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Abstract

Mobile malware is a malicious code specifically designed to target mobile devices to perform multiple types of fraud. The number
of attacks reported each day is increasing constantly and is causing an impact not only at the end-user level but also at the network
operator level. Malware like FluBot contributes to identity theft and data loss but also enables remote Command & Control
(C2) operations, which can instrument infected devices to conduct Distributed Denial of Service (DDoS) attacks. Current mobile
device-installed solutions are not effective, as the end user can ignore security warnings or install malicious software. This article
designs and evaluates MONDEO-Tactics5G - a multistage botnet detection mechanism that does not require software installation
on end-user devices, together with tactics for 5G network operators to manage infected devices. We conducted an evaluation that
demonstrates high accuracy in detecting FluBot malware, and in the different adaptation strategies to reduce the risk of DDoS while
minimising the impact on the clients’ satisfaction by avoiding disrupting established sessions.
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1. Introduction

Mobile malware is an artifact with malicious code designed
specifically to target mobile devices with the goal of undertak-
ing multiple types of fraud, either by gaining access to private
data or disrupting organizations and businesses.
Statistics show that around 437 million malware attacks were
detected in 2023 [1]. Although there is a general decline in
the number of attacks, mobile malware continues to evolve, in-
cluding new capabilities. Attacks are becoming more compli-
cated and difficult to detect. Malware can now be easily down-
loaded from official app stores, teasing users more often [2].
Malware causes financial losses [3] and affects 5G and future
networks [4]. These attacks have a large impact on end users,
in terms of financial damages, identity theft and loss of privacy.
Mobile Malware also has an impact on the services provided
by Mobile Network Operators (MNOs), where 5G and beyond
enable an increased number of connected devices, along with a
higher bandwidth that facilitates data exfiltration.

FluBot is one of the threats with more impact in terms of
malware that uses the Domain Name System (DNS) to inter-
act with Command and Control (C2) servers, having an impact
on end devices and network operators. Through FluBot, mal-
ware deployed on mobile devices can be instrumented via the
C2 channel to act as a botnet, enabling coordinated attacks such
as distributed denial of service (DDoS). Other types of botnets
exist, such as Mirai, Reaper, Android.Pandora.2 and variants
that appear from time to time and can be instrumented to carry
out DDoS attacks [5, 2].

Several botnet detection techniques are available, includ-
ing honeypot analysis, communication signatures (e.g., using

whitelists and blacklists), deep learning techniques based on
neural networks, reinforcement learning, convolutional neu-
ral networks, statistical analysis, distributed approaches, and
also using combination methods [6, 4]. Or they can also take
advantage of defense approaches like Moving Target Defense
(MTD) [7, 8]. These approaches use multiple techniques to de-
tect botnets but require the deployment of agents on the mobile
devices and on the network side like honeypot agents. Accu-
racy in botnet detection depends on the combination of multiple
techniques [9]. Botnet detection can take advantage of DNS in-
formation such as the number of packets per second (PPS), the
average payload size, or the type of request. Using these fea-
tures, clustering techniques (eg, kNN) can be applied to identify
abnormalities in communication flows (i.e., excessive requests).

Network operators cannot rely on the installation of software
on mobile devices or IoT devices, to guarantee the security of
their mobile networks. In fact, the solution to install software
on the end devices would not work for roaming users. Addi-
tionally, detection and mitigation processes must also be syn-
chronized, so efficient tactics can be devised according to the
level of security risk (e.g., considering the number of infected
devices).

This article proposes MONDEO-Tactics5G, which is a Mul-
tistage Botnet Detection and Tactics for 5G and beyond net-
works. The approach mitigates malware due to its high impact
through an efficient detection technique and through custom
tactics that can be integrated into the existing controls of mobile
network operators. MONDEO-Tactics5G is based on three de-
sign principles: First, allow for full control of operators with-
out the need to deploy agents/software on end users’ devices.
Second, facilitate integration with core services, such as DNS
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servers or User Plane Function (UPF), in the infrastructures of
network operators. Third, support custom policies/tactics that
can be integrated into the security mechanisms employed by
network operators, like Access Control Lists (ACL).

The MONDEO-Tactics5G architecture includes two main
components: (a) detection and (b) tactics, both designed to be
integrated in 5G network architectures. The detection compo-
nent consists of four steps: (1) blacklist/whitelist analysis; (2)
query rate analysis; (3) Domain Generated Algorithm (DGA)
analysis; (4) machine learning. The output of botnet detection
is the ability to detect infected devices and limit their footprint
within the network. Among a high volume of requests, the C2
server(s) need to be identified after the detection of a botnet.

The tactics component is concerned with policies to miti-
gate/eliminate the malware threat. The tactics in MONDEO-
Tactics5G can be diverse, including the isolation and quaran-
tining of affected servers and devices and the introduction of
CAPTCHAs to distinguish humans from bots. The choice of
tactics is sensitive to both the context of the system, including
load on customer service personnel who may need to interact
with affected users, and the overall utility and priorities of the
business goals of clients.

The remainder of this paper is organized as follows. Sectio2
provides the contributions of MONDEO-Tactics5G, Section 3
introduces the background and motivation for this work, Sec-
tion 4 details the design of MONDEO-Tactics5G. Section 5 de-
lineates the evaluation methodology, while Section 6 provides
evaluation results and Section 7 concludes the paper.

2. Contributions of MONDEO-Tactics5G

There is a need for solutions to detect mobile malware in 5G
networks and beyond [10], as it greatly affects end users [3] and
network operators, leading to inefficient resource utilization [4,
2].

MONDEO-Tactics5G establishes a foundational knowledge
on botnet detection and the application of tactics for botnet mit-
igation in 5G networks and beyond. The use case validation
scenario includes a 5G network with DNS server(s), User Plane
Function (UPF) for traffic analysis and connected to the MON-
DEO Detection component, and the Policy Control Function
(PCF) connected to the MONDEO Tactics component, at the
core of the network. The access network includes benign and
infected mobile devices.

The contributions of MONDEO-Tactics5G are: (1) efficient
botnet detection mechanisms that can be integrated with the
User Plane Function (UPF) in 5G networks, or DNS servers;
(3) MONDEO-Tactics5G supports the identification of C2
server(s), often obfuscated in the high volume of DNS requests;
(3) MONDEO-Tactics5G includes three tactics like quarantin-
ing mobile devices, blackholing IP addresses of C2 servers, and
CAPTCHAS working at connection level. Such tactics are for-
mulated according to a utility function, considering operator
and customer interests, and can be instrumented in 5G networks
through the Policy Control Function (PCF).

3. Mobile Malware in Telecom Fraud

5G rethinks and redesigns how the network is built and man-
aged by introducing emerging use cases and business models,
affecting not only consumers, but also enterprises and indus-
tries. In 5G, most subscribers will not be consumers as before –
the bulk of 5G will consist of IoT devices with different needs
from human subscribers (e.g., Smartmeters, environmental sen-
sors). In fact, even in terms of IoT, and depending on the use
case, IoT devices can actually have totally different behaviors
(e.g., a Smartmeter and a connected car). 5G can be split into
3 different use cases, two of them more related to IoT like Ul-
tra Reliable Low Latency (URLLC) and massive Machine-Type
Communications (mMTC), while the evolved Mobile Broad-
band (eMBB) is more related with generic services and is in-
tended for human subscribers. This mixture of patterns, as well
as different use cases, changes the scope of suspicious behavior,
leading to new fraud models. Banking and Gaming Trojans are
good examples of how malware targets specific business areas
and how future Trojans can evolve to specific 5G use cases.

3.1. 5G Impact on malicious activities

5G technology will impact fraud, as already outlined in re-
ports with the participation of Mobile Network Operators [3, 4].
The 5G impact is promoted by the use of Artificial Intelligence
to perpetrate fraud and avoid detection, termed Smart Fraud;
the massive increase in the number of connected devices also
contributes to the effectiveness of DDoS attacks. New Radio
(NR) enhancements introduced in 5G enable high-density con-
nections, allowing more connections per unit area with higher
data rates, compared to previous versions like 4G [11].

An increase in fraud activity, besides being facilitated by 5G
networks, is also associated with other factors, like the increase
in cross-industry-targeted social engineering schemes, the in-
crease in financial services impersonation frauds using stolen
credentials from data breaches, and the facilitated use of face-
less transaction portals (e.g., appear as benign websites) to com-
mit Subscription Fraud and Account Takeovers.

The common factor in all of the above is compromised
credentials and sensitive personal data obtained through data
breaches and mobile malware that leads to identity theft. While
the financial impact is extremely high, there are other major
impacts to the MNOs, such as customer complaints, low cus-
tomer loyalty and trust, churn, dispute costs, artificial increase
of traffic (SMS/Voice/Data), impact on network performance,
and interconnect costs, among others.

Another concerning fact is the multitude of other frauds that
can be perpetrated through infected phones that so far have
not been exploited by the fraudsters and the volume of scam
messages that can infect phones. Specific to the telecom do-
main, most malware already has enough privileges on infected
devices to make calls or send SMS’s, which allows them to
perform International Revenue Share Fraud (IRSF), as well as
other types of fraud which are monetized through voice calls or
SMS’s [12].
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3.2. Infection and Spreading

SMS frequently serves as the main attack vector (smishing).
Often a text message serves as bait and replicates legitimate
aid programs designed by governments, such as COVID vac-
cination programs. Other typical types of smishing are gifts,
missed deliveries, bank fraud warnings, invoices, order confir-
mations, or customer support issues. The message contains a
call-to-action and a malicious URL to follow, which will drive
the victim to a recent and convincing look-alike page for the
entity the message claimed to be from. This website will then
ask for personal information, such as credit card information,
credentials, date of birth, or to download malicious software,
typically disguised as a legitimate application, allowing multi-
ple types of attacks once installed. Once a device is infected, it
will join a botnet and execute commands sent by C2 server(s).
Initial targets are obtained by leaked information, such as Face-
book leaked data. Then contact lists are extracted from infected
devices to the C2 Servers, enabling them to unleash further at-
tacks.

Although blocking access to known fraudulent websites
seems like a common sense approach to protect subscribers, it
is in many ways ineffective. Not only is it easy to avoid black-
lists, cybercriminals also simply need their malicious URL run-
ning for less than 13 hours, for an effective bulk campaign [13].
Attacks occur quickly and use cheap domains on websites that
were registered the same day or within days of the attack itself,
allowing enough time to verify if a site is safe or dangerous.

5G and beyond facilitate smishing campaigns and other types
of mobile malware due to reduced network latency and in-
creased bandwidth to exfiltrate data from mobile devices [10].

3.3. Botnets and DNS

A botnet is a network of hijacked devices compromised by
various forms of remote code installation and controlled re-
motely by a hacker. Typically, these devices execute commands
sent by a botmaster either through a distributed or centralized
C2 server, a peer-to-peer network, or any other management
channel (e.g., IRC, HTTPS) which allows them to transfer com-
mands to the bot. Botmasters will often hide their identity
via proxies, TOR, to disguise their IP address from detection
by investigators and law enforcement. These botnets can have
tens of millions of devices (e.g., Zeus, Storm, or Mariposa) and
belong to different botnet families associated with click fraud,
banking fraud, DDoS, crypto miners, or ransomware [4].

Although control of infected devices can be done using dif-
ferent protocols, 85% of malware uses the DNS protocol for
malware delivery, Command and Control (C2), or data exfil-
tration [14, 15, 16]. The ubiquitous nature of DNS, the high
traffic volume, and often overlooked attack surfaces are the pri-
mary reasons that malware uses DNS to hide malicious activity.
Three different attacks stand out:

• Malware Using DNS for C2. Once a device is infected,
the system sends a DNS request back to the attacker’s con-
trol server. In this way, the infected device becomes part
of the botnet. Depending on the malware installed on the

device, it will receive and execute commands associated
with fraud or cyberattacks.

• Malware Using Domain Generation Algorithms
(DGAs). DGAs randomly generate a large number of
distinct domain names, which do not need to be regis-
tered. In these cases, attackers may use only one to bypass
traditional security controls, such as block lists or Web
reputation filtering.

• DNS Tunneling attackers encode their payloads (e.g., data
theft or C2) into small chunks within DNS requests to by-
pass security controls. Once a device is compromised, it
sends a request inside the DNS traffic to a DNS server
(controlled by the cybercriminal), which is instructed to
connect to the cybercriminal server, opening a channel
through which data is transmitted.

3.4. Fraud Realization
Malware on infected devices acquires permissions that allow

them to have complete control over most of the system features
and to perform almost any task on behalf of cybercriminals.
Figure 1 illustrates the case of FluBot, a Banking Trojan, and
the associated permissions once installed, as well as the possi-
ble fraud scenarios that can be performed with the associated
permissions.

Figure 1: FluBot Permissions on Android Phones.

From the above, it is possible to observe multiple fraud sce-
narios that can be executed by the fraudster, once the mobile
malware is installed and the infected device is part of a botnet.
With all the permissions, the apps on the infected device allow
the frausters to detect crypto wallets and banking apps, but also
to remove any apps that detect and prevent them from running,
like antivirus software, and can even run unnoticed to the end
user.

In a 5G scenario, as depicted in Fig. 2, mobile devices are
compromised through a smishing campaign (1), in this case
targeting users with specific banking apps in some countries.
The SMS message would require the user to install an app (2)
belonging to a package delivery provider (e.g. FedEx, DHL),
to track or reschedule a delivery. Once installed, the device is
infected with FluBot malware and communicates with its C2
server via DNS Tunelling over HTTPS (DoH). FluBot (3) uses
a domain generation algorithm (DGA) to enable it to commu-
nicate with its C2 server. In the latest versions, additional seeds
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Figure 2: Mobile Malware affecting different network slices in a 5G network.

are downloaded from the C2 server to generate more domains.
Malware is commonly spread through SMS messages to con-
tacts on an infected device (4) and executes fraud on behalf of
the fraudster.

4. Multistage Botnet Detection and Tactics for 5G

This section describes MONDEO-Tactics5G, a multistage
botnet detection and tactic for 5G and beyond networks.

4.1. Use Case

The use case includes a 5G network with DNS server(s), User
Plane Function (UPF) for traffic analysis and connected to the
MONDEO Detection component, and the Policy Control Func-
tion (PCF) connected to the MONDEO Tactics component, at
the core of the network. The access network includes benign
and infected mobile devices. Infected mobile devices are those
that have malware running, which was installed by SMS phish-
ing, as described in Section 3.2.

Given this use case, the following requirements, for an ef-
ficient detection of malware in 5G and beyond networks are
formulated [17]:

R1 Perform flexible and scalable data collection in existing
systems of mobile network operators;

R2 Avoid the installation of agents, software in mobile de-
vices;

R3 Enable distinct tactics according to the probability of a se-
curity event or severity;

R4 Support multiple decision layers considering performance
issues. For instance, support blacklist(s) for immediate denial.

4.2. Overall Architecture

The architecture depicted in Figure 3 illustrates the different
components of the multistage botnet detection and tactics.

The MONDEO detection component interacts with domain
name servers through the M.1 interface and with the User Plane
Function (UPF) through the M.2 interface , for instance to re-
ceive traffic sent by the mobile device. Information regard-
ing DNS queries and replies is provided by the DNS Server to
MONDEO, through M.1, this is relevant to obtain DNS requests
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Figure 3: MONDEO Architecture.

and DNS replies. The interaction with the UPF is required to
detect flows communicating with the C2 server, for instance, to
detect HTTPS requests. The M.R interface allows the exchange
of information between MONDEO and TACTICS components,
so that upon detection of malware by MONDEO, the required
information is provided to implement mitigation tactics. Such
information can include the identification of the source (i.e.,
User Equipment) and information about the C2 server that has
been detected, within a certain confidence level.

4.3. MONDEO - Botnet Detection component

The overall perspective of MONDEO includes details regard-
ing the detection mechanism, and practical aspects that were
chosen to implement a valid and deployable proof of concept.

MONDEO detection component runs on a microservice-
based architecture, providing the detection service through a
RESTful API. Through the API, it is possible to exchange
the required data, where each request is treated individually
and processed efficiently through parallelization, leveraging the
support of multiple threads in Python Flask.

Botnet detection in the multistage MONDEO pipeline is con-
densed into four phases (Fig. 4): 1- Whitelisting/Blacklisting;
2- Query Rate Analysis; 3- DGA Evaluation; and 4- Machine
Learning Evaluation. In each phase the output can be a classi-
fication of Benign (passed) or Infected (flagged), the following
phase occurs if no classification is performed. Phase 2 - Query
Rate Analysis flags as Infected the requests that may have
anomalies in the ratios of the DNS requests. The output of DGA
and ML evaluation in the last phases allows the implementation
of a feedback loop. This feedback can be used to manage data
in whitelists and blacklists, depending on the classification out-
put, benign for whitelists and infected for blacklists. A 5G UPF
function uses the information on the whitelist/blacklists to ac-
cept or deny traffic flows, accordingly.

The design of MONDEO has considered deployment, ac-
curacy, and efficiency concerns. Regarding deployment,
the choice for multistage analysis in MONDEO is for
DNS requests, whereas other approaches rely on DNS
replies/responses [18]. This is relevant for mobile network op-
erators, or ISPs, as they control the DNS infrastructure in their
networks. This allows for parallelization of botnet detection
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Figure 4: MONDEO overall stages and feedback loop.

with core services like DNS. The concern of efficiency leads
to optimization in the analysis process, in terms of maximiz-
ing the speed of analysis, making it so that packets can be ei-
ther discarded or accepted in the early phases of the pipeline
(preferably in phase 1).

4.3.1. Phase 1 - Whitelisting/Blacklisting
Whitelists or blacklists are simple lists that can hold any ba-

sic data structure to represent information. The options de-
scribed above take into account a complete (1-1) direct match.
One can, however, implement a similar technique, but only
using partial matches. Using the concept of Free Level Do-
main (FLD) and at the cost of low precision and processing
time, if only part of the domain is analyzed, the lists will be
shorter. For example, instead of having multiple entries for
each of the Google applications, one can just whitelist all the
”.google.com” domains.

In our proof-of-concept implementation we took a simpler
approach: as the whitelist is short, we used a traditional linear
search with a complexity of O(n).

The Whitelist and Blacklist can be enhanced in MONDEO
by leveraging the feedback loop, which uses the output of phase
3 - DGA and phase 4 - ML model. The feedback loop pro-
vides the required information for whitelists by indicating be-
nign DNS requests and clients, and blacklists indicating DNS
requests that are not resolvable. Thus, the feedback loop allows
phase 1 to be approved by retroactively adding or removing do-
mains from the lists. This could be achieved by disseminating
the events of the feedback loop in Security Information Event
Managers (SIEMs) or in dashboards with security events for
further analysis and approval for the whitelists or blacklists.

4.3.2. Phase 2 - Query Rate Analysis
The real address of the C2 server(s) is often masqueraded,

as the infected device spams thousands of queries. Just as the

attacker can exploit this for its own gain, the defenders can also
use this information to defend the system.

Implementing a mechanism to detect high rates might seem
easy at first, but one must take into consideration the scalabil-
ity implications of the approach, as this pipeline would most
benefit from being implemented at the core networks of net-
work operators. Therefore, one possible approach would be to
implement an event-driven architecture as a doubly linked-list-
like data structure. When new packets are added to the struc-
ture, and at the other end, the packets are removed, so that the
structure only contains a predefined window of time w. As men-
tioned, a doubly linked-list data structure is required, in order
to efficiently add and remove elements.

In the implementation of the proof of concept, we followed
an effective approach. Instead of keeping a list of all packets
that circulate on the network for a given time window, we mea-
sure the time difference between every DNS query for each in-
dividual device, as depicted in Figure 5. For example, if packet

1 2 3 n

t1 t2 t3 tn Time (ΔF)

Packets (K)

Figure 5: Query Analysis Ratio

1 arrived at the timestamp t1 = 1 and packet 2 arrived at t2 = 2
then they differ in 1 time unit. With this approach, we can use
parameters, to calibrate the sensitivity of the algorithm:

• ∆F which details the maximum allowed time unit interval;

• K which specifies how many packets can disrespect ∆F
before being quarantined.

∆F is used to calibrate the interval sensitivity, where ∆F =
0 is the shortest interval possible, and therefore the smallest
possible number of packets are caught. K is used to limit packet
capture even if ∆F fails. For example, in situations where a
legitimate service makes 5 queries in the designated time ∆F,
nothing will be reported if K > 5.

4.3.3. Phase 3 - DGA Detection
Any packet that may not be detected by the query rate an-

alyzer, or is simply a regular packet, will be parsed through
a detector for queries issued by DGA approaches. In the im-
plementation of the proof-of-concept, we used the Intel DGA
solution, available, as open source on github [19].

The outcomes of the evaluation performed in this phase in-
cludes a value between 0 and 1 indicating whether a domain
could be or not be DGA generated, where 0 is a regular domain
and 1 is a DGA-Generated Domain. With this phase, it should
be once again possible to calibrate the acceptance/rejection cri-
teria from the DGA-generator. In experiments, we defined the
lower bound as 0.1, which meant immediate acceptance of the
packet, and the upper bound as 0.9, which meant immediate
packet discard. All the other 0.1 ≤ x ≤ 0.9 will be evalu-
ated in the next step of the pipeline. These threshold values
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were based on the sensitivity analysis conducted when gather-
ing knowledge of the FluBot malware, as documented in this
work [20].

4.3.4. Phase 4 - Machine Learning Detection

The last stage of the pipeline is the machine learning evalua-
tion, where a minimum number of packets should arrive. They
represent the hardest DNS requests to classify and, therefore,
take the longest time in the pipeline. This stage produces a bi-
nary output, where 0 is not infected, and 1 is an infected pack-
age. The design of the model encompasses feature selection
and model training, as detailed below. One of the first steps in
designing the ML model is related to the selection of features.
This process was performed considering the preliminary analy-
sis of FluBot, as documented in Section 3. These features are
summarized in Table 1 and are mainly based on fields present
in DNS requests. It should be mentioned that some of the fields

Table 1: Selected Feature Set

Feature ID Description ML Data Type

IP Src Source IP performing the request Bit Conversion
IP Dst Destination of DNS request Bit Conversion
Length Size of the Payload Integer
DNS Flag Info Regarding Flags Boolean
DNS Questions Requests in a DNS message Integer

Query Type Query Type (A, AAAA,
CNAME, PTR) Integer

Query Name Null If DNS name is NULL or not Boolean
Timestamp When the packet was created Integer

were converted to numeric values for efficiency concerns. The
IP addresses used bit conversion for each decimal octet of an
IP version 4 address. Note that the features can be applica-
ble to types of malware other than FluBot, as long as they use
DNS packets to identify and initiate communications with the
C2 server. As summarised in Table 1, the chosen features for
botnet detection are narrowed to FluBot. Instead, they are based
on the fields of standard IPv4 packets and DNS protocol, such
as the DNS QueryType and DNS Questions, which can be em-
ployed for other types of malware [10].

Each model follows a simple, yet effective, training strat-
egy. The training data included a total of 10.000 data points,
from which there is a 50/50 split between a fabricated packet
set using the Alexa Top 1 million domain list [21], and lab-
generated malware samples. As such, a balanced data set is
structured, with a 50/50 split between examples of infected and
non-infected packets. Finally, the trained AI is subject to an
80/20 test/train split, where 80% of the data is used to train the
ML model and the remaining 20% is used to test the accuracy
of the AI. The model is implemented in Python using the scikit-
learn library [22], with the available RandomForest and Isola-
tionForest classifiers, as these presented the best performance
in terms of accuracy and speeds, compared to others such as
KNN. Detailed results of the comparison between the different
ML models are provided in this work [20].

4.4. C2 Server Detection

The detection of the Command and Control – C2 server –
needs to consider the behavior of the malware. Infected devices
are detected with a high volume of DNS queries, where the goal
is to mask communications with the C2 server.

In the proof of concept with Flubot malware instances, the
behavior of the infected device indicates that a HTTP hand-
shake is performed between the C2 server and the device to
establish a connection. This happens after DNS queries start,
immediately stopping the DNS flood after a successful connec-
tion. If this handshake is captured, we can filter from the several
thousands of possible domains (DGA generated) to the ones
that are registered and currently active. The C2 server detec-
tion mainly involves the capture of the handshake in a efficient
fashion, after the trigger of infected traffic has been detected.

4.4.1. Capturing the handshake
To successfully capture the handshake with the C2 server,

a packet filter was first deployed into the network, capturing
HTTP connections that match a common format. The end-
point(s) with possible C2 server(s) identified by the filter can
correspond to the names employed in previous DNS requests.
To achieve high accuracy, the uniform resource identifier (URI)
in HTTP packets is analysed [19]. If the prediction is higher
than a user-defined threshold, it is considered infected. Fig. 6
shows the request URI present in a filtered packet to the C2
server tofelumrdyrgwhg.ru and it can be easily identified as
infected. This simple assertion greatly decreases the probabil-
ity of a false positive. Other approaches could also consider the
analysis of the HTTP reply status code, which with a value of
200 means a successful request.

Figure 6: Wireshark detail on possibly infected packet

4.4.2. Implementation of detection mechanisms in MONDEO
Considering a microservice architecture, and that packet cap-

ture occurs within other processes/approaches, for instance us-
ing the UPF in a 5G network, the mechanism works as follows:

1. Based on DNS analysis (Section 4.3), the system establishes
a list of possibly infected devices (based on time, so that
false positives are not triggered).

2. Whenever a packet arrives, it is analyzed with respect to the
source, if it is present in the infected list - phase 1 the ob-
served query ratio (Section 4.3.1), and with respect to the
name /URI requested in the DNS request (i.e., if DGA based
or not). If it meets any of the criteria in the various phases,
it is considered infected (Section 4.3.3).
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3. Otherwise, the final evaluation is carried out considering:

• Infected, if conditions in phase 3 are true;

• Not infected, otherwise.

4. Perform C2 server detection.

5. On the basis of this evaluation, a JSON response is produced
and provided through the REST API. This response is used
by the MONDEO Tactics component.

The implementation follows a microservice architecture,
promoting efficiency by parallelising the detection of botnets
and retrieving relevant information to apply tactics. This also
facilitates the deployment in 5G/6G architectures, where net-
work functions can be implemented as virtual network func-
tions in virtual machines or as microservices. The identifica-
tion of the C2 server is related with the FluBot malware pat-
terns, other types of malware will have different patterns [2].
The detection mechanism in MONDEO has considered 6 dis-
tinct FluBot malware samples performing high volume of DNS
requests towards C2 server identification, to enhance the detec-
tion accuracy, as detailed in Section 5.

The detection of the C2 server is communicated to the tactics
component with an associated probability, to devise the appro-
priate tactics for risk mitigation, as detailed in the next section.

4.5. Tactics Component
Once malware is detected and detection is communicated

through the M.R interface in the MONDEO architecture
(Fig. 3), we need to decide which tactics must be applied to
mitigate associated risk. For this, the MONDEO Tactics com-
ponent uses Rainbow [23], a self-adaptation framework that
can react to the information provided by MONDEO Detec-
tion. Briefly, self-adaptation introduces a control loop that com-
prises four main activities: Monitoring, Analysis, Planning,
and Execution, which use shared Knowledge about the state
of the system and the environment in which it is running. Col-
lectively, these activities are known as the MAPE-K loop [24].
The monitoring activity updates the Knowledge with informa-
tion about the system and the environment, represented in a
model. The model is updated using data from the MONDEO
detection component on current knowledge of infected devices
and malicious C2 servers. Analysis evaluates these data to cre-
ate higher-order knowledge. In this case, MONDEO Detection
also provides information about probabilities associated with
suspicious activities. Analysis within MONDEO tactics deter-
mines whether a response is needed.

MONDEO Tactics uses the information from the MONDEO
detection component to maintain a model of the system and its
environment. From this information, it can decide if the sys-
tem is not behaving as desired and develop or choose a plan to
fix/mitigate identified problems. For this purpose, MONDEO
Tactics uses utility theory [23]. A planner within MONDEO
Tactics uses this information and predicts the effects of vari-
ous tactics on the future utility of the system. The tactic(s) that
maximize the utility are the ones that Rainbow then selects and
executes. These tactics are discussed below.

The interface between MONDEO Detection and MONDEO
Tactics components occurs through the M.R interface, as shown
in Fig. 3. The data that is exchanged in a JSON format includes:

• Timestamp of the identification event;

• Identification of the infected device (IPv4 address);

• Identification of the C2 server (IPv4 address and FQDN);

• Level of certainty in the detection.

The integration between MONDEO Detection and MON-
DEO Tactics components is via probes. MONDEO Detection
acts as a probe (monitor) in MONDEO Tactics, periodically re-
porting information that is used to update the model. MON-
DEO Tactics with Rainbow, when receiving information of in-
fected devices and the C2 server identification, configures the
required policies to mitigate the attack. We consider three rep-
resentative tactics to respond to malware:

T1 quarantining the mobile device;

T2 “blackholing” the C2 server (i.e., resolving its DNS to a
benign IP address, like a honeypot for further analysis);

T3 requiring the mobile device user to complete a CAPTCHA
upon the detection of a suspicious connection.

Quarantine approaches are per mobile device basis, where
each mobile device is quarantined separately. Tactic T1 does
not scale well and is prone to false positives by isolating benign
devices. Blackholing the IP address of the C2 server is some-
thing that is done in a centralized way by a mobile network
operator, and it simultaneously affects all mobile devices that
use the mobile network operator’s DNS servers. Thus, being
more efficient in terms of scale, as well as policy enforcement
(T2). Note that the introduction of DNS security measures like
DNSSEC can make it more difficult to effectively blackhole IP
addresses, but we do not address those difficulties here. While
blackholes are network-level, and quarantines are device-level,
CAPTCHAs are connection-level tactics (T3). They are used
to temporarily block a connection until a human user is able to
prove that they are the one making the connection request rather
than malware or a bot.

At the same time, we model three impacts that affect overall
utility: (I1) There is an impact on the utilization of the customer
service department for the mobile network operator; (I2) intru-
siveness to the customer experience; and (I3) effectiveness in
containing the attack.

Details of tactic implementation can affect impact on util-
ity. For example, if quarantine uses a list of known bad sites
to prevent malicious connections (T1), the impact on the end
user will be minimized (I2), while effectiveness will also be di-
minished (I3) compared to a quarantine approach that uses a
list of known good sites. The known-good-sites approach is
more limiting and will result in higher impacts to the mobile
user and mobile network operator while also likely being more
effective.
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4.6. Tactics for 5G Networks and Beyond

The tactics T1, T2 and T3 can be implemented differently
in a 5G or beyond network. The most straightforward tactic to
implement is the blackhole (T2). In this case, an update is sent
to the DNS server to either not resolve an address or resolve it
to a benign address like a honeypot. This can be done with the
collaboration of 5G functions such as UPF or PCF, as shown in
Figure 3.

Quarantine of a device (T1) can be implemented using tech-
nologies, such as Network Function Virtualization (NFV) to
create a network slice for quarantined devices. These devices
can have a separate DNS service or have their connections me-
diated through a user plane function (UPF) that limits to known-
good (or not known-bad) connections depending on the specific
implementation.

The CAPTCHA tactic (T3) is the most complex to imple-
ment. It requires the implementation of devices on the 5G core
network that can detect the network flows to be temporarily
blocked, serve up the CAPTCHA, and – if the CAPTCHA is
correctly completed – maintain state to open the flow and al-
low the flow to reopen with subsequent reconnections. UPF
and Session Management Function (SMF) are the feasible 5G
core functions to implement this connection tracking and man-
agement of the CAPTCHA mechanism. Nevertheless, this ap-
proach can also have associated scalability issues that can be
associated with the high number of simultaneous connected de-
vices and with their heterogeneous characteristics (e.g., without
support for HTTP protocol).

From the perspective of a network operator, botnet detection
must be integrated with the 5G core functions that are responsi-
ble for managing mobile device traffic in the data plane. This
is associated with the requirement R2 of the use case, described
in Section 4.1. UPF is a feasible candidate, mainly to imple-
ment packet capture or deep packet inspection functionalities
to detect botnets, as described in Section 4.3. Such a traffic
analysis is required not only for the detection of botnets, but is
also crucial to identify the C2 servers. Traffic inspection can
consider 5G mechanisms that can be in place such as network
slicing, where a UPF function may exist in each slice. Addi-
tionally, considering only the detection of botnet traffic, only
the packet capture of DNS requests are required. Other types of
malware may require full packet analysis. Botnet detection can
be facilitated if operators manage the DNS server(s).

5. MONDEO-Tactics5G Evaluation

This section describes the evaluation methodology.

5.1. Datasets

The overall scenario for data collection is represented in Fig-
ure 7.

To be as realistic as possible, we configured a DNS server
using ISC BIND, where we collected information regarding
DNS queries. The collection included DNS logs and the cap-
ture of DNS packets with the tshark tool. The information in
the datasets included the DNS packets that were captured from

Domain Name
Server (DNS)

Server

User 1User 1User 1
User n

 Malware

Data collection
Machine

WireShark
tools

PyThon

Internet

LAN

Figure 7: Data collection setup

regular DNS clients of several volunteer participants that con-
figured their devices to use the configured DNS server.

To generate infected traffic, we set the data collection ma-
chine as an isolated machine, where we could safely deploy
hidden malware applications (APK), as summarized in Table 2.
These malware samples were obtained from online reposito-
ries such as MalwareBazar [25] and Koodous [26]. The pro-
file for the emulated/virtual device was based on the Pixel 4
running Android API 29. This device was chosen for its com-
puting characteristics, which we found to be representative of
the mobile phones used worldwide. In addition, this device is
also used in related work to evaluate the behavior of mobile de-
vices [27, 28]. The emulated mobile devices were activated in
different time periods and thus the malware traffic - infected - is
recorded in specific tshark capture files. It should be noted that
while malign requests were being made, Benign traffic associ-
ated with regular DNS requests was also running.

Table 2: FluBot Malware sample information

Name Malware File(s) Description

Correos FluBot Correos1 Application similar to Correos app

FedEx FluBot FedEx1,
FedEx2 Application similar to FedEx app

UPS FluBot UPS1 Application that mimics UPS app

DHL FluBot DHL1,
DHL2 Application similar to DHL app

VoiceMail FluBot VoiceMail1 Application similar to VoiceMail app

5.2. Botnet Detection

The evaluation of MONDEO-Tactics5G includes the perfor-
mance characterization of each phase in the MONDEO data
pipeline, as documented in Section 4.3. Performance is as-
sessed in terms of the time required to process a packet in each
phase and the overall number of packets that are processed.

All tests are based on the DNS samples collected in the DNS
Experimental Setup, summarized in Table 3 and collected using
the methodology documented in Section 5.1. In this evalua-
tion we focus on testing the impact of the malware, especially
with regards to the HTTP handshake. From this list, a data set
with the features summarized in Table 1 was built to assess the
performance of MONDEO and the application of tactics. The

8



Table 3: Tests Information in the Evaluation of Data Pipeline

Test Type File(s) Description

#1 Infected
FedEx1, FedEx2, UPS1,
Correos1, DHL1, DHL2,
VoiceMail Lab

With malware samples

#2 Benign 23 Only with regular DNS re-
quests

metrics used to assess the performance of the MONDEO Data
Pipeline are summarized in Table 4.

Table 4: Performance Metrics in the MONDEO Data Pipeline

Metric Unit Description

Packets Pro-
cessed % Ratio of packets processed in each phase,

considering the total of captured packets
Processing
Time ms Time required to process a packet in each

phase

Classification n/a Final classification of MONDEO, if packet
is flagged as infected or benign.

5.3. C2 Server Detection
To evaluate the performance of the C2 detection, we con-

sider the ratio of analyzed HTTP requests, in terms of passed
or flagged as infected (recall Fig. 4). Resource consumption is
also considered, in terms of CPU usage, memory usage ratios,
and the amount of information that is exchanged and in bytes.

5.4. Tactics
To evaluate the effectiveness of T1, T2 and T3 tactics, we

model the system and then use statistical model checking to
show which combinations of tactics would be most effective in
each state. We consider the diverse impact (I1, I2, I3), previ-
ously identified in Section 4.5.

We took this approach because we did not have access to a
real 5G network or a simulator of it. In this evaluation approach,
however, we show that in all cases, tactics would improve the
overall utility of the network, considering the dimensions of uti-
lization of customer service (I1), the intrusiveness for customer
service (I2) and effectiveness in containing the attack (I3).

5.4.1. Model
We model our system as a Discrete-time Markov Chain

(DTMC) using the modeling language of the probabilistic
model checker PRISM [29]. Given the complexity and scal-
ability issues that would entail representing devices and servers
individually in our model, we group and represent them as de-
vice and server tiers, as pictured in Figure 8.

Devices and servers within the same tier are considered to
have a similar likelihood of being compromised by malware,
and hence the level of granularity at which tactics are applied is
tiers, and not individual devices/servers. For the sake of clarity,
rather than introducing the PRISM code, we describe in Fig-
ure 8 the dynamics of interaction among processes (modules
in the PRISM nomenclature) that capture the behaviour of the

alt

[Captcha off (prob. 1) | Captcha on (prob. pCaptcha)]

[Captcha on (prob 1-pCaptcha)]

[!Black Hole]

[Black Hole]

[requestsAttempts < MAX_REQUEST_ATTEMPTS]

[!Quarantined]

[Quarantined]

alt

alt

loop

: Customer Service: Server
Tier

: Connector: Device
Tier

1.1.1.1.2: Update Customer Utilization
1.1.1.1.1: Update Compromised Level

1.1.1.1: Forward Response

1.1.1: Response

1.1: Forward request

1: Request

Figure 8: Sequence diagram describing interactions of the PRISM model.

main components in our system (i.e., device and server tiers,
connectors, and customer service). Device tiers contain a state
variable compromised, which ranges between 0 and 100 and
captures the likelihood that the device tier is compromised by
malware. Server tiers contain a similar state variable c2, which
captures the probability that a server level is compromised by
malware. The customer service module contains a variable
utilization, which ranges between 0% and 100% to capture the
level of utilization of the customer service (i.e., whether agents
are busy answering calls from clients experiencing service dis-
ruption) I1.

Each device tier is assigned a maximum number of attempts
- MAX REQUEST ATTEMPTS to communicate with servers.
For each attempt, if the device is not quarantined - T1, it is
allowed to send a request to the server through the connec-
tor. Once the request is received at the connector, the request
is automatically forwarded to the corresponding server tier if
the CAPTCHA for the device tier sending the request is not
enabled. If CAPTCHA tactic is enabled T3, the request is for-
warded only with a given probability pCaptcha, which is in-
versely proportional to the value of compromised at the device
level that sent the request (i.e., the higher the likelihood of being
compromised by malware, the lower the probability of passing
CAPTCHA). After receiving the response from the server, the
connector checks if the server tier is blacklisted and, if that is
not the case, it forwards the response back to the device tier.
Once the response is received on the device tier, the following
updates take place:

• The value of compromised is updated by adding to it the c2
of the server that sent the response.

• The value of utilization is updated in customer service to re-
flect the new levels of customer service utilization. Updates
are:

– Directly proportional to compromised and c2 levels.

– Inversely proportional to the accuracy of the malware
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detection parameter designated by α, as reported by
the MONDEO detection component.

Table 5: Terminology

Term Description

α Malware detection accuracy

T Set of available tactics, T1 − quarantine,T2 −
blacklist,T3 − captcha

mt Multiplicative factor for the disruption of different tactics
eti Indicates if t is enabled in the device tier i
uu(∗) Utilization utility function
ue(∗) Effectiveness utility function
umau Mean accrued utility
R{r} Reward Operator
ϕ Reachability predicate

The magnitude of the updated value depends on the tactics
that are activated. In practice, blacklisting, captcha and quar-
antining have multiplicative factors that capture the increasing
level of disruption in services that these tactics can introduce
(with quarantining being the most disruptive), as per Eq.1:

utilization =
∑
t∈T

(1 − α)mt ∗

n∑
j=1

compromised j ∗ eti (1)

In Eq. 1, T = {T1 − quarantine,T2 − blacklist,T3 − captcha}
is the set of available tactics, mt is a multiplicative factor that
models the disruption of different tactics, n is the number of
device tiers, and eti is 1 if tactic t is enabled in device tier i, and
0 otherwise. The terminology is summarized in Table 5.

To measure the value provided by the system during execu-
tion, we consider a utility function U : R×R→ [0, 1] defined as
a linear combination of two terms that correspond to the level of
utilization of the system and the effectiveness of the adaptation
tactics (i.e., in terms of minimizing the likelihood of devices
being compromised):

U(u, e) = wu ∗ uu(u) + we ∗ ue(e) (2)

In Eq. 2, the utilization utility function uu(∗) returns an output
between 0 and 1 that is inversely proportional to the utilization
value provided as input, while the effectiveness utility function
ue(∗) takes as input an effectiveness value that corresponds to
the mean of the compromised values across all device levels
and returns a value between 0 and 1 that is inversely propor-
tional to it.

Our model incorporates a reward structure that enables the
storage of information about the accrued utility. During execu-
tion, an amount of utility equivalent to the result of Equation 2
is accrued in the reward structure at the end of every cycle of
the loop depicted in Figure 8. We designate the amount of util-
ity accrued during the execution of a scenario as umau (mean
accrued utility).

5.4.2. Analysis
To evaluate the effectiveness of the tactics, we take an ap-

proach similar to the evaluation in [30], where we analyze

the system using the statistical model checking engine of the
PRISM probabilistic model checker. We model check the sys-
tem to understand the effect of various strategies on the utility
of the system, comparing versions of the system with and with-
out adaptation.

To quantify the utility that each strategy yields, we make
use of Probabilistic Reward CTL (sPCTL) [31], which extends
the probabilistic temporal logic PCTL [32] with reward-specific
operators aimed at the specification of performability measures
over DTMC models. Specifically, our technique enables us to
statically analyze a particular region of the state space, which
first has to be discretized to check the PRCTL properties. Ob-
taining the results of the analysis for each state in the discrete
set requires an independent run of the model checker, in which
the model parameters are instantiated with variable values that
correspond to that state. In our case, the discrete set we con-
sider corresponds to pairs (α,wu) in the range [0, 1], where the
discretization step for accuracy is µα = 0.1 and the one for wu

is µwu = 0.05. These values are defined according to the eval-
uation performed in [30].

For each independent run of the model checker, we analyze a
PRCTL property that employs the reward operator R{r}=?[Fϕ],
which enables the quantification of the accrued reward r along
paths in a model that eventually reach states that satisfy the
reachability predicate ϕ. Concretely, we analyze the property
R{utility}max=?[F done], where utility is the name of the re-
ward structure in our PRISM model, and done is a label that
corresponds to an expression over state variables that captures
states in which devices can no longer perform requests (because
MAX REQUEST ATTEMPTS has been reached).

6. Evaluation Results

This section summarizes the evaluation results.

6.1. Botnet Detection

MONDEO-Tactics5G uses a multistage feedback loop to de-
tect FluBot malware packets.
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Figure 9: Detection Rate

As illustrated in Fig. 9 most of the detection, for the samples
used, is performed in phase 2, which assesses the query rate.

10



In this phase, the majority of requests are flagged as malware
due to the high number of requests per second. In the evaluation
results, the feedback loop was not used, as one can see in Fig. 10
since there is no flagged time in phase1 and the passed is almost
zero.
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The phases with more impact, in terms of processing time,
are phases 3 and 4, which use DGA algorithms and the ML
models (i.e., RandomForest and IsolationForest), respectively.
In these phases, the processing time is on the order of 400 ms,
either to flag or to allow a packet to pass.

6.2. C2 Server Detection

The C2 server detection is assessed in terms of the detection
accuracy regarding the HTTP requests towards the C2 server.
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Figure 11: Successful identification of HTTP requests to the C2 server(s)

Fig. 11 depicts the results of HTTP identifying the HTTP re-
quests towards the C2 server. In the 023 dataset, all requests
correspond to legitimate HTTP requests, while in FluBot-
infected datasets there are HTTP requests to the C2 server(s)
and benign HTTP requests, which correspond to browser re-
quests. Most of the HTTP requests in the datasets with malign
samples are for the C2 server(s). Detection of botnets and
detection of C2 servers lead to resource consumption, as illus-
trated in Fig. 12, in terms of CPU, memory, and network I/O.
The results report the resources consumed by the MONDEO

detection component, which is implemented as a microservice
with APIs for botnet detection and HTTP analysis. The MON-
DEO detection component has an impact in terms of CPU us-
age due to the required analysis; nonetheless, the impact on
memory usage is low. In addition, the microservice exchanges
small amounts of data, where the input is higher, since it con-
tains information about the DNS and HTTP packets that are
received. The output is provided in JSON format with a signif-
icantly lower volume. The amount of information exchanged
under normal conditions - case 023 is greater, since DNS pack-
ets contain legitimate requests.

6.3. Tactics

Figure 13 displays the experimental results for a scenario in
which we compare the overall utility that the system can ac-
crue during execution with and without adaptation. The system
contains four device tiers and four server tiers, arranged in in-
creasing order of likelihood of being compromised by malware
(e.g., the first tier of devices are between 0 and 25%, the second
one ranges between 25 and 50%, and so on). The horizontal
axes of the graphs range between 0 and 1 and represent the pre-
cision of the system in detecting the likelihood that a device
will be compromised (α, equal across all levels of the device
in this scenario) and the weight given to the term of utilization
of the utility function wu. The vertical axis corresponds to the
accrued utility umau for a given combination of values of α and
wu.

The grids in each plot show the performance of the system
without adaptation (gray) and with adaptation (red). Plots in
the Figure corresponds to strategies that combine tactics from
the following set:

• Q2 Quarantines (T1) the two top tiers of devices, i.e., those
with a likelihood of being compromised by malware ranging
between 50 and 100%.

• C2 Captchas (T3) the two top tiers of devices.

• BH2 Blacklists (T2) the two top tiers of servers.

• Q1 Quarantines (T1) the top tier of devices (75-100%).

• C1 Captchas (T3) the second highest device tier (50-75%).

Each strategy is labeled by the combination of tactics it uses.
In the figure, NO refers to a strategy that does nothing (that
is, it does not execute any tactics), and Best corresponds to a
strategy that picks at each point (α, wu) the best of all avail-
able strategies (including NO). The set of strategies analyzed
corresponds to C2-BH2, C2, Q2, BH2, Q2-BH2, Q1-C1, Q1-
C1-BH2. However, we only represent in the Figure strategies
that are optimal at some point of the space (Q2-BH2 and BH2).

All adaptation strategies (even those not illustrated in the fig-
ure) outperform on average the version without adaptation, with
a delta in the mean accrued utility (∆ūmau) that is always pos-
itive and ranges between 1.62% (Q1-C1) and 34.14% (BH2),
and goes all the way up to 35.64% for Best.
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Figure 13: Experimental results comparing accrued utility with and without adaptation strategies: Blacklisting (top, left), blacklisting combined with quarantining
(top, right), and best strategy (bottom).

If we focus on the version without adaptation (gray grid,
which is the same across all plots) and low values of utiliza-
tion importance, we can observe that there are lower values of
accrued utility, compared to areas with higher values of utiliza-
tion importance. This is to be expected because in the latter all
utility is derived from the effectiveness term of the utility func-
tion, and highly compromised devices yield little utility on the
effectiveness term of the utility function.

If we focus on adaptation versions (red grids), we can see
that the general trend across all plots is that higher detection ac-
curacy values tend to yield higher accrued utility values when
we combine them with high values of wu. This is because a
higher detection accuracy results in less disruption to legitimate
clients, and therefore, customer service utilization is less af-
fected (I1) than it would be with lower accuracy, and this yields
more utility coming from the utilization term of the function.
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It is also worth observing that high values of utilization impor-
tance with low detection accuracy tend to yield low utility be-
cause it creates situations in which more legitimate clients are
disrupted (I2) and customer service gets overloaded. In fact,
focusing on Best (bottom plot) reveals that the best strategy for
very high utilization importance values (wu ≃ 0.5) and very
low α values is not to execute adaptation tactics at all to avoid
disrupting customers.

Figure 14 illustrates the context in which it is best to use dif-
ferent adaptation strategies. The figure shows a boxplot chart
that illustrates the average, maximum, and minimum values of
accuracy and utilization importance under which a given strat-
egy is better than the rest. We can observe that the strategies
BH2 and Q2-BH2 are best across a broad range of accuracy
and importance of utilization. However, for very low utilization
importance values, Q2-BH2 performs better than Q2. This is
aligned with the fact that when all utility comes from the effec-
tiveness term of the utility function, incorporating the quaran-
tining tactic in addition to blacklisting servers is more effective
at keeping the likelihood of devices being compromised at low
values. Moreover, the plot also shows that not using any tactics
is the best option for high values of utilization importance and
low values of accuracy. This is consistent with our discussion
of Figure 13.

Figure 15 displays a pie chart that corresponds to the cov-
erage of the best strategies in the region of the space studied.
The plot shows how in ≃ 5% of the situations, not executing
any tactics is actually the best choice (this corresponds to the
region of the state space of high utilization and low accuracy
described previously). Moreover, we can see that the strategies
that employ BH2 are the best among the set considered for our
analysis, covering more than 94% of the space.

7. Conclusions

Mobile Malware is malicious code specifically designed to
infect mobile devices with the goal of performing multiple
types of fraud and is increasing rapidly. Efficient mechanisms
are required to detect and mitigate their impact, in particular,
in 5G and beyond networks. MONDEO-Tactics5G operates

BH2

56.71%

Q2-BH2

38.1%
NO

5.19%

Figure 15: Use context of best adaptation strategies: coverage

as a multistage botnet detection approach, allowing a system
to automatically identify FluBot malware in different phases.
The feedback loop supports the configuration of the blacklists
as soon as samples of malware are identified.

MONDEO-Tactics5G also involves the application of tactics
to respond to the malware detection event. Tactics provide mit-
igation to reduce the impact of Botnet attacks. In this paper, we
discussed three tactics and a multidimensional utility space that
allows us to balance the concerns of degree with which a 5G
operator can adapt to attacks with various costs to the business,
including overloading customer service departments. While the
paper concentrates on these particular tactics and utilities, the
approach is by no means limited to just these concerns, but can
be tailored to different contexts and different tactics. Evaluation
of the approach showed that our mitigation responses are effec-
tive. Even though for scalability purposes, we needed to con-
sider buckets of devices and C2 servers rather than individual
ones, it would guide companies to choose which tactics would
be most beneficial in which contexts.

MONDEO-Tactics5G focused on the FluBot threat and es-
tablished a foundational knowledge for detection of malware
relying on the DNS protocol, and also established a set of tactics
that mitigate such a type of thread efficiently. A key advantage
of MONDEO-Tactics5G is the possibility of being integrated
in 5G networks, through the interaction with specific 5G net-
work functions, like the User Plane Function for traffic capture
or in the Session Management Function for the application of
specific controls.

MONDEO-Tactics5G relies mainly on DNS and HTTP pack-
ets to detect attacks and the C2 servers, respectively. Malware
uses HTTPS or DNS over HTTPS to further make it more dif-
ficult to detect C2 servers. Our next steps will consider other
types of malware that use DNS over HTTPS and other types
of tactics fully integrated with 5G networks and exploiting the
potential of the feedback loop.

Acknowledgments

This work is funded by project AIDA (POCI-01-0247-
FEDER045907), cofinanced by the European Regional Devel-

13



opment Fund (ERDF) through the Operational Program for
Competitiveness and Internationalisation (COMPETE 2020)
and by the Portuguese Foundation for Science and Technology
(FCT) under CMU Portugal. This work has been supported by
Project “Agenda Mobilizadora Sines Nexus”. ref. No. 7113),
supported by the Recovery and Resilience Plan (PRR) and by
the European Funds Next Generation EU, following Notice No.
02/C05-i01/2022, Component 5 - Capitalization and Business
Innovation - Mobilizing Agendas for Business Innovation. This
work is funded by the FCT - Foundation for Science and Tech-
nology, I.P./MCTES through national funds (PIDDAC), within
the scope of CISUC R&D Unit - UIDB/00326/2020 or project
code UIDP/00326/2020. This work was also partially funded
by the Spanish Government (FEDER/Ministerio de Ciencia e
Innovación–Agencia Estatal de Investigación) under projects
TED2021-130523B-I00 and PID2021-125527NB-I00.

References
[1] Kaspersky, Kaspersky security bulletin 2023, securelist.com/ksb-2023-

statistics/111156/,Last visit: 2024-01-28.
[2] October 2023 review of virus activity on mobile devices,

news.drweb.com/show/review/?lng=en&i=14775, Last visit: 2024-
01-28 (2023).

[3] C. F. C. Association, Cfca 2021 fraud loss survey, techreport (Dec. 6,
2021).

[4] I. Ahmed, M. Anisetti, A. Ahmad, G. Jeon, A multilayer deep learning
approach for malware classification in 5g-enabled iiot, IEEE Transactions
on Industrial Informatics 19 (2) (2023) 1495–1503.

[5] M. Wazzan, D. Algazzawi, O. Bamasaq, A. Albeshri, L. Cheng, Internet
of things botnet detection approaches: Analysis and recommendations for
future research, Applied Sciences (Switzerland) 11 (12) (2021).

[6] Y. Xing, H. Shu, H. Zhao, D. Li, L. Guo, Survey on Botnet Detec-
tion Techniques: Classification, Methods, and Evaluation, Mathematical
Problems in Engineering 2021 (2021) 6640499.

[7] S. Almutairi, S. Mahfoudh, S. Almutairi, J. S. Alowibdi, Hybrid Botnet
Detection Based on Host and Network Analysis, Journal of Computer
Networks and Communications 2020 (2020).

[8] K. Wang, C.-Y. Huang, L.-Y. Tsai, Y.-D. Lin, Behavior-based botnet de-
tection in parallel, Security and Communication Networks 7 (11) (2014)
1849–1859.

[9] W. Wang, Y. Shang, Y. He, Y. Li, J. Liu, BotMark: Automated botnet
detection with hybrid analysis of flow-based and graph-based traffic be-
haviors, Information Sciences 511 (2020) 284–296.

[10] F. Salahdine, T. Han, N. Zhang, Security in 5g and beyond recent ad-
vances and future challenges, SECURITY AND PRIVACY 6 (1) (2023)
e271.

[11] W. Tian, K. Lin, Chapter 2 - requirements and scenarios of 5g system, in:
J. Shen, Z. Du, Z. Zhang, N. Yang, H. Tang (Eds.), 5G NR and Enhance-
ments, Elsevier, 2022, pp. 41–52.

[12] K. Flinders, Uk consumer trust in banks, retailers and telcos declines as
scams increase, computerweekly.com/news/252507268/UK-consumer-
trust-in-banks-retailers-and-telcos-declines-as-scams-increase, Last visit:
2024-01-28 (Sep. 28, 2021).

[13] D. O. Elie Bursztein, Deconstructing the phishing campaigns that target
gmail users, fastcompany.com/90387855/we-keep-falling-for-phishing-
emails-and-google-just-revealed-why, Last visit: 2024-01-28 (Aug. 7,
2019).

[14] paloalto Networks, Stop attackers from using dns against you, techreport
(Apr. 18, 2022).

[15] M. Lyu, H. H. Gharakheili, V. Sivaraman, A survey on dns encryption:
Current development, malware misuse, and inference techniques, ACM
Comput. Surv. 55 (8) (dec 2022).

[16] L. Principi, M. Baldi, A. Cucchiarelli, L. Spalazzi, Efficiency of malware
detection based on dns packet analysis over real network traffic, in: 2023
IEEE International Conference on Cyber Security and Resilience (CSR),
2023, pp. 42–47.

[17] M. Zhan, Y. Li, G. Yu, B. Li, W. Wang, Detecting dns over https based
data exfiltration, Computer Networks 209 (2022) 108919.

[18] M. Singh, M. Singh, S. Kaur, Issues and challenges in DNS based botnet
detection: A survey, Computers & Security 86 (2019) 28–52.

[19] R. Mallarapu, github.com/sudo-rushil/dgaintel, Last visit: 2024-01-28
(2020).

[20] D. Dias, B. Sousa, N. Antunes, Mondeo: Multistage botnet detection
(2023). arXiv:2308.16570.

[21] H. Target, https://hackertarget.com/top-million-site-list-download/, Last
visit 2021-09-08 (July 2020).

[22] S. Team, scikit-learn.org/stable/, Last visit: 2024-01-28 (2007).
[23] S.-W. Cheng, D. Garlan, B. Schmerl, Architecture-based self-adaptation

in the presence of multiple objectives, in: ICSE 2006 Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS),
Shanghai, China, 2006.

[24] P. Arcaini, E. Riccobene, P. Scandurra, Modeling and analyzing mape-
k feedback loops for self-adaptation, in: 2015 IEEE/ACM 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2015, pp. 13–23. doi:10.1109/SEAMS.2015.10.

[25] Abuse.ch, Malwarebazaar database, bazaar.abuse.ch/browse/tag/flubot/,
Last visit: 2024-01-28 (2022).

[26] Koodous, Collective intelligence against android malware, koodous.com/,
,Last visit: 2024-01-28 (2022).

[27] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, S. Laurenzo,
Streaming keyword spotting on mobile devices, in: Interspeech 2020,
ISCA, 2020.

[28] S. Trotta, D. Weber, R. W. Jungmaier, A. Baheti, J. Lien, D. Noppeney,
M. Tabesh, C. Rumpler, M. Aichner, S. Albel, J. S. Bal, I. Poupyrev, 2.3
soli: A tiny device for a new human machine interface, in: 2021 IEEE
International Solid- State Circuits Conference (ISSCC), Vol. 64, 2021,
pp. 42–44.

[29] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of
probabilistic real-time systems, in: G. Gopalakrishnan, S. Qadeer (Eds.),
Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), Vol. 6806 of LNCS, Springer, 2011, pp. 585–591.
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