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ABSTRACT
In an organization, the interactions users have with soft-
ware leaves patterns or traces of the parts of the systems
accessed. These interactions can be associated with the un-
derlying software architecture. The first step in detecting
problems like insider threat is to detect those traces that
are anomalous. In this paper, we present a method to find
anomalous users leveraging these interaction traces, catego-
rized by user roles. We propose a model based approach to
cluster user sequences and find outliers. Such a technique
could be useful in finding potentially anomalous users, in-
siders, or compromised accounts.We show that the approach
works on a simulation of a large scale system based on and
Amazon Web application style.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
anomaly detection, model-based graph clustering

1. INTRODUCTION
In the contemporary corporate setting, having anoma-

lous users interacting with software is potentially disastrous
and can cost organizations millions of dollars. For instance,
Cummings et al. [12] studied 80 cases of fraud in the fi-
nancial services sector. They found that in most cases, the
users interacted with systems they had access to, due to
their roles in the companies – however, they were behaving
anomalously, compared to how they had behaved before, or
how others in similar roles behaved. They discovered that
the impact of such cases was as high as 28 million dollars.
Similar results were found in other sectors as well - govern-
ment [29], the information technology and telecom sector
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[30] and critical infrastructure sectors [26]. Anomalous be-
havior can be caused by the existence of compromised user
accounts, rogue users, or by less knowledgeable users who
break things at random.

Hawkins defines an anomaly as “an observation that devi-
ates so much from other observations as to arouse suspicion
that it was generated by a different mechanism” [20]. Sim-
ilarly, Johnson defines an anomaly as “an observation in a
dataset which appears to be inconsistent with the remainder
of that set of data” [25]. Many challenges exist in identifying
anomalous behavior since the number of anomalous activi-
ties is much fewer compared to the number of usual activities
(making it like finding a needle in a haystack). The scale of
modern systems, including the number of components they
comprise and the diverse and large set of users that they are
required to interact with, make manual inspection simply
infeasible.

Automated approaches are therefore needed to analyze
user actions and determine which of them are anomalous. To
be applicable, anomaly detection algorithms need to work
for modern and common systems, and ideally need to (a)
scale to the size of systems and number of users, (b) accu-
rately detect anomalies in the presence of diverse and nu-
anced user roles, (c) account for the complex structure and
organization of today’s systems, (d) understand that users
have complex interactions with software systems that in-
volve their interacting with multiple parts of the system, and
(e) be interpretable at a level that enables system adminis-
trators to determine which anomalies are likely to represent
malicious or dangerous behavior.

There has been considerable work in anomaly detection
to try and meet these requirements with varying degrees
of success. There are two general approaches: graph-based
anomaly detection algorithms and activity-based algorithms.
Graph-based approaches analyze organizational structures
(e.g. ego-networks of nodes, communities, and subgraphs).
Altneratively, activity-based methods focus on user behavior
(e.g. number of logins, file access).

None of these approaches consider the possibility of char-
acterizing the interaction of users with the software system
as sequences of interaction events with its constituent com-
ponents. Moreover, the approaches do not consider that or-
ganizational roles are often difficult to define and do not have
precise boundaries. This scenario demands an approach that
applies to complex software eco-systems and overcomes the
aforementioned limitations.

In this paper, we describe an approach that improves upon



existing approaches, since: (a) it can automatically infer or-
ganizational roles based on traces of user behavior through
complex software systems, (b) it can represent complex sys-
tems at a software architecture level of abstraction, enabling
scalability and interpretability, and (c) it can be used in
the context of modern, distributed software systems of large
scale with many users.

The key ideas behind our approach are:

• Use the architectural description of software systems
as the primary graph on which to detect anomalies.
This captures the idea that software systems are not
monolithic entities, and that some anomalies can only
be detected by understanding the ways in which users
interact with many parts of the system;

• A novel model-based graph clustering algorithm that
takes into consideration the sequence of interactions
with components in the system to determine clusters
based on learned roles. This approach detects anoma-
lies by the distance that a particular trace is from any
of the clusters.

We validate our approach by illustrating how it can be
used to detect anomalies on a realistic simulation of an Ama-
zon web application architecture. We inject a hand-crafted
anomalous user into the system and show that our clustering
algorithm is successfully able to find the anomalous user.

The rest of this paper is organized as follows. Section2
reviews the related work. Section 3 provides an overview
of our approach, and how we apply it to the problem of
anomaly detection. We continue by describing an example
and threat scenario in Section 4. In Section 5 we describe
our model-based graph clustering algorithm, and the exper-
imental setup and results in Section 6. Finally, in Section 7
we close by discussing limitations and future work.

2. RELATED WORK
In the past few years, a lot of work has been done in

the field of graph-based anomaly detection. Koutra et al.
present a comprehensive survey on graph-based anomaly de-
tection techniques [4], which can be classified according to
the type of input graph. Specifically, the classification is
generally made according to the availability of: (i) multi-
ple snapshots of the graph, and (ii) edge/node labels. We
present a brief summary of results on existing techniques 1

in Table 1.
For single snapshot graphs with no labels, the approaches

are either structure-based or community-based. Structure-
based approaches generally rely on generating structural fea-
tures (e.g., subgraphs, cliques, ego-networks) and then find-
ing anomalous nodes/edges based on distances between the
points in the generated feature space [3, 22]. Community-
based methods find densely connected groups (i.e., com-
munities) and they classify anomalies as nodes/edges con-
necting two communities [44, 11, 47, 48, 42]. In single
snapshot graphs with attributes over the nodes/edges, the
approaches are similar. However, for structure-based ap-
proaches, the feature space is enhanced due to the presence
of attributes/labels over nodes and edges [33, 31]. Similarly,
community-based approaches take into consideration the at-
tributes over nodes and edges and define anomalies as nodes

1We refer readers to Koutra et al. for a detailed review [4]

whose attribute values differ significantly from that of its
community [16, 32, 35]. For cases in which multiple snap-
shots of the graph at different time instants are available,
the approaches proposed in the literature are feature-based,
community-based and decomposition-based. Feature-based
approaches come up with a metric for each snapshot of
the graph, and then, based on the distance between two
consecutive snapshots, flag a snapshot as anomalous. Dif-
ferent approaches in the literature try various metrics to
better represent the snapshot [41, 7, 18, 36, 6, 28, 34].
Decomposition-based methods involve matrix or tensor de-
composition. Each of these approaches compute the recon-
struction error, which is the distance between the original
matrix and the estimate from the decomposition. The re-
construction errors are monitored to conclude if a partic-
ular snapshot is anomalous or not. Matrix-based meth-
ods use SVD [2, 23], NMF [37], CUR [13, 46] decomposi-
tions, while tensor-based methods use STA (streaming ten-
sor analysis) [45] and PARAFAC [27, 5] to decompose ten-
sors. Community-based approaches keep track of the com-
munities in the graph and indicate if there are structural
or contextual changes. Examples of such approaches in-
clude GraphScope [43], GOutlier [1], Bayesian approach [21],
ECOutlier [19].

Another landmark work in the area of detecting anoma-
lous users is by Ted et al. [39]. The authors create a system
that combines structural and semantic information and an
ensemble of algorithms to detect cases of insider threats on
a corporate database of monitored activities. The features
used were based on the emails, file accesses, group infor-
mation, login information, printer logs, URLs visited, and
other combinations of features. The algorithms were created
for six different threat scenarios. The algorithms were rela-
tional pseudo anomaly detection, relational density estima-
tion, gaussian mixture models, ensemble gaussian mixture
models, repeated impossible discrimination ensemble, cross
prediction, grid-based fast anomaly detection given dupli-
cates, vector space models, temporal based anomaly detec-
tion, community detection, streaming community detection,
seed set expansion, and betweenness centrality monitoring
for streaming graphs. The last few methods are graph-based
methods that work on the efficient graph data structure
STINGER [14]. However, in this work most of the features
are flat (i.e., they were created based on individual activities
without taking into consideration the sequence of activities
followed by users).

All existing works focus on using a feature-based or a
community-based approach to identify anomalous users. More-
over, all of the above mentioned methods assume that data
is available in terms of either a single snapshot or multiple
snapshots of the graph, and that the graph captures infor-
mation about which users are connected. Our input data is
different from the one employed by other techniques, since
the nodes in the graph are components, based on the soft-
ware architecture. We treat each sequence of user events
as a path on these graphs. We propose a model-based se-
quence clustering approach to assign scores to every user,
and based on these scores, discover anomalous user behav-
ior. Our approach captures the full trace of user activities
and tries to find anomalies in each sequence of activities.
This represents an advantage to capture anomalous behavior
(e.g., in the event of an attack), since a particular sequence
of activities that could be considered anomalous could go



Input Graph Type Class of Method Reference Description

Single Graph.
No labels on
nodes/edges

Feature Based
ODDBALL [3] Uses ego net based features. Spots anomalous ego-

networks.
Henderson et. al. [22] Extended the features by recursively combining local

node based features.

Community Based

Sun et. al [44] Used personalized page rank scores to find communities
and also spot outliers with respect to the community.

AUTOPART [11] Transforms the adjacency matrix based on minimum de-
scription length to find communities and classifies cross-
cluster edges as anomalous.

Tong et. al. [47] Uses non-negative residual matrix factorization to spot
strange connections

SCAN [48] Uses neighborhood of vertices to club them together into
communities. Those nodes that are not assigned any
community are marked as outliers.

Single Graph with la-
bels on nodes / edges

Feature Based
Noble et. al. [33] It builds on frequent subgraphs and uses categorical at-

tributes to find the most normative subgraph. The sub-
graphs that are away from the best substructure are
marked as anomalous.

Liu et. al. [31] Primarily designed for detecting non-crashing software
bugs. Every execution is defined as a behavior graph.
Frequent subgraphs are used as features for training in
classification model.

Community Based

CODA [16] Unsupervised learning algorithm to find communities and
spot outliers simultaneously.

GOutRank [32] They select subgraphs and subspaces where anomalies
are easily revealed and score the nodes in those spaces.

FocusCo [35] Approach finds attribute subspace on which nodes agree,
and then finds communities in this subspace. Nodes devi-
ating from the cluster they are in are termed as outliers.

Multiple snapshots of
a graph at different
timestamps

Feature Based

Shoubridge et. al.
[41], Bunke et. al [7],
Gaston et. al [18]

Propose several metrics for capturing a snapshot in the
sequence. Distance between two consecutive snapshots is
used to classify if a particular snapshot is anomalous or
not.

Pincombe et. al. [36] The approach proposed to extract a single feature from
every snapshot and use ARMA method to find anomalies
in the so generated time sequence.

DeltaCon [28] Graph-feature based similarity approach is extended for
discontinuity detection.

Factorization Based

Ide et. al. [23],
Akoglu et. al [2]

The methods use SVD to factorize the adjacency matrix
and then uses eigenvectors to reconstruct the matrix.

Rossi et. al. [37] The proposed approach uses NMF and MDL -based role
extraction algorithm to determine roles of nodes and how
they change over time. Roles are taken as features and
then tracked over time.

COM2 [5], Koutra et.
al. [27]

Use tensor decomposition method PARAFAC to find the
anomalous nodes.

Community Based
GOutlier [1], ECOut-
lier [19], GraphScope
[43]

Community detection methods are based on finding and
keeping track of the communities in the network, and
anomaly is found if there is any structural or contextual
change.

Table 1: Literature review of graph based anomaly detection techniques.

undetected if its constituent activities are considered indi-
vidually. For example, a case of fraud could be that a user
logs-in, downloads the financial database, and sends it via
email to someone outside of the organization. Using existing
techniques, such an activity might not be flagged as anoma-

lous, since those approaches just capture the number of log-
ins, downloads, and emails, which taken into consideration
individually, are not anomalous. However, when this set of
activities are taken into consideration as a sequence, they
are clearly anomalous. Moreover, our approach infers the



role of the user and the expected sequence of activities per-
taining to the roles. The approach outputs a score for every
user, helping to discover the anomalous users and explain
the extent of their anomalies.

3. OVERVIEW OF APPROACH

Execution platform
(Data, Services)

Architectural 
Behavior Graph

Sequence of 
Observed Activities

Organi-
zational
Context

Abstraction
Architectural 

Behavior Abstraction

Combined 
Metrics 

Anomaly Detection 

Figure 1: Overview of our approach.

In this work, we first describe the software system in the
form of a graph. We use a component and connector (C&C)
software architecture [40] description to obtain this graph.
A component and C&C view describes the run-time config-
uration of the software in terms of nodes that perform com-
putation or store data (i.e., components), and edges that
represent communication between components (i.e., connec-
tors). Secondly, we monitor the execution of these software
systems to monitor user activities while they are interact-
ing with the system, to determine interaction traces or se-
quences. A sequence is the order in which users interact with
components along communication paths. These sequences
can easily be employed to characterize paths over the un-
derlying software architecture graph. For example, if a user
accesses component 1 (e.g., a web page) which then inter-
acts with component 2 (e.g., a server) which in turn accesses
data component 3, and next component 1 again, followed by
component 3, we can represent this user as the path 1 → 2
→ 3 → 1 → 3. We visualize our way of converting user
traces to paths on the graph in Figure 2. Once we have
these paths, we apply our model-based clustering to infer
the roles of these users and the transition patterns related
to each of those roles. The clustering algorithm also com-
putes an outlier score, which can be used by an expert later
on to identify users as anomalous. We provide an overview
of our approach in Figure 1.

4. MOTIVATING EXAMPLE AND THREAT
SCENARIO

Modern software applications are built upon flexible in-
frastructures like public and private clouds featuring vir-
tual machines (VMs). The elastic nature of these systems

challenges traditional graph-based security methods because
the individual instances of the VMs, treated as nodes in a
graph, frequently change but will serve the same architec-
tural purpose. For example, a large-scale web system will
elastically add and remove VMs that are serving as web
servers. Because of this architectural interchangability, a
given user’s path of interaction with the instances is gen-
erally predictable, despite the frequent changes in the indi-
vidual VM instances. For example, a typical user request
path might be web server to application server to database
as determined by the logic of the code. However, a subse-
quent request would follow the same general path, but would
likely interact with different web servers, application servers,
and database servers. Therefore, a trace-based method of
anomaly detection is more appropriate for cloud-based soft-
ware systems.

These cloud-based software systems are commonplace in
large corporations, including Target and Home Depot. Both
of these organizations suffered high profile data breaches in
which a compromised system was used to exfiltrate sensitive
data from corporate databases and stage it on internal com-
pany servers. The data was then periodically moved by hid-
ing it in normal network traffic. A trace-based architectural
approach could have learned the normal set of interactions
between the individual compute nodes and potentially iden-
tified the anomalous behavior in time to prevent the breach.

5. MODEL-BASED ANOMALY DETECTION
For the task of finding anomalous patterns from sequences

(which are represented as paths over the software architec-
tural graph), we propose a clustering-based framework. The
clustering-based approach first clusters all the sequences into
an appropriate number of clusters, and then those sequences
that are weakly linked to their respective cluster are marked
as anomalous or outliers.

Clustering behavior sequences is not a trivial task. Gen-
erally, two types of approaches are proposed to cluster ob-
jects – distance-based and model-based. Distance-based ap-
proaches for sequences involve computing distances between
the two sequences and then use any existing clustering ap-
proach. Various ways of computing the distance between
two sequences have been proposed, the most popular being
counting the number of frequent patterns (n-grams) occur-
ring in both sequences [15].

In contrast, model-based approaches try to come up with
a model to explain the observed data. Most of these models
have been proposed in the field of bio-informatics, where
they are used to cluster DNA-sequences. It has been argued

1
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3
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Time User Resource
00:01:01 A 1
00:01:05 A 2
00:01:10 B 1
00:01:11 A 3
00:01:15 B 3
00:01:17 A 4
00:01:18 B 4

Figure 2: User traces of two users from log files modeled
as paths on graphs. Nodes represent resources or compo-
nents(e.g. server) and edges denote the traces of single users.
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Figure 3: Example architecture of Amazon Web application.

that model-based approaches for clustering sequences are
generally better for highly dynamic and large-scale data [8].

We propose a model-based approach to cluster sequences
generated by users when interacting with the software ar-
chitecture graph, and modify it to use to find anomalous
sequences [8]. Each user has a role to play in the organi-
zation, and we assume that the activities a user carries out
during the session is heavily dependent on her role. For
instance, an administrator’s core set of activities may com-
prise checking server logs and running special permission
programs. However, for a software employee, the main ac-
tivities will involve logging in to the system, and running
programs without any special permissions. Once the role is
inferred, a user can choose a sequence of activities from the
sequence distribution conditional to that role. This could be
written as a generative model, in the following way:

1. A user implicitly chooses what cluster she belongs to.
This assignment may depend on her role, or the task
that she wants to perform.

2. Given the cluster, then her behavior, in the form of
a sequence of activities, is generated from the model
from some activity distribution related to that cluster.

As in any model-based approach, it is assumed that data
from different users are generated independently. We also
assume that a user is equally likely to belong to any clus-
ter. The input to the clustering algorithm is the number of

clusters (K) and the sequence data. In the algorithm, each
cluster is associated with a nth-order Markov chain 2. The
probability of an observed sequence x0, x1, x2...xd belonging
to a particular cluster ck is given by:

p(x|ck) = p(x0, ck).

i=d∏
i=1

p(xi|xi−1, ck)

where p(x0, ck) is the probability of x0 being the starting
state of sequences in cluster ck, and p(xi|xi−1) is the transi-
tion probability of moving from state i− 1 to state i in the
model specified by cluster ck.

We can assume that each cluster model can be repre-
sented by a transition matrix which captures the proba-
bility of moving from one state to another in a sequence
which belongs to some cluster. These transition matrices
are represented by θ = (θ1, θ2, θ3....θk). Algorithm 1 starts
by initializing all the transition matrices randomly, and also
initializing sequences into clusters randomly. Then, it keeps
on alternating with E-step and M-Step until it reaches con-
vergence. E-Step assumes that transition matrices are fixed,
and assigns each sequence to a cluster that maximizes the
probability of observing that sequence in the given data.
M-Step assumes that cluster assignments are fixed and up-
dates the transition matrix that can best explain the cluster
assignments. For experimental purposes, we have set the

2The order of the Markov chain can be increased based on
scalability and the history of states to include.



convergence condition as one in which there is little change
(10−4) in the log-likelihood of the data.

Algorithm 1 Model-based sequence clustering algorithm

Input: Number of clusters(K) and sequence data
Output: Cluster assignments and scores
1: Initialize cluster assignments z1, z2, ...zn
2: Initialize transition probability matrices θ1, θ2, ...θk
3: while Not Converged do
4: E-Step: Assign each sequence to most likely cluster
5: for i = 0 to n do
6: zi= arg maxzi

p(x|ci)
7: end for
8: M-Step:Update transition matrices θ1, θ2, ...θk
9: for z = 1 to k do

10: for all sequences in cluster z do
11: Count number of transition edges from a to b in

the sequence.
12: Update transition matrix θz
13: end for
14: end for
15: end while

However, the model also requires as input the number of
clusters. For large datasets, figuring out the number of clus-
ters can be a problem because sequence clustering is sensi-
tive to this parameter. Different number of clusters as input,
could potentially produce very different results, which might
not be consistent with what we are trying to capture, or ex-
plain the data well. To come up with an appropriate number
of clusters, we employ the bayesian information criterion [38]
as described in Algorithm box 2.

Algorithm 2 BIC Algorithm

Input: Candidate range of number of clusters (kmin, kmax)
Input: Number of iterations iters
Output: Number of clusters
1: for k = kmin to kmax do
2: for i = 0 to iters do
3: Cluster using Algorithm 1.
4: Compute log-likelihood l(D; θ)for partition ob-

tained using Algorithm 1 .

5: Calculate BIC value = l(D; θ)− k log(n)
2

6: end for
7: Choose highest BIC value for this cluster k
8: end for
9: Return k corresponding to highest BIC values among all

clusters

To find outliers, we take into consideration the probabil-
ity value with which each sequence may be part of the each
cluster. The sequences with high membership scores, which
form clusters of their own are candidates for anomalous se-
quences. We can display these sequences, along with their
scores in a sorted fashion. Based on the analyzer’s cogni-
tion, the top M nodes can be marked as outliers. A sorted
list of such outliers with their probability scores can then be
presented to the analyst, who can then filter out the false
positives, and also take into consideration any changes that
might have not been picked up by the system, such as role
changes or other information derived from the social context.

After introducing our approach for model-based anomaly

detection, we describe in the next section the methodology
followed for its evaluation.

6. VALIDATION
In this section, we first present our experiment setup, in-

cluding the approach employed to generate our data set,
then we present the results of our clustering approach.

6.1 Experiment setup
We model the architecture used for evaluating our ap-

proach after the reference architecture employed for Amazon
Web application hosting.3 In the instance employed for our
experiments (Figure 3, 242 nodes), we incorporate two geo-
graphical areas (U.S. and Europe), each of which includes:

• A content delivery network (e.g., Amazon CloudFront)
that delivers dynamic content to users and optimizes
performance via smart request routing.

• A set of load balancers that distribute incoming appli-
cation traffic among multiple Web application servers.

• A set of application servers to process requests that
may be deployed, for example, on Amazon EC2 in-
stances.

• Relational databases that host application data specific
to a particular region.

In addition to these geographical zones, the architecture
also includes high-availability distributed databases that host
additional application data and are shared by the different
geographical areas (represented as node clusters on the right-
hand side of Figure 3). This architecture style is a classic
N-tier Cloud system, of the kind that is used by a number of
large organization to store their data and provide scaleable
access to many clients.

Unfortunately, we could not have access to a real, large-
scale system, and so for validating our approach we needed
to generate a large scale software architecture where we
could simulate the behavior of a realistic scenario with many
users. The first step was to codify the kinds of components
and connectors, and rules governing their correct configura-
tion, into an Acme style [17] that could be used to govern the
generation of a correct architecture. To generate the archi-
tecture instance of an Amazon Web application, we trans-
lated this style to Alloy [24], a language based on first-order
logic that allows modeling structures (known as signatures)
and the relations between them as constraints. In particular,
we use Alloy to formally specify the set of topological con-
straints of the architecture, and then use the Alloy analyzer
tool to automatically generate models that satisfy those con-
straints. Listing 1 shows the encoding of the basic signatures
for part of the Amazon Web architecture that includes the
declaration of content delivery network components, load
balancers, and some of the topological constraints that de-
termine how components of these types should be connected
among them.

Since Alloy does not scale to find models satisfying the
constraints with an arbitrary number of instances of the
different signatures, we divided our Alloy specification into
two parts that describe different sub-architectures: (i) ge-
ographical area, including content delivery networks, load

3https://aws.amazon.com/architecture/



1 abstract sig comp { conns : set comp } // Abstract component
2 //No component must be connected to itself
3 fact { all n:comp | not n in n.conns }
4 //Content Delivery Network, Load Balancer, and Application Server
5 sig CDN, LB, AS extends comp { }
6 // All components must be reachable at least from one CDN
7 fact { some c:CDN | all n:comp−CDN | n in c.∗conns }
8 //CDNs must be connected only to LBs
9 fact { all c:CDN.conns | c in LB }

10 //Each CDN must be connected at least to some LB
11 fact { all c:CDN | some l:LB | l in c.conns }
12 // LBs must be connected only to AS
13 fact { all l:LB.conns | l in AS }
14 ...

Listing 1: Alloy architecture specification excerpt.

balancers, application servers, and databases, and (ii) dis-
tributed databases. Next, we ran the Alloy analyzer several
times on (i) and (ii) to obtain different instances of the sub-
architectures, that we then merged in order to obtain an
architecture much larger than what we would be able to
construct by directly trying to generate the overall architec-
ture from a monolithic Alloy specification.

This generated architecture is then input to a simula-
tor which creates user traces by following valid connections
within the software architecture. Transitions from one node
within the architecture to another are chosen randomly with
equal probability amongst the valid connections. These tran-
sitions are performed after a simulated ”think time” that is
randomly chosen between 1 and 30 seconds. At each node
the trace has a randomly chosen probability, between 1%
and 25%, of ”returning” (i.e., being the end point of the user
trace). The path is then reversed back through the system
again with a simulated ”think time”.

To simulate a compromised system accessing corporate
data, an anomaly was manually injected into the set of
traces. Specifically, an application server interacting directly
with a set of database servers. While this is typical behav-
ior, this is unique because the trace originates with the ap-
plication servers, something that should not occur given the
software architecture. This type of anomaly is representa-
tive of a compromised server accessesing corporate data sets
to stage the data for future exfiltration.

6.2 Results
We apply our sequence-based clustering model to the sim-

ulated dataset with the injected anomaly. To find an appro-
priate number of clusters for our dataset, we run a scan from
2 to 100 using BIC. We found that the appropriate number
of clusters was 24. We cluster user sequences into those 24
clusters, obtaining the scores for each of the given sequences.
The distribution of these scores is shown in Fig 4. The fig-
ure clearly shows that the outlier is to the extreme right of
the distribution. This point is the outlier score of the in-
jected anomalous sequence. Again, in Fig 5, we can see that
the outlier node is to the extreme right and stands out sig-
nificantly from the rest. In Fig 6, we present the sequence
of activities for some clusters, including the anomalous one.
In each of these sub-figures, we represent the graph, includ-
ing an overlay that represents the sequence of activities as
a path on the network. Each node represents a unit in the
software architecture, and each edge represents the transi-
tion between the consecutive nodes in the sequence. As we
mentioned earlier, the organizational roles determine the se-

quence of activities that a user performs. In our algorithm,
the latent clusters formed capture these organizational roles.
For instance, cluster12 in our simulation captures the role
in which most of the requests are being transferred from
both European and US CDN’s to the same set of distributed
databases. However, the injected anomaly, which forms a
cluster of its own, behaves very differently because the trace
starts on an interaction with the application server.

Figure 4: Histogram of the natural logarithm of the Out-
lier Scores for every sequence generated by the model based
sequence clustering algorithm

Figure 5: Scatter Plot for the natural logarithm of the outlier
score.

7. DISCUSSION AND FUTURE WORK
In this paper we have shown the use of a new, model-based

clustering algorithm that considers sequences of interaction
with components in a software architecture and user roles
when clustering. The approach addresses the challenges of
applying existing feature- or community-based graph clus-
tering algorithms by considering user interactions with each



(a) Cluster 12 (b) Cluster 22 (c) Cluster 1 (d) Cluster 0

Figure 6: User paths overlaid on the underlying architecture diagram. The first three figures show the combined sequences
from all instances that form cluster 12, 22, and 1, respectively. The fourth figure is the anomalous cluster 0.

component in the software architecture, and constructing
paths, or traces, that users create when interacting with soft-
ware. We have shown that our approach can find anomalous
user traces in a realistic example of a cloud-based software
system. This is the first step in being able to identify insider
threats.

While we have demonstrated that the model-based graph
clustering algorithm performs well in a realistic setting, there
are a number of limitations to our validation that we would
like to strengthen in future work. In particular:

• The example system that we used, while based on re-
alistic and reported scenarios, does not use actual real
world data. Gaining access to the architectures of real
systems, and to actual anomalous data, is extremely
difficult. Organizations do not like to make this data
public for many reasons, security among them. Our
scenario is based on the extensive experience that one
of the authors has had in consulting for large interna-
tional firms that use this kind of infrastructure. How-
ever, we would like to address this appeal to expertise
with validation on real data, and real systems.

• Because we are using simulated data, it is easy for us
to get user traces. In real systems, this is likely to be
more challenging. However, we anticipate being able
to use standard system instrumentation and complex
event processing that we used in [10, 9] to retrieve this
information.

• We have made the argument that this approach can
find anomalies that other graph clustering approaches
cannot, because they do not consider the structure of
the system or the role of users in an organization. In
future work, we would like to address this by imple-
menting several of these approaches on our data to
more strongly verify this claim, and to be able to pro-
vide performance and complexity based comparisons
between our approach and others.

• While we have shown we can detect an injected anomaly,
we have not evaluated the characteristics of the algo-
rithm in terms of its complexity, performance, or pre-
cision/recall. The initial results are promising, but we
must address these characteristics in order to fully as-
sess our approach.

• We have focused on a particular type of architectural
system, large web scale system, and a particular type

of anomaly, staging data for exfiltration. While both
of these have been constructed to be realistic as possi-
ble, future work would include evaluation of different
types of applications and different types of security
anomalies.
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