
Multi-domain Modeling of Cyber-Physical Systems
Using Architectural Views

Ajinkya Bhave, Bruce Krogh
Dept. of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15217

{jinx—krogh}@ece.cmu.edu

David Garlan, Bradley Schmerl
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15217
{garlan—schmerl}@cs.cmu.edu

Abstract—Designing cyber-physical systems (CPSs) increas-
ingly requires the use of multi-domain models throughout the
development process. Ensuring consistent relationships between
various system models is an important part of an integrated
design methodology. This paper describes an architectural ap-
proach to reasoning about relations between heterogeneous
system models. The run-time base architecture of the system is
used as a unifying representation to compare the structure and
semantics of the associated models. Each model is related to the
base architecture through the abstraction of an architectural view,
which captures structural and semantic correspondences between
model elements and system entities. The use of the architectural
view framework to relate system models from different domains
is illustrated in the context of a quadrotor air vehicle.

Keywords-architectural views; multi-domain modeling; cyber-
physical systems; component-connector;

I. INTRODUCTION

Today’s complex cyber-physical systems (CPSs) are created
using models throughout the system development process, an
approach referred to as model-based design (MBD) [7]. Mod-
els allow designers from different disciplines to develop and
evaluate design alternatives within the context of formalisms
relevant to selected aspects of the system. Each representation
highlights certain features and occludes others to make analy-
sis tractable and to focus on particular performance attributes.
A particular modeling formalism typically represents either the
cyber or the physical elements well, but not both. For example,
differential equation models represent physical processes well,
but do not represent naturally the details of computation or
data communication. On the other hand, discrete formalisms
such as process algebras and automata are well suited for
representing concurrency and control flow in software, but are
not particularly useful for modeling continuous phenomena
in the physical world. Thus, the heterogeneity of elements in
CPSs requires multiple perspectives and formalisms to explore
the complete design space. Ensuring consistent relationships
between various system models is an important part of the
integrated MBD methodology.

We have developed the CPS architectural style as a system-
level representation that is not prejudiced towards either the
cyber or the physical side [2]. Architectures are annotated
structural representations that describe systems at a high level
of abstraction, allowing designers to determine appropriate

assignment of functionality to elements, evaluate the com-
patibility of the parts, and make trade-offs between different
quality attributes such as performance, reliability, and main-
tainability. This paper describes how the CPS architecture for a
system provides a unified point of reference for multi-domain
models based on heterogeneous formalisms. Our approach is to
define relationships between system models at the architectural
level, rather than developing a universal modeling language or
a meta-modeling framework for translating between models
from different formalisms. We believe that an architectural
approach provides the right level of abstraction: one that
captures the structure of and interdependencies in a system
without attempting to comprehend all of the details of any
particular modeling formalism.

The next section describes the use of the CPS architectural
style to define base architectures for cyber-physical systems.
The STARMAC quadrotor is introduced as a case study in
this section. Section III introduces the concept of architectural
views as means of relating heterogeneous models to a common
base architecture. In Sect. IV, we illustrate the creation of
three heterogeneous views in the context of the STARMAC
quadrotor. Section V describes related work in this area,
and the concluding section discusses ongoing work to extend
our approach to represent and analyze multi-domain model
consistency for CPSs.

II. A UNIFYING ARCHITECTURAL REPRESENTATION

Architectures are often represented using a collection of
architectural perspectives, which represent a set of related
concerns [3]. The component-and-connector (C&C) perspec-
tive models a system as an annotated graph of components
and connectors, in which the components represent principal
computational and physical elements of a system’s run-time
structure, the connectors represent pathways of communication
and physical coupling between components, and annotations
represent properties of the elements [10]. In this work, the
term ‘architecture’ is synonymous with a C&C architecture,
because all the modeling formalisms of interest to us focus
on analyzing properties and behavior of entities defined in the
C&C architecture of the system under study. Based on this
assumption, the CPS architectural style is also defined in the
C&C perspective. Figure 1 illustrates the BA for the quadrotor.

Submitted for publication.



Fig. 1. Base Architecture of the STARMAC quadrotor.

This BA was created from the STARMAC implementation.
The complete run-time architecture is modeled in the CPS
style, which allowed us to represent both the cyber components
(control algorithms and real-time software) and the physical
dynamics (forces and torques imparted to the vehicle frame
from physical sources). A more detailed description of the
complete quadrotor CPS architecture is provided in [2].

Current C&C architectural styles, which focus primarily on
software and computational infrastructures, are not compre-
hensive enough to describe a complete CPS. A CPS contains
physical elements in addition to cyber entities, and includes
elements representing interactions between these two domains.
We have addressed this shortcoming through the development
of a CPS architectural style [2] that augments traditional
cyber architectures with elements corresponding to physical
dynamics and laws. This architectural extension allows us to
create a run-time representation of the complete CPS, called
the system’s base architecture (BA).

Definition 1. The BA of a CPS is an instance of the CPS
architecture style, which contains all the cyber and physical
components and connectors that constitute the complete sys-
tem at runtime.

This definition implies that replicated functional units (for
fault-tolerance) are also contained in the BA. The BA should
contain enough detail to convey the nature of information
and physical quantities flowing between components. In ad-

dition, the communication mechanism between components
and relations between physical variables should be defined
by the appropriate connectors. For new CPSs, the BA is
built during the design phase from validated requirements and
system specifications. For legacy CPSs, the BA is inferred
from the implemented system, existing documentation and
system models, and the knowledge of the system designers. In
either case, we assume that the BA evolves as the design of the
CPS evolves, throughout the system development lifecycle.

The following example of a real-time, embedded, multi-
loop feedback system, will be used to illustrate the concepts
of architectural views and their relation to the BA. The
Stanford Testbed of Autonomous Rotorcraft for Multi-Agent
Control (STARMAC) [6] is a quadrotor platform developed
to test algorithms that enable autonomous operation of aerial
vehicles. The aircraft has four rotors for actuation, arranged
symmetrically about its body frame. The vehicle has an sensor
suite consisting of an inertial measurement unit (IMU), a
Global Positioning System (GPS) unit, and sonar. It imple-
ments a hierarchical control system, with a low-level attitude
controller (AC) and a high-level position controller (PC). A
remote ground station controller (GSC) generates reference
trajectories for the quadrotor to follow, and has joysticks for
control-augmented manual flight. The two onboard controllers
communicate through a serial link. Communications between
the PC and the GSC are managed over a WiFi network, using
the UDP protocol.



Fig. 2. How do we relate multi-domain models of a CPS?

III. ARCHITECTURAL VIEWS

A CPS is typically described and analysed using multi-
domain models, where each model focuses on a fixed set
of concerns about the underlying system. Figure 2 shows
four models of the STARMAC quadrotor that represent the
same system from the physical, control design, software, and
hardware domain perspectives.

In virtually all analysis tools, such models are constructed as
collections of interacting components or modules. Thus, each
model has a structure that can be viewed as an architecture
with syntax and semantics defined by the particular formalism
underlying the design of the tool. We would like to be able to
define consistent relations between these models at some level
of abstraction.

The approach proposed here focuses specifically on archi-
tectural views which represent the architectures of system
models as abstractions and refinements of the underlying
shared BA. In this context, well-defined mappings between
a view and the BA can be used as the basis for identifying
and managing the dependencies among the various models
and to evaluate mutually constraining design choices. The BA
thus becomes the repository for retaining results from various
analyses and designs so that the interdependencies are explicit.
This gives us the ability to reason about relations between
models by studying their individual mappings to the BA of
the system.

The relationships between elements in a model and entities
in the BA will not generally be one-to-one, however. Current
tools do not provide insights into the relationships between
such heterogeneous models of a CPS. This represents a
problem for architectural modeling, since it is generally im-
possible to understand how design decisions or analyses in one
view impact those of another. From a structural perspective,

an architectural view supports the description of a derived
architectural model to abstract over details that are irrelevant
for a particular analysis. The following definition formalizes
the concepts of the BA and architectural views that we have
described informally thus far.

Definition 2. An architectural view V for a modeling formal-
ism M is a tuple < CV ,RM

V ,RV
BA > where:

• CV is the component-connector configuration of the view,
with the types, semantics, and constraints defined by the
modeling formalism of the view

• RM
V is a relation that associates elements in the model

with elements in CV
• RV

BA is a relation that associates elements in CV with
elements in the BA

Figure 3 shows the conceptual relationship between system
models, views, and the BA, based on definitions 1 and 2.
RM

V is either one-to-one or an encapsulation of model
entities, as defined by the modeler’s choice of grouping. It
effectively creates a “componentized” version of the model and
allows grouping of multiple elements in the model to a single
element in the view. RV

BA is an encapsulation/refinement
relation, which enables the system architect to group specific
components and connectors in the view and map them to
subparts of the BA. Some correspondences are declared explic-
itly by the architect while other correspondences are inferred,
based on the semantics of the underlying view formalism.

One-to-many (encapsulation) and many-to-one (refinement)
maps are allowed. However, many-to-many maps are not
allowed since this can lead to inconsistent connections being
hidden inside the encapsulated components.The component-
connector structures resulting from carrying out element en-
capsulations on a view and on a BA are called an encap-view



Fig. 3. Relationship between models and the BA through views.

and an encap-BA, respectively.

IV. ARCHITECTURAL VIEWS OF THE QUADROTOR

This section describes how heterogeneous models of the
quadrotor can be related to the BA through architectural
views. The choice of the modeling domains is motivated by
the analysis and verification activities typically found in the
design process of embedded control systems. In this case,
the STARMAC design team had documented the software
subsystems and the hardware architecture of the vehicle. We
modeled the quadrotor physical dynamics in MapleSim from
first principles, as well as studying the vehicle dynamics from
existing control system models in Simulink.

A. Control View

From a control engineer’s perspective, the quadrotor sys-
tem can be viewed as a signal flow (Simulink) model. The
position and attitude controller components in the BA are
represented by the robostix and gumstix subsystems in the
Simulink model. The vehicle dynamics are represented by the
starmac dynamics block, and the GPS and IMU sensors are
defined by the Superstar II and the 3DM blocks, respectively.
Figure 4 illustrates the creation of the control view from
a Simulink model. The relation RM

V maps each top-level
Simulink block to a component, and each group of signal lines
between them to a connector, resulting in the control view’s
CV . The semantics for the CV are derived from the underlying
signal flow semantics of the Simulink metamodel.

For example, every connector in the control view represents
a (cyber or physical) signal. Hence, semantically equivalent
connectors between two components in the BA can be mapped
to a single connector in the control view under this particular

RV
BA. The mapping of four cyber-physical (C-P) connectors

between the attitude controller and an encapsulated component
(containing VehicleFrame) in the BA to a single connector
between Robostix and Starmac in the view is shown in Fig.
5.

We disallow many-to-many maps between macro elements
because the following type of situation could arise. Suppose
that the architect decided to group the Robostix, Gumstix,
and GPS components of the control view as one macro
element. The architect also groups the position controller,
attitude controller, and GPS components in the BA into a
single element, and associates it with the macro element in the
view. An inconsistent connector existing between Robostix and
GPS (highlighted in Fig. 5) will be hidden away in the macro
view element, and will not be detected if the control view and
BA are compared for some type of consistency check.

B. Process Algebra View

Finite State Process (FSP) [8] is a process algebra where be-
havior is modeled in terms of event patterns, called processes
that denote sets of event traces. Each event in a trace represents
a discrete transition of a system. In general, FSP captures the
behavior of cyber elements fairly well, while physical elements
are described by abstracting away their continuous dynamics.
The components in an FSP view are those entities whose
behavior can be described by an FSP primitive process. A
connector between two FSP components signifies that the two
processes interact with each other through events and describes
the protocol for that interaction, again as an FSP process.

The FSP specification of the quadrotor currently abstracts
over the dynamics of the quadrotor and focuses on the
communication between the ground station and position con-



Fig. 4. Creating the control view from a Simulink model.

troller. The process algebra view is created by mapping each
view entity to an FSP process in the specification, as shown
in Fig. 6. The Gnd Station component is mapped to the
GroundStation process, which specifies how the GSC sends
setpoints to the PC. The QuadRotor component is mapped
to PositionController FSP process that describes how the
ideal closed-loop quadrotor responds to position setpoints. The
connector between Gnd Station and QuadRotor is mapped
to an FSP process that specifies the communication protocol
between the two. The connector can be one of two types: a
lossy connector represents a wireless UDP link while a lossless
connector with retry models a wireless TCP. Having alternative
connector protocols allows us to compare the behavior of the
overall system depending on the protocol of the connection.

The mapping between the process algebra view and the
BA is shown in Fig.7. The abstraction of vehicle dynamics is
represented in the encapsulation of all the physical components
in the BA into a single QuadRotor component in the view.

C. Physical View

The physical view models the dynamics of the vehicle
in terms of the forces and torques applied by the rotors to
the vehicle frame. The nonlinear dynamics of the quadrotor
helicopter are those of a point mass m with moment of inertia
Ib ∈ R3×3, location ρ ∈ R3 in inertial space, and angular
velocity ω ∈ R3 in the body frame. The vehicle undergoes
forces F ∈ R3 in the inertial frame and moments M ∈ R3 in
the body frame, yielding the equations of motion,

~F = −DB~eV +mg~eD +

4∑
i=1

Ti~zB

~M =

4∑
i=1

Ti(~ri × ~zB)

where DB is the aerodynamic drag force, and g is the
acceleration due to gravity. RRj ,I and RRj ,B are the rotation
matrices from the plane of rotor j to the inertial coordinates
and the body coordinates, respectively.

The CPS style enables the formal representation of such
dynamic behavior in the overall system architecture. The dy-
namics model of the quadrotor is implemented in the Modelica
language, and the semantics of the CV are defined in terms
of non-causal interconnections between the effort and flow
variables of each attached component’s ports.

The mapping between the physical view and the BA is
shown in Fig. 9. The set of view components map to a subset
of the elements in the BA.

V. RELATED WORK

Multiple efforts have focused on supporting multi-view,
model-based system development. The SAE AADL (Archi-
tecture Analysis and Design Language) is an international
standard for predictable model-based engineering of real-
time and embedded computer systems [5]. AADL offers a
set of predefined component categories to represent real-time
systems and it is capable of describing functional component
interfaces like data and control flows, as well as non-functional
aspects of components like timing properties. However, AADL
does not support architectural representation of physical do-
main entities (except as generic ‘device’ components), nor
does it address how heterogeneous views can reconciled.

Ptolemy II is a tool that enables the hierarchical integration
of multiple “models of computation” in a single system,
based on an actor-oriented design [1]. Even though Ptolemy II
supports hierarchy and incorporation of multiple formalisms
at the detailed simulation level, it is not possible to define
architectural styles or high-level design tradeoffs. In addition,
there is no support for acausal, equation-based modeling of



Fig. 5. Mapping between control view and BA.

Fig. 6. Creating the process algebra view from an FSP specification.

physical systems, since the underlying formalism is event-
based communication.

The Vanderbilt model-based prototyping toolchain provides
an integrated framework for embedded control system de-
sign [9]. It provides support for multiple views, such as
functional Simulink/Stateflow models, software architecture,
and hardware platform modeling along with deployment. The
toolchain’s ESMoL language has a time-triggered semantics,
which restricts the functional view to Simulink blocks that
can only execute periodically. There is currently no support
for additional views (e.g., physical or verification models), nor
a notion of consistency between additional system views. In
contrast, our work focuses on architecture-level view compar-
ison, not on meta-modeling or model transformations.

SysWeaver [4] is a model-based development tool that

includes a flexible code generation scheme for distributed
real-time systems. The functional aspects of the system are
specified in Simulink and translated into a SysWeaver model
to be enhanced with timing information, the target hardware
model and its communication dependencies. The translation
from Simulink is not completely automated if closed-loop
controllers are present. Sysweaver’s computational framework
semantics is restricted to tasks that exchange information
via message-passing (time or event-based). There is also no
support in SysWeaver for a physical plant modeling view.

VI. DISCUSSION

Once we have the ability to relate heterogeneous system
models to the BA through the mechanism of architectural
views, several interesting questions can be asked. A natural



Fig. 7. Mapping between process algebra view and BA.

Fig. 8. Creating the physical view from a Modelica model.

one is: what does it mean for each system model to be
consistent (in some sense) with the underlying system rep-
resentation?

Consistency can be studied between a single model and the
underlying system or between multiple models of the same
system. Consistency of a single model with the architecture
makes it possible to relate (and subsequently use) verification
results derived from the model to the final system imple-
mentation. This is possible if the final run-time system is
generated in a systematic way to guarantee conformance to the
architecture. If multiple models describe the same system, then
the models should be based on consistent assumptions about
the system’s parts, including the parts that are abstracted away.
Only then can the different sub-systems designed using these
models be integrated, and the final composed system behavior
be the same as the behavior expected using the individual
model analysis results.

Consistency can also give the designer the ability to relate

system requirements to its models. The BA is assumed to be
constructed from validated stakeholder/system requirements.
Hence, the BA contains only components and connectors that
can be traced back to particular requirements. By enforcing
that each view maintain consistency with the BA, we obtain
a way to carry out requirements traceability for the corre-
sponding model as well. Hence, the model cannot contain
extraneous elements (or connections between elements) that
are not mandated by some system-level requirement. This
gives the modeler a mechanism to verify whether the model
complies with the decisions (and future changes) made at the
system architecture level are reflected in each model.

The exploration of these issues form the next steps in our
approach to multi-domain modeling using architectural views.

ACKNOWLEDGMENT

This work is supported in part by National Science Foun-
dation (NSF) under grant no. CNS0834701 and by Air Force



Fig. 9. Mapping between physical view and BA.

Office of Scientific Research (AFOSR) under contract no.
FA9550-06-1-0312.

REFERENCES

[1] S. S. Bhattacharyya, E. Cheong, and I. Davis. Ptolemy II heterogeneous
concurrent modeling and design in java. Technical report, 2003.

[2] A. Bhave, D. Garlan, B. Krogh, A. Rajhans, and B.Schmerl. Augmenting
software architectures with physical components. In Proc. of the
Embedded Real Time Software and Systems Conf. (ERTS2 2010), 19-21
May 2010.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2002.

[4] D. de Niz, G. Bhatia, and R. Rajkumar. Model-based development
of embedded systems: The Sysweaver approach. IEEE Real Time
Technology and Applications Symposium, pages 231–242, 2006.

[5] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis and
design language (aadl): An introduction. Technical Report CMU/SEI-
2006-TN-011, Software Engineering Institute, Carnegie Mellon Univer-
sity, Feb 2006.

[6] G. Hoffman, S. Waslander, and C. Tomlin. Quadrotor helicopter
trajectory tracking control. In Proc. of the AIAA Guidance, Navigation,
and Control Conference, 2008.

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprin-
kle, and G. Karsai. Composing domain-specific design environments.
Computer, 34(11):4451, 2001. doi:http://dx.doi.org/10.1109/2.963443.

[8] J. Magee and J. Kramer. Concurrency: State Models and Java Program-
ming, Second Edition. Wiley, 2006.

[9] J. Porter, P. Volgyesi, N.Kottenstette, H.Nine, G.Karsai, and J. Szti-
panovits. An experimental model-based rapid prototyping environment
for high-confidence embedded software. In RSP ’09: Proceedings of the
2009 IEEE/IFIP International Symposium on Rapid System Prototyping,
pages 3–10, Washington, DC, USA, 2009. IEEE Computer Society.

[10] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.




