In Proc. Workshop on MARTCPS Models at Runtime and Networked Control for Cyber Physical Systems

Challenges in Physical Modeling for Adaptation of Cyber-Physical Systems

Ivan Ruchkin®, Selva Samuel*, Bradley Schmerl*, Amanda Ricof, and David Garlan*
Institute for Software Research, Carnegie Mellon University, Pittbsurgh, PA, USA
*{iruchkin,ssamuel, schmerl,garlan} @ cs.cmu.edu tarico@ carthage.edu

Abstract—Cyber-physical systems (CPSs) mix software,
hardware, and physical aspects with equal importance. Typ-
ically, the use of models of such systems during run time
has concentrated only on managing and controlling the cyber
(software) aspects. However, to fully realize the goals of a
CPS, physical models too have to be treated as first-class
models. This approach gives rise to three main challenges:
(a) identifying and integrating physical and software models
with different characteristics and semantics; (b) obtaining
instances of physical models at a suitable level of abstraction
for adaptation; and (c) using and adapting physical models to
control CPSs. In this position paper, we elaborate on these three
challenges and describe our vision of making physical models
first-class entities in adaptation. We illustrate this vision in the
context of power adaptation for a service robotic system.

I. INTRODUCTION

State-of-the-art self-adaptation relies on multiple layers of
models at run time to enable sophisticated decision-making.
It is common to separate the system under adaptation from
the adaptation layers that govern control of increasingly
higher-level concerns, from specific adaptive strategies like
adding a server, to managing long-term goals of the system,
like user satisfaction or mission achievement. In particular,
models of the software being adapted are used to reason
about and manage software-intensive systems. Common
models used include architecture models [1]-[5], goal and
requirements models [6], [7], and models of tasks [8].

Existing self-adaptive approaches predominantly use so-
phisticated models of the software, but consider physical
characteristics of the system more simply, and mostly only
insofar as modeling resources are available to the software.
In architecture models, for instance, physical elements may
be represented as components (e.g., a motor or a gripper
component [9]), making adaptation reasoning discrete and
symbolic in most cases.

Cyber-physical systems (CPSs) are characterized by the
inclusion of physical phenomena and interactions, such as
power and timing in addition to complex software models,
which makes adaptation difficult. Compared to traditional
control systems, CPSs act in more open and uncertain
contexts, and are managed at run time by increasingly
distributed, autonomous, and large-scale software parts. If
physical dynamics are not accounted for properly in such
complex systems, adaptive models may fail to accurately
predict the outcome of adaptation, making them less effec-
tive than non-adaptive systems. For example, if the soft-

978-1-5090-4130-5/16/$31.00 © 2016 IEEE

ware of a robot is reconfigured to get better accuracy in
localization without considering physical characteristics like
increased power consumption of the hardware, then the robot
may not have enough power to achieve its task.

Fully managing CPSs requires run-time reasoning about
models of all parts of the system: the cyber (software)
and the physical models, and combinations of both. When
incorporating physical models into adaptation, we face sev-
eral challenges. First, we need to pick appropriate formal
representations for the physical models. The models need to
be sufficiently expressive to represent the target behavior
of the system and the environment. Different formalism
choices may enable or disable certain kinds of analyses and
affect possible adaptations. Another challenge is obtaining
actual instances of physical models. They cannot be obtained
simply by abstraction of software or by design (as is the case
for cyber models) — often they require experimentation and
data collection to build since we may have no direct control
over physical processes, such as urban mobility [10]. The
final challenge is incorporating all kinds of models into the
adaptation process. Many physical qualities (e.g., power)
have a systemic (i.e., cross-cutting) nature and can apply
to many adaptation decisions about both cyber and physical
aspects. Therefore, an important choice in the design of
self-adaptive cyber-physical systems is which adaptation
components (e.g., analysis algorithms and execution actors)
can manipulate which physical models and how the different
control loops for these models can be integrated.

In this paper, we survey existing work on model-based
self-adaptation for CPS, focusing on work in the self-
adaptive robotics domain, in Section II. In Section III we
illustrate several of the challenges we will discuss with an
example that is based on our work of building a power
model for a service robot in order to add power-aware self-
adaptation. Finally, Section IV contains a detailed discussion
of the challenges associated with using physical models in
combination with software models in CPS.

II. RELATED WORK

Models at run time have been mostly used to guide self-
adaptation or verification. The self-adaptive community has
focused on various models of the software of the system that
is being adapted. Such models include requirements, goals,
architecture, and tests.

At IEEE World Forum on the Internet of Things, 12-14 December 2016

In Proc. Workshop on MARTCPS Models at Runtime and Networked Control for Cyber Physical Systems

There has been an abundance of work on applying self-
adaptive techniques to robotics systems, which have physical
characteristics such as batteries, physical movement, inter-
action with humans, etc. The works of Sykes et al. [3], [8],
[9] include examples from the domain of robotics, but the
models that are used at run time focus on the architecture
or structure (both behavioral and extra-functional) of the
system and its tasks. In most cases physical models are
limited to simple models of resources and environment.
Many of the approaches involve the use of multiple models.
They represent and manipulate models of tasks or policies
(e.g., [11]) of a robot, in addition to the software archi-
tecture. However, none of these models are purely physical
models.

The most sophisticated model of the physical aspects of
the robots are discussed in [9], which describes an approach
for updating environment models of a robot that has software
organized according to Gat’s three-layer architecture [12].
The reasons for which an environment model might have
to be updated include unmodeled conditions, probabilistic
factors, unmodeled transitions, and unmodeled historical
dependencies, which manifest themselves as failure of the
robot to reach its goal. The model is encoded as a logic
program that describes the actions that can be taken when
certain conditions hold. To achieve a goal, this model is
used to generate a plan. As the robot executes different
plans, it collects execution traces for each of them. However,
the environment model, while representing some physical
aspects, serves the analysis of the software models.

Physical models are used in [13] to reason about opti-
mal configurations of software in an unmanned underwater
vehicle (UUV). In this work, the software configuration
has to be sensitive to both the speed of the UUV and
the amount of power that sensors can use, while fulfilling
requirements on the number of measurements that should
be taken during a mission. They use run-time quantitative
verification [14] to verify that quality attributes are being
met and to choose appropriate reconfigurations if not. The
quality attributes include physical characteristics (such as
power consumption).

None of the approaches describe a methodology or frame-
work for treating physical models as first-class alongside
software models in the adaptation process.

III. MOTIVATING EXAMPLE

We will illustrate physical modeling challenges on the
example of TurtleBot' — a hardware platform for a service
robot whose software can be customized to make the robot
perform various tasks such as indoor delivery, notification
and escorting people. TurtleBot is equipped with a Kinect
depth camera to visually sense its surroundings, navigate,
and avoid collisions with obstacles in its path. Its control

Uhttp://turtlebot.com

software is based on the Robot Operating System (ROS) 2,
which in turn executes on an on-board computer — the Intel
Next Unit of Computing (NUC) * — that runs a Linux OS.
TurtleBot moves using a mobile base with a two-wheeled
differential drive system that is capable of driving in straight
lines and arcs, and turning in place. The base also houses a
battery that powers all devices.

Since it runs on a battery, TurtleBot has a limited amount
of power and thus cannot perform tasks of indefinite du-
ration. Therefore, it can run out of power and shut down
in the middle of a task, which is undesirable. To prevent
this, offline and online power adaptation is necessary. The
former would determine, before starting a task, the system
configuration and an action plan that would satisfy energy
constraints (e.g., not running out of power in the middle of
the task). The latter would react to unanticipated changes in-
progress (e.g., if driving drains more energy than expected)
and would change the configuration or the plan.

To enable power-aware adaptation for TurtleBot, two
power models are necessary:

e A power consumption model that predicts how much
energy it takes to accomplish a task.

o A power state estimation model that determines for a
given battery voltage reading how much energy remains
in the battery.

Building a power consumption model requires knowledge
of how much power each physical part of TurtleBot uses for
a given task. From the perspective of power usage, TurtleBot
has three components: a base, a Kinect, and a NUC. The
power consumption of the base depends on the motion
type (driving straight and rotating drain different amounts
of power), velocity (translational and rotational), the floor
material (e.g., carpet or tile), and the slope. NUC power
consumption depends on the amount of processing that the
NUC does, which is determined by the parameters of vision
and navigation algorithms (e.g, number of processing points
in a sensed set of points provided by Kinect) as well as
other software-based computations, such as interactions with
users. Power consumption of the Kinect sensor is mostly
fixed since it delivers fixed data.

Consider the following scenario that we will use to
illustrate the challenges: TurtleBot needs to navigate to a
target location inside a building. Two paths are available:
a shorter path through a crowded hallway, and a longer
path through a mostly empty hallway. Using the shorter
path would lead to the robot driving with slower speed and
potentially stopping to let humans clear the path, whereas
the longer path can be driven with a faster speed and fewer,
if any, interruptions. Depending on the specific parameters
of this scenario, either of the two paths may turn out to be

Zhttp://www.ros.org/
3http://www.intel.com/content/www/us/en/nuc/overview.html

At IEEE World Forum on the Internet of Things, 12-14 December 2016

In Proc. Workshop on MARTCPS Models at Runtime and Networked Control for Cyber Physical Systems

energy-optimal and (independently) time-optimal, and these
physical factors need to be considered when choosing a path.

In this motivating example, there are both cyber and
physical aspects of adaptation. In particular, power balance
depends on the mechanical characteristics of the robot
and its environment, the chemical characteristics of the
battery, the electrical characteristics of computing hardware,
and computing complexity of software. These dependencies
make TurtleBot a convenient illustration for challenges in
physical modeling.

IV. CHALLENGES

Our position is that all models (physical and cyber) should
be treated equally in the running system for verification and
adaptation. By physical models, we mean abstractions of
physical objects and interactions, such as those based on
mass, electricity, and other physical phenomena. Physical
models may include relevant physical devices. For instance,
a kinematic model of the robot from Section III would
include attributes of its wheels. By cyber (software) models,
we mean representations of software and hardware struc-
tures, data, and computations, such as nodes and event buses
in ROS.

Existing techniques that use models during run time tend
to favor software models with limited representation of
physical phenomena. However, physical models also need
to be defined, monitored, and manipulated in ways similar
to software models in order to make CPSs adapt better. Also,
physical models and their analysis need to be integrated with
software models to provide a holistic view of the run-time
state of the cyber-physical system.

A number of challenges need to be addressed to achieve
this vision. First, different modeling characteristics of soft-
ware and physical domains need to be considered for
identifying and integrating the required models. Second,
uncertainty and evolution of physical properties over time
should be considered for deriving and defining the physical
models. Third, physical and software models need to be
adapted and considered in any run-time adaptation decisions
that need to be made on the system.

A. Selecting Modeling Formalism

Modern engineering methods for cyber-physical systems
offer a multitude of possible formalisms for physical mod-
eling, with varying mathematical foundations. Some are
based on differential equations (e.g., Modelica*). These are
often used to describe continuous-time dynamical systems
(for instance, a physical movement). Signal-flow models
(e.g., Simulink®) can be used to approximate and simulate
differential equations. For systems with multiple modes, one
can use variations of automata, such as timed, probabilistic,
and hybrid automata [15].

“https://www.modelica.org
Shttps://www.mathworks.com/products/simulink

Not all formalisms, however, are equally useful to model
every physical aspect of a system. The chosen formalism
needs to fit the purpose and context in which it is used.

One of the factors that affects the choice of formalism is
its expressiveness, which determines what objects and dy-
namics can be described. For example, if power predictions
for a wheeled robot should output real numbers, formalisms
that only use integers (e.g., Promela®) would not fit this
purpose. In such situations using an inappropriate formalism
would make models overly coarse, leading to shallow analy-
sis of the system. For physical models, important formalism
properties include linearity, treatment of continuity, and the
underlying mathematical theories (which constrain permitted
functions and quantities). For instance, if a formalism is
restricted to polynomial functions (e.g., the input language of
KeYmaera [16]), it may be challenging or even impossible to
accurately describe dynamics that are traditionally modeled
with transcendental functions (such as movement along a
curve modeled using trigonometric functions).

Merely modeling a physical system is rarely the final goal;
rather, one usually aims to analyze a model to provide some
value in the engineering process. For the power model of
TurtleBot, the goal of analysis is to predict whether the robot
has enough energy to complete a given task. That is an exam-
ple of an online analysis, but many analyses are done offline.
For instance, determining the center of mass of a physical
structure is a common offline analysis. Formalism choice
is often dominated by the tradeoff between expressiveness
and feasible analysis: one aims to use the least expressive
formalism possible, provided that it captures the relevant
phenomena. Otherwise, if the formalism’s expressiveness is
too high, analysis may be infeasible or the complexity will
make the analysis prohibitive to perform.

In addition to the requirement of different formalisms for
different physical aspects, we also face the challenge that
many physical aspects require special expertise to model. For
example, modeling the mechanical aspects of the TurtleBot
requires understanding the mechanics of a rotating wheel,
whereas modeling power storage and consumption requires
electrical engineering expertise. As cyber-physical systems
often incorporate different aspects of physicality, the likeli-
hood that there is a domain expert who understands all the
modeling characteristics of the system is low.

The challenges of expressiveness, analytic power/cost, and
domain diversity lead us to the following position:

Position 1. Multiple formalisms are needed to cover all
aspects of a CPS. Developing a single unified one is a
fruitless exercise.

Unified modeling formalisms range from strict prescrip-
tive semantics (which may end up being too restrictive and
not scale for the whole system, like state automata) to

Shttp://spinroot.com

At IEEE World Forum on the Internet of Things, 12-14 December 2016

In Proc. Workshop on MARTCPS Models at Runtime and Networked Control for Cyber Physical Systems

informal and disjoint semantics (which often do not permit
comprehensive automated reasoning). One example of the
latter case is the Unified Modeling Language (UML). It
provides several disconnected languages (statecharts, use
case diagrams, class diagrams, activity diagrams) that, even
for purely software systems, have proven challenging to
formally unify and verify. For CPS, we have little hope to
find a single such formalism.

Instead, our latest research has been exploring an ap-
proach that allows engineers to work within the formalism
required for their domain and within their area of exper-
tise, and to integrate those models through abstraction and
relation. Abstraction factors out crucial commonalities of
models into a simplified space (in a metamodel language, a
universal format for all models traces, etc.). Once that space
is constructed, some elements of models are related through
it. That relation is checked for consistency properties on the
structure [17] and semantics [18] of the constituent models.
Our vision is that language designers create these checking
mechanisms to assist engineers in putting models together.

Furthermore, beyond integrating the models through ab-
straction and relation, different methods for analyzing mod-
els needs to be coordinated. We need to ensure that an
analysis is never applied to a model that violates the as-
sumptions of the analysis. Since such violation can originate
from updating a model by another analysis, analyses must be
executed in the correct order. In [19] we developed an anal-
ysis integration approach that uses contracts (assumptions
required for the analysis to be valid, and guarantees provided
by the analysis) to specify dependencies between analyses,
determine their correct order of application, and specify and
verify applicability conditions in multiple domains. In [20]
we describe some of the ways in which we can deal with
the inevitable dependency loops that occur in complex cyber-
physical systems with many models and analyses.

Because of the complex dynamics of CPS and uncertainty
of operating environments, these models and relationships
need to be maintained at run time, as we discuss in the
coming sections. But first we discuss how models are built
with adaptation in mind.

B. Obtaining Physical Models

Once formalisms for modeling various aspects of a system
have been chosen, they are used to build models for the
specific system at hand. To use a physical model successfully
at run time, the model has to rank well enough on several
model value factors — characteristics of a model that deter-
mine how much value it provides in run-time adaptation. The
concrete factors will vary by system, but we can distinguish
three general categories of model value factors:

1) Analytical power — the capacity of the model to pro-
vide conclusions (estimates, predictions) with required

Thttp://www.uml.org

precision, granularity, and horizon. Analytical power is
in part determined by the formalism, and partially by
the model itself. For instance, a power model learned
from a single run of TurtleBot would not accurately
predict another run’s power consumption.

2) Fragility — dependency of the model’s analytical power
on the model’s assumptions, and difficulty of carrying
over the model to a new context from its original
context. For example, if a power model does not easily
carry over from one surface material (e.g., carpet) to
another (e.g., tiles), it is said to be fragile with respect
to surface material. If a model is to be used across
multiple contexts, its fragility needs to be addressed
and managed.

3) Computational cost — the amount of computation
needed to perform the required analyses. Again, al-
though a formalism sets the overall expectations of
computational costs, the model itself may contribute
to them. For example, a state model with redundant
states may slow down its exploration by a model
checker. Computational costs often correlate with time
needed for analysis, which can be critical during a self-
adaptive system’s execution if it is important to react
quickly.

Ideally, requirements on these value factors would de-
termine the approach to building a physical model. Unlike
cyber models, which are often created through abstraction
and (re-)engineering the modeled software, physical models
may be built based on a theory or raw data:

o Theory-driven models: the phenomena are modeled
using an appropriate physical theory. For example, a
robot wheel may be modeled mechanically to derive
the power it takes to move [21]. Theory-driven models
may be calibrated to suit the target context, but the
primary emphasis is on the theoretical abstractions.

o Data-driven models: the phenomena are modeled indi-
rectly, by collecting data and creating (e.g., statistical)
models of this data. Data-driven models do not neces-
sarily use or reflect the physical theories about reality.
To build a data-driven model for TurtleBot power
consumption, one could run multiple experiments with
repetitive movement tasks (e.g., spinning on the floor
for 15 minutes) and use regression to extract the model
from the experimental data [22].

It is challenging to make model building decisions to
align model value factors with the requirements. Before a
theoretical model is built or data is collected, it is difficult
to know the margins of error and prediction horizons that a
model can tolerate. It is also hard to set an expectation of
how a model would respond to context switches.

Position 2. For physical models, approaches to building
models significantly affect the resulting value of the model.

At IEEE World Forum on the Internet of Things, 12-14 December 2016

In Proc. Workshop on MARTCPS Models at Runtime and Networked Control for Cyber Physical Systems

Therefore, model-building decisions need to be carefully
considered in the light of model value factors. There is little
formal guidance on making model-building decisions in this
way, and more of such guidance is needed.

In the case of robot power modeling, we examined the
implications of the two model-building approaches on the
power model value factors. We concluded that predictions
over a long future horizon (up to an hour of operation)
with relatively low precision (acceptable error up to 10%)
can be accomplished by a data-driven model. A theory-
driven model, on the other hand, could have more precise
predictions (on the order of minutes), but its error would
accumulate for long horizons. Thus, a data-driven model
was preferable from the perspective of analytical power.

The fragility of our data-driven power model, however,
left much to be desired: we cannot predict power con-
sumption in new contexts (e.g., a different surface material)
without additional data collection. However, we can reuse
the method and equipment we used to collect data originally
to rapidly extend models as needed.

We chose to pursue a data-driven power model for Turtle-
Bot, influenced by the fact that we had no expertise in
electrical, mechanical, and chemical engineering required to
build theory-driven models. We collected power consump-
tion data from multiple motor tasks from executions of each
motion task up to 30 minutes. Then, we removed the outliers
in the data and built the model using linear regression.
Although the result was satisfactory, more guidance on how
model building decisions affect model value would have
helped streamline the decisions and perhaps build a higher-
precision model. Having systematic processes for guiding
model choice will be crucial going forward, especially as
the size and complexity of these systems increases.

C. Using Physical Models in Adaptation

The constructed physical models may be used in three
ways to make adaptation decisions in the target system. First,
and most commonly, they might be used to estimate the cur-
rent state of the system. For example, there are no on-board
devices on the TurtleBot to measure the remaining battery
capacity directly. But, the output voltage from the battery
can be measured, and giving an estimate of the remaining
battery capacity. Second, physical models can be used to
predict impacts of physical actions. Third, the models might
be used to search for an adaptation strategy that satisfies
the given constraints. In this case, the search needs to be
sensitive to the relationships between the different models.

Aside from adapting the system, physical models can
themselves be updated because of changing physical con-
ditions. For instance, if the power model is consistently
making overly optimistic predictions, it may be possible
that wear and tear on the robot has reduced the efficiency
of movement. There are multiple ways to respond to this
situation: (re-)learning, calibration, updating ontology, and

so on. All of these adapt the model itself without changing
the system unlike classical software-based adaptation.

Thus, using physical models in adaptation is a two-part
challenge:

« How to organize decision-making to adapt the system
based on cooperative use of its models?

« How to organize decision-making to adapt models
based on their model value (as described in Sec-
tion IV-B)?

This challenge leads us to the following position:

Position 3. Physical models should be treated as first-class
entities in adaptation, and thus given equal importance as
cyber models. The value of each physical model needs to be
tracked throughout the system execution, and these models
should be adapted as needed.

The way we address this position is by giving the
system self-awareness of some aspects of model-building,
particularly model value factors. Since the system needs
to manipulate its models, it needs to operate proactively
under the same concerns as do the engineers that built the
original version of the model. In TurtleBot’s case, the robot
should continuously monitor how good its model-based
predictions are and evaluate the precision of the models,
adapting when the precision becomes unacceptable — before
it finds itself with too little power to proceed. When possible,
this evaluation should take known causal connections into
account (e.g., wear and tear that reduces motion efficiency).
It is, however, not advisable to improve the models without
sufficient evidence due to the risk of overfitting.

Our vision of making physical models first-class can be
implemented in various ways. On the one hand, physical
aspects can be explicitly embedded into existing software
models; for instance, annotating architectural views with
physical quantities [17]. This approach, however, is subject
to expressiveness limitations described in Section IV-A. On
the other hand, it is often convenient to construct separate
physical models to have more freedom in model-building
choices described in Section IV-B. But then more effort
needs to be spent on relating these separate physical models
to cyber models. Either way, physical modeling needs to be
as involved in adaptive processes as cyber modeling.

V. CONCLUSION

Physical models are as important as cyber models when it
comes to model-based adaptation of cyber-physical systems.
However, we face several significant challenges in using
physical models in adaptation. One needs to carefully select
a formalism. The method of obtaining the model influences
the scope of its applicability and the analyses that can be
run on the model, as well as their cost. As our experience
with power modeling suggests, sophisticated experimental
protocols can help collect and abstract data properly. Guide-

At IEEE World Forum on the Internet of Things, 12-14 December 2016

In Proc. Workshop on MARTCPS Models at Runtime and Networked Control for Cyber Physical Systems

lines for selecting formalisms and picking experiments are
needed to help develop custom physical models for CPS.

Another set of challenges is associated with using physical
models in adaptation. Contextual sensitivity, information
hiding, and maintaining models at run time are among
the prominent barriers in adaptation using physical models.
Depending on the type of model, different model qualities
need to be prioritized for successful adaptation.

We thus come to a conclusion that modern model-based
self-adaptive systems lack the ability to adequately treat
physical phenomena. To improve the state-of-the-art of self-
adaptive CPS, we need new approaches that focus on explic-
itly bringing together cyber and physical models, by taking
into account their characteristics and features. We also envi-
sion tools and environments that help construct, relate, and
maintain heterogeneous CPS models more systematically,
instead of having tools for each kind of model.

ACKNOWLEDGMENTS

The authors would like to thank Rick Goldstein, Joydeep
Biswas, and Manuela Veloso for their assistance with setting
up and operating TurtleBot technology. This material is
based on research sponsored by NSF under Grant No.
1560137 and by AFRL and DARPA under agreement num-
ber FA8750-16-2-0042. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation therein. The
views, opinions, findings, conclusions, and recommenda-
tions contained herein are those of authors and should
not be interpreted as necessarily representing or reflecting
the official policies or endorsements, either expressed or
implied, of NSF, AFRL, DARPA, of the U.S. Government.

REFERENCES

[1] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-
based Runtime Software Evolution,” in Proc. of the 28th Int.
Conf. on Software Engineering, Kyoto, Japan, 1998.

[2] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based
Self-adaptation in the Presence of Multiple Objectives,” in
Proc. of the 2006 Workshop on Software Engineering for
Adaptive and Self-Managing Systems, Shanghai, China, 2006.

[3] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “Plan-
directed Architectural Change for Autonomous Systems,” in
Proc. of the 2007 Conf. on Specification and Verification of
Component-based Systems (SAVCBS ’07), Dubrovnik, Croa-
tia, 2007.

[4] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Sol-
berg, “Models@Run.Time to Support Dynamic Adaptation,”
Computer, vol. 42, no. 10, Oct. 2009.

[S] N. Huber, A. Hoorn, A. Koziolek, F. Brosig, and S. Kouneyv,
“Modeling Run-time Adaptation at the System Architecture
Level in Dynamic Service-oriented Environments,” Serv. Ori-
ented Comput. Appl., vol. 8, no. 1, Mar. 2014.

[6] V. E. Souza, A. Lapouchnian, K. Angelopoulos, and J. My-
lopoulos, “Requirements-driven Software Evolution,” Com-
put. Sci., vol. 28, no. 4, Nov. 2013.

[71 N. Bencomo, A. Belaggoun, and V. Issarny, “Dynamic Deci-
sion Networks for Decision-making in Self-adaptive Systems:
A Case Study,” in Proc. of the 8th Symp. on Software
Engineering for Adaptive and Self-Managing Systems, San
Francisco, CA, USA, 2013.

[8] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and
K. Inoue, “Learning Revised Models for Planning in Adap-
tive Systems,” in Proc. of the 35th Int. Conf. on Software
Engineering, San Francisco, CA, USA, 2013.

[9] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and
S. Uchitel, “MORPH: A Reference Architecture for Config-
uration and Behaviour Self-adaptation,” in Proc. of the Ist
Int. Workshop on Control Theory for Software Engineering
(CTSE 2015), Bergamo, Italy, 2015.

[10] D. Zhang, J. Zhao, F. Zhang, and T. He, “UrbanCPS: a cyber-
physical system based on multi-source big infrastructure
data for heterogeneous model integration,” in Proc. of the
ACM/IEEE 6th Int. Conf. on Cyber-Physical Systems, 2015.

[11] J. C. Georgas and R. N. Taylor, “Policy-based Self-adaptive
Architectures: A Feasibility Study in the Robotics Domain,”
in Proc. of the 2006 Workshop on Software Engineering
for Adaptive and Self-Managing Systems, Leipzig, Germany,
2008.

[12] E. Gat, “Three-layer Architectures,” in Artificial Intelligence
and Mobile Robots. Cambridge, MA, USA: MIT Press, 1998.

[13] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient Runtime
Quantitative Verification Using Caching, Lookahead, and
Nearly-optimal Reconfiguration,” in Proc. of the 9th Symp.
on Software Engineering for Adaptive and Self-Managing
Systems, Hyderabad, India, 2014.

[14] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola,
“Self-adaptive Software Needs Quantitative Verification at
Runtime,” Commun. ACM, vol. 55, no. 9, Sep. 2012.

[15] R. Alur, Principles of Cyber-Physical Systems. Cambridge,
Massachusetts: The MIT Press, Apr. 2015.

[16] N. Fulton, S. Mitsch, J.-D. Quesel, M. Volp, and A. Platzer,
“KeYmaera X: An Axiomatic Tactical Theorem Prover for
Hybrid Systems,” in Proc. of the Int. Conf. on Automated
Deduction, Berlin, Germany, 2015.

[17] A. Y. Bhave, B. Krogh, D. Garlan, and B. Schmerl, “View
Consistency in Architectures for Cyber-Physical Systems,” in
Proc. of the 2nd ACM/IEEE Int. Conf. on Cyber-Physical
Systems, Apr. 2011.

[18] A. Rajhans, A. Y. Bhave, 1. Ruchkin, B. Krogh, D. Garlan,
A. Platzer, and B. Schmerl, “Supporting Heterogeneity in
Cyber-Physical Systems Architectures,” IEEE Tran. on Au-
tomatic Control, vol. 59, no. 12, Dec. 2014.

[19] I. Ruchkin, D. de Niz, S. Chaki, and D. Garlan, “Contract-
Based Integration of Cyber-Physical Analyses,” in Proc. of
the 14th Int. Conf. on Embedded Software (EMSOFT ’14),
New Delhi, India, Oct. 2014.

[20] I. Ruchkin, B. Schmerl, and D. Garlan, “Analytic Dependency
Loops in Architectural Models of Cyber-Physical Systems,”
in Proc. of the 8th Int. Workshop on Model-based Architecting
of Cyber-Physical and Embedded Systems, Ottawa, Canada,
Sep. 2015.

[21] J. Morales, J. L. Martnez, A. Mandow, A. Pequeo-Boter, and
A. Garca-Cerezo, “Simplified power consumption modeling
and identification for wheeled skid-steer robotic vehicles on
hard horizontal ground,” in 2010 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Oct. 2010.

[22] A. Rico, I. Ruchkin, B. Schmerl, and D. Garlan, “Hardware
Power Modeling for Turtlebot,” ResearchGate, Jul. 2016.
[Online]. Available: https://www.researchgate.net/publication/
306274755_Hardware_Power_Modeling_for_Turtlebot

At IEEE World Forum on the Internet of Things, 12-14 December 2016

