker con-
troller configures a circuit breaker with more restrictive set-
tings to operate at services that are closer to the user or
client-facing interface, thereby enhancing the user experience.
We also noted that the retry controller allows for a limited
number of retry attempts and sets a retry timeout that strikes
a balance between being too low or too high to maximize
the throughput without negatively affecting response times.
Furthermore, when faced with challenges such as noisy neigh-
bors or transient overloads, the retry controller adjusts both
parameters to effectively address the situation.

VIII. CONCLUSION

In summary, this study performs a sensitivity analysis using
SEM to determine the impact of configuration parameters
of both circuit breaker and retry pattern, and environmental
changes on the performance of the application. By using the
lessons learned from sensitivity analysis, this study utilizes
a control theory approach to design a retry mechanism to
enhance application performance, prevent transient failures
and overload, and maintain carried response times. The aim is
to overcome the issues associated with existing approaches
that rely on static configurations by developing a dynamic
retry mechanism. An adaptive controller is suggested, and its
effectiveness is evaluated through experiments that span over
85 hours and involve more than 4.9 million requests. The
evaluations are conducted under various conditions utilizing
diverse static configurations. The findings reveal that the pro-
posed method can successfully adjust the retry configuration
to remediate the performance and latency of the application
in case of transient overload and noisy neighbors when the
adaptive circuit breaker is enforced.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Today, and
Tomorrow,” in Present and Ulterior Software Engineering. Cham:
Springer International Publishing, 2017, pp. 195–216.

[2] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
Computing: A New Paradigm for Edge/Cloud Integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 11 2016.

[3] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City Internet
of Things Platform with Microservice Architecture,” in 2015 3rd Inter-
national Conference on Future Internet of Things and Cloud. IEEE, 8
2015, pp. 25–30.

[4] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach
for the internet of things,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE, 9
2016, pp. 1–6.

[5] J. Gao, W. Li, Z. Zhao, and Y. Han, “Provisioning big data applications
as services on containerised cloud: a microservices-based approach,”
International Journal of Services Technology and Management, vol. 26,
no. 2/3, p. 167, 2020.

[6] J. L. Schnase, D. Q. Duffy, G. S. Tamkin, D. Nadeau, J. H. Thompson,
C. M. Grieg, M. A. McInerney, and W. P. Webster, “MERRA Analytic
Services: Meeting the Big Data challenges of climate science through
cloud-enabled Climate Analytics-as-a-Service,” Computers, Environment
and Urban Systems, vol. 61, pp. 198–211, 1 2017.

[7] R. Laigner, M. Kalinowski, P. Diniz, L. Barros, C. Cassino, M. Lemos,
D. Arruda, S. Lifschitz, and Y. Zhou, “From a Monolithic Big Data
System to a Microservices Event-Driven Architecture,” in 2020 46th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA). IEEE, 8 2020, pp. 213–220.

[8] F. Z. Benchara, M. Youssfi, O. Bouattane, and H. Ouajji, “A new
efficient distributed computing middleware based on cloud micro-
services for HPC,” in 2016 5th International Conference on Multimedia
Computing and Systems (ICMCS). IEEE, 9 2016, pp. 354–359.

[9] C. de Alfonso, A. Calatrava, and G. Moltó, “Container-based virtual
elastic clusters,” Journal of Systems and Software, vol. 127, pp. 1–11,
5 2017.

[10] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, G. Morgan,
and R. Ranjan, “A study on the evaluation of HPC microservices in
containerized environment,” Concurrency and Computation: Practice
and Experience, vol. 33, no. 7, pp. 1–1, 4 2021.

[11] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49, 2018.

[12] K. Ponomarev, “Attribute-based access control in service mesh,” in
Dynamics ’19. Russia: IEEE, 2019, pp. 1–4.

[13] M. R. Saleh Sedghpour, C. Klein, and J. Tordsson, “An empirical
study of service mesh traffic management policies for microservices,”
in Proceedings of the 2022 ACM/SPEC on International Conference
on Performance Engineering, ser. ICPE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 17–27. [Online].
Available: https://doi.org/10.1145/3489525.3511686

[14] M. Saleh Sedghpour, C. Klein, and J. Tordsson, “Service mesh circuit
breaker: From panic button to performance management tool,” in HAOC
’21. USA: ACM, 2021, p. 4–10.

[15] M. R. Saleh Sedghpour and P. Townend, “Service mesh and ebpf-
powered microservices: A survey and future directions,” in 2022
IEEE International Conference on Service-Oriented System Engineering
(SOSE). IEEE, 2022, pp. 176–184.

[16] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S.
Gunawi, “Limplock: Understanding the impact of limpware on scale-
out cloud systems,” in Proceedings of the 4th annual Symposium
on Cloud Computing, ser. SOCC ’13. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2523616.2523627

[17] B. Birscoe and J. Manner, “ Byte and Packet Congestion Notification,”
Internet Requests for Comments, RFC Editor, RFC 7141, February
2014. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7141.txt

[18] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao, “Load shedding in stream
databases: A control-based approach,” in Proceedings of the 32nd
International Conference on Very Large Data Bases, ser. VLDB ’06.
Seoul, Korea: VLDB Endowment, 2006, p. 787–798.

[19] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in Proceedings of the 20th International
Conference on Data Engineering, ser. ICDE ’04. USA: IEEE Computer
Society, 2004, p. 350.



[20] V. Cerf and R. Kahn, “A protocol for packet network intercommunica-
tion,” IEEE Transactions on communications, vol. 22, no. 5, pp. 637–
648, 1974.

[21] N. Michael, “Release it!–design and deploy production-ready software,”
2007.

[22] Netflix, “Hystrix: Latency and fault tolerance for distributed systems,”
2023. [Online]. Available: https://github.com/Netflix/Hystrix/

[23] K. Surendro and W. Sunindyo, “Circuit breaker in microservices: State
of the art and future prospects,” in MSE, vol. 1077. UK: IOP, 2021,
pp. 1–10.

[24] M. Montesi and J. Weber, “Circuit breakers, discovery, and api gateways
in microservices,” 2016.

[25] N. C. Mendonça, C. M. Aderaldo, J. Cámara, and D. Garlan, “Model-
based analysis of microservice resiliency patterns,” in 2020 IEEE
International Conference on Software Architecture (ICSA). IEEE, 2020,
pp. 114–124.

[26] L. J. Jagadeesan and V. B. Mendiratta, “When failure is (not) an
option: Reliability models for microservices architectures,” in 2020 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2020, pp. 19–24.

[27] N. Dattatreya Nadig, “Testing resilience of envoy service proxy with
microservices,” Master’s thesis, KTH, School of Electrical Engineering
and Computer Science, 2019.

[28] B. Dab, I. Fajjari, M. Rohon, C. Auboin, and A. Diquélou, “Cloud-
native service function chaining for 5g based on network service mesh,”
in ICC 2020. USA: IEEE, 2020, pp. 1–7.

[29] M. Akbarisamani, “Service based architecture with service mesh plat-
form in the context of 5g core,” Master’s thesis, Tampere University,
2019.

[30] X. Xiaojing and S. Govardhan, “A service mesh-based load balancing
and task scheduling system for deep learning applications,” in CCGRID
’20. USA: IEEE, 2020, pp. 843–849.

[31] Ł. Wojciechowski et al., “Netmarks: Network metrics-aware kubernetes
scheduler powered by service mesh,” in INFOCOM ’21. USA: IEEE,
2021, pp. 1–9.

[32] Y.-M. Wang, Y. Huang, and W. Fuchs, “Progressive retry for software
error recovery in distributed systems,” in FTCS ’93. USA: IEEE, 1993,
pp. 138–144.

[33] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in ICDCSW
’16. USA: IEEE, 2016, pp. 57–66.

[34] R. R. Karn, R. Das, D. R. Pant, J. Heikkonen, and R. Kanth, “Automated
Testing and Resilience of Microservice’s Network-link using Istio Ser-
vice Mesh,” in 2022 31st Conference of Open Innovations Association
(FRUCT), 2022, pp. 79–88.

[35] Google Inc, “Sample cloud-native application,” 2023. [Online].
Available: https://github.com/GoogleCloudPlatform/microservices-demo

[36] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 3–18.

[37] Docker Inc., “Docker: Accelerated, containerized application
development,” 2023. [Online]. Available: https://www.docker.com/

[38] Istio Community, “Istio: Simplify observability, traffic management,
security, and policy with the leading service mesh,” 2023. [Online].
Available: https://istio.io/

[39] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in ICSE ’14.
USA: ACM, 2014, p. 700–711.

[40] Prometheus Authors, “Prometheus - monitoring system and time series
database,” 2023. [Online]. Available: https://prometheus.io/

[41] J. Dean and L. A. Barroso, “The tail at scale,” Commun.
ACM, vol. 56, no. 2, p. 74–80, Feb. 2013. [Online]. Available:
https://doi.org/10.1145/2408776.2408794

[42] Envoy Community, “Circuit breaking / envoy documentation,” 2023.
[Online]. Available: https://www.envoyproxy.io/docs/envoy/latest/intro/
arch overview/upstream/circuit breaking

[43] Istio Community, “Istio / virtual service - httpretry.” [Online]. Available:
https://istio.io/latest/docs/reference/config/networking/virtual-service/

[44] L.-Y. Hu and P. M. Bentler, “Application of structural equation modeling
in nursing research: a brief review,” Taiwanese Journal of Obstetrics and
Gynecology, vol. 53, no. 4, pp. 520–524, 2014.

[45] G. Dash and J. Paul, “Cb-sem vs pls-sem methods for research in
social sciences and technology forecasting,” Technological Forecasting
and Social Change, vol. 173, p. 121092, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0040162521005254

[46] T. Raykov and G. A. Marcoulides, “Introduction to applied psychomet-
rics,” Routledge, 2005.

[47] D. A. K. Kenny, “Measuring model fit,” 2020. [Online]. Available:
http://davidakenny.net/cm/fit.htm

[48] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
computer communication review, vol. 18, no. 4, pp. 314–329, 1988.

[49] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[50] J. L. Gastwirth, Y. R. Gel, and W. Miao, “The impact of levene’s test
of equality of variances on statistical theory and practice,” Statistical
Science, vol. 24, no. 3, pp. 343–360, 2009.

[51] M. R. Saleh Sedghpour, A. Obeso Duque, X. Cai, B. Skubic, E. Elmroth,
C. Klein, and J. Tordsson, “Hydragen: A microservice benchmark
generator,” in 2023 IEEE 16th International Conference on Cloud
Computing (CLOUD). IEEE, 2023, pp. 189–200.


