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Abstract. An increasingly important concern for modern systalesign is how
best to incorporate self-adaptation into systemassto improve their ability to
dynamically respond to faults, resource variataomd changing user needs. One
promising approach is to use architectural modsls &asis for monitoring,
problem detection, and repair selection. While #pproach has been shown to
yield positive results, current systems use a ieaetpproach: they respond to
problems only when they occur. In this paper weuarthat self-adaptation can
be improved by adopting an anticipatory approactwhich predictions are
used to inform adaptation strategies. We show hah sin approach can be in-
corporated into an architecture-based adaptatiamework and demonstrate
the benefits of the approach.
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1 Introduction

As computing systems become more and more intégraur daily activities, it be-
comes increasingly important for those systemsréwige reliable and uninterrupted
service, even in the presence of system faultsngihg resources and loads, and
different user needs. In the past this capabilig kargely been provided through
human oversight. As a result, the cost of managungh systems has grown to 70-
90% of the total cost of system ownership [8], whihe burden of managing the
many aspects of computing has surpassed the capétitman attention [24].

In response there has been considerable recemeéshte supporting automated
system self-adaptation, whereby the system takeasing responsibility for dy-
namically detecting problems and repairing itsdfost systems that support self-
adaptation adopt a control systems perspectivgsterm is monitored and the result-
ing observations are used to determine systemtealtl the system is adapted to fix
any existing problems.

One particularly promising form of this approaclidsise architectural models of a
system as the basis for problem detection, diagnasid repair. Architecture-based
self-adaptation has had considerable success indprg adaptation support for leg-
acy systems and in providing flexibility for tailog adaptation to business needs
[1,6,10,11,12,13,19,25].
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One outstanding problem with such systems is tiy &re strictly reactive: they
respond to the current environment and system, Stateking adaptation strategies if
and only if an immediate problem arises. The gdal ceactive approach is to select
an adaptation that optimizes the instantaneousyubil the system at that time. How-
ever, from a global perspective, several instartasky optimal decisions may be
sub-optimal when considered together. For exaniplge adapt a web system reac-
tively to a short, temporary spike in bandwidthrbglucing the fidelity of the content,
this may be sub-optimal in hindsight because atsihelny may be less offensive to
the client than low fidelity.

In this paper we argue that self-adaptation cadreenatically improved if we use
future predictionsof the environment, and specifically its resourdesmake better
choices about whether and how to adapt a systeother work [21], we have devel-
oped a resource prediction framework that provjgleslictions on resource availabil-
ity from a variety of prediction models, in the ¢ext of continually adapting ubiqui-
tous computing. We can use this framework to pmyicedictive information to help
architecture-based self-adaptation. In particuar pbserve that prediction offers four
kinds of improvement to the existing self-adapta@pproach:

1. Prediction prevents unnecessary self-adaptation.

2. Prediction reduces disruption from incremental aa&m, for example, enlist-

ing servers 4 at once rather than one at a time.

3. Prediction enables pre-adaptation to seasonal lmhav

4. Prediction improves overall choice of adaptation.

At first glance, it seems obvious that using prestidnformation will improve self-
adaptation — if you know it is going to rain, dotutn on the sprinklers. But, making
choices about when and how to consider this prediictformation is crucially impor-
tant. Accordingly, the contributions of this chapaee:

1. A framework for generic use of predictive inforneati The framework is ag-

nostic to methods used for deriving predictions;

2. Flexibility in using predictions for self-adaptatioOur framework has several

points of integration where predictions can be uiseind

3. Some rules-of-thumb for how to incorporate pred&information into a self-

adaptive framework.

In the remainder of this chapter we describe osouece prediction framework and
show how it achieves the improvements listed ab@ive&Section 2, we describe the
overall framework of our architecture-based seHgdtion approach and identify
core challenges of incorporating prediction. Wenth@roduce the anticipatory model
for adaptation in Section 3. In Section 4 we pregaitial results of applying an an-
ticipatory model to adaptation and describe futapelications. In Section 5 we de-
scribe related work on architecture-based self-diam and prediction. In the final
section, we conclude with a brief discussion ofitiololl ways in which prediction
could be used to improve architecture-based seiptdion.
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2  Framework for Architecture-Based Self-Adaptation

In this section we provide a high-level overviewafr self adaptation framework,
illustrate its use with an example, and discussodppities for enhancement via re-
source prediction. In particular, making use ofdizgon requires addressing a few
challenges: What kinds of predictive informatioe aiseful? What can be predicted?
How would it be used? This section addresses tbe duestion of requirements for
prediction. In the next two sections we addresgjtrestions of what and how.

To illustrate our approach, consider an examplesnsevvice, Znn.com, inspired
by real sites like cnn.com and RockyMountainNewscavhich serves multimedia
news content to its customers. Architecturally, Zom is a web-based client-server
system that conforms to an N-tier style. As illaged in Fig. 1, Znn.com uses a load
balancer (LB) to balance requests across a pa@pditated servers, the size of which
is dynamically adjusted to balance server utilmathgainst service response time. A
set of client processes (represented by the C coemip makes stateless content re-
guests to the servers. Let us assume we can mané@ystem for information such
as server load and the bandwidth of server-clienhections. Assume further that we
can modify the system, for instance, to add moreess to the pool or to change the
fidelity of the content. We want to add self-addéipta capabilities that will take ad-
vantage of the monitored system and adapt theraystdulfill Znn.com objectives.

The business objectives at Znn.com
are to serve news content to its
customers with reasonable response,
while keeping the cost of the server

C LB — = | pool within its operating budget. From
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Server pool

.
'
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'
'
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time to time, due to highly popular

' events, Znn.com experiences spikes in
R news requests that it cannot serve
adequately, even at maximum pool
size. To prevent unacceptable latencies,
Znn.com opts to serve minimalist
textual content during such peak times in lieu rfvjling its customers zero service.
Assume that two actions are possible to adaptybes: adjust the server pool size
(enlist or remove) or switch content mode (multimaedr textual). While seemingly
simple, an adaptation decision requires a tradestffleen the multiple objectives.

Fig. 1. Architecture model of Znn.com

2.1 Overview of the Rainbow Framework

Our architecture-based self-adaptive approach isodied in an engineering frame-
work, called Rainbow, which provides mechanismmtmitor a target system and its
executing environment, reflect observations in anigecture model, detect opportu-
nities for improvements, select a course of actaon effect changes. By leveraging
the notion ofarchitectural styleto exploit commonality between systems, the frame-
work provides general and reusable infrastructuvigs well-defined customization
points to cater to a wide range of systems. It plewides a useful set of abstractions
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to focus engineers on adaptation concerns, faailifahe systematic customization of
Rainbow to particular systems. Details can be faar8,4].

The Rainbow framework (Fig. 2) uses a componentamhector architecture
model of the target system to monitor and reasavutabppropriate strategies for
adapting the system. Monitoring mechanisnmebes and gauges—observe the
runningtarget systemObservations are reported to update properti¢georchitec-
ture model managed by tiModel Manager The Architecture Evaluatorevaluates

the model upon update to ensure that

) the system is operating within an
Architecture Laver . acceptable range, as determined by
E— [HJDA&?”’?JL‘T | Parcwecare architectural ~ constraints. If the
1) Executor = mvawator( |( | Evaluator determines that the system
] : T is not operating within the accepted
L el s ] range, it triggers theAdaptation
Manager to initiate the adaptation

v B process and choose an appropriate
e Translation .

D{ E Infrastructure L\E adaptation strategy. Thétrategy
%Eﬁems System Apx[jggscm; [Tobesﬁ Executorthen executes the strategy

on the running system via system-
level effectors

To apply Rainbow to the

Fig. 2. The Rainbow Framework Znn.com example,_ we use propes
and gauges to monitor response time
and server load, reflecting those as propertighaérarchitecture model. The architec-
ture evaluator triggers adaption when any cliergegiences request-response laten-
cies above some threshold. The Adaptation managterrdines whether to activate
more servers or decrease content fidelity, as pddn a repair script. The strategy
executor effects the change in Znn.com using pealitboks.

When the system comes under high load, Rainbow apayo increase the server
pool size until a cost-determined maximum is red¢hé which point Rainbow would
switch the servers to serve textual content. If distem load drops, Rainbow may
switch the servers back to multimedia mode to nlstomers happy, in combination
with reducing the pool size to reduce operating.dosgeneral, the adaptation deci-
sion is determined by both the business objectwesobservations of system condi-
tions, including average response time, server,laad available bandwidth.

System ™" Target System
, Layer

2.2 Elementsof Rainbow

The Rainbow framework uses models of the architecaind environment to make
adaptation decisions. A component-and-connectorGC&rchitecture model reflects
abstract, runtime states of a target system, imguerhat entities are present and how
they communicate [5]. An environment model providestextual information about
the system, including its executing environment thedresources used. For example,
when additional servers are needed, the environmedel indicates what spare serv-
ers are available. When a better connection isiredjuthe environment model con-
tains information about the available bandwidtlotifer communication paths.
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In order to get information out of the target syst@to an abstract model for man-
agement, and then to push changes back into thensysve need mechanisms that
hook into the target system and understand whagpiesented in the model. Gauges
process system-specific information from Probepdpulate architectural properties.
Associated with architectural operators in the Baim Architecture Layer, effectors
carry out change operations on the target systeamméchanisms that range in com-
plexity from a system-call, to a script, to an eledie workflow.

The Architecture Evaluator evaluates model conforweaagainst architectural
constraints, which are specified using first-ordezdicate logic to identify problems
in the system. When triggered by the Architectuval&ator, the Adaptation Manager
uses information about the state of the systemoei®el in the architecture, the busi-
ness quality-of-service concerns and utility fuoos to decide which remedial strat-
egy to execute. A strategy is chosen from a sepetified strategies that have been
engineered for the system and/or domain. A straspggifies conditions and contexts
in which it applies, and captures a pattern of tatam steps.

Business quality-of-service concerns for the tagystem (e.g., system reliability,
service availability, or performance) are represérdas quality dimensions. A quality
dimension provides a notion of utility, or happisetor particular values of a quality
attribute. Each adaptation action has a specifigglact in cost or benefit on each
dimension. By tallying theost-benefit attributegver the actions in a strategy, an
expected aggregate impact can be computed forseatlegy. A strategy can then be
scored using utility preferences specified for guality dimensions. The Adaptation
Manager then selects the highest-scoring strategy.

Utility preferences define the relative importarfmtween the quality dimensions.
Specifically, we use a von Neumann-Morgensterntytilinction ug : X4 2 O that
assigns a real number to each quality dimensionormalized to the range [0,1].
Across multiple dimensions, we attribute a peragateveight to each dimension to
account for its relative importance compared t@ptlimensions. These weights form
the utility preferences. The overall utility is thgiven by the utility preference func-
tion, U =2wgyuy. An example utility preference with three objeesyu,, u,, us, of
decreasing importance might be quantifiedvasd.6, w,:0.3,ws:0.1].

The utility preference function gives us a way tonpute thanstantaneous utility
of the target system given its current conditiaswell as theccrued utilityof the
target system over time. If we assume coveraggsiem conditions, accrued utility
provides a measure of optimality of the targeteystgiving us a way to compare the
relative optimality of a system under different donations of conditions.

2.3  Opportunitiesfor Improving Self-Adaptation

To date, Rainbow’s adaptation has beeactivein nature. Reactive adaptation has
the advantage of requiring only a small set of me@ystem conditions to choose an
adaptation, allowing for timely decisions. Howeveractive adaptation has a number
of well-known disadvantages. First, following thection to perform an adaptation,
time is needed to carry out and propagate the sapgeshanges on the target system.
At times, the conditions that trigger an adaptatiaaly be more short-lived than the
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duration for propagating the adaptation changesjltiag in an unnecessary adapta-
tions that incur potential resource costs and serdisruption, which we terpenalty

Second, reactive adaptation lags behind curretésysonditions, and the degree
of that lag depends on the sensitivity of the syssensors to present (versus histori-
cal) values of a system condition (e.g., CPU ldiatt, bandwidth). If the system con-
dition undergoes a dramatic and rapid shift, it rtelye numerous adaptation cycles
for sensors to “catch up,” resulting in more thare ancremental adaptation change
where a single adaptation might have sufficed. Agtiis is problematic since each
adaptation potentially incurs some penalty.

If a similar shift in system conditions recurs “seaally”—once everyeriod of
time, such as every day at 8 AM—then the same uradids pattern of incremental
adaptations would repeat every period. (One workadds to learn the seasonal pat-
tern from historical data and predicate adaptat@mnsime; however, this is a form of
prediction.) In fact, executing adaptation while gystem is under duress usually will
take more time and is more likely to fail becau$daok of resources. Having such
prediction will help ensure sufficient resources available for the adaptation.

Finally, knowledge of future availability of somequired resource might result in
a different adaptation choice that moves the systgona higher level of overall util-
ity. To illustrate using a simplified Znn.com exadmpassume three levels of utility—
happy somewhat happynhappy— and three levels of values corresponding to re-
source conditiondow, medium high. Assume that both high response time and zero
service (i.e., no content) makes the customer ymhawhile low-fidelity content
makes the customer somewhat happy. Assume futaérah adaptation cycle takes
one unit of time to effect its changes. We will iegent the conditions of the system
at a particular time-point with a tuple: (utilityesponse time, server load, available
bandwidth, content fidelity). Now imagine a scenaldsting 3 time units, where
Rainbow reacts to the conditions at time dniity lowering the content fidelity:

0. (happyutility, low response timdow load, high available bandwidtHigh fidelity)
1. (unhappy high, high, low, high)

2. (somewhat happynedium medium low, low)

3. (somewhat happynedium medium high, low)

However, with perfect hindsight, knowing that theidgable bandwidth would re-
cover tohigh might have led Rainbow to adapt by enlisting nseevers to lower the
average server load and to keep the fidelity Higihs achieving better overall utility:

3. (happy, mediummedium high, high)

This example demonstrates how a reactive stratéggaptation that optimizes in-
stantaneous utility may often be sub-optimal ovdoreg period of time. This defi-
ciency results from two properties of reactive adapn: (1) information used for
decision making does not extend into the future, @) the planning horizon of the
strategy is short and does not consider the effiectirrent decisions on future utility.

By analyzing its reactive nature, we have thustified four opportunities for im-
proving the current self-adaptation capabilities:

1. Preventing unnecessary self-adaptation
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2. Reducing disruption from incremental adaptations.
3. Enabling pre-adaptation to seasonal behavior.
4. Improving overall choice of adaptation.

These opportunities for improving self-adaptatigghlight the need for predictive
information, particularly predictions of resourdb® target system environment. In
the following section, we characterize a numbeditferent kinds of prediction and
types of information that are amenable to predictio

3  ResourcePrediction

In the previous section we identified four oppoiti@s for using prediction to im-
prove self-adaptation of systems. For the purpdsthie chapterpredictionis an
informed estimation of the future random valuea afystem or environment variable,
e.g., the future available level of some resouecglired by the system. By leveraging
predictive information, a self-adapting system lideato analyze adaptation alterna-
tives slightly, or even significantly, ahead of lrdme, make forward-looking deci-
sions based on those predictions, and potentiafprdve the performance according
to some objective metric. In this section, we diégcthe types of prediction that we
use, discuss their applicability and limitationsdahen describe a generic prediction
framework that was developed for use in a ubiq@itoomputing context, but which
can be co-opted for use within Rainbow.

Poladian defined and described an anticipatory tnoideelf-adaptation in the con-
text of a ubiquitous computing system that makssuece allocation decisions based
on predictions of three inputs: (1) predictionsusér’s tasks, e.g., what type of appli-
cations the user needs and for how long, (2) ptiedis of resource demand by re-
source- and fidelity-aware applications, and (Bdwtions of the available supply of
resources such as network bandwidth and batterydéleloped a calculus and
framework that can synthesize different categooieprediction about a resource to
produce a single combined predictive value. Thesypf predictive models that can
be synthesized with this approach are: l{i¢ar recent history which is a kind of
predictor that uses recent history and a linearets@ries model; we use auto-
regressive moving average (ARMA) models for thisadkiof resource prediction,
which is consistent with [7]. (ZRelative movewhich models seasonal variations in
resource availability (e.g., knowing that netwodage will be high at the beginning
of a work day). (3bounding which specifies the maximum and minimum valuea of
resource for a union of time intervals (for examlgowing that bandwidth cannot be
above 10Mbps). In this chapter, we are concerndd lvaw to integrate the prediction
architecture with a self-adaptive system, rathantthe particular models of predic-
tion used. For details of the types of predictivedels, and the calculus for combin-
ing them, we refer readers to [20,21].

Because predictions are rarely perfect, a modgrediction must be prepared to
addressuncertainty Broadly,uncertaintydescribes both measurement and estimation
error when making predictions. Consequently, wéetghtiate between two types of
uncertainty. The first type of uncertainty arisdsew estimating future, random values
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of variables. One familiar example of such uncettaiis forecasting tomorrow’'s
weather. Predicting (forecasting) tomorrow’s tenapere is generally imprecise, and
a good prediction would provide an estimate foruheertainty (error) in the forecast.
Moreover, the error increases the further intoftitare one is predicting. Examples
from computer systems include predicting the numtifeclients connected to the
system or the available supply of network bandwidtten minutes. The second type
of uncertainty arises when measuring the magninfdpast and present values of
variables. An example from the physical scienceébésmeasurement of voltage. Here
the uncertainty (error) is the result of impreaisioather than randomness, that can
only be resolved by waiting until some future timden example from computer sys-
tems includes measuring the current available balitveetween two network nodes.

Prediction and uncertainty in the context of seléjative systems must be modeled
and addressed together. Typically, making predisti@quires a statistical model that
estimates (calculates) future values of a varibbked on available information to the
system. The uncertainty in the prediction is a nagis description of the predictive
error based upon that statistical model. In otherds, prediction and uncertainty are
described by the predictive distribution of theighte being estimated, conditional on
all available data, e.g., the past values of the@akte as well as the past values of the
prediction errors and any other information.

The types of prediction models and the way of carinigi them can be extended to
a certain class of self-adaptive systems that @jitor and predict resource availabil-
ity, and (b) make resource allocation decisionspad of self-adaptive behavior.
Typically, such systems are concerned with meaguwirestimating both théemand
for computational resources by the system undesideration and theupplyof re-
sources available to that system. In practice,dbmand and the supply might be
dependent. Therefore, it is important to identifiien those are interdependent and
express the dependence. Essentially this meansharheach critical resource in the
environment of the self-adaptive system is shamedrgg many systems or entirely
dedicated to the system under consideration. Ifé¢iseurce is not under our control,
then we can simply use the aggregate predictionbaifresource where the future
value of that resource is based on the historiahles of that resource. However, if
the resource is being managed wholly by the sedptide system, then the prediction
is more complicated; we need to predict how eaemeht under our control uses that
resource. In either case, the predictive framewarkbe applied equally effectively.

The kinds of predictions that can be handled bypiteliction framework are for
resources that have historical data that can blgzathstatistically and that match our
statistical model of the resource in question. &ample, if the historical data fits a
Poisson distribution then it is obviously not appble for an ARMA predictor that
assumes Gaussian distribution. So, predictions dkatime uncertainty is normally
distributed may fail to detect the arrival of acaled “Slashdot effect,” when a rapid
increase of web clients are connected to the selverto a sudden surge in the popu-
larity of the web server. This is especially theec# the historical data does not con-
tain evidence of a Slashdot event.

Our approach to anticipatory adaptation is basedptimizing the match between
system needs and the environment capabilitiesrdatipe, finding such a match cor-
responds to maximizing system utility. Poladiartiedis defines an analytical model
that formalizes the notion of utility for user'sst@ and expresses automatic configu-
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ration as a mathematical problem of maximizing eékpected utility of the user from
the running state of the environment under the tcaimés of the computing environ-
ment.

The analytical model provides a carefully craftedicture for the problem, allow-
ing efficient runtime configuration algorithms teasch the problem space for good
solutions. That structure is used to define a cuméition strategy for prediction that
takes as input (1) the amount of historical infotiova about the resource being pre-
dicted, (2) the temporal horizon of the decisicars] (3) treatment of uncertainty in
the available information explicitly quantifyingehuncertainty of future events and
coping with uncertainty by planning for future ches.

Using this analytical model, Poladian designed iamadlemented a software infra-
structure for automatic configuration with threepiontant contributions: (1) a central
component that makes near optimal configuratiorisitats, (2) a prediction frame-
work that provides resource prediction on demand, @) a programming interface
between the centralized decision maker and theigiirenl framework. The central

et TTITTmrimmimimimimi s -~ decision-making component leverages

v Consume N the structure of the analytical models to
Controller 5 : implement efficient and near-optimal

T AggPredt i configuration algorithms. In particular,

v the framework consists of the following

: four types of components, the architec-
' ture of which is defined in Fig. 5. For
t each resource, there will be one instan-
i tiation of this framework.

- ! Aggregator the centerpiece of the
'\ Monitor ; prediction framework, is responsible
A s for combining information from all

T available Basic Predictors and calculat-

) o ing aggregate predictions. The Aggre-
Fig. 3. The resource-prediction framework. gator maintains an up-to-date list of
currently available Basic Predictors. It aggregdtesinformation from the predictors
and produces a time series of predictions withgasing uncertainty further into the
future.

Controller: allows setting the model parameters of the limeaent history predic-
tor in the Aggregator. The model parameters areeg to be relatively stable over
time, changing only infrequently. There is one Colfeer resource instance.

Basic Predictors:these components implement a wrapper around eithewn
pattern or bounding predictors. Multiple Basic Retmts can be used. Upon startup, a
Basic Predictor registers with the Aggregator. Asvrsources of predictions become
available, additional Basic Predictors can be addete framework,

Monitor: probes the environment for actual resource avidithaand provides peri-
odic monitoring reports to the Aggregator. Thesanitowed values correspond to the
the historical values used by the predictors. A Nwrprovides a uniform interface to
the aggregator, encapsulating platform, networH, r@source-specific details,

Consumer the recipient and beneficiary of aggregate ptextis. A Consumer is
implemented by the coordinating entity of an adaptiesource management system.
The prediction framework allows multiple concurrédbnsumers to co-exist, each
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with its own aggregate prediction session. The Gomes specifies prediction parame-
ters to the Aggregator including the sampling wiwdim make prediction observa-
tions and how far into the future to predict.

In summary, the resource prediction framework dgtiestthe future level of re-
source availability by combining predictive infortizan from multiple sources. More
details can be found in [21].

4  Incorporating Resource Predictionsin Rainbow

Poladian’s work on resource prediction is both ficatin terms of algorithm speed,
and useful in terms of manageable parameter spadhis section, we show how
resource predictions can be incorporated into thi@tdw self-adaptation framework.
Rainbow must satisfy the following requirement$ofadian’s framework:
1. Utility: to evaluate the quality of the various possiblepadtions on the sys-
tem. Rainbow has a notion of utility as a centralaept for strategy selection;
2. Penalty to quantify costs of performing adaptations.hiére is no penalty as-
sociated with adapting the system, this would dievihe need for using pre-
diction — we will do a much better job with a réaetapproach. In Rainbow,
the penalties reflect the impact of temporary gifions to system utility and
the also time it takes to propagate changes thautghe system; and
3. Historical information:to facilitate prediction, past observed valuesdneebe
fed to the prediction framework.

4.1 Integration Pointsto Make Predictive I nformation Available

In Rainbow resource predictions can provide add#tideverage in evaluating and
choosing between alternate strategies of adaptafion example, by knowing the
probability that the available level of a critia@source, such as bandwidth, will be
below a certain threshold 5 minutes from now, Raimlran choose a strategy that
quiesces lower priority client sessions so thatrémaining client requests will con-
tinue to be satisfied within a tolerable latendyoh the other hand, the probability is
high that the bandwidth will be restored to levdlat will naturally bring the system
back within its desired state, Rainbow can choogseduce the fidelity of some or all
of the client sessions. Rainbow can even choode twthing.

To leverage resource predictions, it is importantansider how predictive infor-
mation adds to the existing information flow of ptiion decisions in the Rainbow
framework. The following points in Rainbow are putal sites for integrating re-
source predictions:

*  Monitoring: predictor gauges

« Detection: prediction of architectural properties

e Strategy: conditions based on predicted value atidres with time cost

« Effector: addition or removal of prediction dateesims
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Monitoring: To make adaptation decisions, Rainbow reads gautgibto deter-
mine target-system conditions. We can integrateure®g predictions in Rainbow by
encapsulating, as gauges, instances of the emtdiction runtime from Poladian’s
system. It provides output to the gauge bus cardistith the gauge infrastructure
API. Rainbow uses the standard gauge control exterfo configure parameters of the
prediction runtime. The gauge performs the rol¢hef consumer, providing parame-
ters for the prediction, then processing the tiewes returned from the aggregator to
produce a single predicted value for one futuretias requested by Rainbow.

Because uncertainty is inherent in resource priedictve must incorporate the
probability of error in a predicted measurementsagplied by predictors. We can
choose to ignore predicted measurements and fallimacurrent measurements when
the confidence level is below some threshold. We a&lso incorporate confidence
level directly in utility computation to give loweonsideration to strategies that use
low-confidence predictive information.

Detection: Rainbow uses architectural constraints to iderdfportunities for ad-
aptation. Conditions based on predicted resousatesstsuch as the anticipated load in
the next 500 milliseconds, may indicate opportesitior adaptation. Thus, architec-
tural constraints should support predicates ovedipted values of architectural prop-
erties, perhaps in the form of a supplied archit@dtfunction, such agredictedProp-
erty(p : Property, dur : int) : float (similarly for functions providing basic statistioopera-
tions, e.g., max/min/average). TpredictedProperty() function returns the value of the
architectural property identified kyy at a time pointlur milliseconds from now. Re-
call that gauges are associated with specific techiral properties to update their
values. So the function can compute predicted gabyequerying the predictor gauge
mapped to the requested property.

Strategy: At adaptation time, Rainbow uses current systenditions (reflected in
the model) to score and select strategies baséukeorexpected utility. A strategy has
two important ingredients: systeconditionsand adaptatiomctions System condi-
tions are used to (a) determine the applicabilitgtmategies during strategy selection
and (b) decide the next adaptation step duringegfyaexecution. Adaptation actions
change the target system to move the system towémetter state. New capabilities
are required in the mechanisms for
strategy selection, applicability con{ o1 define boolean cPredViolation (dur : int)=

dition, and actions to incorporate exists ¢ : T.ClientT in M.components |
resource predictions. Model.predictedProperty(c.experRespTime,
An example strategy to reducd dur) > M.MAX_RESPTIME;

system response time is shown in%% - , _
Fig. 4, specified in Rainbow’s adap! 03 strategy VariedReduceResponseTime

! - . 04 [cViolation && cPredViolation(self.dur) ] {
tation language. The function defined 05 10: (cViolation) -> enlistServers(1)

on line 1, cPredViolation(), uses the @[1000 /'ms*] {
architectural functionpredictedProp- | gg t1: (IcViolation) -> done;

erty() to compute client experienced o7 t2: (cViolation) -> lowerFidelity(2, 100)
response time at some future time, @[3000 /*ms*/] {
specified bydur. (cViolation defines |08 t2a: (IcViolation) -> done;

the same predicate without using p%® t2b: (default) > TNULL;  // give up

predicted value.) Line 4 shows the 10 H
use of this predicted value to detergig. 4. Sample snippet of an adaptation strategy.
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mine the applicability of this strategy, in thissea when the client experienced re-
sponse time is above threshold now and in the dutbines 5-9 specify what the

strategy does. In this case, it first enlists aeserfailing that, it then lowers the fidel-

ity. And if that doesn’t work, it gives up.

Timing plays a crucial role in prediction. We adh@ tability to calculate forward-
looking expected utilities based on future systemnditions. We augment Rainbow
with the notion offuture variable valueso that a strategy can specify dependency on
the future value of a condition. An adaptation @ttiakes some time to execute, and
estimating this duration is needed to determine favinto the future to predict. So,
using settling time information specified in stgits (see @[ms] in Fig. 4, lines 5 and
7), Rainbow estimates the amounttiofie that a strategy would take to execute suc-
cessfully. It then measures actual execution titoésprove estimation.

For prediction to improve the performance of Raimbeoecall that there needs to
be some cost, grenalty,to doing a particular adaptation. To capture this,model
penalty as a separate utility dimension, calledugison, that can be applied in utility-
based strategy selection like other dimensionsh si&c average response time (see
Table 1). There are two parts to disruption: onleow jarring it is to the user, and the
other is how long the user is disrupted. We collefdrmation about the disruption
level in the same way as other dimensions, spécigepart of the strategy specifica-
tion. The second one we track automatically by meag how long it takes to exe-
cute an adaptation step.

Effector: Finally, changes to the target system, particulaignges that add or
remove resource components, will likely have sigaift effects on resource predic-
tions. Therefore, we rely on system-level effecttwrsbe augmented so that, when
adding or removing system elements with associagsdurces, the effectors also take
care of the addition or removal of the correspogdinediction data streams. Addi-
tionally, because prediction usually requires @&seof input before the first output of
predictive data, gauges may have to be coordinattdthe addition of prediction
data streams to produce useful output immediately.

4.2 |llustration of Rainbow with Resour ce Predictions

To illustrate resource predictions in Rainbow, ustrevisit the Znn.com example to
examine in more detail the four scenarios of pamticintroduced in Section 2.3.
Recall that in the Znn.com example, the customars @bout quick response time
and high content fidelity for their news requegthile aware of customer preferences
on content fidelity, Znn.com as the provider is stoained by infrastructure provi-
sioning costs. We also consider service disrup®a penalty of performing an adap-
tation: avoiding penalties is important to imprayiaverall system utility, which is a
major benefit to having predictive information.

Accordingly, we define four quality dimensions asetermine the corresponding
measurable properties in the target system. Waumagiach dimension as a discrete
set of values (for example, we use an ordinal seleto 5 to express the degree of
disruption). We then elicit from the service proaig the utility values and prefer-
ences for these dimensions, summarized in Table 1.
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Table 1. Znn.com quality dimensions and utility preferences

L abel Description Architectural Property Utility Function Weight
uR Avg Response Time  ClientT.experRespTini eEﬂ%vgé)» (med,0.5), 25%
uF Avg Content Fidelity ServerT fidelity S]tgé(it;all),;)), (muld- 10%
uC Avg Budget ServerT.cost ((within,1), (over,0) 15%
uD Disruption ServerT. droppedReqq Eglboﬁ)’(gzbog)’(s 0) 50%

A rule specifies the acceptable bound of requesgiaese latencies experienced by
a client: exceeding the threshold indicates a moblA set of operators correspond to
available effectors in Znn.com to enlist or remaeevers, or to change content fidel-
ity. We define a number of adaptation strategiesZftn.com and specify cost-benefit
attribute vectors, not shown here, that specifyitiygact of each strategy to the four
qguality dimensions. For example, stratedgyiedReduceResponseTime is expected to
lower response time and fidelity level, not affeast, and incur some disruption.

We now consider how prediction could improve Raimtsochoices of adaptation
for the four opportunities outlined in Sec. 2.3r Egaluation, we set up Znn.com in a
simulation environment that allows us to experimeith prediction-enabling design
points in Rainbow’s Architecture Layer (cf. Fig.. 2he states of Znn.com are simu-
lated using an M/M/k queuing model. The simulatimvironment acts as gauges that
update corresponding Znn.com architectural properim Rainbow. This setup en-
ables prediction of future states to an arbitragcision.

Scenario 1: avoiding unnecessary adaptation

In the first scenario, if a client experiences aowe-threshold request-response time
for only 500 ms, but the chosen adaptation requitdsast one second to complete,
this adaptation is unnecessary. Avoiding adaptatemuires knowing the predicted
request-response time (using the architectural timmaredictedProperty()) and the
estimated execution time of an adaptation strateich Rainbow collects.

To evaluate how well prediction improves overalsteyn utility in this scenario,
we designed two Znn.com configurations, one in Whtte bandwidth drops briefly,
and another in which incoming requests (load) spikefly. The data is summarized
in Table 2. In both cases, Rainbow with predictimiccessfully avoided making un-
necessary adaptations, improving the normalizeduadcutility over no prediction by
2.5% in the transient bandwidth-drop case, and%b5r7the transient peak-load case.
The much greater improvement in the second casdeattributed to the high level
of disruption incurred by the strategy that is wessarily invoked without future
knowledge This outcome underscores the rolgafalty in determining whether
prediction is useful. We discuss some choices ediigtion usage in Section 4.3.

Scenario 2: reducing incremental disruptions

In the second scenario, Znn.com experiences a ticaimarease in client requests,
ramped up over seconds to minutes. In reactiomid®ai provisions by invoking a
strategy that adds one server. However, by the tiraeserver is added, the request
load has surpassed the capacity of the added ssw/@&ainbow adds another server
in response. This gradual adaptation is undesirbblsause it disrupts the system
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multiple times. Eliminating this ramp-up requiresokving the peak of the ramp-up
and computing cost-benefit attributes based ontiapguments to an adaptation step
(e.g.,k in enlistServers(k)).

To evaluate this scenario, we designed a Znn.camfigroation that ramps up re-
guests over four seconds. We addel@ap strategy similar td/ariedReduceRespon-
seTime but enlists 3 servers in one step. We then cordijuRainbow to compute
utilities that look five seconds ahead, and complkeload at its peak. Rainbow suc-
cessfully selected the leap strategy and showefl% #mprovement in AU.

The results of these experiments show that themapsovement when using pre-
dictive information. Perhaps not surprisingly, thest improvement is achieved when
the potential disruption to the user is high. Fa dther cases, the room for improve-
ment is not as great, but our numbers are signifisdien measured against the avail-
able margin for attaining perfect utility.

Table 2. Summary of data from 3 experiments (each averaged30 trials)

Normalized Accrued Utility (AU)

Scenario Configuration | No Prediction| ~ With Prediction | AAU | Improved
1: transient bandwidth-drop ~ 0.889 0.911 0.027 2.5%
1: transient peak-load 0.731 0.846 0.115 15.7%
2: ramp-up to peak load 0.734 0.770 0.036 4.9%

Additional scenarios: seasonal pre-adaptation and choosing better adaptations

We have shown two scenarios that exercised thecapabilities added to Rainbow
to incorporate predictive information, with suppogt data from experiments. We
now consider two other scenarios that use the smnhef capabilities; for these we
have not performed additional experiments.

In a third scenario, Znn.com periodically experiema significant increase in cli-
ent requests at 9 AM every Monday through Fridagad®ing to the increase each
time it occurs is undesirable because the adaptatitentially disrupts the system
and adds stress to a system already under loadntnast, pre-adapting has the bene-
fit of reducing disruption while introducing systestackto prepare for the upcoming
load. Pre-adapting for seasonal behavior requiedscting seasonal patterns, which
can be provided by predictors in Vahe’s framewdiken, by adding an architectural
constraint that checks for predicted load at fik@dre time points, configuring utility
computation to look ahead to the same time, andifsjoeg a strategy that is applica-
ble for violation at that future time point, Raime@an seasonally pre-adapt.

A fourth scenario is already described in Sectid) @here a client experiences an
above-threshold request-response time due to isedeasitor traffic, coupled with a
transient drop in available bandwidth. Given the lmandwidth and a choice between
the a strategy to lower fideltiy and another toigtninore servers, Rainbow chooses
the former to use less bandwidth while fulfillifgetincreased request load. However,
when the available bandwidth recovers shortly aiéed, Rainbow would then adapt
again to restore the content fidelity and perhdps anlarge the server pool if traffic
remains high. Thus, Rainbow’s reaction resultstiteast one additional disruption
and an overall lower system utility. With advandetbwledge that the bandwidth
drop is transient (as in scenario 1), Rainbow wdwde chosen to enlist servers.
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4.3 Deciding When to use Predictive I nformation

Once predictive information is available for uses#if-adaptation, the questions still
remain of when and how to use the information i dlecision process. In our appli-
cation of predictive information, we encountered tbllowing design choices, which
we have addressed in a variety of ways.

How far into the future do we look ahead®e predictive framework requires
parameterization for how far ahead to predict auese property. The predictive
framework actually returns a time series of valles,to make use of this information
in Rainbow, we must pick one particular value. Theice of this depends on the
context. For example, in Scenario 1 where we girdrto decide whether to avoid an
adaption, a reasonable choice is to use a duratjoivalent to the estimated time of
completing the adaptation. For Scenario 2 on therdband, the look ahead could be
far longer than the duration of adaptation. Notat ty using estimated completion
time to choose how far into the future to look, ave comparing different prediction
ranges for different strategies in a single adaptatycle. An alternative is to look
ahead to the same time in the future, perhaps iog tise maximum completion time
of all strategies under consideration.

Should predictive information be used at strateghgcion time, utility evaluation
time, strategy execution time, or a combinatiortheflse?There are several steps in
Rainbow’s process of selecting a repair strategydekide the set of strategies that
may fix a problem; 2) determine which strategyhie best to use; and 3) execute the
chosen strategy. Predicted information can be us&hinbow at any of these times.
For example, the strategy in Fig. 4 uses preditctB@dmation in step 1. In line 4, we
are checking if response time is high now and anftiture. If the condition is tran-
sient the strategy will not be chosen, and so tleen® need to use prediction in lines
5-9 (strategy execution time). Alternatively, tdtiaipate seasonal changes, the strat-
egy writer would write the strategy to consideryoptedictions in line 4, and also to
use prediction in lines 5-9. Rainbow gives thetetg writer the power to decide how
and when to use the prediction. Currently, in Raimpthe second step (using predic-
tion in the utility calculation) is provided as arpmeter to the framework, because
there is no way in the strategy language to refahis. We are investigating a more
agile way to specify the use of prediction in ttése.

How much weight should be given to the penalty d#oea? When we experi-
mented with a 10% weight for the penalty dimenstba,first configuration yielded a
utility improvement of 0.4%, whereas a 50% weigieided 2.4% improvement. This
data reinforced Poladian’s results that anticipatataptation yields increasing gains
at penalty levels above 7%. On the flip side, aaftgrnweight above 50% makes it
difficult to distinguish the relative importance thie other utility dimensions. A sweet
spot should be found between 10 and 50%.

5 Redated Work

To date, several dynamic software architecturedamaaptation approaches and
frameworks have been proposed and developed []12R&fated approaches focus on
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formalism and modeling, mechanisms for adaptatormlistribution and decentraliza-
tion of control. These include Darwin witlicalculus semantics to specify distributed
systems [16], ArchWare with architectural reflentiand dynamic co-evolution [17],
Weaves for construction and analysis of data-flggtems [13], ArchStudio for self-
adaptation of C2 hierarchical publish-subscribetesys [6], Plastik targeting per-
formance properties [1], and CASA for resource labdlity concerns in mobile net-
work environments [18]. These approaches sharev@denmon characteristics: They
generally apply a closed-loop control, use an &chire model for reasoning about
the target system, assume certain structures itatjet system, and adapt for a fixed
set of quality attributes.

Notable in industry, IBM’s Autonomic Computing tdek the challenges of emer-
gent autonomic behavior with the MAPE control loo-onitor, analyze, plan, and
execute changes for self-management. The AC toptkitides consoles and tools to
diagnose problems and engineer autonomic systemapply a similar approach.

One of the differentiators of this work from priself-adaptive systems is the use
of resource prediction. The anticipatory strateggsupredictions of the future values
of input variables to make forward-looking decisiaabout adaptation selection. For-
ward-looking approaches have been proposed andimsgtier domains. For exam-
ple, the online stochastic combinatorial optimiaatapproach is similar to our antici-
patory strategy [2,14]. Various combinatorial optiation problems such as optimal
vehicle dispatch and network packet routing areresblby leveraging probabilistic
priors of the future values of problem inputs. Eher equivalence between the algo-
rithms for automatic configuration in this chaptard the algorithms described in
[14]. The Active Virtual Network Management Predct System uses simulation
models running ahead of real time to predict resmglemand among network nodes.
Such predictions can be used to allocate netwopldaty in anticipation of demand
increase, and to ensure adequate quality of setwiddferent network flows [9]. Our
work shares theoretical foundations with these theipproblem domains are different.

There is a body of work that uses various kindg@&diction to improve self-
adaptation. For example, Clockwork [22] introducd® concept ofpredictive
autonomicitythat uses statistical modeling to forecast cyedidations in system load
and uses these predictions to reconfigure systanagticipation of need. They pre-
scribe a method for implementing a predictive aatoit system. In spirit, we share
the same steps for incorporating predictive infdroma However, our notion of con-
trollable parameters are enriched with strategres wtility preferences, and we use
predicted information in strategy selection. Solom@3] uses predictions about
workload to adapt the control component of an aatain system to be more suited to
that workload. For example, if the workload is Bnethen simple thresholding can be
used in the controller, but if the workload on #lystem changes to be Gaussian, then
a more sophisticated statistical controller basedKalman filters is swapped in to
manage the system. Their adaptation layer shasesame principle components as
Rainbow, with the selection of controllers analogido selection of strategies. They
show encouraging results in using predicted infaionafor Gaussian workloads to
provision servers. This is one of many types ofimt®on sources that could be incor-
porated into our prediction framework.

Rather than using auto-regressive techniques tdigireesource availability, Lu
[15] uses knowledge about the domain being comeidib predict behavior. They use
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gueuing-theoretic models in the domain of web gsrve infer expected delays di-
rectly from input load. Again, this is another forwh predictive model that could
theoretically be incorporated as a Basic Predictaur framework, although it is of a
type that we have not fully considered.

6 Conclusion and Future Work

In this chapter, we presented an approach to ephamchitecture-based self-
adaptation through anticipatory prediction of feturesource availability. The ap-
proach uses a framework that combines various foomgrediction (statistical,
bounded, and seasonal) in a practical manner #rabe applied to a variety of cir-
cumstances. We have argued that self-adaptiversgstan take advantage of predic-
tion to improve the choice of adaptations and tuce disruption to the system. We
gave specific consideration to the changes neeam@ttorporate predictions into one
reactive architecture-based self-adaption systeminl®w. We conducted several
experiments that show improvement in the adaptatiban predicition is used, and
discussed how we addressed some issues that werdaeal doing the integration.

In future work, we would like to better quantifyettypes of resources that can be
predicted and would be useful in realistic circuamses. For example, other types of
resources to be considered beyond bandwidth arempoansumption, memory usage
and CPU load. We would like to give more guidarcadaptation writers about when
and how to use prediction. We also would like toifyethe results discussed in this
chapter through additional experimentation andiagpbn to real systems.
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