
Improving Architecture-Based Self-Adaptation
Through Resource Prediction

Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

Carnegie Mellon University, School of Computer Science
5000 Forbes Avenue, Pittsburgh, PA 15213

{zensoul, vahe.poladian, garlan, schmerl}@cs.cmu.edu

Abstract. An increasingly important concern for modern systems design is how
best to incorporate self-adaptation into systems so as to improve their ability to
dynamically respond to faults, resource variation, and changing user needs. One
promising approach is to use architectural models as a basis for monitoring,
problem detection, and repair selection. While this approach has been shown to
yield positive results, current systems use a reactive approach: they respond to
problems only when they occur. In this paper we argue that self-adaptation can
be improved by adopting an anticipatory approach in which predictions are
used to inform adaptation strategies. We show how such an approach can be in-
corporated into an architecture-based adaptation framework and demonstrate
the benefits of the approach.

Keywords: self-adaptation, resource prediction, autonomic computing, soft-
ware architecture

1 Introduction

As computing systems become more and more integral to our daily activities, it be-
comes increasingly important for those systems to provide reliable and uninterrupted
service, even in the presence of system faults, changing resources and loads, and
different user needs. In the past this capability has largely been provided through
human oversight. As a result, the cost of managing such systems has grown to 70-
90% of the total cost of system ownership [8], while the burden of managing the
many aspects of computing has surpassed the capacity of human attention [24].

In response there has been considerable recent interest in supporting automated
system self-adaptation, whereby the system takes increasing responsibility for dy-
namically detecting problems and repairing itself. Most systems that support self-
adaptation adopt a control systems perspective: a system is monitored and the result-
ing observations are used to determine system health, and the system is adapted to fix
any existing problems.

One particularly promising form of this approach is to use architectural models of a
system as the basis for problem detection, diagnosis, and repair. Architecture-based
self-adaptation has had considerable success in providing adaptation support for leg-
acy systems and in providing flexibility for tailoring adaptation to business needs
[1,6,10,11,12,13,19,25].

To appear in Betty H.C. Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi,
Jeff Magee (eds). Software Engineering for Self-Adaptive Systems. LNCS 2008.

2 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

One outstanding problem with such systems is that they are strictly reactive: they
respond to the current environment and system state, invoking adaptation strategies if
and only if an immediate problem arises. The goal of a reactive approach is to select
an adaptation that optimizes the instantaneous utility of the system at that time. How-
ever, from a global perspective, several instantaneously optimal decisions may be
sub-optimal when considered together. For example, if we adapt a web system reac-
tively to a short, temporary spike in bandwidth by reducing the fidelity of the content,
this may be sub-optimal in hindsight because a short delay may be less offensive to
the client than low fidelity.

In this paper we argue that self-adaptation can be dramatically improved if we use
future predictions of the environment, and specifically its resources, to make better
choices about whether and how to adapt a system. In other work [21], we have devel-
oped a resource prediction framework that provides predictions on resource availabil-
ity from a variety of prediction models, in the context of continually adapting ubiqui-
tous computing. We can use this framework to provide predictive information to help
architecture-based self-adaptation. In particular, we observe that prediction offers four
kinds of improvement to the existing self-adaptation approach:

1. Prediction prevents unnecessary self-adaptation.
2. Prediction reduces disruption from incremental adaptation, for example, enlist-

ing servers 4 at once rather than one at a time.
3. Prediction enables pre-adaptation to seasonal behavior.
4. Prediction improves overall choice of adaptation.

At first glance, it seems obvious that using predicted information will improve self-

adaptation – if you know it is going to rain, don’t turn on the sprinklers. But, making
choices about when and how to consider this predicted information is crucially impor-
tant. Accordingly, the contributions of this chapter are:

1. A framework for generic use of predictive information. The framework is ag-
nostic to methods used for deriving predictions;

2. Flexibility in using predictions for self-adaptation. Our framework has several
points of integration where predictions can be useful; and

3. Some rules-of-thumb for how to incorporate predictive information into a self-
adaptive framework.

In the remainder of this chapter we describe our resource prediction framework and

show how it achieves the improvements listed above. In Section 2, we describe the
overall framework of our architecture-based self-adaptation approach and identify
core challenges of incorporating prediction. We then introduce the anticipatory model
for adaptation in Section 3. In Section 4 we present initial results of applying an an-
ticipatory model to adaptation and describe future applications. In Section 5 we de-
scribe related work on architecture-based self-adaptation and prediction. In the final
section, we conclude with a brief discussion of additional ways in which prediction
could be used to improve architecture-based self-adaptation.

Improving Architecture-Based Self-Adaptation Through Resource Prediction 3

Fig. 1. Architecture model of Znn.com

2 Framework for Architecture-Based Self-Adaptation

In this section we provide a high-level overview of our self adaptation framework,
illustrate its use with an example, and discuss opportunities for enhancement via re-
source prediction. In particular, making use of prediction requires addressing a few
challenges: What kinds of predictive information are useful? What can be predicted?
How would it be used? This section addresses the first question of requirements for
prediction. In the next two sections we address the questions of what and how.

To illustrate our approach, consider an example news service, Znn.com, inspired
by real sites like cnn.com and RockyMountainNews.com, which serves multimedia
news content to its customers. Architecturally, Znn.com is a web-based client-server
system that conforms to an N-tier style. As illustrated in Fig. 1, Znn.com uses a load
balancer (LB) to balance requests across a pool of replicated servers, the size of which
is dynamically adjusted to balance server utilization against service response time. A
set of client processes (represented by the C component) makes stateless content re-
quests to the servers. Let us assume we can monitor the system for information such
as server load and the bandwidth of server-client connections. Assume further that we
can modify the system, for instance, to add more servers to the pool or to change the
fidelity of the content. We want to add self-adaptation capabilities that will take ad-
vantage of the monitored system and adapt the system to fulfill Znn.com objectives.

The business objectives at Znn.com
are to serve news content to its
customers with reasonable response,
while keeping the cost of the server
pool within its operating budget. From
time to time, due to highly popular
events, Znn.com experiences spikes in
news requests that it cannot serve
adequately, even at maximum pool
size. To prevent unacceptable latencies,
Znn.com opts to serve minimalist

textual content during such peak times in lieu of providing its customers zero service.
Assume that two actions are possible to adapt the system: adjust the server pool size
(enlist or remove) or switch content mode (multimedia or textual). While seemingly
simple, an adaptation decision requires a tradeoff between the multiple objectives.

2.1 Overview of the Rainbow Framework

Our architecture-based self-adaptive approach is embodied in an engineering frame-
work, called Rainbow, which provides mechanisms to monitor a target system and its
executing environment, reflect observations in an architecture model, detect opportu-
nities for improvements, select a course of action, and effect changes. By leveraging
the notion of architectural style to exploit commonality between systems, the frame-
work provides general and reusable infrastructures with well-defined customization
points to cater to a wide range of systems. It also provides a useful set of abstractions

4 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

Fig. 2. The Rainbow Framework

to focus engineers on adaptation concerns, facilitating the systematic customization of
Rainbow to particular systems. Details can be found in [3,4].

The Rainbow framework (Fig. 2) uses a component-and-connector architecture
model of the target system to monitor and reason about appropriate strategies for
adapting the system. Monitoring mechanisms—probes and gauges—observe the
running target system. Observations are reported to update properties of the architec-
ture model managed by the Model Manager. The Architecture Evaluator evaluates

the model upon update to ensure that
the system is operating within an
acceptable range, as determined by
architectural constraints. If the
Evaluator determines that the system
is not operating within the accepted
range, it triggers the Adaptation
Manager to initiate the adaptation
process and choose an appropriate
adaptation strategy. The Strategy
Executor then executes the strategy
on the running system via system-
level effectors.

To apply Rainbow to the
Znn.com example, we use probes
and gauges to monitor response time

and server load, reflecting those as properties in the architecture model. The architec-
ture evaluator triggers adaption when any client experiences request-response laten-
cies above some threshold. The Adaptation manager determines whether to activate
more servers or decrease content fidelity, as specified in a repair script. The strategy
executor effects the change in Znn.com using provided hooks.

When the system comes under high load, Rainbow may opt to increase the server
pool size until a cost-determined maximum is reached, at which point Rainbow would
switch the servers to serve textual content. If the system load drops, Rainbow may
switch the servers back to multimedia mode to make customers happy, in combination
with reducing the pool size to reduce operating cost. In general, the adaptation deci-
sion is determined by both the business objectives and observations of system condi-
tions, including average response time, server load, and available bandwidth.

2.2 Elements of Rainbow

The Rainbow framework uses models of the architecture and environment to make
adaptation decisions. A component-and-connector (C&C) architecture model reflects
abstract, runtime states of a target system, including what entities are present and how
they communicate [5]. An environment model provides contextual information about
the system, including its executing environment and the resources used. For example,
when additional servers are needed, the environment model indicates what spare serv-
ers are available. When a better connection is required, the environment model con-
tains information about the available bandwidth of other communication paths.

Improving Architecture-Based Self-Adaptation Through Resource Prediction 5

In order to get information out of the target system into an abstract model for man-
agement, and then to push changes back into the system, we need mechanisms that
hook into the target system and understand what is represented in the model. Gauges
process system-specific information from Probes to populate architectural properties.
Associated with architectural operators in the Rainbow Architecture Layer, effectors
carry out change operations on the target system via mechanisms that range in com-
plexity from a system-call, to a script, to an elaborate workflow.

The Architecture Evaluator evaluates model conformance against architectural
constraints, which are specified using first-order predicate logic to identify problems
in the system. When triggered by the Architecture Evaluator, the Adaptation Manager
uses information about the state of the system, embodied in the architecture, the busi-
ness quality-of-service concerns and utility functions to decide which remedial strat-
egy to execute. A strategy is chosen from a set of specified strategies that have been
engineered for the system and/or domain. A strategy specifies conditions and contexts
in which it applies, and captures a pattern of adaptation steps.

Business quality-of-service concerns for the target system (e.g., system reliability,
service availability, or performance) are represented as quality dimensions. A quality
dimension provides a notion of utility, or happiness, for particular values of a quality
attribute. Each adaptation action has a specified impact in cost or benefit on each
dimension. By tallying the cost-benefit attributes over the actions in a strategy, an
expected aggregate impact can be computed for each strategy. A strategy can then be
scored using utility preferences specified for the quality dimensions. The Adaptation
Manager then selects the highest-scoring strategy.

Utility preferences define the relative importance between the quality dimensions.
Specifically, we use a von Neumann-Morgenstern utility function ud : Xd � ℜ that
assigns a real number to each quality dimension d, normalized to the range [0,1].
Across multiple dimensions, we attribute a percentage weight to each dimension to
account for its relative importance compared to other dimensions. These weights form
the utility preferences. The overall utility is then given by the utility preference func-
tion, U =Σwdud. An example utility preference with three objectives, u1, u2, u3, of
decreasing importance might be quantified as [w1:0.6, w2:0.3, w3:0.1].

The utility preference function gives us a way to compute the instantaneous utility
of the target system given its current conditions, as well as the accrued utility of the
target system over time. If we assume coverage of system conditions, accrued utility
provides a measure of optimality of the target system, giving us a way to compare the
relative optimality of a system under different combinations of conditions.

2.3 Opportunities for Improving Self-Adaptation

To date, Rainbow’s adaptation has been reactive in nature. Reactive adaptation has
the advantage of requiring only a small set of recent system conditions to choose an
adaptation, allowing for timely decisions. However, reactive adaptation has a number
of well-known disadvantages. First, following the decision to perform an adaptation,
time is needed to carry out and propagate the necessary changes on the target system.
At times, the conditions that trigger an adaptation may be more short-lived than the

6 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

duration for propagating the adaptation changes, resulting in an unnecessary adapta-
tions that incur potential resource costs and service disruption, which we term penalty.

Second, reactive adaptation lags behind current system conditions, and the degree
of that lag depends on the sensitivity of the system sensors to present (versus histori-
cal) values of a system condition (e.g., CPU load, link bandwidth). If the system con-
dition undergoes a dramatic and rapid shift, it may take numerous adaptation cycles
for sensors to “catch up,” resulting in more than one incremental adaptation change
where a single adaptation might have sufficed. Again, this is problematic since each
adaptation potentially incurs some penalty.

If a similar shift in system conditions recurs “seasonally”—once every period of
time, such as every day at 8 AM—then the same undesirable pattern of incremental
adaptations would repeat every period. (One workaround is to learn the seasonal pat-
tern from historical data and predicate adaptations on time; however, this is a form of
prediction.) In fact, executing adaptation while the system is under duress usually will
take more time and is more likely to fail because of lack of resources. Having such
prediction will help ensure sufficient resources are available for the adaptation.

Finally, knowledge of future availability of some required resource might result in
a different adaptation choice that moves the system into a higher level of overall util-
ity. To illustrate using a simplified Znn.com example, assume three levels of utility—
happy, somewhat happy, unhappy – and three levels of values corresponding to re-
source conditions: low, medium, high. Assume that both high response time and zero
service (i.e., no content) makes the customer unhappy, while low-fidelity content
makes the customer somewhat happy. Assume further that an adaptation cycle takes
one unit of time to effect its changes. We will represent the conditions of the system
at a particular time-point with a tuple: (utility, response time, server load, available
bandwidth, content fidelity). Now imagine a scenario lasting 3 time units, where
Rainbow reacts to the conditions at time unit 1 by lowering the content fidelity:

0. (happy utility, low response time, low load, high available bandwidth, high fidelity)
1. (unhappy, high, high, low, high)
2. (somewhat happy, medium, medium, low, low)
3. (somewhat happy, medium, medium, high, low)

However, with perfect hindsight, knowing that the available bandwidth would re-

cover to high might have led Rainbow to adapt by enlisting more servers to lower the
average server load and to keep the fidelity high, thus achieving better overall utility:

3. (happy, medium, medium, high, high)

This example demonstrates how a reactive strategy of adaptation that optimizes in-

stantaneous utility may often be sub-optimal over a long period of time. This defi-
ciency results from two properties of reactive adaptation: (1) information used for
decision making does not extend into the future, and (2) the planning horizon of the
strategy is short and does not consider the effect of current decisions on future utility.

By analyzing its reactive nature, we have thus identified four opportunities for im-
proving the current self-adaptation capabilities:

1. Preventing unnecessary self-adaptation

Improving Architecture-Based Self-Adaptation Through Resource Prediction 7

2. Reducing disruption from incremental adaptations.
3. Enabling pre-adaptation to seasonal behavior.
4. Improving overall choice of adaptation.

These opportunities for improving self-adaptation highlight the need for predictive

information, particularly predictions of resources the target system environment. In
the following section, we characterize a number of different kinds of prediction and
types of information that are amenable to prediction.

3 Resource Prediction

In the previous section we identified four opportunities for using prediction to im-
prove self-adaptation of systems. For the purpose of this chapter, prediction is an
informed estimation of the future random values of a system or environment variable,
e.g., the future available level of some resource required by the system. By leveraging
predictive information, a self-adapting system is able to analyze adaptation alterna-
tives slightly, or even significantly, ahead of real-time, make forward-looking deci-
sions based on those predictions, and potentially improve the performance according
to some objective metric. In this section, we describe the types of prediction that we
use, discuss their applicability and limitations, and then describe a generic prediction
framework that was developed for use in a ubiquitous computing context, but which
can be co-opted for use within Rainbow.

Poladian defined and described an anticipatory model of self-adaptation in the con-
text of a ubiquitous computing system that makes resource allocation decisions based
on predictions of three inputs: (1) predictions of user’s tasks, e.g., what type of appli-
cations the user needs and for how long, (2) predictions of resource demand by re-
source- and fidelity-aware applications, and (3) predictions of the available supply of
resources such as network bandwidth and battery. He developed a calculus and
framework that can synthesize different categories of prediction about a resource to
produce a single combined predictive value. The types of predictive models that can
be synthesized with this approach are: (1) linear recent history, which is a kind of
predictor that uses recent history and a linear time-series model; we use auto-
regressive moving average (ARMA) models for this kind of resource prediction,
which is consistent with [7]. (2) Relative move, which models seasonal variations in
resource availability (e.g., knowing that network usage will be high at the beginning
of a work day). (3) bounding, which specifies the maximum and minimum values of a
resource for a union of time intervals (for example, knowing that bandwidth cannot be
above 10Mbps). In this chapter, we are concerned with how to integrate the prediction
architecture with a self-adaptive system, rather than the particular models of predic-
tion used. For details of the types of predictive models, and the calculus for combin-
ing them, we refer readers to [20,21].

Because predictions are rarely perfect, a model of prediction must be prepared to
address uncertainty. Broadly, uncertainty describes both measurement and estimation
error when making predictions. Consequently, we differentiate between two types of
uncertainty. The first type of uncertainty arises when estimating future, random values

8 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

of variables. One familiar example of such uncertainty is forecasting tomorrow’s
weather. Predicting (forecasting) tomorrow’s temperature is generally imprecise, and
a good prediction would provide an estimate for the uncertainty (error) in the forecast.
Moreover, the error increases the further into the future one is predicting. Examples
from computer systems include predicting the number of clients connected to the
system or the available supply of network bandwidth in ten minutes. The second type
of uncertainty arises when measuring the magnitude of past and present values of
variables. An example from the physical sciences is the measurement of voltage. Here
the uncertainty (error) is the result of imprecision, rather than randomness, that can
only be resolved by waiting until some future time. An example from computer sys-
tems includes measuring the current available bandwidth between two network nodes.

Prediction and uncertainty in the context of self-adaptive systems must be modeled
and addressed together. Typically, making predictions requires a statistical model that
estimates (calculates) future values of a variable based on available information to the
system. The uncertainty in the prediction is a rigorous description of the predictive
error based upon that statistical model. In other words, prediction and uncertainty are
described by the predictive distribution of the variable being estimated, conditional on
all available data, e.g., the past values of the variable as well as the past values of the
prediction errors and any other information.

The types of prediction models and the way of combining them can be extended to
a certain class of self-adaptive systems that (a) monitor and predict resource availabil-
ity, and (b) make resource allocation decisions as part of self-adaptive behavior.
Typically, such systems are concerned with measuring or estimating both the demand
for computational resources by the system under consideration and the supply of re-
sources available to that system. In practice, the demand and the supply might be
dependent. Therefore, it is important to identify when those are interdependent and
express the dependence. Essentially this means whether each critical resource in the
environment of the self-adaptive system is shared among many systems or entirely
dedicated to the system under consideration. If the resource is not under our control,
then we can simply use the aggregate predictions of that resource where the future
value of that resource is based on the historical values of that resource. However, if
the resource is being managed wholly by the self-adaptive system, then the prediction
is more complicated; we need to predict how each element under our control uses that
resource. In either case, the predictive framework can be applied equally effectively.

The kinds of predictions that can be handled by the prediction framework are for
resources that have historical data that can be analyzed statistically and that match our
statistical model of the resource in question. For example, if the historical data fits a
Poisson distribution then it is obviously not applicable for an ARMA predictor that
assumes Gaussian distribution. So, predictions that assume uncertainty is normally
distributed may fail to detect the arrival of a so-called “Slashdot effect,” when a rapid
increase of web clients are connected to the server due to a sudden surge in the popu-
larity of the web server. This is especially the case if the historical data does not con-
tain evidence of a Slashdot event.

Our approach to anticipatory adaptation is based on optimizing the match between
system needs and the environment capabilities. In practice, finding such a match cor-
responds to maximizing system utility. Poladian’s thesis defines an analytical model
that formalizes the notion of utility for user’s tasks and expresses automatic configu-

Improving Architecture-Based Self-Adaptation Through Resource Prediction 9

 Monitor

AggPredP

BPredP

LPUpdPP

RMonP

Basic Predictor

Controller Consumer

Aggregator

Fig. 3. The resource-prediction framework.

ration as a mathematical problem of maximizing the expected utility of the user from
the running state of the environment under the constraints of the computing environ-
ment.

The analytical model provides a carefully crafted structure for the problem, allow-
ing efficient runtime configuration algorithms to search the problem space for good
solutions. That structure is used to define a configuration strategy for prediction that
takes as input (1) the amount of historical information about the resource being pre-
dicted, (2) the temporal horizon of the decisions, and (3) treatment of uncertainty in
the available information explicitly quantifying the uncertainty of future events and
coping with uncertainty by planning for future changes.

Using this analytical model, Poladian designed and implemented a software infra-
structure for automatic configuration with three important contributions: (1) a central
component that makes near optimal configuration decisions, (2) a prediction frame-
work that provides resource prediction on demand, and (3) a programming interface
between the centralized decision maker and the prediction framework. The central

decision-making component leverages
the structure of the analytical models to
implement efficient and near-optimal
configuration algorithms. In particular,
the framework consists of the following
four types of components, the architec-
ture of which is defined in Fig. 5. For
each resource, there will be one instan-
tiation of this framework.

Aggregator: the centerpiece of the
prediction framework, is responsible
for combining information from all
available Basic Predictors and calculat-
ing aggregate predictions. The Aggre-
gator maintains an up-to-date list of

currently available Basic Predictors. It aggregates the information from the predictors
and produces a time series of predictions with increasing uncertainty further into the
future.

Controller: allows setting the model parameters of the linear recent history predic-
tor in the Aggregator. The model parameters are expected to be relatively stable over
time, changing only infrequently. There is one Controller resource instance.
 Basic Predictors: these components implement a wrapper around either known
pattern or bounding predictors. Multiple Basic Predictors can be used. Upon startup, a
Basic Predictor registers with the Aggregator. As new sources of predictions become
available, additional Basic Predictors can be added to the framework,
 Monitor: probes the environment for actual resource availability and provides peri-
odic monitoring reports to the Aggregator. These monitored values correspond to the
the historical values used by the predictors. A Monitor provides a uniform interface to
the aggregator, encapsulating platform, network, and resource-specific details,
 Consumer: the recipient and beneficiary of aggregate predictions. A Consumer is
implemented by the coordinating entity of an adaptive resource management system.
The prediction framework allows multiple concurrent Consumers to co-exist, each

10 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

with its own aggregate prediction session. The Consumer specifies prediction parame-
ters to the Aggregator including the sampling window to make prediction observa-
tions and how far into the future to predict.

In summary, the resource prediction framework quantifies the future level of re-
source availability by combining predictive information from multiple sources. More
details can be found in [21].

4 Incorporating Resource Predictions in Rainbow

Poladian’s work on resource prediction is both practical in terms of algorithm speed,
and useful in terms of manageable parameter space. In this section, we show how
resource predictions can be incorporated into the Rainbow self-adaptation framework.
Rainbow must satisfy the following requirements of Poladian’s framework:

1. Utility: to evaluate the quality of the various possible adaptations on the sys-
tem. Rainbow has a notion of utility as a central concept for strategy selection;

2. Penalty: to quantify costs of performing adaptations. If there is no penalty as-
sociated with adapting the system, this would obviate the need for using pre-
diction – we will do a much better job with a reactive approach. In Rainbow,
the penalties reflect the impact of temporary disruptions to system utility and
the also time it takes to propagate changes throughout the system; and

3. Historical information: to facilitate prediction, past observed values need to be
fed to the prediction framework.

4.1 Integration Points to Make Predictive Information Available

In Rainbow resource predictions can provide additional leverage in evaluating and
choosing between alternate strategies of adaptation. For example, by knowing the
probability that the available level of a critical resource, such as bandwidth, will be
below a certain threshold 5 minutes from now, Rainbow can choose a strategy that
quiesces lower priority client sessions so that the remaining client requests will con-
tinue to be satisfied within a tolerable latency. If, on the other hand, the probability is
high that the bandwidth will be restored to levels that will naturally bring the system
back within its desired state, Rainbow can choose to reduce the fidelity of some or all
of the client sessions. Rainbow can even choose to do nothing.

To leverage resource predictions, it is important to consider how predictive infor-
mation adds to the existing information flow of adaptation decisions in the Rainbow
framework. The following points in Rainbow are potential sites for integrating re-
source predictions:

• Monitoring: predictor gauges
• Detection: prediction of architectural properties
• Strategy: conditions based on predicted value and actions with time cost
• Effector: addition or removal of prediction data streams

Improving Architecture-Based Self-Adaptation Through Resource Prediction 11

Fig. 4. Sample snippet of an adaptation strategy.

01 define boolean cPredViolation (dur : int)=
 exists c : T.ClientT in M.components |
 Model.predictedProperty(c.experRespTime,
 dur) > M.MAX_RESPTIME;
02 ...
03 strategy VariedReduceResponseTime
04 [cViolation && cPredViolation(self.dur)] {
05 t0: (cViolation) -> enlistServers(1)
 @[1000 /*ms*/] {
06 t1: (!cViolation) -> done;
07 t2: (cViolation) -> lowerFidelity(2, 100)
 @[3000 /*ms*/] {
08 t2a: (!cViolation) -> done;
09 t2b: (default) -> TNULL; // give up
10 } } }

Monitoring: To make adaptation decisions, Rainbow reads gauge output to deter-
mine target-system conditions. We can integrate resource predictions in Rainbow by
encapsulating, as gauges, instances of the entire prediction runtime from Poladian’s
system. It provides output to the gauge bus consistent with the gauge infrastructure
API. Rainbow uses the standard gauge control interface to configure parameters of the
prediction runtime. The gauge performs the role of the consumer, providing parame-
ters for the prediction, then processing the time series returned from the aggregator to
produce a single predicted value for one future time, as requested by Rainbow.

Because uncertainty is inherent in resource prediction, we must incorporate the
probability of error in a predicted measurement, as supplied by predictors. We can
choose to ignore predicted measurements and fallback to current measurements when
the confidence level is below some threshold. We can also incorporate confidence
level directly in utility computation to give lower consideration to strategies that use
low-confidence predictive information.

Detection: Rainbow uses architectural constraints to identify opportunities for ad-
aptation. Conditions based on predicted resource states, such as the anticipated load in
the next 500 milliseconds, may indicate opportunities for adaptation. Thus, architec-
tural constraints should support predicates over predicted values of architectural prop-
erties, perhaps in the form of a supplied architectural function, such as predictedProp-
erty(p : Property, dur : int) : float (similarly for functions providing basic statistical opera-
tions, e.g., max/min/average). The predictedProperty() function returns the value of the
architectural property identified by p, at a time point dur milliseconds from now. Re-
call that gauges are associated with specific architectural properties to update their
values. So the function can compute predicted values by querying the predictor gauge
mapped to the requested property.

Strategy: At adaptation time, Rainbow uses current system conditions (reflected in
the model) to score and select strategies based on their expected utility. A strategy has
two important ingredients: system conditions and adaptation actions. System condi-
tions are used to (a) determine the applicability of strategies during strategy selection
and (b) decide the next adaptation step during strategy execution. Adaptation actions
change the target system to move the system toward a better state. New capabilities
are required in the mechanisms for
strategy selection, applicability con-
dition, and actions to incorporate
resource predictions.

An example strategy to reduce
system response time is shown in
Fig. 4, specified in Rainbow’s adap-
tation language. The function defined
on line 1, cPredViolation(), uses the
architectural function predictedProp-
erty() to compute client experienced
response time at some future time,
specified by dur. (cViolation defines
the same predicate without using a
predicted value.) Line 4 shows the
use of this predicted value to deter-

12 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

mine the applicability of this strategy, in this case, when the client experienced re-
sponse time is above threshold now and in the future. Lines 5-9 specify what the
strategy does. In this case, it first enlists a server. Failing that, it then lowers the fidel-
ity. And if that doesn’t work, it gives up.

Timing plays a crucial role in prediction. We add the ability to calculate forward-
looking expected utilities based on future system conditions. We augment Rainbow
with the notion of future variable value so that a strategy can specify dependency on
the future value of a condition. An adaptation action takes some time to execute, and
estimating this duration is needed to determine how far into the future to predict. So,
using settling time information specified in strategies (see @[ms] in Fig. 4, lines 5 and
7), Rainbow estimates the amount of time that a strategy would take to execute suc-
cessfully. It then measures actual execution times to improve estimation.

For prediction to improve the performance of Rainbow, recall that there needs to
be some cost, or penalty, to doing a particular adaptation. To capture this, we model
penalty as a separate utility dimension, called disruption, that can be applied in utility-
based strategy selection like other dimensions, such as average response time (see
Table 1). There are two parts to disruption: one is how jarring it is to the user, and the
other is how long the user is disrupted. We collect information about the disruption
level in the same way as other dimensions, specified as part of the strategy specifica-
tion. The second one we track automatically by measuring how long it takes to exe-
cute an adaptation step.

Effector: Finally, changes to the target system, particularly changes that add or
remove resource components, will likely have significant effects on resource predic-
tions. Therefore, we rely on system-level effectors to be augmented so that, when
adding or removing system elements with associated resources, the effectors also take
care of the addition or removal of the corresponding prediction data streams. Addi-
tionally, because prediction usually requires a series of input before the first output of
predictive data, gauges may have to be coordinated with the addition of prediction
data streams to produce useful output immediately.

4.2 Illustration of Rainbow with Resource Predictions

To illustrate resource predictions in Rainbow, let us revisit the Znn.com example to
examine in more detail the four scenarios of prediction introduced in Section 2.3.
Recall that in the Znn.com example, the customers care about quick response time
and high content fidelity for their news requests. While aware of customer preferences
on content fidelity, Znn.com as the provider is constrained by infrastructure provi-
sioning costs. We also consider service disruption as a penalty of performing an adap-
tation: avoiding penalties is important to improving overall system utility, which is a
major benefit to having predictive information.

Accordingly, we define four quality dimensions and determine the corresponding
measurable properties in the target system. We capture each dimension as a discrete
set of values (for example, we use an ordinal scale of 1 to 5 to express the degree of
disruption). We then elicit from the service providers the utility values and prefer-
ences for these dimensions, summarized in Table 1.

Improving Architecture-Based Self-Adaptation Through Resource Prediction 13

Table 1. Znn.com quality dimensions and utility preferences

Label Description Architectural Property Utility Function Weight

uR Avg Response Time ClientT.experRespTime
((low,1), (med,0.5),
(high,0))

25%

uF Avg Content Fidelity ServerT.fidelity
((textual,0), (multi-
media,1))

10%

uC Avg Budget ServerT.cost ((within,1), (over,0)) 15%

uD Disruption ServerT. droppedReqs
((1,0.8), (2,0.6),
(3,0.4), (4,0.2), (5,0))

50%

A rule specifies the acceptable bound of request-response latencies experienced by

a client: exceeding the threshold indicates a problem. A set of operators correspond to
available effectors in Znn.com to enlist or remove servers, or to change content fidel-
ity. We define a number of adaptation strategies for Znn.com and specify cost-benefit
attribute vectors, not shown here, that specify the impact of each strategy to the four
quality dimensions. For example, strategy VariedReduceResponseTime is expected to
lower response time and fidelity level, not affect cost, and incur some disruption.

We now consider how prediction could improve Rainbow’s choices of adaptation
for the four opportunities outlined in Sec. 2.3. For evaluation, we set up Znn.com in a
simulation environment that allows us to experiment with prediction-enabling design
points in Rainbow’s Architecture Layer (cf. Fig. 2). The states of Znn.com are simu-
lated using an M/M/k queuing model. The simulation environment acts as gauges that
update corresponding Znn.com architectural properties in Rainbow. This setup en-
ables prediction of future states to an arbitrary precision.

Scenario 1: avoiding unnecessary adaptation
In the first scenario, if a client experiences an above-threshold request-response time
for only 500 ms, but the chosen adaptation requires at least one second to complete,
this adaptation is unnecessary. Avoiding adaptation requires knowing the predicted
request-response time (using the architectural function predictedProperty()) and the
estimated execution time of an adaptation strategy, which Rainbow collects.

To evaluate how well prediction improves overall system utility in this scenario,
we designed two Znn.com configurations, one in which the bandwidth drops briefly,
and another in which incoming requests (load) spike briefly. The data is summarized
in Table 2. In both cases, Rainbow with prediction successfully avoided making un-
necessary adaptations, improving the normalized accrued utility over no prediction by
2.5% in the transient bandwidth-drop case, and 15.7% in the transient peak-load case.
The much greater improvement in the second case can be attributed to the high level
of disruption incurred by the strategy that is unnecessarily invoked without future
knowledge This outcome underscores the role of penalty in determining whether
prediction is useful. We discuss some choices of prediction usage in Section 4.3.

Scenario 2: reducing incremental disruptions
In the second scenario, Znn.com experiences a dramatic increase in client requests,
ramped up over seconds to minutes. In reaction, Rainbow provisions by invoking a
strategy that adds one server. However, by the time the server is added, the request
load has surpassed the capacity of the added server, so Rainbow adds another server
in response. This gradual adaptation is undesirable because it disrupts the system

14 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

multiple times. Eliminating this ramp-up requires knowing the peak of the ramp-up
and computing cost-benefit attributes based on input arguments to an adaptation step
(e.g., k in enlistServers(k)).

To evaluate this scenario, we designed a Znn.com configuration that ramps up re-
quests over four seconds. We added a leap strategy similar to VariedReduceRespon-
seTime but enlists 3 servers in one step. We then configured Rainbow to compute
utilities that look five seconds ahead, and compute the load at its peak. Rainbow suc-
cessfully selected the leap strategy and showed a 4.9% improvement in AU.

The results of these experiments show that there is improvement when using pre-
dictive information. Perhaps not surprisingly, the most improvement is achieved when
the potential disruption to the user is high. For the other cases, the room for improve-
ment is not as great, but our numbers are significant when measured against the avail-
able margin for attaining perfect utility.

Table 2. Summary of data from 3 experiments (each averaged over 30 trials)

Normalized Accrued Utility (AU)
Scenario Configuration No Prediction With Prediction ∆∆∆∆AU Improved

1: transient bandwidth-drop 0.889 0.911 0.022 2.5%
1: transient peak-load 0.731 0.846 0.115 15.7%
2: ramp-up to peak load 0.734 0.770 0.036 4.9%

Additional scenarios: seasonal pre-adaptation and choosing better adaptations
We have shown two scenarios that exercised the new capabilities added to Rainbow
to incorporate predictive information, with supporting data from experiments. We
now consider two other scenarios that use the same set of capabilities; for these we
have not performed additional experiments.

In a third scenario, Znn.com periodically experiences a significant increase in cli-
ent requests at 9 AM every Monday through Friday. Reacting to the increase each
time it occurs is undesirable because the adaptation potentially disrupts the system
and adds stress to a system already under load. In contrast, pre-adapting has the bene-
fit of reducing disruption while introducing system slack to prepare for the upcoming
load. Pre-adapting for seasonal behavior requires detecting seasonal patterns, which
can be provided by predictors in Vahe’s framework. Then, by adding an architectural
constraint that checks for predicted load at fixed future time points, configuring utility
computation to look ahead to the same time, and specifying a strategy that is applica-
ble for violation at that future time point, Rainbow can seasonally pre-adapt.

A fourth scenario is already described in Section 2.3, where a client experiences an
above-threshold request-response time due to increased visitor traffic, coupled with a
transient drop in available bandwidth. Given the low bandwidth and a choice between
the a strategy to lower fideltiy and another to enlist more servers, Rainbow chooses
the former to use less bandwidth while fulfilling the increased request load. However,
when the available bandwidth recovers shortly afterward, Rainbow would then adapt
again to restore the content fidelity and perhaps also enlarge the server pool if traffic
remains high. Thus, Rainbow’s reaction results in at least one additional disruption
and an overall lower system utility. With advanced knowledge that the bandwidth
drop is transient (as in scenario 1), Rainbow would have chosen to enlist servers.

Improving Architecture-Based Self-Adaptation Through Resource Prediction 15

4.3 Deciding When to use Predictive Information

Once predictive information is available for use in self-adaptation, the questions still
remain of when and how to use the information in the decision process. In our appli-
cation of predictive information, we encountered the following design choices, which
we have addressed in a variety of ways.

How far into the future do we look ahead? The predictive framework requires
parameterization for how far ahead to predict a resource property. The predictive
framework actually returns a time series of values, but to make use of this information
in Rainbow, we must pick one particular value. The choice of this depends on the
context. For example, in Scenario 1 where we are trying to decide whether to avoid an
adaption, a reasonable choice is to use a duration equivalent to the estimated time of
completing the adaptation. For Scenario 2 on the other hand, the look ahead could be
far longer than the duration of adaptation. Note that by using estimated completion
time to choose how far into the future to look, we are comparing different prediction
ranges for different strategies in a single adaptation cycle. An alternative is to look
ahead to the same time in the future, perhaps by using the maximum completion time
of all strategies under consideration.

Should predictive information be used at strategy selection time, utility evaluation
time, strategy execution time, or a combination of these? There are several steps in
Rainbow’s process of selecting a repair strategy: 1) decide the set of strategies that
may fix a problem; 2) determine which strategy is the best to use; and 3) execute the
chosen strategy. Predicted information can be used in Rainbow at any of these times.
For example, the strategy in Fig. 4 uses predicted information in step 1. In line 4, we
are checking if response time is high now and in the future. If the condition is tran-
sient the strategy will not be chosen, and so there is no need to use prediction in lines
5-9 (strategy execution time). Alternatively, to anticipate seasonal changes, the strat-
egy writer would write the strategy to consider only predictions in line 4, and also to
use prediction in lines 5-9. Rainbow gives the strategy writer the power to decide how
and when to use the prediction. Currently, in Rainbow, the second step (using predic-
tion in the utility calculation) is provided as a parameter to the framework, because
there is no way in the strategy language to refer to this. We are investigating a more
agile way to specify the use of prediction in this case.

How much weight should be given to the penalty dimension? When we experi-
mented with a 10% weight for the penalty dimension, the first configuration yielded a
utility improvement of 0.4%, whereas a 50% weight yielded 2.4% improvement. This
data reinforced Poladian’s results that anticipatory adaptation yields increasing gains
at penalty levels above 7%. On the flip side, a penalty weight above 50% makes it
difficult to distinguish the relative importance of the other utility dimensions. A sweet
spot should be found between 10 and 50%.

5 Related Work

To date, several dynamic software architecture-based adaptation approaches and
frameworks have been proposed and developed [12, 19]. Related approaches focus on

16 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

formalism and modeling, mechanisms for adaptation, or distribution and decentraliza-
tion of control. These include Darwin with π-calculus semantics to specify distributed
systems [16], ArchWare with architectural reflection and dynamic co-evolution [17],
Weaves for construction and analysis of data-flow systems [13], ArchStudio for self-
adaptation of C2 hierarchical publish-subscribe systems [6], Plastik targeting per-
formance properties [1], and CASA for resource availability concerns in mobile net-
work environments [18]. These approaches share a few common characteristics: They
generally apply a closed-loop control, use an architecture model for reasoning about
the target system, assume certain structures in the target system, and adapt for a fixed
set of quality attributes.

Notable in industry, IBM’s Autonomic Computing tackles the challenges of emer-
gent autonomic behavior with the MAPE control loop—to monitor, analyze, plan, and
execute changes for self-management. The AC toolkit provides consoles and tools to
diagnose problems and engineer autonomic systems. We apply a similar approach.

One of the differentiators of this work from prior self-adaptive systems is the use
of resource prediction. The anticipatory strategy uses predictions of the future values
of input variables to make forward-looking decisions about adaptation selection. For-
ward-looking approaches have been proposed and used in other domains. For exam-
ple, the online stochastic combinatorial optimization approach is similar to our antici-
patory strategy [2,14]. Various combinatorial optimization problems such as optimal
vehicle dispatch and network packet routing are solved by leveraging probabilistic
priors of the future values of problem inputs. There is equivalence between the algo-
rithms for automatic configuration in this chapter and the algorithms described in
[14]. The Active Virtual Network Management Prediction System uses simulation
models running ahead of real time to predict resource demand among network nodes.
Such predictions can be used to allocate network capacity in anticipation of demand
increase, and to ensure adequate quality of service to different network flows [9]. Our
work shares theoretical foundations with these, but the problem domains are different.

There is a body of work that uses various kinds of prediction to improve self-
adaptation. For example, Clockwork [22] introduces the concept of predictive
autonomicity that uses statistical modeling to forecast cyclic variations in system load
and uses these predictions to reconfigure systems in anticipation of need. They pre-
scribe a method for implementing a predictive autonomic system. In spirit, we share
the same steps for incorporating predictive information. However, our notion of con-
trollable parameters are enriched with strategies and utility preferences, and we use
predicted information in strategy selection. Solomon [23] uses predictions about
workload to adapt the control component of an autonomic system to be more suited to
that workload. For example, if the workload is linear, then simple thresholding can be
used in the controller, but if the workload on the system changes to be Gaussian, then
a more sophisticated statistical controller based on Kalman filters is swapped in to
manage the system. Their adaptation layer shares the same principle components as
Rainbow, with the selection of controllers analogous to selection of strategies. They
show encouraging results in using predicted information for Gaussian workloads to
provision servers. This is one of many types of prediction sources that could be incor-
porated into our prediction framework.

Rather than using auto-regressive techniques to predict resource availability, Lu
[15] uses knowledge about the domain being controlled to predict behavior. They use

Improving Architecture-Based Self-Adaptation Through Resource Prediction 17

queuing-theoretic models in the domain of web servers to infer expected delays di-
rectly from input load. Again, this is another form of predictive model that could
theoretically be incorporated as a Basic Predictor in our framework, although it is of a
type that we have not fully considered.

6 Conclusion and Future Work

In this chapter, we presented an approach to enhance architecture-based self-
adaptation through anticipatory prediction of future resource availability. The ap-
proach uses a framework that combines various forms of prediction (statistical,
bounded, and seasonal) in a practical manner that can be applied to a variety of cir-
cumstances. We have argued that self-adaptive systems can take advantage of predic-
tion to improve the choice of adaptations and to reduce disruption to the system. We
gave specific consideration to the changes needed to incorporate predictions into one
reactive architecture-based self-adaption system, Rainbow. We conducted several
experiments that show improvement in the adaptation when predicition is used, and
discussed how we addressed some issues that we encountered doing the integration.

In future work, we would like to better quantify the types of resources that can be
predicted and would be useful in realistic circumstances. For example, other types of
resources to be considered beyond bandwidth are power consumption, memory usage
and CPU load. We would like to give more guidance to adaptation writers about when
and how to use prediction. We also would like to verify the results discussed in this
chapter through additional experimentation and application to real systems.

Acknowledgments. This research was funded in part by the National Science Foun-
dation Grants ITR-0086003, CCR-0205266, CCF-0438929, CNS-0613823, by the
Sloan Software Industry Center at Carnegie Mellon, by the High Dependability Com-
puting Program from NASA Ames cooperative agreement NCC-2-1298 and by
DARPA grant N66001-99-2-8918. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the US
government or any other entity.

References

1. T.V. Batista, A. Joolia, and G. Coulson. Managing dynamic reconfiguration in component-
based systems. In EWSA, LNCS 3527:1-17, Springer, June 13-14, 2005.

2. Bent, R. and van Hentenryck, P.: Regrets only! Online stochastic optimization under time
constraints. In: Proc. 19th AAAI (2004).

3. Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation,
Ph.D. Thesis, TR CMU-ISR-08-113, Carnegie Mellon University School of Computer Sci-
ence, May (2008).

4. Cheng, S.-W., Garlan, D., Schmerl B: Making Self-Adaptation and Engineering Reality. In
Babaoghu, O et al. (eds), Proc. Conference on Self-Star Properties in Complex Information
Systems, LNCS (3460), 2005.

18 Shang-Wen Cheng, Vahe V Poladian, David Garlan, Bradley Schmerl

5. Clements, P., et al.: Documenting Software Architecture: Views and Beyond, Pearson
Education (2003).

6. Dashofy, E.M., van der Hoek, A., and Taylor, R.N.: Towards architecture-based self-
healing systems. In: Garlan et al. [10], 21–26 (2002)

7. Dinda, P., O’Halloran, D. Host Load Prediction Using Linear Models. Cluster Computing,
3:4, 2000.

8. Frye, C.: Self-healing systems. In: Appl. Dev. Trends, September, 29--34 (2003)
9. Galtier, V., et al.: Predicting resource demand in heterogeneous active networks. In: Proc.

MILCOM (2001)
10. Garlan, D., Kramer, J., and Wolf, A. (eds.): Proc. 1st ACM SIGSOFT Workshop on Self-

Healing Systems (WOSS’02), New York, NY, USA, November 18--19, ACM Press (2002)
11. Georgiadis, I., Magee, J., and Kramer, J.: Self-organizing software architectures for distrib-

uted systems. In: Garlan et al. [10], 33–38 (2002)
12. Ghosh, D., Sharman, R., Rao, H.R., and Upadhyaya, S.: Self-healing systems - survey and

synthesis. In: Decision Support System, 42(4), 2164--2185 (2007)
13. Gorlick, M.M. and Razouk, R.R.: Using Weaves for software construction and analysis. In:

Proc. 13th International Conf. of Software Engineering, 23--34, Los Alamitos, CA, USA,
May, IEEE Computer Society Press (1991)

14. Hentenryck, P., et al. Online stochastic optimization under time constraints. In
http://www.cs.brown.edu/people/pvh/aor5.pdf, working paper, last accessed April (2008)

15. Lu, Y., Abdelzaher, T., Lu, C., Sha, L., and Liu, X. Feedback Control with Queuing-
Theoretic Prediction for Relative Delay Guarantees in Web Servers. In Proc. IEEE Real-
Time and Embedded Technology and Applications Symposium, 2003.

16. J. Magee and J. Kramer. Dynamic structure in software architectures. In SIGSOFT ’96:
Proc. of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.
3-14, New York, NY, USA, 1996. ACM.

17. R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys, and R.M. Greenwood. An
active architecture approach to dynamic systems co-evolution. In ECSA, LNCS 4758:2-10.
Springer, September 24-26, 2007.

18. A. Mukhija and M. Glinz. A framework for dynamically adaptive applications in a self-
organized mobile network environment. In ICDCSW ’04: Proceedings of the 24th
International Conference on Distributed Computing Systems Workshops—W7: EC
(ICDCSW’04), pp. 368-374, IEEE Computer Society, Washington, DC, 2004.

19. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. In: IEEE Intel-
ligent Systems, 14(3), 54--62, May--June (1999)

20. Poladian, V., Garlan, D., Shaw, M., Schmerl, B., Sousa, J.P., and Satyanarayanan, M. Lev-
eraging Resource Prediction for Anticipatory Dynamic Configuration. In Proc. 1st IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO-2007), pp.
214-223, July 2007.

21. Poladian, V.: Tailoring Configuration to User’s Tasks under Uncertainty, Ph.D. Thesis, TR
CMU-CS-08-121, Carnegie Mellon University School of Computer Science, May (2008)

22. Russel, L., Morgan, S. And Chron, E. Clockwork: A new movement in autonomic systems.
IBM Systems Journal, 42:1, 2003.

23. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M. A Real-Time Adaptive Control of
Autonomic Computing Environments. In Proc. 4th International Information and
Telecommunication Technologies Symposium (U2TS’2006), pp. 94-103, Dec. 2006.

24. Sousa, J.P.: Scaling Task Management in Space and Time: Reducing User Overhead in
Ubiquitous-Computing Environments, Ph.D. Thesis, TR CMU-CS-05-123, Carnegie Mel-
lon University School of Computer Science, (2005)

25. Sztajnberg A., and Loques, O.: Describing and deploying self-adaptive applications. In:
Proc. 1st Latin American Autonomic Computing Symposium, July 14--20 (2006)

