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Abstract. An increasingly important concern for modern systems design is how 
best to incorporate self-adaptation into systems so as to improve their ability to 
dynamically respond to faults, resource variation, and changing user needs. One 
promising approach is to use architectural models as a basis for monitoring, 
problem detection, and repair selection. While this approach has been shown to 
yield positive results, current systems use a reactive approach: they respond to 
problems only when they occur. In this paper we argue that self-adaptation can 
be improved by adopting an anticipatory approach in which predictions are 
used to inform adaptation strategies. We show how such an approach can be in-
corporated into an architecture-based adaptation framework and demonstrate 
the benefits of the approach. 

Keywords: self-adaptation, resource prediction, autonomic computing, soft-
ware architecture 

1   Introduction 

As computing systems become more and more integral to our daily activities, it be-
comes increasingly important for those systems to provide reliable and uninterrupted 
service, even in the presence of system faults, changing resources and loads, and 
different user needs. In the past this capability has largely been provided through 
human oversight. As a result, the cost of managing such systems has grown to 70-
90% of the total cost of system ownership [8], while the burden of managing the 
many aspects of computing has surpassed the capacity of human attention [24].  

In response there has been considerable recent interest in supporting automated 
system self-adaptation, whereby the system takes increasing responsibility for dy-
namically detecting problems and repairing itself. Most systems that support self-
adaptation adopt a control systems perspective: a system is monitored and the result-
ing observations are used to determine system health, and the system is adapted to fix 
any existing problems. 

One particularly promising form of this approach is to use architectural models of a 
system as the basis for problem detection, diagnosis, and repair. Architecture-based 
self-adaptation has had considerable success in providing adaptation support for leg-
acy systems and in providing flexibility for tailoring adaptation to business needs 
[1,6,10,11,12,13,19,25].  

To appear in Betty H.C. Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, 
Jeff Magee (eds). Software Engineering for Self-Adaptive Systems. LNCS 2008. 
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One outstanding problem with such systems is that they are strictly reactive: they 
respond to the current environment and system state, invoking adaptation strategies if 
and only if an immediate problem arises. The goal of a reactive approach is to select 
an adaptation that optimizes the instantaneous utility of the system at that time. How-
ever, from a global perspective, several instantaneously optimal decisions may be 
sub-optimal when considered together. For example, if we adapt a web system reac-
tively to a short, temporary spike in bandwidth by reducing the fidelity of the content, 
this may be sub-optimal in hindsight because a short delay may be less offensive to 
the client than low fidelity. 

In this paper we argue that self-adaptation can be dramatically improved if we use 
future predictions of the environment, and specifically its resources, to make better 
choices about whether and how to adapt a system. In other work [21], we have devel-
oped a resource prediction framework that provides predictions on resource availabil-
ity from a variety of prediction models, in the context of continually adapting ubiqui-
tous computing. We can use this framework to provide predictive information to help 
architecture-based self-adaptation. In particular, we observe that prediction offers four 
kinds of improvement to the existing self-adaptation approach: 

1. Prediction prevents unnecessary self-adaptation. 
2. Prediction reduces disruption from incremental adaptation, for example, enlist-

ing servers 4 at once rather than one at a time. 
3. Prediction enables pre-adaptation to seasonal behavior. 
4. Prediction improves overall choice of adaptation. 
 
At first glance, it seems obvious that using predicted information will improve self-

adaptation – if you know it is going to rain, don’t turn on the sprinklers. But, making 
choices about when and how to consider this predicted information is crucially impor-
tant. Accordingly, the contributions of this chapter are: 

1. A framework for generic use of predictive information. The framework is ag-
nostic to methods used for deriving predictions; 

2. Flexibility in using predictions for self-adaptation. Our framework has several 
points of integration where predictions can be useful; and 

3. Some rules-of-thumb for how to incorporate predictive information into a self-
adaptive framework.  

 
In the remainder of this chapter we describe our resource prediction framework and 

show how it achieves the improvements listed above. In Section 2, we describe the 
overall framework of our architecture-based self-adaptation approach and identify 
core challenges of incorporating prediction. We then introduce the anticipatory model 
for adaptation in Section 3. In Section 4 we present initial results of applying an an-
ticipatory model to adaptation and describe future applications. In Section 5 we de-
scribe related work on architecture-based self-adaptation and prediction. In the final 
section, we conclude with a brief discussion of additional ways in which prediction 
could be used to improve architecture-based self-adaptation. 
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Fig. 1. Architecture model of Znn.com 

2   Framework for Architecture-Based Self-Adaptation 

In this section we provide a high-level overview of our self adaptation framework, 
illustrate its use with an example, and discuss opportunities for enhancement via re-
source prediction. In particular, making use of prediction requires addressing a few 
challenges: What kinds of predictive information are useful? What can be predicted? 
How would it be used? This section addresses the first question of requirements for 
prediction. In the next two sections we address the questions of what and how. 

To illustrate our approach, consider an example news service, Znn.com, inspired 
by real sites like cnn.com and RockyMountainNews.com, which serves multimedia 
news content to its customers. Architecturally, Znn.com is a web-based client-server 
system that conforms to an N-tier style. As illustrated in Fig. 1, Znn.com uses a load 
balancer (LB) to balance requests across a pool of replicated servers, the size of which 
is dynamically adjusted to balance server utilization against service response time. A 
set of client processes (represented by the C component) makes stateless content re-
quests to the servers. Let us assume we can monitor the system for information such 
as server load and the bandwidth of server-client connections. Assume further that we 
can modify the system, for instance, to add more servers to the pool or to change the 
fidelity of the content. We want to add self-adaptation capabilities that will take ad-
vantage of the monitored system and adapt the system to fulfill Znn.com objectives. 

The business objectives at Znn.com 
are to serve news content to its 
customers with  reasonable response, 
while keeping the cost of the server 
pool within its operating budget. From 
time to time, due to highly popular 
events, Znn.com experiences spikes in 
news requests that it cannot serve 
adequately, even at maximum pool 
size. To prevent unacceptable latencies, 
Znn.com opts to serve minimalist 

textual content during such peak times in lieu of providing its customers zero service. 
Assume that two actions are possible to adapt the system: adjust the server pool size 
(enlist or remove) or switch content mode (multimedia or textual). While seemingly 
simple, an adaptation decision requires a tradeoff between the multiple objectives. 

2.1   Overview of the Rainbow Framework 

Our architecture-based self-adaptive approach is embodied in an engineering frame-
work, called Rainbow, which provides mechanisms to monitor a target system and its 
executing environment, reflect observations in an architecture model, detect opportu-
nities for improvements, select a course of action, and effect changes. By leveraging 
the notion of architectural style to exploit commonality between systems, the frame-
work provides general and reusable infrastructures with well-defined customization 
points to cater to a wide range of systems. It also provides a useful set of abstractions 
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Fig. 2. The Rainbow Framework 

to focus engineers on adaptation concerns, facilitating the systematic customization of 
Rainbow to particular systems. Details can be found in [3,4]. 

The Rainbow framework (Fig. 2) uses a component-and-connector architecture 
model of the target system to monitor and reason about appropriate strategies for 
adapting the system. Monitoring mechanisms—probes and gauges—observe the 
running target system. Observations are reported to update properties of the architec-
ture model managed by the Model Manager. The Architecture Evaluator evaluates 

the model upon update to ensure that 
the system is operating within an 
acceptable range, as determined by 
architectural constraints. If the 
Evaluator determines that the system 
is not operating within the accepted 
range, it triggers the Adaptation 
Manager to initiate the adaptation 
process and choose an appropriate 
adaptation strategy. The Strategy 
Executor then executes the strategy 
on the running system via system-
level effectors. 

To apply Rainbow to the 
Znn.com example, we use probes 
and gauges to monitor response time 

and server load, reflecting those as properties in the architecture model. The architec-
ture evaluator triggers adaption when any client experiences request-response laten-
cies above some threshold. The Adaptation manager determines whether to activate 
more servers or decrease content fidelity, as specified in a repair script. The strategy 
executor effects the change in Znn.com using provided hooks. 

When the system comes under high load, Rainbow may opt to increase the server 
pool size until a cost-determined maximum is reached, at which point Rainbow would 
switch the servers to serve textual content. If the system load drops, Rainbow may 
switch the servers back to multimedia mode to make customers happy, in combination 
with reducing the pool size to reduce operating cost. In general, the adaptation deci-
sion is determined by both the business objectives and observations of system condi-
tions, including average response time, server load, and available bandwidth. 

2.2   Elements of Rainbow 

The Rainbow framework uses models of the architecture and environment to make 
adaptation decisions. A component-and-connector (C&C) architecture model reflects 
abstract, runtime states of a target system, including what entities are present and how 
they communicate [5]. An environment model provides contextual information about 
the system, including its executing environment and the resources used. For example, 
when additional servers are needed, the environment model indicates what spare serv-
ers are available. When a better connection is required, the environment model con-
tains information about the available bandwidth of other communication paths. 
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In order to get information out of the target system into an abstract model for man-
agement, and then to push changes back into the system, we need mechanisms that 
hook into the target system and understand what is represented in the model. Gauges 
process system-specific information from Probes to populate architectural properties. 
Associated with architectural operators in the Rainbow Architecture Layer, effectors 
carry out change operations on the target system via mechanisms that range in com-
plexity from a system-call, to a script, to an elaborate workflow. 

The Architecture Evaluator evaluates model conformance against architectural 
constraints, which are specified using first-order predicate logic to identify problems 
in the system. When triggered by the Architecture Evaluator, the Adaptation Manager 
uses information about the state of the system, embodied in the architecture, the busi-
ness quality-of-service concerns and utility functions to decide which remedial strat-
egy to execute. A strategy is chosen from a set of specified strategies that have been 
engineered for the system and/or domain. A strategy specifies conditions and contexts 
in which it applies, and captures a pattern of adaptation steps. 

Business quality-of-service concerns for the target system (e.g., system reliability, 
service availability, or performance) are represented as quality dimensions. A quality 
dimension provides a notion of utility, or happiness, for particular values of a quality 
attribute. Each adaptation action has a specified impact in cost or benefit on each 
dimension. By tallying the cost-benefit attributes over the actions in a strategy, an 
expected aggregate impact can be computed for each strategy. A strategy can then be 
scored using utility preferences specified for the quality dimensions. The Adaptation 
Manager then selects the highest-scoring strategy. 

Utility preferences define the relative importance between the quality dimensions. 
Specifically, we use a von Neumann-Morgenstern utility function ud : Xd � ℜ that 
assigns a real number to each quality dimension d, normalized to the range [0,1]. 
Across multiple dimensions, we attribute a percentage weight to each dimension to 
account for its relative importance compared to other dimensions. These weights form 
the utility preferences. The overall utility is then given by the utility preference func-
tion, U =Σwdud. An example utility preference with three objectives, u1, u2, u3, of 
decreasing importance might be quantified as [w1:0.6, w2:0.3, w3:0.1]. 

The utility preference function gives us a way to compute the instantaneous utility 
of the target system given its current conditions, as well as the accrued utility of the 
target system over time. If we assume coverage of system conditions, accrued utility 
provides a measure of optimality of the target system, giving us a way to compare the 
relative optimality of a system under different combinations of conditions. 

2.3   Opportunities for Improving Self-Adaptation 

To date, Rainbow’s adaptation has been reactive in nature. Reactive adaptation has 
the advantage of requiring only a small set of recent system conditions to choose an 
adaptation, allowing for timely decisions. However, reactive adaptation has a number 
of well-known disadvantages. First, following the decision to perform an adaptation, 
time is needed to carry out and propagate the necessary changes on the target system. 
At times, the conditions that trigger an adaptation may be more short-lived than the 
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duration for propagating the adaptation changes, resulting in an unnecessary adapta-
tions that incur potential resource costs and service disruption, which we term penalty. 

Second, reactive adaptation lags behind current system conditions, and the degree 
of that lag depends on the sensitivity of the system sensors to present (versus histori-
cal) values of a system condition (e.g., CPU load, link bandwidth). If the system con-
dition undergoes a dramatic and rapid shift, it may take numerous adaptation cycles 
for sensors to “catch up,” resulting in more than one incremental adaptation change 
where a single adaptation might have sufficed. Again, this is problematic since each 
adaptation potentially incurs some penalty. 

If a similar shift in system conditions recurs “seasonally”—once every period of 
time, such as every day at 8 AM—then the same undesirable pattern of incremental 
adaptations would repeat every period. (One workaround is to learn the seasonal pat-
tern from historical data and predicate adaptations on time; however, this is a form of 
prediction.) In fact, executing adaptation while the system is under duress usually will 
take more time and is more likely to fail because of lack of resources. Having such 
prediction will help ensure sufficient resources are available for the adaptation. 

Finally, knowledge of future availability of some required resource might result in 
a different adaptation choice that moves the system into a higher level of overall util-
ity. To illustrate using a simplified Znn.com example, assume three levels of utility—
happy, somewhat happy, unhappy – and three levels of values corresponding to re-
source conditions: low, medium, high. Assume that both high response time and zero 
service (i.e., no content) makes the customer unhappy, while low-fidelity content 
makes the customer somewhat happy. Assume further that an adaptation cycle takes 
one unit of time to effect its changes. We will represent the conditions of the system 
at a particular time-point with a tuple: (utility, response time, server load, available 
bandwidth, content fidelity). Now imagine a scenario lasting 3 time units, where 
Rainbow reacts to the conditions at time unit 1 by lowering the content fidelity: 

 
0. (happy utility, low response time, low load, high available bandwidth, high fidelity) 
1. (unhappy, high, high, low, high) 
2. (somewhat happy, medium, medium, low, low) 
3. (somewhat happy, medium, medium, high, low) 

 
However, with perfect hindsight, knowing that the available bandwidth would re-

cover to high might have led Rainbow to adapt by enlisting more servers to lower the 
average server load and to keep the fidelity high, thus achieving better overall utility: 

 
3. (happy, medium, medium, high, high) 

 
This example demonstrates how a reactive strategy of adaptation that optimizes in-

stantaneous utility may often be sub-optimal over a long period of time. This defi-
ciency results from two properties of reactive adaptation: (1) information used for 
decision making does not extend into the future, and (2) the planning horizon of the 
strategy is short and does not consider the effect of current decisions on future utility. 

By analyzing its reactive nature, we have thus identified four opportunities for im-
proving the current self-adaptation capabilities: 

1. Preventing unnecessary self-adaptation 
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2. Reducing disruption from incremental adaptations. 
3. Enabling pre-adaptation to seasonal behavior. 
4. Improving overall choice of adaptation. 
 
These opportunities for improving self-adaptation highlight the need for predictive 

information, particularly predictions of resources the target system environment. In 
the following section, we characterize a number of different kinds of prediction and 
types of information that are amenable to prediction. 

3   Resource Prediction 

In the previous section we identified four opportunities for using prediction to im-
prove self-adaptation of systems. For the purpose of this chapter, prediction is an 
informed estimation of the future random values of a system or environment variable, 
e.g., the future available level of some resource required by the system. By leveraging 
predictive information, a self-adapting system is able to analyze adaptation alterna-
tives slightly, or even significantly, ahead of real-time, make forward-looking deci-
sions based on those predictions, and potentially improve the performance according 
to some objective metric. In this section, we describe the types of prediction that we 
use, discuss their applicability and limitations, and then describe a generic prediction 
framework that was developed for use in a ubiquitous computing context, but which 
can be co-opted for use within Rainbow. 

Poladian defined and described an anticipatory model of self-adaptation in the con-
text of a ubiquitous computing system that makes resource allocation decisions based 
on predictions of three inputs: (1) predictions of user’s tasks, e.g., what type of appli-
cations the user needs and for how long, (2) predictions of resource demand by re-
source- and fidelity-aware applications, and (3) predictions of the available supply of 
resources such as network bandwidth and battery. He developed a calculus and 
framework that can synthesize different categories of prediction about a resource to 
produce a single combined predictive value. The types of predictive models that can 
be synthesized with this approach are: (1) linear recent history, which is a kind of 
predictor that uses recent history and a linear time-series model; we use auto-
regressive moving average (ARMA) models for this kind of resource prediction, 
which is consistent with [7]. (2) Relative move, which models seasonal variations in 
resource availability (e.g., knowing that network usage will be high at the beginning 
of a work day). (3) bounding, which specifies the maximum and minimum values of a 
resource for a union of time intervals (for example, knowing that bandwidth cannot be 
above 10Mbps). In this chapter, we are concerned with how to integrate the prediction 
architecture with a self-adaptive system, rather than the particular models of predic-
tion used. For details of the types of predictive models, and the calculus for combin-
ing them, we refer readers to [20,21]. 

Because predictions are rarely perfect, a model of prediction must be prepared to 
address uncertainty. Broadly, uncertainty describes both measurement and estimation 
error when making predictions. Consequently, we differentiate between two types of 
uncertainty. The first type of uncertainty arises when estimating future, random values 
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of variables. One familiar example of such uncertainty is forecasting tomorrow’s 
weather. Predicting (forecasting) tomorrow’s temperature is generally imprecise, and 
a good prediction would provide an estimate for the uncertainty (error) in the forecast. 
Moreover, the error increases the further into the future one is predicting. Examples 
from computer systems include predicting the number of clients connected to the 
system or the available supply of network bandwidth in ten minutes. The second type 
of uncertainty arises when measuring the magnitude of past and present values of 
variables. An example from the physical sciences is the measurement of voltage. Here 
the uncertainty (error) is the result of imprecision, rather than randomness, that can 
only be resolved by waiting until some future time. An example from computer sys-
tems includes measuring the current available bandwidth between two network nodes. 

Prediction and uncertainty in the context of self-adaptive systems must be modeled 
and addressed together. Typically, making predictions requires a statistical model that 
estimates (calculates) future values of a variable based on available information to the 
system. The uncertainty in the prediction is a rigorous description of the predictive 
error based upon that statistical model. In other words, prediction and uncertainty are 
described by the predictive distribution of the variable being estimated, conditional on 
all available data, e.g., the past values of the variable as well as the past values of the 
prediction errors and any other information. 

The types of prediction models and the way of combining them can be extended to 
a certain class of self-adaptive systems that (a) monitor and predict resource availabil-
ity, and (b) make resource allocation decisions as part of self-adaptive behavior. 
Typically, such systems are concerned with measuring or estimating both the demand 
for computational resources by the system under consideration and the supply of re-
sources available to that system. In practice, the demand and the supply might be 
dependent. Therefore, it is important to identify when those are interdependent and 
express the dependence. Essentially this means whether each critical resource in the 
environment of the self-adaptive system is shared among many systems or entirely 
dedicated to the system under consideration. If the resource is not under our control, 
then we can simply use the aggregate predictions of that resource where the future 
value of that resource is based on the historical values of that resource. However, if 
the resource is being managed wholly by the self-adaptive system, then the prediction 
is more complicated; we need to predict how each element under our control uses that 
resource. In either case, the predictive framework can be applied equally effectively. 

The kinds of predictions that can be handled by the prediction framework are for 
resources that have historical data that can be analyzed statistically and that match our 
statistical model of the resource in question. For example, if the historical data fits a 
Poisson distribution then it is obviously not applicable for an ARMA predictor that 
assumes Gaussian distribution. So, predictions that assume uncertainty is normally 
distributed may fail to detect the arrival of a so-called “Slashdot effect,” when a rapid 
increase of web clients are connected to the server due to a sudden surge in the popu-
larity of the web server. This is especially the case if the historical data does not con-
tain evidence of a Slashdot event. 

Our approach to anticipatory adaptation is based on optimizing the match between 
system needs and the environment capabilities. In practice, finding such a match cor-
responds to maximizing system utility. Poladian’s thesis defines an analytical model 
that formalizes the notion of utility for user’s tasks and expresses automatic configu-
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Fig. 3. The resource-prediction framework. 

ration as a mathematical problem of maximizing the expected utility of the user from 
the running state of the environment under the constraints of the computing environ-
ment.   

The analytical model provides a carefully crafted structure for the problem, allow-
ing efficient runtime configuration algorithms to search the problem space for good 
solutions. That structure is used to define a configuration strategy for prediction that 
takes as input (1) the amount of historical information about the resource being pre-
dicted, (2) the temporal horizon of the decisions, and (3) treatment of uncertainty in 
the available information explicitly quantifying the uncertainty of future events and 
coping with uncertainty by planning for future changes. 

Using this analytical model, Poladian designed and implemented a software infra-
structure for automatic configuration with three important contributions: (1) a central 
component that makes near optimal configuration decisions, (2) a prediction frame-
work that provides resource prediction on demand, and (3) a programming interface 
between the centralized decision maker and the prediction framework. The central 

decision-making component leverages 
the structure of the analytical models to 
implement efficient and near-optimal 
configuration algorithms. In particular, 
the framework consists of the following 
four types of components, the architec-
ture of which is defined in Fig. 5. For 
each resource, there will be one instan-
tiation of this framework.  

Aggregator: the centerpiece of the 
prediction framework, is responsible 
for combining information from all 
available Basic Predictors and calculat-
ing aggregate predictions. The Aggre-
gator maintains an up-to-date list of 

currently available Basic Predictors. It aggregates the information from the predictors 
and produces a time series of predictions with increasing uncertainty further into the 
future.  

Controller: allows setting the model parameters of the linear recent history predic-
tor in the Aggregator. The model parameters are expected to be relatively stable over 
time, changing only infrequently. There is one Controller resource instance. 
  Basic Predictors: these components implement a wrapper around either known 
pattern or bounding predictors. Multiple Basic Predictors can be used. Upon startup, a 
Basic Predictor registers with the Aggregator. As new sources of predictions become 
available, additional Basic Predictors can be added to the framework, 
  Monitor: probes the environment for actual resource availability and provides peri-
odic monitoring reports to the Aggregator. These monitored values correspond to the 
the historical values used by the predictors. A Monitor provides a uniform interface to 
the aggregator, encapsulating platform, network, and resource-specific details, 
  Consumer: the recipient and beneficiary of aggregate predictions. A Consumer is 
implemented by the coordinating entity of an adaptive resource management system. 
The prediction framework allows multiple concurrent Consumers to co-exist, each 



10      Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl 

with its own aggregate prediction session. The Consumer specifies prediction parame-
ters to the Aggregator including the sampling window to make prediction observa-
tions and how far into the future to predict. 

In summary, the resource prediction framework quantifies the future level of re-
source availability by combining predictive information from multiple sources. More 
details can be found in [21]. 

4   Incorporating Resource Predictions in Rainbow 

Poladian’s work on resource prediction is both practical in terms of algorithm speed, 
and useful in terms of manageable parameter space. In this section, we show how 
resource predictions can be incorporated into the Rainbow self-adaptation framework. 
Rainbow must satisfy the following requirements of Poladian’s framework: 

1. Utility:  to evaluate the quality of the various possible adaptations on the sys-
tem. Rainbow has a notion of utility as a central concept for strategy selection; 

2. Penalty: to quantify costs of performing adaptations. If there is no penalty as-
sociated with adapting the system, this would obviate the need for using pre-
diction – we will do a much better job with a reactive approach. In Rainbow, 
the penalties reflect the impact of temporary disruptions to system utility and 
the also time it takes to propagate changes throughout the system; and 

3. Historical information: to facilitate prediction, past observed values need to be 
fed to the prediction framework.  

4.1   Integration Points to Make Predictive Information Available 

In Rainbow resource predictions can provide additional leverage in evaluating and 
choosing between alternate strategies of adaptation. For example, by knowing the 
probability that the available level of a critical resource, such as bandwidth, will be 
below a certain threshold 5 minutes from now, Rainbow can choose a strategy that 
quiesces lower priority client sessions so that the remaining client requests will con-
tinue to be satisfied within a tolerable latency. If, on the other hand, the probability is 
high that the bandwidth will be restored to levels that will naturally bring the system 
back within its desired state, Rainbow can choose to reduce the fidelity of some or all 
of the client sessions. Rainbow can even choose to do nothing. 

To leverage resource predictions, it is important to consider how predictive infor-
mation adds to the existing information flow of adaptation decisions in the Rainbow 
framework. The following points in Rainbow are potential sites for integrating re-
source predictions: 

• Monitoring: predictor gauges 
• Detection: prediction of architectural properties 
• Strategy: conditions based on predicted value and actions with time cost 
• Effector: addition or removal of prediction data streams 
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Fig. 4. Sample snippet of an adaptation strategy. 

01 define boolean cPredViolation (dur : int)= 
   exists c : T.ClientT in M.components | 
   Model.predictedProperty(c.experRespTime,  
   dur) > M.MAX_RESPTIME; 
02 ... 
03 strategy VariedReduceResponseTime 
04  [ cViolation && cPredViolation(self.dur) ] { 
05   t0: (cViolation) -> enlistServers(1) 
    @[1000 /*ms*/] { 
06     t1: (!cViolation) -> done; 
07     t2: (cViolation) -> lowerFidelity(2, 100) 
    @[3000 /*ms*/] { 
08       t2a: (!cViolation) -> done; 
09       t2b: (default) -> TNULL;  // give up 
10 } } } 

Monitoring: To make adaptation decisions, Rainbow reads gauge output to deter-
mine target-system conditions. We can integrate resource predictions in Rainbow by 
encapsulating, as gauges, instances of the entire prediction runtime from Poladian’s 
system. It provides output to the gauge bus consistent with the gauge infrastructure 
API. Rainbow uses the standard gauge control interface to configure parameters of the 
prediction runtime. The gauge performs the role of the consumer, providing parame-
ters for the prediction, then processing the time series returned from the aggregator to 
produce a single predicted value for one future time, as requested by Rainbow. 

Because uncertainty is inherent in resource prediction, we must incorporate the 
probability of error in a predicted measurement, as supplied by predictors. We can 
choose to ignore predicted measurements and fallback to current measurements when 
the confidence level is below some threshold. We can also incorporate confidence 
level directly in utility computation to give lower consideration to strategies that use 
low-confidence predictive information. 

Detection: Rainbow uses architectural constraints to identify opportunities for ad-
aptation. Conditions based on predicted resource states, such as the anticipated load in 
the next 500 milliseconds, may indicate opportunities for adaptation. Thus, architec-
tural constraints should support predicates over predicted values of architectural prop-
erties, perhaps in the form of a supplied architectural function, such as predictedProp-
erty(p : Property, dur : int) : float (similarly for functions providing basic statistical opera-
tions, e.g., max/min/average). The predictedProperty() function returns the value of the 
architectural property identified by p, at a time point dur milliseconds from now. Re-
call that gauges are associated with specific architectural properties to update their 
values. So the function can compute predicted values by querying the predictor gauge 
mapped to the requested property. 

Strategy: At adaptation time, Rainbow uses current system conditions (reflected in 
the model) to score and select strategies based on their expected utility. A strategy has 
two important ingredients: system conditions and adaptation actions. System condi-
tions are used to (a) determine the applicability of strategies during strategy selection 
and (b) decide the next adaptation step during strategy execution. Adaptation actions 
change the target system to move the system toward a better state. New capabilities 
are required in the mechanisms for 
strategy selection, applicability con-
dition, and actions to incorporate 
resource predictions. 

An example strategy to reduce 
system response time is shown in 
Fig. 4, specified in Rainbow’s adap-
tation language. The function defined 
on line 1, cPredViolation(), uses the 
architectural function predictedProp-
erty() to compute client experienced 
response time at some future time, 
specified by dur. (cViolation defines 
the same predicate without using a 
predicted value.) Line 4 shows the 
use of this predicted value to deter-
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mine the applicability of this strategy, in this case, when the client experienced re-
sponse time is above threshold now and in the future. Lines 5-9 specify what the 
strategy does. In this case, it first enlists a server. Failing that, it then lowers the fidel-
ity. And if that doesn’t work, it gives up. 

Timing plays a crucial role in prediction. We add the ability to calculate forward-
looking expected utilities based on future system conditions. We augment Rainbow 
with the notion of future variable value so that a strategy can specify dependency on 
the future value of a condition. An adaptation action takes some time to execute, and 
estimating this duration is needed to determine how far into the future to predict. So, 
using settling time information specified in strategies (see @[ms] in Fig. 4, lines 5 and 
7), Rainbow estimates the amount of time that a strategy would take to execute suc-
cessfully. It then measures actual execution times to improve estimation. 

For prediction to improve the performance of Rainbow, recall that there needs to 
be some cost, or penalty, to doing a particular adaptation. To capture this, we model 
penalty as a separate utility dimension, called disruption, that can be applied in utility-
based strategy selection like other dimensions, such as average response time (see 
Table 1). There are two parts to disruption: one is how jarring it is to the user, and the 
other is how long the user is disrupted. We collect information about the disruption 
level in the same way as other dimensions, specified as part of the strategy specifica-
tion. The second one we track automatically by measuring how long it takes to exe-
cute an adaptation step. 

Effector: Finally, changes to the target system, particularly changes that add or 
remove resource components, will likely have significant effects on resource predic-
tions. Therefore, we rely on system-level effectors to be augmented so that, when 
adding or removing system elements with associated resources, the effectors also take 
care of the addition or removal of the corresponding prediction data streams. Addi-
tionally, because prediction usually requires a series of input before the first output of 
predictive data, gauges may have to be coordinated with the addition of prediction 
data streams to produce useful output immediately. 

4.2  Illustration of Rainbow with Resource Predictions 

To illustrate resource predictions in Rainbow, let us revisit the Znn.com example to 
examine in more detail the four scenarios of prediction introduced in Section 2.3. 
Recall that in the Znn.com example, the customers care about quick response time 
and high content fidelity for their news requests. While aware of customer preferences 
on content fidelity, Znn.com as the provider is constrained by infrastructure provi-
sioning costs. We also consider service disruption as a penalty of performing an adap-
tation: avoiding penalties is important to improving overall system utility, which is a 
major benefit to having predictive information. 

Accordingly, we define four quality dimensions and determine the corresponding 
measurable properties in the target system. We capture each dimension as a discrete 
set of values (for example, we use an ordinal scale of 1 to 5 to express the degree of 
disruption). We then elicit from the service providers the utility values and prefer-
ences for these dimensions, summarized in Table 1. 
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Table 1. Znn.com quality dimensions and utility preferences 

Label Description Architectural Property Utility Function Weight 

uR Avg Response Time ClientT.experRespTime 
((low,1), (med,0.5), 
(high,0)) 

25% 

uF Avg Content Fidelity ServerT.fidelity 
((textual,0), (multi-
media,1)) 

10% 

uC Avg Budget ServerT.cost ((within,1), (over,0)) 15% 

uD Disruption ServerT. droppedReqs 
((1,0.8), (2,0.6), 
(3,0.4), (4,0.2), (5,0)) 

50% 

 
A rule specifies the acceptable bound of request-response latencies experienced by 

a client: exceeding the threshold indicates a problem. A set of operators correspond to 
available effectors in Znn.com to enlist or remove servers, or to change content fidel-
ity. We define a number of adaptation strategies for Znn.com and specify cost-benefit 
attribute vectors, not shown here, that specify the impact of each strategy to the four 
quality dimensions. For example, strategy VariedReduceResponseTime is expected to 
lower response time and fidelity level, not affect cost, and incur some disruption. 

We now consider how prediction could improve Rainbow’s choices of adaptation 
for the four opportunities outlined in Sec. 2.3. For evaluation, we set up Znn.com in a 
simulation environment that allows us to experiment with prediction-enabling design 
points in Rainbow’s Architecture Layer (cf. Fig. 2). The states of Znn.com are simu-
lated using an M/M/k queuing model. The simulation environment acts as gauges that 
update corresponding Znn.com architectural properties in Rainbow. This setup en-
ables prediction of future states to an arbitrary precision. 

Scenario 1: avoiding unnecessary adaptation 
In the first scenario, if a client experiences an above-threshold request-response time 
for only 500 ms, but the chosen adaptation requires at least one second to complete, 
this adaptation is unnecessary. Avoiding adaptation requires knowing the predicted 
request-response time (using the architectural function predictedProperty()) and the 
estimated execution time of an adaptation strategy, which Rainbow collects. 

To evaluate how well prediction improves overall system utility in this scenario, 
we designed two Znn.com configurations, one in which the bandwidth drops briefly, 
and another in which incoming requests (load) spike briefly. The data is summarized 
in Table 2. In both cases, Rainbow with prediction successfully avoided making un-
necessary adaptations, improving the normalized accrued utility over no prediction by 
2.5% in the transient bandwidth-drop case, and 15.7% in the transient peak-load case. 
The much greater improvement in the second case can be attributed to the high level 
of disruption incurred by the strategy that is unnecessarily invoked without future 
knowledge This outcome underscores the role of penalty in determining whether 
prediction is useful. We discuss some choices of prediction usage in Section 4.3. 

Scenario 2: reducing incremental disruptions 
In the second scenario, Znn.com experiences a dramatic increase in client requests, 
ramped up over seconds to minutes. In reaction, Rainbow provisions by invoking a 
strategy that adds one server. However, by the time the server is added, the request 
load has surpassed the capacity of the added server, so Rainbow adds another server 
in response. This gradual adaptation is undesirable because it disrupts the system 
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multiple times. Eliminating this ramp-up requires knowing the peak of the ramp-up 
and computing cost-benefit attributes based on input arguments to an adaptation step 
(e.g., k in enlistServers(k)). 

To evaluate this scenario, we designed a Znn.com configuration that ramps up re-
quests over four seconds. We added a leap strategy similar to VariedReduceRespon-
seTime but enlists 3 servers in one step. We then configured Rainbow to compute 
utilities that look five seconds ahead, and compute the load at its peak. Rainbow suc-
cessfully selected the leap strategy and showed a 4.9% improvement in AU. 

The results of these experiments show that there is improvement when using pre-
dictive information. Perhaps not surprisingly, the most improvement is achieved when 
the potential disruption to the user is high. For the other cases, the room for improve-
ment is not as great, but our numbers are significant when measured against the avail-
able margin for attaining perfect utility. 

Table 2. Summary of data from 3 experiments (each averaged over 30 trials) 

Normalized Accrued Utility (AU) 
Scenario Configuration No Prediction With Prediction ∆∆∆∆AU Improved 

1: transient bandwidth-drop 0.889 0.911 0.022 2.5% 
1: transient peak-load 0.731 0.846 0.115 15.7% 
2: ramp-up to peak load 0.734 0.770 0.036 4.9% 

 

Additional scenarios: seasonal pre-adaptation and choosing better adaptations 
We have shown two scenarios that exercised the new capabilities added to Rainbow 
to incorporate predictive information, with supporting data from experiments. We 
now consider two other scenarios that use the same set of capabilities; for these we 
have not performed additional experiments. 

In a third scenario, Znn.com periodically experiences a significant increase in cli-
ent requests at 9 AM every Monday through Friday. Reacting to the increase each 
time it occurs is undesirable because the adaptation potentially disrupts the system 
and adds stress to a system already under load. In contrast, pre-adapting has the bene-
fit of reducing disruption while introducing system slack to prepare for the upcoming 
load. Pre-adapting for seasonal behavior requires detecting seasonal patterns, which 
can be provided by predictors in Vahe’s framework. Then, by adding an architectural 
constraint that checks for predicted load at fixed future time points, configuring utility 
computation to look ahead to the same time, and specifying a strategy that is applica-
ble for violation at that future time point, Rainbow can seasonally pre-adapt. 

A fourth scenario is already described in Section 2.3, where a client experiences an 
above-threshold request-response time due to increased visitor traffic, coupled with a 
transient drop in available bandwidth. Given the low bandwidth and a choice between 
the a strategy to lower fideltiy and another to enlist more servers, Rainbow chooses 
the former to use less bandwidth while fulfilling the increased request load. However, 
when the available bandwidth recovers shortly afterward, Rainbow would then adapt 
again to restore the content fidelity and perhaps also enlarge the server pool if traffic 
remains high. Thus, Rainbow’s reaction results in at least one additional disruption 
and an overall lower system utility. With advanced knowledge that the bandwidth 
drop is transient (as in scenario 1), Rainbow would have chosen to enlist servers. 
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4.3   Deciding When to use Predictive Information 

Once predictive information is available for use in self-adaptation, the questions still 
remain of when and how to use the information in the decision process. In our appli-
cation of predictive information, we encountered the following design choices, which 
we have addressed in a variety of ways. 

How far into the future do we look ahead? The predictive framework requires 
parameterization for how far ahead to predict a resource property. The predictive 
framework actually returns a time series of values, but to make use of this information 
in Rainbow, we must pick one particular value. The choice of this depends on the 
context. For example, in Scenario 1 where we are trying to decide whether to avoid an 
adaption, a reasonable choice is to use a duration equivalent to the estimated time of 
completing the adaptation. For Scenario 2 on the other hand, the look ahead could be 
far longer than the duration of adaptation. Note that by using estimated completion 
time to choose how far into the future to look, we are comparing different prediction 
ranges for different strategies in a single adaptation cycle. An alternative is to look 
ahead to the same time in the future, perhaps by using the maximum completion time 
of all strategies under consideration. 

Should predictive information be used at strategy selection time, utility evaluation 
time, strategy execution time, or a combination of these? There are several steps in 
Rainbow’s process of selecting a repair strategy: 1) decide the set of strategies that 
may fix a problem; 2) determine which strategy is the best to use; and 3) execute the 
chosen strategy. Predicted information can be used in Rainbow at any of these times. 
For example, the strategy in Fig. 4 uses predicted information in step 1. In line 4, we 
are checking if response time is high now and in the future. If the condition is tran-
sient the strategy will not be chosen, and so there is no need to use prediction in lines 
5-9 (strategy execution time). Alternatively, to anticipate seasonal changes, the strat-
egy writer would write the strategy to consider only predictions in line 4, and also to 
use prediction in lines 5-9. Rainbow gives the strategy writer the power to decide how 
and when to use the prediction. Currently, in Rainbow, the second step (using predic-
tion in the utility calculation) is provided as a parameter to the framework, because 
there is no way in the strategy language to refer to this. We are investigating a more 
agile way to specify the use of prediction in this case. 

How much weight should be given to the penalty dimension? When we experi-
mented with a 10% weight for the penalty dimension, the first configuration yielded a 
utility improvement of 0.4%, whereas a 50% weight yielded 2.4% improvement. This 
data reinforced Poladian’s results that anticipatory adaptation yields increasing gains 
at penalty levels above 7%. On the flip side, a penalty weight above 50% makes it 
difficult to distinguish the relative importance of the other utility dimensions. A sweet 
spot should be found between 10 and 50%. 

5   Related Work 

To date, several dynamic software architecture-based adaptation approaches and 
frameworks have been proposed and developed [12, 19]. Related approaches focus on 
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formalism and modeling, mechanisms for adaptation, or distribution and decentraliza-
tion of control. These include Darwin with π-calculus semantics to specify distributed 
systems [16], ArchWare with architectural reflection and dynamic co-evolution [17], 
Weaves for construction and analysis of data-flow systems [13], ArchStudio for self-
adaptation of C2 hierarchical publish-subscribe systems [6], Plastik targeting per-
formance properties [1], and CASA for resource availability concerns in mobile net-
work environments [18]. These approaches share a few common characteristics: They 
generally apply a closed-loop control, use an architecture model for reasoning about 
the target system, assume certain structures in the target system, and adapt for a fixed 
set of quality attributes. 

Notable in industry, IBM’s Autonomic Computing tackles the challenges of emer-
gent autonomic behavior with the MAPE control loop—to monitor, analyze, plan, and 
execute changes for self-management. The AC toolkit provides consoles and tools to 
diagnose problems and engineer autonomic systems. We apply a similar approach. 

One of the differentiators of this work from prior self-adaptive systems is the use 
of resource prediction. The anticipatory strategy uses predictions of the future values 
of input variables to make forward-looking decisions about adaptation selection. For-
ward-looking approaches have been proposed and used in other domains. For exam-
ple, the online stochastic combinatorial optimization approach is similar to our antici-
patory strategy [2,14]. Various combinatorial optimization problems such as optimal 
vehicle dispatch and network packet routing are solved by leveraging probabilistic 
priors of the future values of problem inputs. There is equivalence between the algo-
rithms for automatic configuration in this chapter and the algorithms described in 
[14]. The Active Virtual Network Management Prediction System uses simulation 
models running ahead of real time to predict resource demand among network nodes. 
Such predictions can be used to allocate network capacity in anticipation of demand 
increase, and to ensure adequate quality of service to different network flows [9]. Our 
work shares theoretical foundations with these, but the problem domains are different. 

There is a body of work that uses various kinds of prediction to improve self-
adaptation. For example, Clockwork [22] introduces the concept of predictive 
autonomicity that uses statistical modeling to forecast cyclic variations in system load 
and uses these predictions to reconfigure systems in anticipation of need. They pre-
scribe a method for implementing a predictive autonomic system. In spirit, we share 
the same steps for incorporating predictive information. However, our notion of con-
trollable parameters are enriched with strategies and utility preferences, and we use 
predicted information in strategy selection. Solomon [23] uses predictions about 
workload to adapt the control component of an autonomic system to be more suited to 
that workload. For example, if the workload is linear, then simple thresholding can be 
used in the controller, but if the workload on the system changes to be Gaussian, then 
a more sophisticated statistical controller based on Kalman filters is swapped in to 
manage the system. Their adaptation layer shares the same principle components as 
Rainbow, with the selection of controllers analogous to selection of strategies. They 
show encouraging results in using predicted information for Gaussian workloads to 
provision servers. This is one of many types of prediction sources that could be incor-
porated into our prediction framework.  

Rather than using auto-regressive techniques to predict resource availability, Lu 
[15] uses knowledge about the domain being controlled to predict behavior. They use 
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queuing-theoretic models in the domain of web servers to infer expected delays di-
rectly from input load. Again, this is another form of predictive model that could 
theoretically be incorporated as a Basic Predictor in our framework, although it is of a 
type that we have not fully considered. 

6   Conclusion and Future Work 

In this chapter, we presented an approach to enhance architecture-based self-
adaptation through anticipatory prediction of future resource availability. The ap-
proach uses a framework that combines various forms of prediction (statistical, 
bounded, and seasonal) in a practical manner that can be applied to a variety of cir-
cumstances. We have argued that self-adaptive systems can take advantage of predic-
tion to improve the choice of adaptations and to reduce disruption to the system. We 
gave specific consideration to the changes needed to incorporate predictions into one 
reactive architecture-based self-adaption system, Rainbow. We conducted several 
experiments that show improvement in the adaptation when predicition is used, and 
discussed how we addressed some issues that we encountered doing the integration. 

In future work, we would like to better quantify the types of resources that can be 
predicted and would be useful in realistic circumstances. For example, other types of 
resources to be considered beyond bandwidth are power consumption, memory usage 
and CPU load. We would like to give more guidance to adaptation writers about when 
and how to use prediction. We also would like to verify the results discussed in this 
chapter through additional experimentation and application to real systems. 

 
Acknowledgments. This research was funded in part by the National Science Foun-
dation Grants ITR-0086003, CCR-0205266, CCF-0438929, CNS-0613823, by the 
Sloan Software Industry Center at Carnegie Mellon, by the High Dependability Com-
puting Program from NASA Ames cooperative agreement NCC-2-1298 and by 
DARPA grant N66001-99-2-8918. The views and conclusions contained in this 
document are those of the author and should not be interpreted as representing the 
official policies, either expressed or implied, of any sponsoring institution, the US 
government or any other entity. 

References 

1. T.V. Batista, A. Joolia, and G. Coulson. Managing dynamic reconfiguration in component-
based systems. In EWSA, LNCS 3527:1-17, Springer, June 13-14, 2005. 

2. Bent, R. and van Hentenryck, P.: Regrets only! Online stochastic optimization under time 
constraints. In: Proc. 19th AAAI (2004). 

3. Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation, 
Ph.D. Thesis, TR CMU-ISR-08-113, Carnegie Mellon University School of Computer Sci-
ence, May (2008). 

4. Cheng, S.-W., Garlan, D., Schmerl B: Making Self-Adaptation and Engineering Reality. In 
Babaoghu, O et al. (eds), Proc. Conference on Self-Star Properties in Complex Information 
Systems, LNCS (3460), 2005. 



18      Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl 

5. Clements, P., et al.: Documenting Software Architecture: Views and Beyond, Pearson 
Education (2003). 

6. Dashofy, E.M., van der Hoek, A., and Taylor, R.N.: Towards architecture-based self-
healing systems. In: Garlan et al. [10], 21–26 (2002) 

7. Dinda, P., O’Halloran, D. Host Load Prediction Using Linear Models. Cluster Computing, 
3:4, 2000. 

8. Frye, C.: Self-healing systems. In: Appl. Dev. Trends, September, 29--34 (2003) 
9. Galtier, V., et al.: Predicting resource demand in heterogeneous active networks. In: Proc. 

MILCOM (2001) 
10. Garlan, D., Kramer, J., and Wolf, A. (eds.): Proc. 1st ACM SIGSOFT Workshop on Self-

Healing Systems (WOSS’02), New York, NY, USA, November 18--19, ACM Press (2002) 
11. Georgiadis, I., Magee, J., and Kramer, J.: Self-organizing software architectures for distrib-

uted systems. In: Garlan et al. [10], 33–38 (2002) 
12. Ghosh, D., Sharman, R., Rao, H.R., and Upadhyaya, S.: Self-healing systems - survey and 

synthesis. In: Decision Support System, 42(4), 2164--2185 (2007) 
13. Gorlick, M.M. and Razouk, R.R.: Using Weaves for software construction and analysis. In: 

Proc. 13th International Conf. of Software Engineering, 23--34, Los Alamitos, CA, USA, 
May, IEEE Computer Society Press (1991) 

14. Hentenryck, P., et al. Online stochastic optimization under time constraints. In 
http://www.cs.brown.edu/people/pvh/aor5.pdf, working paper, last accessed April (2008) 

15. Lu, Y., Abdelzaher, T., Lu, C., Sha, L., and Liu, X. Feedback Control with Queuing-
Theoretic Prediction for Relative Delay Guarantees in Web Servers. In Proc. IEEE Real-
Time and Embedded Technology and Applications Symposium, 2003. 

16. J. Magee and J. Kramer. Dynamic structure in software architectures. In SIGSOFT ’96: 
Proc. of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 
3-14, New York, NY, USA, 1996. ACM. 

17. R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys, and R.M. Greenwood. An 
active architecture approach to dynamic systems co-evolution. In ECSA, LNCS 4758:2-10. 
Springer, September 24-26, 2007. 

18. A. Mukhija and M. Glinz. A framework for dynamically adaptive applications in a self-
organized mobile network environment. In ICDCSW ’04: Proceedings of the 24th 
International Conference on Distributed Computing Systems Workshops—W7: EC 
(ICDCSW’04), pp. 368-374, IEEE Computer Society, Washington, DC, 2004. 

19. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. In: IEEE Intel-
ligent Systems, 14(3), 54--62, May--June (1999) 

20. Poladian, V., Garlan, D., Shaw, M., Schmerl, B., Sousa, J.P., and Satyanarayanan, M. Lev-
eraging Resource Prediction for Anticipatory Dynamic Configuration. In Proc. 1st IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO-2007), pp. 
214-223, July 2007. 

21. Poladian, V.: Tailoring Configuration to User’s Tasks under Uncertainty, Ph.D. Thesis, TR 
CMU-CS-08-121, Carnegie Mellon University School of Computer Science, May  (2008) 

22. Russel, L., Morgan, S. And Chron, E. Clockwork: A new movement in autonomic systems. 
IBM Systems Journal, 42:1, 2003. 

23. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M. A Real-Time Adaptive Control of 
Autonomic Computing Environments. In Proc. 4th International Information and 
Telecommunication Technologies Symposium (U2TS’2006), pp. 94-103, Dec. 2006. 

24. Sousa, J.P.: Scaling Task Management in Space and Time: Reducing User Overhead in 
Ubiquitous-Computing Environments, Ph.D. Thesis, TR CMU-CS-05-123, Carnegie Mel-
lon University School of Computer Science, (2005) 

25. Sztajnberg A., and Loques, O.: Describing and deploying self-adaptive applications. In: 
Proc. 1st Latin American Autonomic Computing Symposium, July 14--20 (2006) 


