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Abstract

Self-adaptive systems have the ability to adapt their behavior to dynamic operating
conditions. In reaction to changes in the environment, these systems determine
the appropriate corrective actions based in part on information about which action
will have the best impact on the system. Existing models used to describe the
impact of adaptations are either unable to capture the underlying uncertainty and
variability of such dynamic environments, or are not compositional and described
at a level of abstraction too low to scale in terms of specification effort required for
non-trivial systems. In this paper, we address these shortcomings by describing
an approach to the specification of impact models based on architectural system
descriptions, which at the same time allows us to represent both variability and
uncertainty in the outcome of adaptations, hence improving the selection of the
best corrective action. The core of our approach is a language equipped with a
formal semantics defined in terms of Discrete Time Markov Chains that enables
us to describe both the impact of adaptation tactics, as well as the assumptions
about the environment. To validate our approach, we show how employing our
language can improve the accuracy of predictions used for decision-making in the
Rainbow framework for architecture-based self-adaptation.

1. Introduction

Self-adaptive systems have the ability to autonomously change their behavior
in response to changes in their operating conditions, thus preserving the capabil-
ity of meeting certain requirements. For instance, to provide timely response to
service requests, a news website with self-adaptive capabilities can react to high
response latencies by activating more servers, or reducing the fidelity of the con-
tents being served [11, 22].
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Deciding which adaptations should be carried out in response to changes in
the execution environment requires that systems embody knowledge about them-
selves. Knowledge about the impact of adaptation choices on a system’s proper-
ties is particularly important when the decision process involves comparing alter-
native adaptations at runtime, as is often the case [9, 18, 24, 27].

The effectiveness of the enacted changes, which affects the system’s ability to
meet its requirements, strongly depends on the accuracy of the analytical models
that are used for decision making. Exact models, if attainable at all, tend to be
quite complex and costly to obtain. As argued in [15], an alternative is to attend to
the uncertainty underlying the knowledge models in the decision process. How-
ever, existing models used to describe the impact of adaptations are either unable
to capture the underlying uncertainty and variability of such dynamic execution
environments, or are not compositional and described at a level of abstraction too
low to scale in terms of specification effort required for non-trivial systems.

In this paper, we address the specification of probabilistic models for archi-
tecture-based self-adaptive systems. The core of our approach is a declarative
specification language for expressing complex probabilistic constraints over state
transitions that is equipped with a formal semantics defined in terms of Discrete
Time Markov Chains. This language provides the means for expressing architec-
tural style-specific adaptation impact and environment models in a flexible and
compact way. These models can be reused across different architectural configu-
rations that adhere to the same style.

We illustrate how the proposed models can be used in the context of the Rain-
bow framework [18] for architecture-based self-adaptation, where adaptation is
achieved through the execution of an adaptation strategy selected at runtime. First,
we present a technique for predicting the expected impact of an adaptation strategy
and show that this can be used to define a strategy selector that seeks to maximize
the expected utility. Then, based on the decoupling of adaptation impact from en-
vironment assumptions, we present a technique for predicting the guaranteed (i.e.,
worst-case) impact of a strategy and show this can be used to define a risk-averse
strategy selector. This technique relies on a fine-grained semantics of strategies
defined in terms of two-player stochastic games and is formulated as a process of
stochastic game analysis.

We also present experimental results that quantify the benefits of using prob-
abilistic impact models instead of constant impact vectors [9] in the context of
Znn.com [10], a case study extensively used in the area of self-adaptive systems.

This paper revises and extends the work presented in [6] by addressing the
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explicit modeling of assumptions about the environment in specifications, inde-
pendent from those about adaptation impact. Based on a notion of environment
model, we provide a turn-based game semantics of adaptation strategies and show
how probabilistic model checking can be used to develop a risk-averse strategy
selector. This strategy selection scheme goes beyond the original one employed
by Rainbow, which is based on maximizing a probabilistic notion of aggregate
utility [9]. This extended version of the work also includes additional details in
the formalization of the semantics of our impact model language. We also report
on the new experiments that we carried out to analyze the benefits of the proposed
models.

The rest of the paper is organized as follows. Section 2 presents some back-
ground on architecture-based self-adaptation and discusses related work. Sec-
tion 3 provides a formal account of the concepts required to define impact mod-
els. Section 4 presents the syntax and semantics of a new specification language
of probabilistic impact models and Section 5 shows how our impact models can be
used in the context of Rainbow for adaptation strategy selection. Section 6 shows
how adaptation impact can be decoupled from environment assumptions through
the definition of environment models and, based on this separation, shows how a
risk-averse selector can be defined. Next, experimental results that quantify the
benefits of using probabilistic impact models instead of impact vectors are pre-
sented in Section 7. Finally, Section 8 presents some conclusions and outlines
future work.

2. Background and Related Work

In this section we provide some background on architecture-based self-adaptation,
introduce the running example used in the rest of the paper and discuss related
work. The ultimate goal is to motivate the need for new, more-expressive impact
models, tailored to architecture-based self-adaptive systems.

2.1. Architecture-based adaptation
Architecture-based self-adaptation focuses on using architectural models at

run-time as the central abstraction for observation, reflection and adaptation of
self-adaptive systems. At run time, the system is monitored through a variety of
probes. The observations provided by these probes are reflected in the architec-
tural model of the system, which is used to determine when problems exist and to
decide which changes in the architecture of the system should be carried out. The
decision making is based on the knowledge the system has about its current state,
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the state of the environment, and the impact of different adaptations on the system
and its environment.

Through the example of Znn [10], a case study which has been extensively
used to assess research in self-adaptive systems, we illustrate the key ideas of
architectural-based adaptation — namely the use of the architectural style of the
system as a basis for the adaptation, and explain the problem we address in this
paper.

Znn case study. Znn.com reproduces the typical infrastructure for a news website.
The system has a three-tier architecture consisting of a set of servers that provide
content from backend databases to clients via front-end presentation logic. It uses
a load balancer to balance requests across a pool of replicated servers, the number
of which can be adjusted according to service demand. A set of clients makes
stateless requests, and the servers deliver the requested contents.

The main objective for Znn.com is to provide content to customers within a
reasonable response time, while keeping the cost of the server pool within a certain
operating budget. From time to time, due to highly popular events, Znn.com
experiences spikes in the number of requests, which it cannot serve adequately,
even at maximum pool size. To prevent loss of customers, the system can provide
minimal textual content during such peak times, to avoid not providing service to
some of its customers.

More concretely, there are two main quality objectives for the self-adaptation
of the system: (i) performance, which depends on request response time, server
load, and network bandwidth, and (ii) cost, which is associated with the power
consumption of active servers.
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Figure 1: An architectural configuration for Znn.com
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For an architecture-based self-adaptive realization of Znn.com we consider ar-
chitectural models like the one presented in Fig. 1, consisting of several clients and
replicated servers connected to one load balancer through http connectors. The ar-
chitectural models additionally reflect (1) the cost of each server per unit time (if
active), (2) whether the server is configured to serve web pages in textual or mul-
timedia mode (if active), and (3) the observations provided by probes that monitor
the health and load of each server, request response time and network bandwidth.
The configuration presented in Fig. 1 has three clients and four servers; only one
server is active, all have the same cost, and all are configured to serve pages in
textual mode (for the sake of readability, the values of the other properties are not
represented in the figure).

The characteristics of the architectural models described above are part of Znn
architectural style, which additionally defines that the system is able to (1) activate
an inactive server (incrementing in this case its server pool size), and (2) switch all
active servers to textual or multimedia mode. The execution of these adaptation
actions is expected to have certain costs and benefits. For instance, we expect
that switching all active servers to textual model will contribute to decreasing the
response time at the expense of the quality of the served content. In contrast,
activating one server (which is known not to always succeed) will increase the
operational cost. When response time becomes too high, in order to decide how
to best adapt the system, it is essential to have realistic analytical models capturing
how the system and the environment will respond to the execution of these two
actions, at least in terms of response time, number of active servers and operational
cost.

In order to have the ability to represent adaptation impact in a realistic way,
it is important to support the representation of: (i) uncertainty in the outcome
of adaptation actions (e.g., the activation of a server can fail with some given
probability), (ii) context variability (e.g., the impact on response time of activating
a single server will progressively reduce with a growing number of active servers),
and (iii) assumptions about the evolution of the environment during the execution
of adaptations (e.g., probability of a server crash). These three dimensions are also
important because partial observability arises commonly in self-adaptive systems
due to costs associated with monitoring certain parts of the system (e.g., in terms
of performance), or because some parts of the system are not under the control of
the adaptive system (e.g., managed by other organization).

Adaptation actions are defined for a family of systems, all of which are de-
scribed according to a given architectural style. Hence, it is important to support
the modeling of the impact of adaptation actions on system and environment state
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at the same level of abstraction and in a compositional way.

2.2. Related Work
Environment domain models1 are a key element used by adaptive systems

to determine their behavior [4, 28]. These models capture the knowledge that
the system has about itself and its environment by describing how system and
environment respond to adaptation actions. Approaches to self-adaptation can be
divided into two categories, depending on the way in which environment domain
models are built.

A first category takes a systematic approach to modeling the impact of individ-
ual adaptation actions, which can be composed to reason about system behavior
under adaptation. An example is the approach presented in [9], developed around
Stitch, a language that enables the specification of adaptation strategies composed
of individual adaptation actions. The impact of these actions is specified in terms
of constant impact vectors which describe how the execution of adaptation ac-
tions affects system quality attributes. The same type of impact model is used
in several approaches for optimizing service compositions, such as the approach
presented in [24]. Adaptation actions in this approach target service composi-
tion instances and the optimal criteria rely upon impact models that are defined
per adaptation action and system property as constant functions. Slightly more
expressive impact models are considered in the approach presented [27], which
targets component-based systems where impact models are defined per adapta-
tion action and key performance indicators (KPIs), as functions over a given set
of KPIs. These approaches address the specification of environment domain mod-
els in a compositional way and at a very high level of abstraction, thus facilitating
specification and promoting reuse. However, they severely limit the ability to rep-
resent environment domain knowledge in a realistic way, since they are unable to
model uncertainty and provide limited support to capture variability.

The second category consists of approaches that consider the behavior of the
system and its environment modeled in a monolithic way in terms of more ex-
pressive models defined at a lower level of abstraction [4, 5, 16]. For example, in
the approach presented in [5], DTMCs are used to model, for each system con-
figuration, the probabilistic behaviour of the system and its environment if that
configuration is used. These models are expressive enough to model variability
and the uncertainty underlying adaptation outcomes.

1Note that when we employ the term environment domain model, we refer to a description of
both the external environment, as well as of the system that we are attempting to control.
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Beyond the scope of self-adaptive systems, we can find other languages like
MODEST [20] or ARCADE [3], which share some similarities with the afore-
mentioned approaches included in this second category, since they are expressive
enough to capture probabilistic behavior and non-determinism. An advantage of
these languages with respect to other formalisms is that they raise the level of
abstraction with respect to low-level specification. MODEST [20] does so by
employing a concise notation that inherits some characteristics from process al-
gebras. Moreover, MODEST enables compositional analysis and its semantics is
defined in terms of stochastic timed automata (STA), which subsume DTMCs. Al-
though MODEST abstracts away from the complexity of low-level specification
of probabilistic behavior, it lacks the abstractions required to capture relation-
ships between behavior and architecture. ARCADE [3] is another example of a
probabilistic language which forms part of a framework intended for dependabil-
ity evaluation, and whose semantics are defined in terms of interactive Markov
chains. While ARCADE can be used to represent dependability-related attributes
of system components, its models cannot capture other aspects of architectural de-
scriptions (e.g., component relationships or constraints), and hence cannot capture
the impact of system-wide changes.

The main drawback in this second category of models is that, independently
of their level of abstraction, they are being defined at the level of system config-
urations, and hence are system specific. For instance, in the case of Znn.com, a
DTMC that models the effect of activating one server in a system that can use up
to 4 servers is completely different from another that models the same on a system
that can use up to 10 servers, although the effect of activating one server does not
depend on the maximum number of servers.

As the number of components and configuration options increases, it becomes
impractical or even impossible to understand the possible interactions between the
options available for all components and, hence, these models are both difficult
and cumbersome to define. The specification of a DTMC tends to be a non-trivial
task, even using description languages such as the one built into the probabilistic
model checker PRISM [23].

The approach described in this paper aims at striking a balance between the
ease of specification and reusability found in compositional approaches, and the
expressive power of monolithic approaches that use probabilistic models. We
present a language for the specification of impact models, which is: (i) more in-
tuitive than describing DTMCs in other probabilistic approaches, since it is based
on architectural descriptions and therefore raises the level of abstraction, (ii) able
to capture both variability and probabilistic outcomes of adaptation actions, and
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(iii) scalable in terms of specification effort, since developers can focus on smaller
units of conceptualization (architectural properties and adaptation actions) and
reason about them individually.

3. Modeling Adaptation

In this section, we provide a formal account of the concepts required to define
impact models, namely architectural style and system state.

We address the modeling of impact in the context of architecture-based ap-
proaches to self-adaptation, that take the architectural style of the managed system
as a basis for the system adaptation. As discussed in the previous section, the aim
is to support the specification of impact models for families of systems that share
the same architectural style.

3.1. Architectural Style
When the architectural style of the managed system is taken as a basis for

the system adaptation, it has to define not only the class of models to which the
managed system architecture belongs, but also to determine the operators repre-
senting available configuration changes on systems in that style. Moreover, the
style prescribes what aspects of a system and its execution context need to be
monitored [12].

An architectural style defines a vocabulary of component and connector types
that can be used in instances of that style and the properties of each of these
types. In the context of self-adaptive systems, it is essential to distinguish between
managed and monitored properties. Managed properties correspond to properties
that are directly under system control. Their values can be defined at startup and
changed subsequently by the control layer to regulate the system. Monitored prop-
erties correspond to properties of the managed system or its execution context that
need to be monitored and made available to the control layer. While the properties
of the execution context are not under direct system control (e.g., available band-
width), monitored properties also include those that the system aims to control
(e.g., response time).

As an example, we consider the architectural style of Znn.com. It has one
connector type — HttpConnT, and three component types — ClientT, ServerT
and LoadBalancerT. ServerT has two managed properties — isTextualMode:bool
and cost:int. The former defines whether web pages are served by a given server
in textual or multimedia mode, and the latter reflects the cost of an active server
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per unit time. Since these properties are defined as being under the system’s con-
trol, the cost of each server included in the system must be defined at deployment
time, as well as whether it will initially start serving pages in textual or multi-
media mode. Additionally, ServerT has two monitored properties — load:double
and isActive:bool. The latter property is defined as monitored, since even if its
activation can be controlled, a server may crash at any time.

Formally, architectural signatures are defined as follows.

Definition 1 (Architectural Signature). An architectural signature Σ consists
of a tuple of the form 〈CompT,ConnT, Πo,Πm〉,where:

• CompT and ConnT are two disjoint sets (the sets of, respectively, compo-
nent and connector types), and

• Πo and Πm are functions that assign mutually disjoint sets of symbols typed
by datatypes in a fixed set D to architectural types κ∈CompT∪ConnT.

Note that Πo(κ) and Πm(κ) represent, respectively, the managed and monitored
properties of the type κ. Moreover, we abbreviate Πo(κ)∪Πm(κ) by Π(κ) and, for
p∈Π(κ), will use dtype(κ.p) to denote its datatype.

We write x : d to denote an element x typed by the datatype d. Since property
names are not necessarily unique, we use κ.p : d to refer to the property p : d in
Π(κ); sometimes the type is not relevant and we write simply κ.p.

In the signature of Znn.com, according to this definition, we have Πo(ServerT) =
{load:double, isActive:bool} and Πm(ServerT) = {isTextualMode:bool, cost:int}.

The architectural configurations of systems with architectural signature Σ,
hereafter called Σ-system states, are captured in terms of graphs of components
and connectors with state. The state of architectural elements consist of the values
taken by their monitored and managed properties.

We formally define Σ-system states assuming there is a fixed universe AΣ of
architectural elements (components and connectors) for Σ, i.e., a finite set whose
elements are typed by elements in CompT∪ConnT. We use type(c) to denote c’s
type.

Definition 2 (Σ-System State). A Σ-system state s consists of:

9



• a simple graph G with nodes in AΣ, 2

• a function that assigns a value Jc.pKs in the domain of dtype(κ.p), to every
pair c.p such that c is a node of G, κ = type(c) and p∈Π(κ).

We denote by SΣ (or simply S when Σ is clear from the context) the set of all
Σ-system states.

An architectural style also defines the ways one can change systems that are
instances of that style. For instance, the Znn architectural style defines that the
property isTextualMode of servers can be modified through setLowFidelity and
setHighFidelity operators, that set isTextualMode to true and false, respectively.

These operators can range from primitive operations, such as changing the
value of a property of a given connector type, to higher-level operations that ex-
ploit restrictions of that style. However, in practice, most approaches to self-
adaptation consider only primitive operations. Hence, we focus on architectural
styles that define the set of operators provided by the target system for changing
the values of the managed properties of its components and connectors. Notice
that, in these architectural styles, only component J Ks of a system state can change
at run time. Hence, the structure of the system, defined by the graph, does not
change in the class of system considered in this work.

3.2. Adaptation actions
The adaptation of the managed system is achieved through the execution of

adaptation actions defined at design-time. Adaptation actions define actions spec-
ified as applications of one or more operators, with a condition of applicabil-
ity. In the Znn example we could for instance define an adaptation action called
switchToTextualMode, applicable only if there is at least one active service not
serving pages in textual mode, prescribing the application of operator setLowFidelity
to all servers in these conditions. A different adaptation action for Znn is enlistServer,
which is applicable when there is at least one inactive server; it prescribes the ap-
plication of startServer to one inactive server.

Applicability conditions of adaptation actions are formulas of a constraint lan-
guage that are evaluated over system states, typically depending not only on the
values of the properties of the system’s components and connectors, but also on

2We consider graphs embodied in system states as a natural way of capturing architecture
configurations, which are graph-based in standard architecture descriptions.
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system structure. For illustration purposes, we consider a constraint language in-
spired by that of Acme [19] 3 in which, for instance,

(exists s:ServerT | exists k:HttpConnT | attached(k,s) and s.isActive)

holds in a system state iff the state includes at least one active server attached to
one http connector.

4. A Language for Modelling Impact

Deciding how to best adapt the system when a certain anomaly is detected
involves analyzing models describing the effects, in terms of costs and benefits,
of the available adaptation actions defined for the system. These models capture
the causal relationship between an adaptation action’s execution and its impact on
the different system and environment properties. Because 100% accurate models
are in general not attainable, it is important to have a means by which to address
the underlying uncertainty.

In this section, we describe an expressive language to model adaptation ac-
tion execution, which is able to capture: (i) the context that might influence the
outcome of an adaptation action’s execution, and (ii) the intrinsic uncertainty that
pervades self-adaptive systems. Specifically, this language enables the modeling
of the expected impact of each adaptation action on the different system and en-
vironment properties. These models are based on DTMCs [25], and enable us
to express alternative possible outcomes of the execution of the same adaptation
action with some given probability.

In the following, we first present the syntax of our impact model language in
Section 4.1, illustrating it with different examples. Then, we provide a formal
description of its semantics in Section 4.2.

4.1. Impact Model Abstract Syntax
The impact model of adaptation actions is defined in terms of probabilistic

expressions in a language that allows one to express probabilistic constraints over
state transitions (regarded as pairs of before and after system states), incorporating
some elements of the PRISM language [23].

3Acme is in turn derived from OCL [26], with the addition of functions that relate to architec-
tural structure.
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Since the language targets systems whose structure does not change at run-
time, it is built on top of a language E of state expressions describing sets of
components and connectors in system states. The syntax and semantics of E is
abstracted away, so that the impact model language is defined in a more abstract
way. For illustration purposes, we consider a language E in line with the one
that we use to express constraints, in which, for instance, (s: ServerT | s.isActive)
describes the set of active servers in a system state.

In the same way, to handle data, we assume that the fixed set of datatypes D
is equipped with the relevant operations (e.g., + over double). Let X be a set of
symbols typed by elements of D representing data variables. We denote by T the
term language used to describe data values and by Td(Σ, X) the set of terms built
over variables inX denoting values of datatype d. Similarly, we consider setsX of
symbols typed by architectural types in an architectural signature Σ representing
type variables and use Eκ(Σ,X ) to denote the set of expressions defined over the
variables in X denoting sets of architectural elements of type κ.
Definition 3 (Probabilistic Expressions). Let X be a set of variables typed by
architectural types in an architectural signature Σ. The set P(Σ,X ), of proba-
bilistic expressions with free variables in X , is defined by the following grammar:

α ::= x.p ′ = t with x∈X , p∈Π(κ), t∈Td(Σ, xΠ),
where κ = type(x) and d = dtype(p)

| forall x : ε | α1

| foreach x : ε | α1

| foreach x : ε minus D | α1 with x /∈ X , ε∈Eκ(Σ,X ),
α1∈P(Σ,X∪{x : κ}) and D⊆Xκ

| {α1& . . .&αn}
| {[p1]α1 + [p2]α2 + · · ·+ [pn]αn} with, for 1 ≤ i ≤ n, αi∈P(Σ,X ),

0 ≤ pi ≤ 1 and Σn
i=1pi = 1

where xΠ={ x.p:d | p ∈ Π(type(x))∧d = dtype(p)} and Xκ={x∈X : type(x) =
κ}. P(Σ) is the set of probabilistic expressions without free variables, i.e.,P(Σ, ∅).

The atomic expression x.p ′ = t defines the value of the property p in the next state
(after the execution of the adaptation action), for every component or connector
denoted by x. This value can be defined in terms of the values of the properties
of the same element as well as other architectural elements in the system, but
the free variables of t are limited to data variables representing properties of x
(which is exactly what xΠ represents). For instance, assuming that s is a variable
of type ServerT, we can write s.isActive’ = !s.isActive to express that every server
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denoted by s has its isActive property toggled. An example of a more sophisticated
atomic expression, defined in terms of the values of properties of other architec-
tural elements in the system, is x.p’ = sum(s.q | s:ServerT)/count(s:ServerT). The
expression states that, for all elements denoted by x, the value of property p in the
next state is the average of the values of q for all servers.

The operator forall is used to impose the same constraints over a set of ar-
chitectural elements of the same type, denoted by a given expression in E . The
operator foreach is used to define a number of alternative outcomes, all with the
same probability. For instance, foreach x:ServerT | x.isActive’ = true states that
all servers have the same probability of having their isActive property set to true.
Adding minus D to the expression reduces the target to elements not included in
the denotation of variables in D. For instance,

foreach x:E | foreach y:E minus x | {x.isActive’ = true & y.isActive’ = true}
where E is (s:ServerT|!s.isActive), expresses that exactly two servers are activated
and that all pairs of distinct inactive servers have the same probability of being
activated.

A fixed number of constraints over the next state are expressed through con-
junction (&). Probabilities that sum to one are assigned to a fixed number of
expressions defining constraints over alternative outcomes of the adaptation ac-
tion execution. Assigning a probability to an expression with [p]α has the effect
of world closure: all properties of components and connectors not constrained by
α are considered to keep the same value in the next state.

To capture that an adaptation action may have different impacts under different
conditions, impact models are defined as sets of guarded probabilistic expressions
with mutually exclusive guards (i.e., at most one guard holds in any system state).
As before, we abstract from the language used for expressing the guard conditions
and assume a fixed language C of constraints over system states.

Definition 4 (Impact Model). An impact model I of an adaptation action is a
finite set of pairs 〈φ, α〉 where φ is a constraint in C(Σ) and α is a probabilistic
expression in P(Σ) such that all φ are mutually exclusive.

An example of a simple impact model is presented below for the adaptation ac-
tion switchToTextualMode. For the sake of clarity, we present all examples making
use of a concrete syntax that supports the definition of abbreviations and in which
guarded expressions are represented as φ→ α.

1 define S=(s:ServerT | !s.isTextualMode and s.isActive)
2 define k=size(S)
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3 define f(x)=x∗(1−k/(2∗(k+1)))
4 define g(x)=x∗(1−k/(k+1))
5 impactmodel switchToTextualMode
6 k>0→ { [0.8] { forall s:S | s.isTextualMode’=true & forall c:ClientT | c.expRspTime’=f(c.expRspTime) }
7 + [0.2] { forall s:S | s.isTextualMode’=true & forall c:ClientT | c.expRspTime’=g(c.expRspTime) }}

Listing 1: Impact model for adaptation action switchToTextualMode.

The model in Listing 1 expresses the impact of the adaptation action over
manipulated properties. As mentioned before, this adaptation action prescribes
the application of setLowFidelity to all active servers not serving pages in textual
mode, where the fact that operator setLowFidelity sets the property isTextualMode
to true is represented by s.isTextualMode’=true. Moreover, the model predicts that
switchToTextualMode can impact the response time of all clients in two ways, both
decreasing its value, considering the number of servers that were changed to low
fidelity. The more severe reduction of the response time is defined to be the least
likely, with probability 0.2. According to this (simplistic) model, the execution of
this adaptation action is not expected to affect the remaining properties of servers,
clients, or http connectors.

Alternatively, we could specify that switchToTextualMode can impact the re-
sponse time of each client in two ways as follows:

1 impactmodel switchToTextualMode
2 k>0→ forall c:ClientT | { [0.8] { forall s:S | s.isTextualMode’=true & c.expRspTime’=f(c.expRspTime) }
3 + [0.2] { forall s:S | s.isTextualMode’=true & c.expRspTime’=g(c.expRspTime) }}

Listing 2: Alternative impact model for switchToTextualMode.

While we have considered that the property isTextualMode of servers is sub-
ject only to system control, isActive was defined as a monitored property and it
was considered that the activation of a server, through the execution of operator
startServer, may fail. An impact model for enlistServer that captures this aspect
is presented below.

1 define m=size(s:ServerT | s.isActive)
2 define S= (s:ServerT | !s.isActive)
3 define f(x)=x∗(1−((1/log(100∗m,2))∗(m/(2∗m+1))))
4 define g(x)=x∗(1−1/log(100∗m,2))
5 impactmodel enlistServer
6 m>0→ { [0.95] { foreach s:S | s.isActive’=true &
7 { [0.7] forall c:ClientT | c.expRspTime’=f(c.expRspTime)
8 + [0.3] forall c:ClientT | c.expRspTime’=g(c.expRspTime) }}
9 + [0.05] { forall c:ClientT | c.expRspTime’=c.expRspTime & forall s:ServerT | s.isActive’=s.isActive }}

Listing 3: Impact model for adaptation action enlistServer.

This impact model states that starting a server is expected to fail with proba-
bility 0.05 and predicts that the adaptation action may impact client response time
in two ways, both considering the number of servers that were already active.
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Moreover, isActive is also defined as a monitored property, since a server
could become spontaneously inactive (e.g., due to a server crash). The impact
model above does not define any impact of the adaptation action over the prop-
erty isActive of already-active servers: hence the probability of an active server
crashing while executing enlistServer is considered to be so small that it can be
neglected. Alternatively, we can define the probability of each relevant crash sce-
nario (e.g., for one server, two servers, etc). For instance, the impact model pre-
sented below defines that the probability of exactly one active server crashing
while executing enlistServer is 0.001.

1 define T=(s:ServerT | s.isActive)
2 impactmodel enlistServer
3 m>0→ { [0.999] { foreach s:S | s.isActive’=true &
4 { [0.7] forall c:ClientT | c.expRspTime’=f(c.expRspTime) +
5 [0.3] forall c:ClientT | c.expRspTime’=g(c.expRspTime) } }
6 + [0.001] { foreach s:S | s.isActive’=true & foreach t:T | t.isActive’=false &
7 forall c:ClientT | c.expRspTime’=c.expRspTime } }

Listing 4: Alternative impact model for adaptation action enlistServer.

4.2. Impact Model Semantics
The semantics of impact models is formally defined in terms of DTMCs. Since

a DTMC has a discrete state space, we have to limit properties of components and
connectors to take values in discrete sets and perform quantization for properties
that would otherwise be continuous.

Quantization. For each property p that takes values in a datatype d ∈ D that
has a non-finite domain Id, it is necessary that a finite set [Id]p and a quantization
function Qp : Id → [Id]p be defined. For each property p : d such that Id is finite
we take [Id]p = Id and Qp as the identity function.

The quantization of the properties of component and connector types can be
propagated to the level of system states, defining a finite set of states [S] = {[s] :
s ∈ S}. In [s], the value of a property p of a component or connector c is obtained
by applying the corresponding quantization function to the value it has in s, i.e.,
Jc.pK[s] = Qp(Jc.pKs).

The semantics of impact models is defined in terms of DTMCs over [S]. We
start by providing the semantics of the probabilistic expressions used to assemble
such models.

The interpretation of a probabilistic expression α over a set of type variables
X is defined in the context of a system state s and an interpretation ρ of X assign-
ing, to each type variable x:κ, a set of elements in s of type κ. This interpretation,
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denoted by JαKsρ, consists of a set Y of properties of component and connec-
tors in s — those which are constrained by α — and a function P defining the
probability of transitions between any pair of Y -states. As an example, consider
Jx.isActive’=trueKsρ where x is a type variable typed by ServerT, s is a state with
servers z1, . . . , zn and ρ : x 7→ {z1}. The expression constrains only the property
isActive of z1, i.e., Y={z1.isActive} and, hence, in this case, a Y -state is just a
truth value for z1.isActive. Its interpretation is that the probability of a transition
from any Y -state to {z1.isActive7→true} is 1 and to {z1.isActive7→false} is 0.

Formally, given a set Y of properties, a Y -state s is a function defining the
value of each property in y ∈ Y , subject to the corresponding quantization func-
tions. As for system states, we simply write JyKs and use [SY ] for referring to the
set of all Y -states.

An important operation over probabilistic expressions is world closure through
assignment of a probability. As mentioned before, when we write [p]α, all prop-
erties of components and connectors not constrained by α are considered to retain
the same value in the next state. World closure can be captured by the following
notion of closure over transition probability functions:

Definition 5 (Closure). Let Y⊆Y ′ be two sets of properties. Given a function
P :[SY ]× [SY ]→ [0, 1], the closure of P to Y ′ is the function P Y ′

:[SY ′ ]× [SY ′ ]→
[0, 1] defined as follows:

• if Y 6= ∅, P Y ′
(s1, s2) =

{
P (s1|Y , s2|Y ) if ∀y ∈ Y ′ \ Y, JyKs2 = JyKs1

0 otherwise

• if Y = ∅, P Y ′
(s1, s2) =

{
1 if ∀y ∈ Y ′, JyKs2 = JyKs1

0 otherwise

where s|Y is the Y -state obtained through the restriction of s to the properties in
Y .

The closure of P corresponds to extending the probabilities given by P to
states with more properties, considering that their values do not change.

Since, the language P is defined on top of a language of state expressions E ,
a language of state constraints C and a language of data terms T , its semantics
relies on the semantics of these languages. In what follows we use:
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• JεKsρ to represent the set of architectural elements of type κ denoted by ex-
pression ε∈Eκ(Σ,X ) in state s under assignment ρ to the type variables in
X ,

• s |= φ to denote that constraint φ ∈ C(Σ) holds in state s,

• JtKsρd to represent the data value provided by the evaluation of term t∈Td(Σ, X)
in state s under assignment ρd to its data variables.

Recall that the language T might include terms, such as

sum(s.q | s:ServerT)/count(s:ServerT)

that are state dependent and, hence, we consider that states are also required for
the evaluation of terms.

Definition 6 (Interpretation of Probabilistic Expressions). The interpretation JαKsρ
of α ∈ P(Σ,X ) in a system state s and an interpretation ρ of X is a pair of the
form 〈Y, P :[SY ] × [SY ] → [0, 1]〉 defined inductively in the structure of α as fol-
lows:

• Jx.p′ = tKsρ = 〈Y, P 〉

Y = {c.p : c ∈ ρ(x)} and P (s1, s2) =

{
1 if ∀c ∈ ρ(x), Jc.pKs2 = JtKs1ρc
0 otherwise

with ρc = {x.q 7→ Jc.qKs1 : q ∈ Π(type(x))}

• Jforall x : ε | αKsρ = JαKsρ′ with ρ′=ρ⊕ x 7→ JεKsρ 4

• Jforeach x : ε | αKsρ = 〈Y, P 〉

Let C=JεKsρ. If |C| = 0, then Y = ∅ and P is the empty function to [0, 1].
Otherwise, let ρc=ρ⊕ x 7→ {c}, for every c ∈ C, and JαKsρc=〈Yc, Pc〉.

Y =
⋃
c∈C Yc and P (s1, s2) =

∑
c∈C

1
|C| · P

Y
c (s1|Yc , s2|Yc)

4Given an assignment ρ for X , ρ ⊕ x 7→ v represents the assignment for X∪{x} that assigns
the value v to x and assigns the value ρ(y) to any other variable y 6= x in X .
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• Jforeach x : ε minus D | αKsρ = 〈Y, P 〉

Let C=JεKsρ \ ρ(D). If |C| = 0, then Y = ∅ and P is the empty function
to [0, 1]. Otherwise, let ρc=ρ ⊕ x 7→ {c}, for every c ∈ C, and JαKsρc =
〈Yc, Pc〉.

Y =
⋃
c∈C Yc and P (s1, s2) =

∑
c∈C

1
|C| · P

Y
c (s1|Yc , s2|Yc)

• J{α1& · · ·&αn}Ksρ= 〈Y, P 〉

Let JαiKsρ = 〈Yi, Pi〉, for i = 1, .., n. If the sets Y1, · · · , Yn are not mutually
disjoint, then Y = ∅ and P is the empty function to [0, 1]. Otherwise,

Y =
⋃

i=1,..,n

Yi and P (s1, s2) =
n∏
i=1

Pi(s1|Yi , s2|Yi)

• J{[p1]α1 + · · ·+ [pn]αn}Ksρ = 〈Y, P 〉

Let JαiKsρ = 〈Yi, Pi〉, for i = 1, .., n.

Y =
⋃

i=1,..,n

Yi and P (s1, s2) =
n∑
i=1

pi · P Y
i (s1|Yi , s2|Yi)

Notice that there are some state-dependent semantic restrictions over probabilistic
expressions. If, in a given state s, an expression α does not meet these conditions,
then α does not impose any restriction in the evolution of the system state (i.e.,
Y = ∅).

Proposition 1. If JαKsρ = 〈Y, P : [SY ]× [SY ]→ [0, 1]〉, then P is a probabilistic
transition function, i.e.,

∑
s2∈[SY ] P (s1, s2) = 1, for every s1 ∈ [SY ].

Proof The proof proceeds by induction in the structure of expressions α:

case (x.p′ = t) : In this case the result follows from the fact that the term t
uniquely defines the values of all properties in Y in the next state. That
is, for every s1 in [SY ], there is a single state s such that JyKs = JtKs1ρc , for
every y ∈ Y . Hence, the probability of transition to s is 1 and is 0 for any
other state different from s, and hence, the sum P (s1, s2) for all states s2 is
1.
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case (forall x : ε | α) : In this case the result follows immediately from the induc-
tion hypothesis.

case (foreach x : ε | α) : Let C=JεKsρ. If |C| = 0, then Y = ∅. This implies that
[SY ] = ∅ and, hence, the result is vacuosly true. Otherwise, Y =

⋃
c∈C Yc

and ∑
s2∈[SY ]

P (s1, s2) =
∑

s2∈[SY ]

∑
c∈C

1

|C|
· P Y

c (s1|Yc , s2|Yc)

=
∑

s2∈[SY ]

∑
c∈C

1

|C|
· Pc(s1|Yc , s2|Yc) · (s1 =Y \Yc s2)

=
∑
c∈C

1

|C|
·

∑
s2∈[SY ]

Pc(s1|Yc , s2|Yc) · (s1 =Y \Yc s2)

=
∑
c∈C

1

|C|
·

∑
sc2∈[SYc ]

Pc(s1|Yc , s
c
2)

where (s1=Y ′s2) denotes 1 if JyKs2=JyKs1 , for eveinduction hypothesisry
y ∈ Y ′, and 0 otherwise. Using the induction hypothesis for each JαKsρc ,
with c ∈ C, we reach the result.

case (foreach x : ε minus D | α) : Similar to the previous case.

case {α1& . . .&αn} : If n = 1, then the result follows immediately from the
induction hypothesis. Without loss of generality, we prove this for the case
n = 2. If Y1, Y2 are not disjoint, as before, the result is vacuosly true.
Otherwise, we have∑

s2∈[SY ]

P (s1, s2) =
∑

s2∈[SY ]

P1(s1|Y1 , s2|Y1) · P2(s1|Y2 , s2|Y2)

=
∑

s12∈[SY1 ]

(P1(s1|Y1 , s
1
2) ·

∑
s22∈[SY2 ]

P2(s1|Y2 , s
2
2))

The last equality holds because, since Y1, Y2 are disjoint, [SY ] is isomorphic
to [SY1 ]× [SY2 ]. Using the induction hypothesis for each JαiKsρ, we reach the
result.
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case {[p1]α1 + · · ·+ [pn]αn} : In this case Y =
⋃
i=1,..,n Yi and

∑
s2∈[SY ]

P (s1, s2) =
∑

s2∈[SY ]

n∑
i=1

pi · P Y
i (s1|Yi , s2|Yi)

=
∑

s2∈[SY ]

n∑
i=1

pi · Pi(s1|Yi , s2|Yi) · (s1 =Y \Yi s2)

=
n∑
i=1

pi ·
∑

si2∈[SYi ]

Pi(s1|Yi , s
i
2)

Using the induction hypothesis for each JαiKsρ and the fact that
∑n

i=1 pi = 1,
we reach the result.

2

The quantization of component and connector properties may invalidate an
impact model, by making pairs of constraints that were initially mutually exclu-
sive, non mutually exclusive after quantization. Invalid models are inconsistent
(i.e., they do not admit any interpretation) and, hence, we limit our attention to
valid impact models.

Definition 7 (Semantics of Impact Models). An impact model I is valid if for
every s ∈ S, there exists at most one element 〈φ, α〉 ∈ I such that [s] |= φ.
The semantics of a valid impact model I, which we denote by JIK, is the DTMC
〈[S], P : [S]× [S]→ [0, 1]〉 where P is defined as follows:

If the graph of s1 and s2 is not the same then P (s1, s2) = 0,

else if exists 〈φ, α〉 ∈ I s.t. s1 |= φ then P (s1, s2) = P
Ys1
α (s1|Yα , s2|Yα)

else if s1 6= s2 then P (s1, s2) = 0 else P (s1, s2) = 1

where JαKs1ρ = 〈Yα, Pα〉, Ys denotes the set of all properties of components and
connectors in a system state s, i.e., Ys = {c.p:d |c is a node in the graph of s ∧
κ=type(c) ∧ p∈Π(κ) ∧ d=dtype(κ.p)}.

20



As an example, consider an impact model defined by 〈size(E)>0, α〉 with α =
(foreach x:E | x.isActive’ = true) and E=(s:ServerT|!s.isActive). This impact model
expresses that if there is at least one inactive server, then exactly one server is
activated and all inactive servers have the same probability of being activated.

Let s, s1, s2 be three system states with servers z1, z2, z3 that differ only in the
number of active servers: (i) in s only z3 is active, (ii) in s1 only z2 is inactive
and (iii) in s2 only z1 is inactive. According to definition above, and assuming
that no other system states meet the same conditions, we have for instance that
P (s, s1) = P (s, s2) = 1

2
and P (s, s′) = 0, for every other system state s′ different

from s1 and s2.

5. Predicting Adaptation Strategy Impact

In this section, we illustrate an application of the proposed impact models by
showing how they can be used in the context of Rainbow/Stitch [9] to predict the
impact of adaptation strategies on quality objectives.

In the context of Rainbow, the adaptation of the managed system is achieved
through the execution of an adaptation strategy selected from a portfolio of strate-
gies specified in the language Stitch. Typically, a situation that requires adaptation
can be addressed through the execution of more than one alternative adaptation
strategy in the portfolio. Since different strategies impact quality attributes in
different ways, there is a need to choose a strategy that will result in the best out-
come with respect to achieving the system’s desired quality objectives. To enable
decision-making for selecting strategies, Stitch uses utility functions and prefer-
ences, which are sensitive to the context of use and able to consider trade-offs
among multiple potentially conflicting objectives.5

As illustrated in Fig. 2, strategy selection in Rainbow/Stitch is supported by
two different processes:

• Adaptation Model Definition, which occurs at design-time and entails the
specification of the different inputs required by the run-time strategy selec-
tion process. These inputs are the specification for: (i) adaptation logic,

5Although selection is driven by utility in Rainbow, alternative criteria can be supported in
other applications of our impact model language (e.g., maximizing the probability of satisfying a
given safety or liveness property).
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4. Prediction of Strategy Utility

1. Definition of Adaptation Logic
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Figure 2: Strategy selection in Rainbow/Stitch.

which includes the set of adaptation tactics and strategies available, (ii) im-
pact models for the tactics, and (iii) utility functions and preferences that
embody the quality objectives of the system, and relate them to specific
run-time conditions.

• Strategy Selection, which occurs at run-time and entails the prediction of
the expected utility of every applicable strategy in three steps: (i) comput-
ing the aggregate impact of the strategy on system state, based on the impact
models of its constituent tactics, (ii) computing the utility score of the strat-
egy by mapping the predicted system state 6 to a utility value, making use
of the utility functions and preferences, and (iii) selecting the best strategy
according to a given set of selection criteria. In this section we consider the
criterion followed by default by Rainbow which is to maximize the expected
utility score. An alternative criterion based on risk-avoidance is considered
in the next Section.

In the remainder of this section, we first focus on the definition of the adaptation
model at design-time by introducing adaptation strategies as prescribed by Stitch

6The predicted state of the system after the execution of a given strategy is obtained by merging
the current state of the system with the aggregate impact of the strategy computed in the previous
step.
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(Section 5.1), following with the specification of quality objectives as utility func-
tions and preferences (Section 5.2). Finally, we present the process for predicting
the utility of strategies at run-time (Section 5.3).

5.1. Adaptation Strategies
Strategies are built from tactics, which are Stitch’s adaptation actions.

switchToTextualMode
hiLatency ! hiLatency ∧ ! hiLoad

! success
switchToTextualMode

success

! hiRspTime false
skip

enlistServer
hiLoad

skip
true

! hiRspTime

! hiRspTime

(exists c:ClientT | c.expRspTime > MAX_RSPTIME)

Figure 3: An adaptation strategy for Znn.

Strategies have an applicability condi-
tion and a body. The body of a strategy
σ is a tree Tσ whose edges n→ m are
labelled by a guard condition, a tactic
and a success condition (with all edges
leaving a node labelled by distinct tac-
tics). Once at node n, if the guard con-
dition is true, it means that the edge
can be taken. When an edge is taken,
the corresponding tactic is executed.
Upon its termination the success con-
dition is evaluated to determine if the
tactic achieved what was expected and
node m is reached. Guards include
a special symbol success capturing
whether the last tactic had succeeded
or not.

An example of a strategy for Znn
is simpleReduceResponseTime presented in Fig. 3. hiLoad, hiLatency and hiR-
spTime are formulas expressing respectively that the system load, latency and
response time is high. hiRspTime, for instance, is defined in terms of the average
response time of the clients by:

(sum(c.expRspTime|c: ClientT)/count(c: ClientT) > MAX RSPTIME)

The body of the strategy defines that initially there are three alternatives, de-
pending on the load and latency of the system. If the latency is high, then a
possibility defined by the strategy is to just apply the tactic switchToTextualMode.
The success condition in this case is hiRspTime that expresses that the average
response time is below a given threshold. If the load is high, then a possibility is
to apply the tactic enlistServer and, depending on the success of the application
of this tactic, either terminate with skip or still try the application of the tactic
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switchToTextualMode. If neither the latency nor the load is high, the strategy does
not offer any remedy.

5.2. Defining Quality Objectives
Defining quality objectives requires the identification of the concerns for the

different stakeholders. For instance, in Znn users are concerned with experienc-
ing service without any disruptions, which can be mapped to specific run-time
conditions such as response time. In contrast, the organization is interested in
minimizing the cost of operating the infrastructure, which can be mapped to the
cost of specific resources used at run-time (e.g., active servers). In short, we iden-
tify two quality objectives: maintaining low client response time (R), and cost
(C).

Given a set of concerns, it may be impossible to achieve all of them optimally
due to resource constraints or fundamental conflicts between certain quality objec-
tives (e.g., in Znn, better performance achieved via activating additional servers
results in increasing cost of operating the system). Stitch employs a systematic
technique to assign different levels of importance to the various concerns based
on utility theory [21].

A von Neumann-Morgenstern utility function uc : Xc → R assigns a real
number to each value of a quality concern c, which can be normalized to the range
[0, 1]. Across multiple dimensions, we can attribute a percentage weight wc to
each concern to account for its relative importance, compared to other concerns.
These weights constitute the utility preferences. Overall utility is given by the
function U =

∑
c

wcuc.

Table 1 summarizes the utility functions for Znn defined by an explicit set
of value pairs (where intermediate points are linearly interpolated). Function UR

maps low response times (up to 100ms) with maximum utility, whereas values
above 2000ms are highly penalized (utility below 0.25), and response times above
4000ms provide no utility. Function UC maps a increasing cost (derived from the
number of active servers) to lower utility values.

Utility preferences that capture business preferences over the quality dimen-
sions assign a specific weight wUR

and wUC
to each one of them in Znn, where we

consider that preference is given to performance over cost.
To compute the utility of a given system state s (denoted as Util(s)), we first
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UR(wUR
= 0.6) UC(wUC

= 0.4)
0 : 1.00 200 : 0.99 1000 : 0.70 2000 : 0.25 0 : 1.00 2 : 0.90 4 : 0.00

100 : 1.00 500 : 0.90 1500 : 0.50 4000 : 0.00 1 : 1.00 3 : 0.30

Table 1: Utility functions and preferences for Znn

need to map the values of the different qualities7 to their corresponding utility
values. In a system state with 1250 ms of response time and a cost of 2 USD/hour,
based on the utility functions defined in Table 1, we have [UR(1250), UC(2)] = [0.625,
0.9]. Finally, all utilities are combined into a single value, using utility preferences:
0.625 * 0.6 + 0.9 * 0.4 = 0.735.

5.3. Predicting the Utility of Strategies
The expected utility of a strategy σ in a given system state s can be formulated

in terms of a tree like that presented in Fig. 4: i.e., a labelled tree with two types of
nodes — normal and chance nodes, that alternate in consecutive depth levels of the
tree. As with decision trees, chance nodes represent situations in which the choice
between the different alternatives is external (i.e., not under the system’s control),
and is governed according to a given probability distribution function. Normal
nodes, as decision nodes of decision trees, represent situations in which the choice
between the different alternatives is internal. These nodes reflect situations of non-
determinism during the execution of the strategy (that arise when more than one
edge can be executed) that we assume are solved by a fair scheduler and, hence,
all alternatives have the same probability of being taken. In this way, all edges
〈n,m〉 of the tree are labelled with a probability p; if n is a normal node then
the edge is additionally labelled by a tactic t. For short we write, respectively,
n

p

m and n
p

t m. Chance nodes are not labelled whereas every normal node n
is labelled by a system state.

Formally, this type of labelled tree can be represented as a tuple 〈N, st, E, l〉
with N=H∪A, where H and A are the sets of, respectively, chance and normal
nodes, st is a function that labels nodes in H with system states, E is the set
of edges and l labels edges with a probability and, optionally, a tactic. The tree
defined by a strategy σ in a given system state s, which we denote by TI(σ, s), is
defined as follows.

7For utility calculation, we assume a representation of system state in terms of qualities. In
Znn, we take the average of response time in all clients and the sum of the costs of active servers.
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Figure 4: Tree for simpleReduceResponseTime and a system state with 2000 ms of response
time, and a cost of 1 USD/hour.

Definition 8. [TI(σ, s)] Let σ be a strategy and s a system state. Given an impact
model It for every tactic t used in σ, TI(σ, s) is the labelled tree obtained as
follows:

1. Start with an empty set of chance nodes and edges and with a single normal
node root(Tσ) labelled by [s].

2. While there exists a normal node n that has not been considered before:
(a) Find the edges of Tσ that start in n and can be executed in state st(n):

En = {n 〈φ,t,ψ〉
m in Tσ : st∗(n) � φ}

where, supposing that k is the parent node of n and ψ′ is the success
condition of the edge that leads to n in Tσ, st∗(n) is the extension of
st(n) with the interpretation of success with true if ψ′ holds in st(k)
and false, otherwise.

(b) For every n
〈φ,t,ψ〉

m ∈ En:

i. addm to the set of chance nodes and n
1/|E|
t m to the set of edges.

ii. for every state s′ such that p = PJItK(st(n), s′) > 0, add the node
ms′ labelled by s′ to the set of normal nodes and m

p

ms′ to the
set of edges.
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Fig. 4 presents the tree TI(simpleReduceResponseTime, s) where s is sys-
tem state with two clients (c0, c1) and three servers (z0, z1, z2). Only server z0 is
active in s and is not working in textual mode. The cost assigned to all servers
is 1 and the load assigned to z0, z1, z2 is, respectively, 2, 0 and 0. The response
time for c0 is 1700 and for c1 is 2300. The considered impact models for tactics
switchToTextualMode and enlistServer were those presented, respectively, in List-
ings 1 and 3.8 Then, using the utility profile, we can calculate the utility of the
state associated with each leaf node. The expected utility of the strategy is given
by the sum of these utilities weighted by the probability of the path that leads to
that node.

n pn expRspTime cost UR(st(n)) UC(st(n)) Util(st(n)) pn · Util(st(n))
avg. (ms) (USD/hour)

l1 0.4 1330 1 0.585 1 0.751 0.3004
l2 0.1 1000 1 0.75 1 0.85 0.085
l3 0.057 965 2 0.7605 0.9 0.8163 0.046529
l4 0.01425 410 2 0.927 0.9 0.9162 0.013056
l5 0.16625 1695 2 0.4025 0.9 0.6105 0.1014496
l6 0.057 565 1 0.8805 1 0.9283 0.052913
l7 0.01425 245 2 0.9765 1 0.9859 0.014049
l8 0.16625 1695 2 0.4025 0.9 0.6105 0.101496
l9 0.02 1200 1 0.65 1 0.79 0.0158

l10 0.005 670 1 0.849 1 0.9094 0.004245
total 1 - - - - - 0.734937

Table 2: Sample calculation of aggregate utility for strategy simpleReduceResponseTime

Definition 9 (Expected Utility of a Strategy). Given a set of impact models I,
the expected utility of a strategy σ in a system state s is given by∑

n∈leaves(TI(σ,s)) pn · Util(st(n))

where pn is the product of the probabilities in the path leading from the root to n.

Table 5.3 illustrates the utility calculation for strategy simpleReduceRespon-
seTime that corresponds to the tree shown in Fig. 4. Note that nodes l1 and l2
contribute half of the utility, and that the sum of all pn assigned to leaf nodes adds
to one.

At run-time, when a situation that requires adaptation is detected, the decision-
making process entails the computation of the expected utility of every applicable
strategy and the selection of the strategy with the highest expected utility score.

8For readability reasons we represented in the figure only the part of the system state that is
directly manipulated or affected by the two tactics.
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6. Decoupling Adaptation Impact from Environment Assumptions

In this section we present a technique for predicting strategy impact based
on the separation between the adaptation impact and the assumptions over the
environment. We also show how this technique can be explored in the context
of strategy selection, describing a risk-avoiding strategy selector as an alternative
instantiation of the strategy utility prediction and selection processes (steps 4 and
5, Fig. 2).

The technique for predicting strategy impact presented in the previous section
assumes that impact models of adaptation actions capture all relevant changes in
the system properties that occur during the execution of the adaptation action.
This implies that the impact model of an adaptation action has to capture, on the
one hand, the expected changes in the system properties that are a direct conse-
quence of its execution and, on the other hand, the assumptions about the changes
made independently by the environment. Consider, for instance, the impact model
for enlistServer presented in Listing 4. It expresses that the probability of exactly
one active server crashing while executing the adaptation is 0.001, which clearly
corresponds to an environment assumption. With respect to the changes in the ex-
pected response time, it is not possible to tell whether these correspond to changes
exclusively caused by the execution of the action, or if they also reflect some as-
sumptions, for instance, on the evolution in the number of requests that the system
receives from clients.

Since assumptions about the expected evolution in the number of requests or
the probability of an active server crashing while executing an adaptation action
do not typically depend on the adaptations being executed, it is convenient to
have the means to express them in an independent way. The explicit modelling
of assumptions about how the execution context evolves is particularly relevant
when adaptations are not taken in isolation, but as an integral part of an adaptation
plan (as it happens in strategies), since it allows us to obtain better predictors of
strategy impact and opens the possibility to compute alternative notions of impact
(e.g., worst-case scenario, compared to the average case described in Section 5).

In the remainder of this section, we first present the models that we employ to
describe environment assumptions (Section 6.1), followed by a description of how
stochastic multiplayer games (SMGs) can be used as a suitable formal encoding to
reason about the impact of adaptations in the presence of an adversarial environ-
ment (Section 6.2). Finally, we describe how these formalisms can be employed
to implement a risk-averse adaptation strategy selector in Section 6.3.
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6.1. Modelling Environment Assumptions
Assumptions about the way the execution context evolves can be expressed in

terms of a subset of the probabilistic expressions introduced in Section 4. Since
managed properties are uniquely under the system control, we exclude the use of
expressions in P(Σ) that impose constrains on the value of these properties in the
next state. This can be achieved by considering that, in the first rule of Def. 3, p
ranges only over monitored properties, i.e., p ∈ Πm(κ). We denote by Pe(Σ) the
resulting subset of probabilistic expressions.

Definition 10 (Environment Model). An environment model E is a finite set of
pairs 〈φ, α〉 where φ is a constraint in C(Σ) and α is a probabilistic expression in
Pe(Σ) such that all φ are mutually exclusive.

Since environment models are just particular cases of impact models, Def. 7 can
be used to define their semantics.

An example of a simple environment model for Znn, including both external
and internal aspects of the system that are not under the direct control of the adap-
tive mechanism, is presented below. This model expresses that the probability of
a server to become spontaneously inactive during an execution of an adaptation
action is 0.001. Moreover, it also expresses some assumptions about the expected
evolution in the number of requests arriving to the system. In order to keep the
model simple, this is expressed directly in terms of expected response time: the
probability of a small increment (inversely proportional to the number of active
servers – m) in the response time of all clients is 0.25 (line 10), whereas the proba-
bility of a small decrement (directly proportional to the number of servers) is also
0.25 (line 12). The probability that response time will remain unchanged is 0.50
(line 11).

1 define T=(s:ServerT | s.isActive)
2 define S=(s:ServerT | !s.isActive)
3 define m = size(T)
4

5 environmentmodel
6 { { [0.999] { foreach s:ServerT | s.isActive’=s.isActive }
7 + [0.001] { foreach s:S | s.isActive’=true & foreach t:T | t.isActive’=false } }
8 &
9 { [0.25] { forall c:ClientT | c.expRspTime’=(1+0.05/m)∗c.expRspTime }

10 + [0.50] { forall c:ClientT | c.expRspTime’=c.expRspTime }
11 + [0.25] { forall c:ClientT | c.expRspTime’=(1−0.05∗m)∗c.expRspTime } }
12 }

Listing 5: An environment model for Znn.
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If we opt to express the impact of adaptations and the assumptions over the
evolution of the environment in an independent way, both specifications can be
easily merged into one impact model per tactic. We take the superposition of the
environment assumptions over the impact of each tactic t to be defined by

JItK× JEK = 〈[S], PJItK × PJEK〉

which is the DTMC obtained by taking the multiplication of the two probability
matrices. This corresponds to applying the changes underlying the environment
model after the changes resulting from the execution of the tactic. In this way,
it is still possible to apply the method for calculating the aggregated utility of a
strategy presented in the previous section and continue using expected utility as a
selection criterion.

6.2. Reasoning about Strategy Impact using Stochastic Game Analysis
The separation between the adaptation impact and the assumptions over the

environment opens new possibilities to reason about strategy impact. In partic-
ular, we can regard the behaviour of the system and its environment during the
execution of a strategy as a two-player game and then perform stochastic game
analysis for reasoning about the strategy impact.

We build our approach upon the framework for modelling and automatic ver-
ification of systems with both probabilistic and competitive behaviour presented
in [7]. For this purpose, we define the semantics of a strategy as a turn-based
stochastic two-player game, based on an adversary semantics of environment
models that regards any state transition with non zero probability as a possible
move of the environment from the source state.

Definition 11 (Adversary Semantics of Environment Models). The adversary se-
mantics of an environment model E , which we denote by LEM, is the set of state
transitions {(s1, s2) ∈ [S]× [S] : PJEK(s1, s2) > 0}.

This adversary semantics of environment models abstracts away the proba-
bilities associated with state transitions, retaining only the information about the
possible transitions. Each element of LEM embodies a choice of action to be taken
by the environment in a specific state.

Based on this adversary semantics of the environment, we can build a two-
player game that represents the behaviour of the system and its environment dur-
ing the execution of the adaptation strategy. The set of states of this game is
partitioned in two disjoint sets. In states of the form sys(s) it is the turn of the
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system, which can choose between the tactics prescribed in the adaptation strat-
egy, the outcome of which can be probabilistic. In states of the form env(s) it
is the turn of the environment, which can choose between the transitions from
s that, according to the environment model, were described to have a non zero
probability.

Definition 12 (SMGI,E(σ, s0)). Let σ be a strategy and s0 a system state. Given
an impact model It for every tactic t used in σ and an environment model E ,
SMGI,E(σ, s) is the turn-based two-player game

G = 〈{Sys, Env}, Q = QSys ∪QEnv, q0, A,∆, AP, χ, r〉

where:

• QSys = {sys(s, n) : s ∈ [S] and n is a node of Tσ}

• QEnv = {env(s, n) : s ∈ [S] and n is a node of Tσ}

• q0 = sys(s0, root(Tσ)) is the initial state

• A is the union of the set of tactics used in σ (denoted by LσM in the following)
with the set LEM. In each state q ∈ Q, the set of available actions is denoted
by A(q).

• ∆ : Q× A→ D(Q) is defined as follows 9:

– For every tactic t ∈ LσM, if q ∈ QEnv, then ∆(q, t) is undefined; other-
wise, let n, s1 be such that q = sys(s1, n)

∗ if there exists an edge n
〈φ,t,ψ〉

m in Tσ and s1 � φ then ∆(q, t) is
defined as follows:

∆(sys(s1, n), t)(q′) =

{
PJItK(s1, s2) if q′ = env(s2,m) for some s2 ∈ [S]

0 otherwise

∗ else ∆(q, t) is undefined

– For every e ∈ LEM, if q ∈ QSys, then ∆(q, e) is undefined; otherwise,
let n, s1 be such that q = env(s1, n)

9D(X) denotes the set of discrete probability distributions over finite set X .
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∗ if e is (s1, s2) for some s2 ∈ [S] then ∆(q, e) is defined as follows:

∆(env(s1, n), e)(q′) =

{
1 if q′ = sys(s2, n)

0 otherwise

∗ else ∆(q, e) is undefined

• AP is a set of predicates that can be built over the state variables (i.e., the
monitored and managed properties of components and connectors of the
system) and a predicate leaf .

• χ : Q → 2AP is the labeling function defined as follows: for every s ∈ [S]
and node n of Tσ, (1) leaf ∈ χ(sys(s, n)) iff n ∈ leaves(Tσ), leaf /∈
χ(env(s, n)); (2) for every predicate p in AP over state variables, p ∈
χ(sys(s, n)) iff p ∈ χ(env(s, n)) iff s � p.

• r : Q → Q≥0 is a reward structure mapping each state to its utility value,
i.e., r(s) = Util(s).

Notice that this definition abstracts away the success conditions of tactics, which
would require a much more detailed definition and are not relevant for the purpose
at hand (in our game-theoretical setting they represent a constraint on the solution
space). Also note that in the initial state of the game, as well as in any of the
possible final states (corresponding to the leaf nodes of the tree for strategy σ),
are defined to be of the form sys(s, n).

Definition 13 (Path). A path of SMG G is an (in)finite sequence λ = q0a0q1a1 . . .
s.t. ∀j ∈ N aj ∈ A(qj) ∧ ∆(qj, aj)(qj+1) > 0. Ω+

G denotes the set of finite paths
in G.

The system and environment players can follow policies for choosing actions
in the game, competing to achieve their own (potentially conflicting) goals.

Definition 14 (Environment Policy). A policy for the Env player in G is a func-
tion ρEnv : (QA)∗QEnv → D(LEM) which, for each path λ · q ∈ Ω+

G where
q ∈ QEnv, selects a probability distribution ρEnv(λ · q) over A(q) ⊆ LEM. The
set of all policies for player Env is denoted PEnv.

Definition 15 (System Policy). A policy for the Sys player in G is a function
ρSys : (QA)∗QSys → D(LσM) which, for each path λ · q ∈ Ω+

G where q ∈ QSys,
selects a probability distribution ρSys(λ · q) over A(q) ⊆ LσM. The set of all
policies for player Sys is denoted PSys.
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In this paper, we always refer to policies ρi∈{Sys,Env} that are memoryless (i.e.,
ρi(λ · q) = ρi(λ

′ · q) for all paths λ · q, λ′ · q ∈ Ω+
G ), and deterministic (i.e., ρi(λ · q)

is a Dirac distribution for all λ · q ∈ Ω+
G ). Memoryless, deterministic policies

resolve the choices in each state q ∈ Qi for player i, selecting actions based solely
on information about the current state in the game. These policies are guaranteed
to achieve optimal expected rewards for the kind of cumulative reward structures
that we use to encode utility in our models.10

Turn-based SMGs such as the one described in this section can be encoded
in PRISM-games and analyzed via probabilistic model checking [8]. Reason-
ing about policies is a fundamental aspect of model checking SMGs, which en-
ables checking for the existence of a policy that is able to optimize an objective
expressed as a quantitative property in a logic called rPATL [8], which extends
ATL [1], a logic extensively used to reason about the ability of a set of players to
collectively achieve a particular goal. Properties written in rPATL can state that a
coalition of players has a policy which can ensure that the probability of an event’s
occurrence or an expected reward measure meet some threshold.

In the next section, we show how rPATL and probabilistic model checking of
SMGs can be employed to implement a risk-averse strategy selector.

6.3. Risk-averse Strategy Selection
To implement a risk-averse strategy selector, we make use of rPATL specifi-

cations on game-theoretical models that comply with the description given in the
previous section. rPATL is a CTL-style branching-time temporal logic that incor-
porates the coalition operator 〈〈C〉〉 of ATL, combining it with the probabilistic
operator P./q and path formulae from PCTL [2]. Moreover, rPATL includes a
generalization of the reward operator Rr

./x [17] to reason about goals related to re-
wards. Extensions of the reward operator in rPATL include 〈〈C〉〉Rr

max=?[F
c φ] and

〈〈C〉〉Rr
min=?[F

c φ], and enable the quantification of the maximum and minimum
accrued reward r along paths that lead to states satisfying φ that can be guaranteed
by players in coalition C, independently of the policies followed by the rest of
players.

In the context of risk-averse strategy selection, we make use of rPATL specifi-
cations to analyze the maximum utility that the system can guarantee when adapt-
ing, independently of the behavior of the environment (worst-case scenario anal-
ysis). To carry out this analysis, a typical rPATL property combining the coalition

10See Appendix A.2 in [7] for details.
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and reward maximization operators is 〈〈{Sys}〉〉Rrmax=?[F
c φ], meaning “value of

the maximum utility reward r accrued along paths leading to states satisfying state
formula φ that the system player can guarantee, regardless of the policy followed
by the environment player.”

The use of such specifications leads to a notion of guaranteed expected utility
that differs from the fully probabilistic notion of expected utility of a strategy
described in Def. 9, which is unsuitable to provide an estimation of the potential
bad situations that the system might incur while executing a strategy.

Definition 16 (Guaranteed Expected Utility of a Strategy). Given an environ-
ment model E and a set of impact models I, the guaranteed expected utility of
strategy σ in a system state s is given by the maximum utility that Sys can guar-
antee while executing σ by following an optimal policy, independently of the pol-
icy followed by Env. This value, which we denote by U g

I,E(σ, s), is given by the
evaluation of the rPATL expression

〈〈{Sys}〉〉Rurmax=?[F
c leaf ]

over the game SMGI,E(σ, s), where ur : Q→ Q≥0 is a reward structure defined
as follows: ur(q) = Util(q) iff leaf ∈ χ(q), and zero otherwise.

This alternative notion of strategy utility can be used by the strategy selector. At
run time, when an anomaly is detected, this selector has to calculate the guaranteed
expected utility of all the strategies that are applicable in the current state and
select the strategy with the highest score. By focusing on what happens in the
worst-case scenario, such a selector manifests risk aversion.

Definition 17 (Risk-averse Strategy Selector). Given an environment model E
and a repertoire of adaptation strategies S, a risk-averse strategy selector is an
agent that selects, in a given state s, one of the strategies σ↑ that maximizes the
guaranteed expected utility in the repertoire:

σ↑ , arg max
σ∈S

U g
I,E(σ, s)

In the Appendix we show how to put these ideas into practice by making use
of PRISM-games [8], a probabilistic model checker that supports the analysis of
SMGs.
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7. Experimental Results

In this section, we report on our experience quantifying the benefits of em-
ploying our impact models in Rainbow.

To carry out our study, we considered two alternative models of Znn, one using
impact vectors11 and the other using the proposed impact models. We manually
encoded the two models in the language of PRISM [23] and assessed the quality
of the models that we are able to specify in each case by quantifying: (i) impact
of tactics on the state of the target system, and (ii) impact of strategies on sys-
tem utility. In addition, both models incorporate an M/M/c queuing model [13],
which is able to compute the response time of the system based on the rate of
request arrivals to the system, number of active servers, and the service rate (i.e.,
the time that it takes to service a request, which in this case is directly propor-
tional to the fidelity level). In our experiments, we assume that the response time
computed with the queuing model is considered as the actual response time of the
system, against which we compare the predictions made using either vectors or
probabilistic models.

Using each of the alternative models, we explored a state space [S] = [1, 9]×
[1, 3], which includes the request arrival rate in the interval [1, 9] requests/s, and
the number of active servers in the interval [1, 3] (i.e., a valid system configuration
can have up to a maximum of 4 active servers). For the sake of clarity, we fixed in
our experiments the values of other variables which could have been considered as
additional dimensions in our state space (network latency is 0 ms, whereas service
rate is fixed at 1 ms).

In the following, we first report on the improvement of accuracy in estimat-
ing system state for a single tactic when employing probabilistic impact models
(Section 7.1). Next, we describe our results concerning the improvement in the
prediction of the impact of a full strategy on utility, following the strategy selec-
tion scheme for the maximization of expected utility described in Section 5 (Sec-
tion 7.2). Finally, we describe our results in the context of risk-averse strategy
selection, as described in Section 6 (Section 7.3).

11The impact of individual adaptation actions is specified in terms of constant impact vectors
(called cost/benefit attribute vectors), which describe how the execution of adaptation actions af-
fects system quality attributes [9].
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Figure 5: Deviation in response time impact prediction for tactic enlistServer: cost/benefit vector
(left) and probabilistic impact model (right).

7.1. Impact of Tactics on System State
To quantify the improvement obtained using vectors with the results of em-

ploying probabilistic models, we focused on the enlistServer tactic, for which we
encoded two alternative impact descriptions:
Cost-benefit Attribute Vectors. For the vector-based version of the model, we
computed the average impact in response time of adding a server in all points of
the explored region of the state space, making use of the M/M/c queuing model,
which is the best approximation that can be obtained, given by

(
∑
s∈[S]

MMc(ars, ass + 1)−MMc(ars, ass))/|[S]|

where MMc(a, b) returns the response time for request arrival rate a and number
of active servers b. Moreover, ars and ass designate the request arrival rate, and
number of active servers in state s, respectively.

For our state space, this calculation yielded a reduction of response time of
714 ms. Since the cost is increased in 1 unit, and fidelity is not changed by enlist-
Server, the vector used in our experiments for the tactic is [−714,+1, 0].

Probabilistic Impact Models. The probabilistic version of the model employed
for the experiments is analogous to the one described in Listing 3.

Fig. 5 shows the deviation from actual response time impact values (computed
using the M/M/c model) for tactic enlistServer. The values computed using the
probabilistic impact model (right) are much more accurate, since their deviation
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is far less prominent than the one presented when computing impact with vectors
(average deviation ∆rt in values computed using vectors is ' 315% with respect
to the values obtained using probabilistic impact models). Moreover, while the
values computed using vectors are not sensitive to context, presenting reduced
deviations with respect to actual response times only in states that are close to
the average (e.g., 1 server, 3-5 requests/s), values obtained with the probabilistic
model better approximate actual impact, reflecting the fact that a higher number
of active servers noticeably reduces the impact of the tactic on response time.

7.2. Impact of Strategies on Expected System Utility
The use of different models to express the impact of tactics on system state

also affects the predictions that concern the expected utility of the system after
the execution of adaptation strategies. To assess how utility prediction is affected
by the constructs available to express tactic impact, we included in our PRISM
model an encoding of the strategy simpleReduceResponseTime shown in Fig. 3,
and computed the expected utility after its execution for each of the states included
in [S] for each of the alternatives.
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Figure 6: Utility prediction for the execution of strategy reduceResponseTime based on: queu-
ing model, impact model, and impact vector. Lighter colors represent higher utility improvements.

Fig. 6 shows how the utility values predicted using probabilistic impact models
(center) exhibit a similar pattern to the one obtained using the queuing model
(left). In contrast, vectors (right) show an entirely different pattern, which only
coincides with the one resulting from the queuing model in the area in which the
impact of tactics is close to their average impact (i.e., when there are two active
servers).

It is worth noting that the overall average difference in utility ∆U across the
state space does not constitute a representative indicator of the accuracy of utility
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predictions, since positive and negative utility deltas in different states can cancel
each other (i.e., the average ∆U yielded by vectors is +0.113, which is closer to
the one obtained with the queuing model of +0.057, even if the absolute value of
the deviation in individual states in vectors is greater than in the case of impact
models).

7.3. Impact of Strategies on Guaranteed Expected System Utility
In general, the actual utility obtained after executing an adaptation strategy

does not coincide with the expected utility prediction (e.g., based on impact mod-
els or vectors) that the system employs for decision-making. Hence, in our exper-
iments we need to determine the actual guaranteed expected utility of the system
(i.e., based on the M/M/c queuing model) achieved when the system employs for
decision-making a predicted guaranteed expected utility based either on impact
models or vectors.

switchToTextualMode

enlistServer switchToTextualMode

enlistServer

Figure 7: A simplified version of an adaptation
strategy for Znn.

To assess how the actual perfor-
mance of risk-averse adaptation is
affected by the constructs available
to express tactic impact, we cre-
ated a PRISM-games model encod-
ing a SMG for a modified version of
the strategy simpleReduceResponse-
Time (Fig. 7).12 This strategy in-
cludes two main branches in which
tactics enlistServer and switchToTex-
tualMode can be selected for execu-
tion in either order. Note that in gen-
eral, the order in which tactics are se-
lected results in different system con-
figurations and outcomes of strategy
execution (e.g., a server activated via tactic enlistServer after the execution of
switchToTextualMode will not operate in textual mode, whereas switching to tex-
tual mode after an additional server has been activated will result in a configura-
tion in which all servers are in textual mode).

The model explores a state space [S] = [1, 3], which includes only the number
of active servers in the interval [1, 3] (i.e., a valid system configuration can have

12A description of the game’s encoding is provided in Appendix A.
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up to a maximum of 4 active servers). Some of the values of other variables that
could have been considered as additional dimensions in our state space have been
fixed for clarity (e.g., service rate is fixed at 1 ms). In particular, it is worth noting
that the arrival rate of requests does not add an extra dimension to the state-space
in this case (in contrast with the results presented in Sections 7.1 and 7.2), since
the value taken by this variable is controlled by the environment player, even in
the initial state of the game encoding the strategy’s execution.

In particular, we instantiated two variants of our SMG model in which the
system player bases its decision-making on the utility prediction yielded either by
fixed vectors or probabilistic impact models. Each one of the variants includes:

• The adversary semantics of an environment model that controls: (i) the rate
of requests arriving at the system, and (ii) network latency.

• The behavior of the system player, including two sets of variables repre-
senting: (i) the actual state of the system (i.e., based on the queuing model
– used to compute actual guaranteed expected utility, encoded in a reward
structure aur), and (ii) the predicted state of the system (based on a set of
probabilistic impact models (IP) or vectors (IV) in the respective variants
of the SMG model – used to compute the predicted guaranteed expected
utility employed for decision-making, encoded in a reward structure pur).

After instantiating the PRISM-games model for a stochastic game SMGI,E(σ, s),
we proceed with our analysis in two stages:

1. Compute the optimal policy ρpur 13 that the system player follows based on
the information about predicted utility for decision-making. That policy is
computed based on an rPATL specification that obtains the expected guar-
anteed utility as predicted by the system player during strategy execution in
the original game SMGI,E(σ, s):

Upg
I,E(σ, s) , 〈〈{Sys}〉〉R

pur
max=?[F

c leaf ]

2. Quantify the actual expected guaranteed utility under the generated system
policy. We do this by using PRISM-games to build a product of the existing
game model and the policy synthesized in the previous step, obtaining a new
game SMG

ρpur
I,E (σ, s) under which further properties can be verified. In our

13Note that the synthesis algorithm returns a single policy if there exists more than one optimal
policy yielding the same reward value for the game [8].
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Impact Vectors IV Probabilistic Impact Models IP
Number of servers Predicted Utility Actual Utility Predicted Utility Actual Utility

Upg
IV ,E(σ, s) Uag

IV ,E(σ, s) Upg
IP ,E(σ, s) Uag

IP ,E(σ, s)

1 0.3300 0.5127 0.7592 0.7075
2 0.8716 0.7802 0.7940 0.7802
3 0.7983 0.6700 0.6910 0.6700
Avg. Uag

I,E(σ, s) - 0.6543 - 0.7192

Avg. ∆Ug
I,E(σ, s) 0.1341 0.0288

Table 3: Risk-averse adaptation analysis results.

case, once we have computed a policy for the system player to maximize
predicted utility, we quantify the reward for actual guaranteed utility in the
new game in which the system player policy has already been fixed:

Uag
I,E(σ, s) , 〈〈{Sys}〉〉Raurmax=?[F

c leaf ]

Table 7.3 shows the results of our experiments concerning the impact of strate-
gies on guaranteed expected utility. The table is divided in two sections that
compare the performance of risk-averse adaptation when using impact vectors
and probabilistic impact models, respectively. Each section contains the value of
predicted guaranteed utility (Upg

I,E(σ, s)), and actual guaranteed utility computed
based on the predicted utility (Uag

I,E(σ, s)). If we focus on the actual utility of
risk-averse adaptation when using probabilistic impact models, we can observe
that it improves on average about 6.5% with respect to impact vectors. We also
consider the accuracy of the predictions with each one of the models, defined as
the difference between predicted and actual guaranteed utilities ∆U g

I,E(σ, s) =
|Upg
I,E(σ, s)−U

ag
I,E(σ, s)|. In this case, the accuracy of probabilistic impact models

improves more than 10% over vectors. This is particularly noticeable in the con-
figuration with just one active server, in which the predicted utility with vectors
deviates about 18% from the actual utility, whereas the the maximum deviation in
the case of probabilistic impact models is approximately 5%.

In our experiments, the improvement in utility achieved using probabilistic im-
pact models is modest with respect to vectors. However, it is worth observing that
this stems from the fact that both the adaptation strategy analyzed and the space
of system configurations are rather limited, leading to similar tactic selections for
execution in the configurations with 2 and 3 active servers (i.e., resulting in simi-
lar actual utility values after strategy execution). In this sense, it is reasonable to
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assume that more variability in terms of adaptation logic and environment behav-
ior will favor the predictions of context-sensitive probabilistic models, leading to
better-informed decisions and higher utility improvements.

8. Conclusions and Future Work

In this paper we addressed the specification of impact models for self-adaptive
systems and presented a declarative language that allows one to explicitly rep-
resent the uncertainty in the outcome of adaptation actions and also to capture
assumptions about the evolution of the environment. The mathematical underpin-
nings of the language were heavily influenced by the input language of PRISM [23],
but its syntax is also based on the language of structural constraints of Acme [19].
The language was shown to have the ability to express sophisticated impact mod-
els, providing expressive and compact descriptions. Although there is an upfront
investment in learning the notation and specifying these impact models com-
pared to other approaches [9, 27], the fact that we can model variability improves
reusability (e.g., across systems sharing the same architectural style).

We also showed how the proposed impact models can be used in the context
of Rainbow with adaptation strategies defined in the language Stitch [9], and pro-
posed two methods for calculating the utility of a strategy, one focused on average
utility and the other on the utility that is guaranteed in the worst-case scenario. The
benefits of the proposed impact models and analysis techniques can be extended to
other architecture-based approaches to self-adaptation that rely on impact models
for adaptation decision-making such as [24] and [27].

Regarding future work, we plan on extending our declarative language to cater
to architectural styles that support structural changes (i.e., dynamic changes in
the structure of the configuration graph). Moreover, we plan on leveraging and
furthering formal analysis of adaptation behavior by encoding impact models de-
scribed in our language into existing tools, such as UPPAAL stratego [14] and
new versions of PRISM-games [8]. A third research direction aims at further re-
fining our approach to capture timing aspects in our impact models, thus enabling
reasoning about time-quality trade-offs. Finally, when there is limited availability
of domain expert knowledge or field data about similar existing systems, proper
parameterization of the impact models (e.g., of update functions, probabilities)
may be challenging. To mitigate such situations, we plan on exploring machine
learning techniques in order to allow designers to write parametric impact models
in which actual parameter values can be automatically inferred and periodically
updated from system observations.
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Appendix A. Znn.com SMG PRISM Encoding

Our formal model of Znn.com is implemented in PRISM-games [8], a proba-
bilistic model-checker for modeling and analyzing SMGs. The game is played in
turns by two players in control of the behavior of the environment and the system,
respectively. The SMG model consists of:

Appendix A.1. Player Definition
Listing 6 illustrates the definition of the players in the stochastic game: player

env is in control of all the (asynchronous) actions that the environment can take
(as defined in the environment module, Listing 7). Player sys controls all tran-
sitions that belong to the SimpleReduceResponseTime module (Listing 9), in-
cluding all the transitions that synchronize with the target system module (List-
ing 8), which represent the execution of tactics upon the target system (explicitly
listed between square brackets in Listing 6, line 2). Global variable turn in List-
ing 6, line 5 is used to control turns in the game and make players alternate,
ensuring that for every state of the model, only one player can take action.
1 player env environment endplayer
2 player sys target system, SimpleReduceResponseTime, [enlistServer], [switchToTextualMode] endplayer
3

4 const ENV TURN=1, SYS TURN=2;
5 global turn:[ENV TURN..SYS TURN] init SYS TURN;
6

7 formula te=turn=ENV TURN;
8 formula ts=turn=SYS TURN;

Listing 6: Player definition for Znn.com’s SMG.

Appendix A.2. Environment
Listing 7 shows the encoding used for a simple version of Znn.com’s envi-

ronment, which is able to place an arbitrary amount of request arrivals in the ex-
ecution context. Lines 1 defines the constant MAX ARRIVALS PPERIOD that
parameterizes its behavior by limiting the maximum amount of arrivals that the
environment can place per time period. 14

1 const MAX ARRIVALS PPERIOD;
2 module environment
3 arrivals current : [0..MAX ARRIVALS PPERIOD] init INIT ARRIVALS;
4 hiLatency : bool init false;
5

14Constant values not defined in the model are provided as command-line input parameters to
the tool.

46



6 [] (te) −> (arrivals current’=0) & (hiLatency’=true) & (turn’=SYS TURN);
7 [] (te) −> (arrivals current’=0) & (hiLatency’=false) & (turn’=SYS TURN);
8 . . .
9 [] (te) −> (arrivals current’=X) & (hiLatency’=true) & (turn’=SYS TURN);

10 [] (te) −> (arrivals current’=X) & (hiLatency’=false) & (turn’=SYS TURN);
11 endmodule

Listing 7: environment module.

Moreover, lines 3-5 declare the different variables that define the state of the
environment: arrivals current (line 3) corresponds to the number of request ar-
rivals introduced by the environment in the current turn. hiLatency (line 4) ab-
stracts in a boolean variable a high level of network latency.

Each turn of the environment consists of setting the amount of request ar-
rivals. This is achieved through a set of commands that follow the pattern shown
in Listing 7, lines 9-10: the guard in the command checks that it is the turn of
the environment to move (te). If the guard is satisfied, the command: (i) sets the
value of request arrivals and latency level for the current time period (represented
by X in the command), and (ii) modifies the value of turn, yielding control to the
system player. Note that there may be as many of these commands as possible
values can be assigned to request arrivals for the current environment turn, includ-
ing zero for no arrivals (lines 6-7), resulting in a natural encoding of the adversary
semantics of the environment as described in Definition 11.

Appendix A.3. Target System
Module target system (Listing 8) models the behavior of the target system in

which valid configurations may include up to four servers. This module encodes
the behavior of the system (including the execution of tactics upon it), and is
parameterized by the constants:

• MIN SERVERS and MAX SERVERS, which specify the minimum and
maximum number of active servers that a valid system configuration can
have, respectively.

• MAX RT and INIT RT, which specify the system’s maximum and initial
response times, respectively.

• MAX FIDELITY, MIN FIDELITY, which specify the minimum and maxi-
mum fidelity levels of a server (in this case, we assume that MAX FIDELITY
indicates that the server is operating in multimedia mode, whereas MIN FIDELITY
indicates that the server is in textual mode).
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• INIT SX ACTIVE and INIT SX F, specify whether server X is initially ac-
tive and its initial fidelity level, respectively.

1 formula cert=(c1 cert+c2 cert)/2; // Predicted response time (probabilistic impact models)
2

3 module target system
4 start : bool init true;
5

6 rt : [0..MAX RT] init INIT RT; // Actual response time (queuing model)
7 ert: [0..MAX RT] init INIT RT; // Predicted response time (fixed impact vectors)
8 c1 cert: [0..MAX RT] init INIT RT1; // Predicted response time (probabilistic impact models)
9 c2 cert: [0..MAX RT] init INIT RT2;

10

11 s1 active:[0..1] init INIT S1 ACTIVE;
12 s2 active:[0..1] init INIT S2 ACTIVE;
13 s3 active:[0..1] init INIT S3 ACTIVE;
14 s4 active:[0..1] init INIT S4 ACTIVE;
15

16 s1 f:[MIN FIDELITY..MAX FIDELITY] init INIT S1 F;
17 s2 f:[MIN FIDELITY..MAX FIDELITY] init INIT S2 F;
18 s3 f:[MIN FIDELITY..MAX FIDELITY] init INIT S3 F;
19 s4 f:[MIN FIDELITY..MAX FIDELITY] init INIT S4 F;
20

21 [] (ts) & (start) −> (ert’=s tt) & (c1 cert’=s tt) & (c2 cert’=s tt) & (rt’=s tt) & (start’=false);
22

23 // Pass on enlistServer (applicability condition not satisfied)
24 [enlistServer] (!start) & (s>=MAX SERVERS) −> (rt’=s tt);
25

26 // Execution of enlistServer (Probabilistic impact models variant)
27 [enlistServer] (!start) & (s<MAX SERVERS) & (PMODELS) −>
28 (0.665)∗(s1 active=0?(1/inactive s):0):(s1 active’=(s1 active=0?1:0))
29 & (c1 cert’= s es f rt1) & (c2 cert’= s es f rt2) & (rt’=s tt) +
30 (0.285)∗(s1 active=0?(1/inactive s):0):(s1 active’=(s1 active=0?1:0))
31 & (c1 cert’= s es g rt1) & (c2 cert’= s es g rt2) & (rt’=s tt) +
32 (0.665)∗(s2 active=0?(1/inactive s):0):(s2 active’=(s2 active=0?1:0))
33 & (c1 cert’= s es f rt1) & (c2 cert’= s es f rt2) & (rt’=s tt) +
34 (0.285)∗(s2 active=0?(1/inactive s):0):(s2 active’=(s2 active=0?1:0))
35 & (c1 cert’= s es g rt1) & (c2 cert’= s es g rt2) & (rt’=s tt) +
36 (0.665)∗(s3 active=0?(1/inactive s):0):(s3 active’=(s3 active=0?1:0))
37 & (c1 cert’= s es f rt1) & (c2 cert’= s es f rt2) & (rt’=s tt) +
38 (0.285)∗(s3 active=0?(1/inactive s):0):(s3 active’=(s3 active=0?1:0))
39 & (c1 cert’= s es g rt1) & (c2 cert’= s es g rt2) & (rt’=s tt) +
40 (0.665)∗(s4 active=0?(1/inactive s):0):(s4 active’=(s4 active=0?1:0))
41 & (c1 cert’= s es f rt1) & (c2 cert’= s es f rt2) & (rt’=s tt) +
42 (0.285)∗(s4 active=0?(1/inactive s):0):(s4 active’=(s4 active=0?1:0))
43 & (c1 cert’= s es g rt1) & (c2 cert’= s es g rt2) & (rt’=s tt) +
44 (0.05): (rt’=s tt);
45

46 // Execution of enlistServer (Fixed impact vectors variant)
47 [enlistServer] (!start) & (s<MAX SERVERS) & (VECTORS) −>
48 (s1 active=0?(1/inactive s):0) : (s1 active’=(s1 active=0?1:0)) & (ert’=es f rt) & (rt’=s tt) +
49 (s2 active=0?(1/inactive s):0) : (s2 active’=(s2 active=0?1:0)) & (ert’=es f rt) & (rt’=s tt) +
50 (s3 active=0?(1/inactive s):0) : (s3 active’=(s3 active=0?1:0)) & (ert’=es f rt) & (rt’=s tt) +
51 (s4 active=0?(1/inactive s):0) : (s4 active’=(s4 active=0?1:0)) & (ert’=es f rt) & (rt’=s tt);
52

53 // Pass on switchToTextualMode (applicability condition not satisfied)
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54 [switchToTextualMode] (!start) & (f<=MIN FIDELITY) −> (rt’=s tt);
55

56 // Execution of switchToTextualMode (Probabilistic impact models variant)
57 [switchToTextualMode] (!start) & (f>MIN FIDELITY) & (PMODELS) −>
58 (0.8∗0.8): (s1 f’=(s1 active=1 & s1 f>MIN FIDELITY?s1 f−1:s1 f)) & (s2 f’=(s2 active=1 & s2 f>

MIN FIDELITY?s2 f−1:s2 f)) &
59 (s3 f’=(s3 active=1 & s3 f>MIN FIDELITY?s1 f−1:s3 f)) & (s4 f’=(s4 active=1 & s4 f>

MIN FIDELITY?s4 f−1:s4 f))
60 &(c1 cert’=s lf f rt1) & (c2 cert’=s lf f rt2) & (rt’=s tt) +
61 (0.8∗0.2): (s1 f’=(s1 active=1 & s1 f>MIN FIDELITY?s1 f−1:s1 f)) & (s2 f’=(s2 active=1 & s2 f>

MIN FIDELITY?s2 f−1:s2 f)) &
62 (s3 f’=(s3 active=1 & s3 f>MIN FIDELITY?s1 f−1:s3 f)) & (s4 f’=(s4 active=1 & s4 f>

MIN FIDELITY?s4 f−1:s4 f))
63 &(c1 cert’=s lf f rt1) & (c2 cert’=s lf g rt2) & (rt’=s tt) +
64 (0.2∗0.8): (s1 f’=(s1 active=1 & s1 f>MIN FIDELITY?s1 f−1:s1 f)) & (s2 f’=(s2 active=1 & s2 f>

MIN FIDELITY?s2 f−1:s2 f)) &
65 (s3 f’=(s3 active=1 & s3 f>MIN FIDELITY?s1 f−1:s3 f)) & (s4 f’=(s4 active=1 &

s4 f>MIN FIDELITY?s4 f−1:s4 f))
66 &(c1 cert’=s lf g rt1) & (c2 cert’=s lf f rt2) & (rt’=s tt) +
67 (0.2∗0.2): (s1 f’=(s1 active=1 & s1 f>MIN FIDELITY?s1 f−1:s1 f)) & (s2 f’=(s2 active=1 & s2 f>

MIN FIDELITY?s2 f−1:s2 f)) &
68 (s3 f’=(s3 active=1 & s3 f>MIN FIDELITY?s1 f−1:s3 f)) & (s4 f’=(s4 active=1 & s4 f

>MIN FIDELITY?s4 f−1:s4 f))
69 &(c1 cert’=s lf g rt1) & (c2 cert’=s lf g rt2) & (rt’=s tt);
70

71 // Execution of switchToTextualMode (Fixed impact vectors variant)
72 [switchToTextualMode] (!start) & (f>MIN FIDELITY) & (VECTORS) −>
73 (s1 f’=(s1 active=1 & s1 f>MIN FIDELITY?s1 f−1:s1 f)) & (s2 f’=(s2 active=1 &

s2 f>MIN FIDELITY?s2 f−1:s2 f)) &
74 (s3 f’=(s3 active=1 & s3 f>MIN FIDELITY?s1 f−1:s3 f)) & (s4 f’=(s4 active=1 &

s4 f>MIN FIDELITY?s4 f−1:s4 f)) &
75 (ert’=lf f rt) & (rt’=s tt);
76 endmodule

Listing 8: target system module.

The module employs the following set of variables to represent the system
state: rt (line 6) is the actual response time of the system (computed based on
the request arrivals in the environment, the current level of fidelity of the con-
tents served, and the number of active servers, according to an M/M/c queuing
model). ert (line 7) is the predicted response time, according to the impact vec-
tors. cx cert (lines 8-9) is the predicted response time for client x according to
the probabilistic impact models for tactics, whereas cert (line 1) is the overall
predicted response time based on probabilistic impact models. sx active (lines
11-14) indicates whether server x is currently active, and sx f (lines 16-19) indi-
cates the current fidelity level of server x.

Each tactic that can be executed upon the target system is represented by a set
of commands labelled with the tactic’s name. These commands are guarded by
the applicability condition of the tactic (e.g., a specific server should be inactive
to be enlisted), updating the different state variables of the system according to
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the effect of the tactic’s execution:

• enlistServer activates an inactive server, setting the value of sx active to
true, and updating the value of actual response time according to the value
computed by the queuing model with the new number of active servers (en-
coded in formula s tt). The command in lines (27-44) that includes in the
guard the additional predicate PMODELS encodes in addition the update
of predicted response time cert according to the probabilistic impact model
for the tactic described in Listing 3. Alternatively, the command in lines
47-51 (guarded by predicate VECTORS) updates predicted response time
ert according to the impact vectors defined for the tactics.

• switchToTextualMode lowers the fidelity of an active server to textual
mode, decreasing response time (modifying variables sx f). In this case, the
commands also include a version encoding the probabilistic impact model
for this tactic defined in Listing 1 (lines 57-69), and a version encoding
updates of predicted response time with impact vectors (lines 72-75).

An additional set of commands guarded by the negation of tactic applicability
conditions model situations in which the traversal of the strategy tree progresses
without the execution of the tactic when applicability conditions are not met (lines
24 and 54 for tactics enlistServer and switchToTextualMode, respectively).

Appendix A.4. Adaptation Logic
Module SimpleReduceResponseTime (Listing 9) models the execution tree

of the Stitch adaptation strategy shown in Figure 7, in which each command cor-
responds to the different branches in the tree including the execution of the tactic
that can be executed on the target system.
1 module SimpleReduceResponseTime
2 node : [0..5] init 0;
3 end : bool init false;
4 leaf : bool init false;
5 yield : bool init false;
6

7 [enlistServer] (ts & !yield) & (node=0) −> (node’=1) & (leaf’=false) & (yield’=true);
8 [switchToTextualMode] (ts & !yield) & (node=0) −> (node’=2) & (leaf’=false) & (yield’=true);
9 [switchToTextualMode] (ts & !yield) & (node=1) −> (node’=3) & (leaf’=true) & (yield’=true);

10 [enlistServer] (ts & !yield) & (node=2) −> (node’=4) & (leaf’=true) & (yield’=true);
11 [] (ts & yield & !leaf) −> (yield’=false) & (turn’=ENV TURN);
12 [] (ts & yield & leaf & !end) −> (end’=true);
13 endmodule

Listing 9: SimpleReduceResponseTime module.

50



The module contains a set of synchronous commands, each one corresponding
to one of the branches in the strategy tree that include tactics to be executed on
the target system. Each one of them can synchronize with any of the commands
labeled with the same action name in the target system module (e.g., the com-
mand in Listing 9, line 7, could synchronize with the commands in Listing 8, in
lines 24, 27, or 47 to enlist a server). The system player is in control of all these
synchronous transitions (as defined in Listing 6, line 2). A synchronous command
for the execution of a tactic in a branch can only be fired if: (i) It is the turn of the
system to take action (ts), (ii) the execution of the strategy has advanced to a point
in which the current branch can be taken (explicitly encoded in variable node),
and (iii) it is not the end of the system’s turn (explicitly encoded in variable yield).

In addition, the module also contains two asynchronous commands: the first
one (line 11) yields the turn to the environment player after a branch in the strategy
tree has been traversed via the execution of its corresponding command, and a leaf
node has not been reached. The second one (line 12) sets the value of the end
variable to true whenever a leaf node in the strategy has been reached and it is the
end of the system’s turn, indicating the end of the game.

Appendix A.5. Utility profile
Utility functions and preferences are encoded using formulas and reward struc-

tures that enable the quantification of instantaneous utility in states of the model
that correspond to leaf nodes in the adaptation strategy tree. Specifically, formu-
las compute utility on the different dimensions of concern, and reward structures
weigh them against each other by using the utility preferences.
1 const W UR, W UF, W UC;
2 formula uR = (rt>=0 & rt<=100? 1:0)
3 +(rt>100&rt<=200?1+(−0.01)∗((rt−100)/(100)):0) ...
4 +(rt>2000&rt<=4000?0.25+(−0.25)∗((rt−2000)/(2000)):0)
5 +(rt>4000 ? 0:0); ...
6 rewards ”rAUR” leaf : W UR∗uR + W UF∗uF + W UC∗uC; endrewards

Listing 10: Utility functions and preferences encoding.

Listing 10 illustrates in lines 2-5 the encoding of utility functions using a for-
mula for linear interpolation based on the points defined for utility function UR in
the first column of Table 1. The formula in the example computes the actual util-
ity for performance, based on the value of the variable for system response time
rt (analogous rewards are defined in the game for predicted utility rewards based
on fixed impact vectors and probabilistic models using the values of variables ert
and cert, respectively). Moreover, line 6 shows how a reward structure can be
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defined to compute a utility value for any state by using utility preferences (de-
fined in line 1 as weights W UR, W UF, and W UC for performance, fidelity, and
cost respectively). Labeling leaf states in the model with utility rewards in such a
way effectively enables the synthesis of optimal policies leading to target system
configurations that maximize guaranteed utility, as described in Section 7.3.

52


