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Abstract. Self-adaptive systems have the ability to adapt their behavior to dy-
namic operation conditions. In reaction to changes in the environment, these sys-
tems determine the appropriate corrective actions based in part on information
about which action will have the best impact on the system. Existing models used
to describe the impact of adaptations are either unable to capture the underlying
uncertainty and variability of such dynamic environments, or are not composi-
tional and described at a level of abstraction too low to scale in terms of spec-
ification effort required for non-trivial systems. In this paper, we address these
shortcomings by describing an approach to the specification of impact models
based on architectural system descriptions, which at the same time allows us to
represent both variability and uncertainty in the outcome of adaptations, hence
improving the selection of the best corrective action. The core of our approach
is an impact model language equipped with a formal semantics defined in terms
of Discrete Time Markov Chains. To validate our approach, we show how em-
ploying our language can improve the accuracy of predictions used for decision-
making in the Rainbow framework for architecture-based self-adaptation.

1 Introduction

Self-adaptive systems have the ability to autonomously change their behavior in re-
sponse to changes in their operating conditions, thus preserving the capability of meet-
ing certain requirements. For instance, to provide timely response to service requests,
a news website with self-adaptive capabilities can react to high response latencies by
activating more servers, or reducing the fidelity of contents being served [6,12].

Deciding which adaptations should be carried out in response to changes in the
execution environment requires that systems embody knowledge about themselves.
Knowledge about the impact of adaptation choices on system’s properties is particu-
larly important when the decision process involves comparing alternative adaptations at
runtime, as is often the case [11,5,17,14].

The effectiveness of the enacted changes, which affects the system’s ability to meet
its requirements, strongly depends on the accuracy of the analytical models that are
used for decision making. Exact models, if attainable at all, tend to be quite complex
and costly to obtain. As argued in [8], an alternative is to attend to the uncertainty
underlying the knowledge models in the decision process.
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However, existing models used to describe the impact of adaptations are either un-
able to capture the underlying uncertainty and variability of such dynamic execution
environments, or are not compositional and described at a level of abstraction too low
to scale in terms of specification effort required for non-trivial systems.

In this paper, we address the specification of probabilistic impact models for archi-
tecture-based self-adaptive systems that support the representation of: (i) uncertainty in
the outcome of adaptation actions (e.g., the activation of a server can fail with some
given probability), and (ii) context variability (e.g., the impact on response time of
activating a single server will progressively reduce with a growing number of active
servers). The core of our approach is a declarative specification language for expressing
complex probabilistic constraints over state transitions that is equipped with a formal
semantics defined in terms of Discrete Time Markov Chains (DTMC). This language
provides the means for expressing impact models in a flexible and compact way.

We illustrate how the proposed impact models can be used in the context of the
Rainbow framework [11] for architecture-based self-adaptation, and quantify the bene-
fits of using probabilistic impact models instead of constant impact vectors [5].

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 provides a formal account of the concepts required to define impact models.
Section 4 presents the syntax and semantics of a new specification language of proba-
bilistic impact models and Section 5 shows how our impact models can be used in the
context of Rainbow for adaptation strategy selection. Next, experimental results that
quantify the benefits of using probabilistic impact models instead of impact vectors are
presented in Section 6. Finally, Section 7 presents some conclusions and future work.

2 Related Work

Environment domain models are a key element used by adaptive systems to determine
their behavior [1,18]. These models capture the knowledge that the system has about
itself and its environment by describing how system and environment respond to adap-
tation actions. Approaches to self-adaptation can be divided into two categories, de-
pending on the way in which environment domain models are built.

A first category takes a systematic approach to modeling the impact of individ-
ual adaptation actions, which can be composed to reason about system behavior under
adaptation. An example is the approach presented in [5], developed around Stitch, a
language that enables the specification of adaptation strategies composed of individual
adaptation actions. The impact of these action is specified in terms of constant impact
vectors which describe how the execution of adaptation actions affects system quality
attributes. The same type of impact models is used in several approaches to optimiza-
tion of service compositions, such as the approach presented in [14]. Adaptation actions
in this approach target service composition instances and the optimal criteria relies on
impact models that are defined per adaptation action and system property as constant
functions. Slightly more expressive impact models are considered in the approach pre-
sented [17], which targets component-based systems where impact models are defined
per adaptation action and key performance indicators (KPIs), as functions over a given
set of KPIs. These approaches address the specification of environment domain mod-
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els in a compositional way and at a very high level of abstraction, thus facilitating
specification and promoting reuse. However, they severely limit the ability to repre-
sent environment domain knowledge in a realistic way, since they are unable to model
uncertainty and provide limited support to capture variability.

The second category consists of approaches that consider the behavior of the sys-
tem and its environment modeled in a monolithic way in terms of more powerful models
defined at a lower level of abstraction [2,1,9]. For example, in the approach presented
in [2], DTMCs are used to model, for each system configuration, the future state of a
system and its environment if that configuration is used. These models are expressive
enough to model variability and the uncertainty underlying adaptation outcomes. The
main drawback here is that these models being defined at the level of system configu-
rations are system specific. For instance, in the case of a news website that can react
to high response latencies by activating more servers, a DTMC that models the effect
of activating one server in a system that can use up to 4 servers is completely different
from another that models the same on a system that can use up to 10 servers, although
the effect of activating one server does not depend on the maximum number of servers.
Moreover, these models are both difficult and cumbersome to write. The specification
of a DTMC tends to be a non-trivial task, even using description languages such as the
one built into the probabilistic model checker PRISM [13].

The approach described in this paper aims at striking a balance between the ease
of specification and reusability found in compositional approaches, and the expressive
power of monolithic approaches that use probabilistic models. We present a language
for the specification of impact models, which is: (i) more intuitive than describing
DTMCs in other probabilistic approaches, since it is based on architectural descrip-
tions and therefore raises the level of abstraction, (ii) able to capture both variability
and probabilistic outcomes of adaptation actions, and (iii) scalable in terms of speci-
fication effort, since developers can focus on smaller units of conceptualization (i.e.,
architectural properties) and reason about them individually.

3 Modeling Adaptation

We address the modeling of impact in the context of architecture-based approaches to
self-adaptation, that take the architectural style of the managed system as a basis for the
system adaptation. The aim is to support the specification of impact models for families
of systems that share the same architectural style. The semantics of such specifications
assigns, for each system in the family, an impact model (a DTMC).

In this section, we provide a formal account of the concepts required to define im-
pact models, namely architectural style and system state. We start by introducing the
running example used in the rest of the paper.

3.1 Running example

Znn.com [3] is a case study portraying a representative scenario for the application of
self-adaptation in software systems which has been extensively used to assess different
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research in self-adaptive systems. Znn.com is able to reproduce the typical infrastruc-
ture for a news website, and has a three-tier architecture consisting of a set of servers
that provide contents from backend databases to clients via front-end presentation logic
(Fig. 1). The system uses a load balancer to balance requests across a pool of replicated
servers, the size of which can be adjusted according to service demand. A set of clients
makes stateless requests, and the servers deliver the requested contents.
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s1
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s3

Fig. 1. Znn.com architecture

The main objective for Znn.com is to provide con-
tent to customers within a reasonable response time,
while keeping the cost of the server pool within a cer-
tain operating budget. It is considered that from time
to time, due to highly popular events, Znn.com ex-
periences spikes in requests that it cannot serve ade-
quately, even at maximum pool size. To prevent loss
of customers, the system can provide minimal textual
content during such peak times, to avoid not providing
service to some of its customers. Concretely, there are
two main quality objectives for the self-adaptation of
the system: (i) performance, which depends on request
response time, server load, and network bandwidth, and (ii) cost, which is associated
with the number of active servers.

3.2 Architectural Style

As discussed in [4], when the architectural style of the managed system is taken as a
basis for the system adaptation, it has to define not only the class of models to which the
managed system architecture belongs but also to determine the operators representing
available configuration changes on systems in that style and prescribes what aspects of
a system and its execution context need to be monitored.

An architectural style defines a vocabulary of component and connector types that
can be used in instances of that style and the properties of each of these types. In the
context of self-adaptive systems, it is essential to distinguish between managed and
monitored properties. Managed properties correspond to properties that are uniquely
under system control. Their values can be defined at startup and changed subsequently
by the control layer to regulate the system. Monitored properties correspond to proper-
ties of the managed system or its execution context that need to be monitored and made
available to the control layer. While the properties of the execution context are not under
the system control (e.g., available bandwidth), monitored properties also include those
that the system aims to control (e.g., response time).

As an example, we consider the architectural style of Znn.com. It has one connector
type — HttpConnT, and three component types — ClientT, ServerT and ProxyT. For
instance, ServerT has two managed properties — isTextualMode:bool and cost:int. The
former defines whether web pages are served by a given server in textual or multime-
dia mode and the latter reflects the cost of an active server per unit time. Since these
properties are defined as uniquely under the system’s control, the cost of each server
included in the system must be defined at deployment time, and whether it will start
serving pages in textual or multimedia mode. Additionally, ServerT has two monitored
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properties — load:double and isActive:bool. The latter property is defined as monitored,
since even if its activation can be controlled, a server may crash anytime.

Formally, architectural signatures are defined as follows.

Definition 1 (Architectural Signature). An architectural signature Σ consists of a
tuple of the form 〈CompT,ConnT, Πo, Πm〉, where CompT and ConnT are two dis-
joint sets (the sets of, respectively, component and connector types) and, Πo and Πm

are functions that assign, to architectural types κ∈CompT∪ConnT, mutually disjoint
sets whose elements are typed by datatypes in a fixed set D (Πo(κ) and Πm(κ) repre-
sent, respectively, the managed and monitored properties of the type κ). We abbreviate
Πo(κ)∪Πm(κ) by Π(κ) and, for p∈Π(κ), will use dtype(κ.p) to denote its datatype.

The architectural configurations of systems with architectural signatureΣ, hereafter
called Σ-system states, are captured in terms of graphs of components and connectors
with state. State of architectural elements consist of the values taken by their monitored
and managed properties.

We formally define Σ-system states assuming there is a fixed universe AΣ of ar-
chitectural elements (components and connectors) for Σ, i.e., a countable set whose
elements are typed by elements in CompT∪ConnT. We use type(c) to denote c’s type.

Definition 2 (Σ-System State). A Σ-system state s consists of (i) a simple graph G,
(ii) a function type that assigns an architectural type to every node of G, (iii) an injective
function Is from the set of nodes of G toAΣ such that type(Is(c)) = type(c) and (iv) a
function that assigns a value Jc.pKs in the domain of dtype(κ.p), to every pair c.p such
that c is a node of G, κ = type(c) and p∈Π(κ). We denote by SΣ (or simply S when Σ
is clear from the context) the set of all Σ-system states.

An architectural style also defines the ways one can change systems with that style.
For instance, the Znn architectural style defines that property isTextualMode of servers
can be modified through setLowFidelity and setHighFidelity operators, that set isTex-
tualMode to, true and false, respectively.

Generically, these operators can range from primitive operations, such as changing
the value of a property of a given connector type or replacing an implementation of a
component type with another, to higher-level operations that exploit restrictions of that
style. However, in practice, most approaches to self-adaptation consider only primitive
operations. Hence, we focus on architectural styles that define the set of operators pro-
vided by the target system for (i) changing the values of the managed properties of its
components and connectors and (ii) replacing a component or connector of a given type
by another of the same type. Notice that, in these architectural styles, only the last two
components of a system state —Is and J Ks— can change at runtime. The structure of
the system, defined by the graph and type function, does not change.

3.3 Adaptation actions

The adaptation of the managed system is achieved through the execution of adaptation
actions defined at design-time. Adaptation actions define actions packaged as applica-
tions of one or more operators, with a condition of applicability. In the Znn example we
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could, for instance, define an adaptation action switchToTextualMode applicable only
if there is at least one active service not serving pages in textual mode, prescribing
the application of operator setLowFidelity to all servers in these conditions. A different
adaptation action for Znn is enlistServer that is applicable when there is at least one
inactive server, and prescribes the application of startServer to one inactive server.

Applicability conditions of adaptation actions are formulas of a constraint language
that are evaluated over system states. For illustration purposes, we consider a constraint
language inspired by that of Acme [10] 1 in which, for instance, (exists s:ServerT |
exists k:HttpConnT | attached(k,s) and s.isActive) holds in a system state iff the state
includes at least one active server attached to one http connector.

4 Modeling Impact

Deciding how to best adapt the system when a certain anomaly is detected involves
analyzing models describing the effects, in terms of costs and benefits, of the available
adaptation actions defined for the system. These models capture the causal relationship
between an adaptation action’s execution and its impact on the different system prop-
erties. Because 100% accurate models are in general not attainable, it is important to
have means to address the underlying uncertainty.

In this section, we describe an expressive language to model adaptation action ex-
ecution, which is able to capture: (i) the context that might influence the outcome of
an adaptation action’s execution, and (ii) the intrinsic uncertainty that pervades self-
adaptive systems. Specifically, this language enables the description of models of the
expected impact of each adaptation action on the different system properties. These
models are based on DTMCs [15], and enable us to express alternative possible out-
comes of the execution of the same adaptation action with some given probability.

4.1 Impact Model Language

The impact model of adaptation actions is defined in terms of probabilistic expressions
in a language that allows one to express probabilistic constraints over state transitions
(regarded as pairs of before and after system states), incorporating some elements of
the PRISM language [13].

The language targets systems whose structure does not change at runtime. For this
reason, it is built over a language E for specifying sets of components and connectors
in a system state. For illustration purposes, we use a language in line with the one that
we use to express constraints, in which, for instance, (s: ServerT | s.isActive) describes
the set of active servers in a system state. To handle data, we assume that the fixed
set of datatypes D is equipped with the relevant operations. We denote by T the term
language used to describe data values and by Td(Σ,X) the set of terms built over
variables in X denoting values of datatype d. Similarly, we use Eκ(Σ,X) to denote
the set of expressions defined over the variables in X denoting sets of architectural
elements of type κ.

1 Acme is in turn derived from OCL [16], with the addition of functions that relate to architec-
tural structure.
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Definition 3 (Probabilistic Expressions). Let X be a set of variables typed by ar-
chitectural types in an architectural signature Σ. The set P(Σ,X), of probabilistic
expressions over variables in X , is defined by the following grammar:

α ::= x.p ′ = t with x ∈ X , p∈Π(κ), t∈Td(Σ, xΠ),
where κ = type(x) and d = dtype(p)

| forall x : ε | α1

| foreach x : ε | α1

| foreach x : ε minus D | α1 with x /∈ X , ε∈Eκ(Σ,X),
α1∈P(Σ,X∪{x : κ}) and D⊆Xκ

| {α1& . . .&αn}
| {[p1]α1 + [p2]α2 + · · ·+ [pn]αn} with, for 1 ≤ i ≤ n, αi∈P(Σ,X),

0 ≤ pi ≤ 1 and Σn
i=1pi = 1

where xΠ={x.p : d | p∈Π(type(x)), d = dtype(p)} and Xκ={x∈X : type(x) = κ}.
P(Σ) is the set of probabilistic expressions without free variables, i.e., P(Σ, ∅).

The atomic expression x.p ′ = t defines the value of the property p in the next
state (after the execution of the adaptation action), for every component or connector
denoted by x. This value can be defined in terms of the values of the properties of the
same element as well as other architectural elements in the system, but the free variables
of t are limited to variables representing properties of x. For instance, assuming that s
is a variable of type ServerT, we can write s.isActive’ = !s.isActive to express that every
server denoted by s has its isActive property toggled.

The operator forall is used to impose the same constraints over a set of architectural
elements of the same type, denoted by a given expression in E . The operator foreach
is used to define a number of alternative outcomes, all with the same probability. For
instance, foreach x:ServerT | x.isActive’ = true states that all servers have the same prob-
ability of having their isActive property set to true. Adding minus D to the expression
reduces the target to elements not included in the denotation of variables in D.

For instance, foreach x:E | foreach y:E minus x | {x.isActive’ = true & y.isActive’ = true}
where E is (s:ServerT|!s.isActive), expresses that exactly two servers are activated and
that all pairs of distinct inactive servers have the same probability of being activated.

A fixed number of constraints over the next state are expressed through conjunction
(&). Probabilities that sum to one are assigned to a fixed number of expressions defining
constraints over alternative outcomes of the adaptation action execution. Assigning a
probability to an expression with [p]α has the effect of world closure: all properties of
components and connectors not constrained by α are considered to keep the same value
in the next state.

To capture that an adaptation action may have different impacts under different
conditions, impact models are defined as sets of guarded probabilistic expressions with
mutually exclusive guards (i.e., at most one guard holds in any system state). As before,
we abstract from the language used for expressing the guard conditions and assume a
fixed language C of constraints over system states.

Definition 4 (Impact Model). An impact model I of an adaptation action is a finite
set of pairs 〈φ, α〉 where φ is a constraint in C(Σ) and α is a probabilistic expression
in P(Σ) such that all φ are mutually exclusive.
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An example of a simple impact model is presented below for the adaptation action
switchToTextualMode. For the sake of clarity, we present all examples making use of
a concrete syntax that supports the definition of abbreviations and in which guarded
expressions are represented as φ→ α.

1 define S=(s:ServerT | !s.isTextualMode and s.isActive) and define k=size(S)
2 define f(x)=x∗(1−k/(2∗(k+1))) and define g(x)=x∗(1−k/(k+1))
3 impactmodel switchToTextualMode
4 k>0→ { [0.8] { forall s:S | s.isTextualMode’=true & forall c:ClientT | c.expRspTime’=f(c.expRspTime) }
5 + [0.2] { forall s:S | s.isTextualMode’=true & forall c:ClientT | c.expRspTime’=g(c.expRspTime) }}

Listing 1.1. Impact model for adaptation action switchToTextualMode.

This model expresses the impact of the adaptation action over manipulated proper-
ties, where the fact that operator setLowFidelity sets the property isTextualMode to true is
represented by s.isTextualMode’=true. Moreover, the model foresees that switchToTextualMode
can impact the response time of all clients in two ways, both decreasing its value, con-
sidering the number of servers that were changed to low fidelity. The more severe reduc-
tion of the response time is defined to be the least likely, with probability 0.2. According
to this (simplistic) model, the execution of this adaptation action is not expected to af-
fect the remaining properties of servers, clients, or http connectors.

Alternatively, we could specify that switchToTextualMode can impact the response
time of each client in two ways as follows:

1 impactmodel switchToTextualMode
2 k>0→ forall c:ClientT | { [0.8] { forall s:S | s.isTextualMode’=true & c.expRspTime’=f(c.expRspTime) }
3 + [0.2] { forall s:S | s.isTextualMode’=true & c.expRspTime’=g(c.expRspTime) }}

Listing 1.2. Alternative impact model for switchToTextualMode.

While we have considered that the property isTextualMode of servers is subject only
to system control, isActive was defined as a monitored property and it was considered
that the activation of a server, through the execution of operator startServer, may fail.
An impact model for enlistServer that captures this aspect is presented below.

1 define m=size(s:ServerT | s.isActive) and define S= (s:ServerT | !s.isActive)
2 define f(x)=x∗(1−((1/log(100∗m,2))∗(m/(2∗m+1)))) and define g(x)=x∗(1−1/log(100∗m,2))
3 impactmodel enlistServer
4 m>0→ { [0.95] { foreach s:S | s.isActive’=true &
5 { [0.7] forall c:ClientT | c.expRspTime’=f(c.expRspTime)
6 + [0.3] forall c:ClientT | c.expRspTime’=g(c.expRspTime) }}
7 + [0.05] { forall s:ServerT | s.isActive’=s.isActive & forall c:ClientT | c.expRspTime’=c.expRspTime }}

Listing 1.3. Impact model for adaptation action enlistServer.

This impact model implicitly states that the starting of the server is expected to fail
with probability 0.05 and foresees that the adaptation action may impact client response
time in two ways, both considering the number of servers that were already active.

Moreover, isActive is also defined as a monitored property, since a server could
become spontaneously inactive (e.g., due to a server crash). The impact model above
does not define any impact of the adaptation action over the property isActive of al-
ready active servers, hence the probability of an active server crashing while executing
enlistServer is considered to be so small that it can be neglected. Alternatively, we can
define the probability of each relevant crash scenario (e.g., for one server, two servers,
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etc). For instance, the impact model presented below defines that the probability of
exactly one active server crashing while executing enlistServer is 0.001.

1 define T=(s:ServerT | s.isActive)
2 impactmodel enlistServer
3 m>0→ { [0.999] { foreach s:S | s.isActive’=true &
4 { [0.7] forall c:ClientT | c.expRspTime’=f(c.expRspTime) +
5 [0.3] forall c:ClientT | c.expRspTime’=g(c.expRspTime) } }
6 + [0.001] { foreach s:S | s.isActive’=true & foreach t:T | t.isActive’=false &
7 forall c:ClientT | c.expRspTime’=c.expRspTime } }

Listing 1.4. Alternative impact model for adaptation action enlistServer.

4.2 Impact Model Semantics

The semantics of impact models is formally defined in terms of DTMCs. Since a DTMC
has a discrete state space, we have to limit properties of components and connectors to
take values in discrete sets and perform quantization.

Quantization. For each property p that takes values in a datatype d ∈ D that has a
non-countable domain Id, it is necessary that a countable set [Id]p and a quantization
function Qp : Id → [Id]p be defined. For each property p : d such that Id is countable
we take [Id]p = Id and Qp as the identity function.

The quantization of the properties of component and connector types can be propa-
gated to the level of system states, defining a discrete set of states [S] = {[s] : s ∈ S}. In
[s], the value of a property p of a component or connector c is obtained by applying the
corresponding quantization function to the value it has in s, i.e., Jc.pK[s] = Qp(Jc.pKs).

The semantics of adaptation action impact models is defined in terms of DTMCs
over [S]. We start by providing the semantics of the probabilistic expressions used to
assemble such models.

The interpretation of a probabilistic expression α over a set of variablesX is defined
in the context of a system state s and an interpretation ρ ofX assigning to each variable
x:κ, a set of elements in s of type κ. This interpretation, denoted by JαKsρ, consists of
a set Y of properties of component and connectors in s — those which are constrained
by α — and a function P defining the probability of a transition between any pair of
Y -states. As an example, consider Jx.isActive’=trueKsρ where x : ServerT, s is a state
with servers z1, . . . , zn and ρ : x 7→ {z1}. The expression constrains only the property
isActive of z1, i.e., Y = {z1.isActive} and, hence, in this case, a Y -state is just a truth
value for z1.isActive. Its interpretation is that the probability of a transition from any
Y -state to {z1.isActive 7→ true} is 1 and to {z1.isActive 7→ false} is 0.

Formally, given a set Y of properties, a Y -state s is a function defining the value
of each property in y ∈ Y , subject to the corresponding quantization functions. As for
system states, we simply write JyKs and use [SY ] for referring to the set of all Y -states.

An important operation over probabilistic expressions is world closure through as-
signment of a probability. As mentioned before, when we write [p]α, all properties of
components and connectors not constrained by α are considered to keep the same value
in the next state. World closure can be captured by the following notion of closure over
transition probability matrices:
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Definition 5 (Closure). Let Y⊆Y ′ be two sets of properties. Given a function P :[SY ]×
[SY ]→ [0, 1], the closure of P to Y ′ is the function PY

′
:[SY ′ ]× [SY ′ ]→ [0, 1] s.t.

PY
′
(s1, s2) =

{
P (s1|Y , s2|Y ) if ∀y ∈ Y ′ \ Y, JyKs2 = JyKs1
0 otherwise

where s|Y is the Y -state obtained through the restriction of s to the properties in Y .

The closure of P corresponds to extending the probabilities given by P to states
with more properties, considering that their values do not change.

Definition 6 (Interpretation of Probabilistic Expressions). The interpretation JαKsρ
of α ∈ P(Σ,X) in a system state s and an interpretation ρ of X is a pair of the form
〈Y, P :[SY ]× [SY ]→ [0, 1]〉 defined inductively in the structure of α as follows:

– Jx.p′ = tKsρ = 〈Y, P 〉

Y = {c.p : c ∈ ρ(x)} and P (s1, s2) =

{
1 if ∀c ∈ ρ(x), Jc.pKs2 = JtKs1ρc
0 otherwise

with ρc = {x.q 7→ Jc.qKs1 : q ∈ Π(type(x))}

– Jforall x : ε | αKsρ = JαKsρ′ with ρ′=ρ⊕ x 7→ JεKs

– Jforeach x : ε | αKsρ = 〈Y, P 〉
LetC=JεKs. If |C| = 0, then Y = ∅ andP is the empty function to [0, 1]. Otherwise,
let ρc=ρ⊕ x 7→ {c}, for every c ∈ C, and JαKsρc=〈Yc, Pc〉.

Y =
⋃
c∈C Yc and P (s1, s2) =

∑
c∈C

1
|C| · PYc (s1|Yc , s2|Yc)

– Jforeach x : ε minus D | αKsρ = 〈Y, P 〉
Let C=JεKs \ ρ(D). If |C| = 0, then Y = ∅ and P is the empty function to [0, 1].
Otherwise, let ρc=ρ⊕ x 7→ {c}, for every c ∈ C, and JαKsρc = 〈Yc, Pc〉.

Y =
⋃
c∈C Yc and P (s1, s2) =

∑
c∈C

1
|C| · PYc (s1|Yc , s2|Yc)

– J{α1& · · ·&αn}Ksρ= 〈Y, P 〉
Let JαiKsρ = 〈Yi, Pi〉, for i = 1, .., n. If the sets Y1, · · · , Yn are not mutually dis-
joint, then Y = ∅ and P is the empty function to [0, 1]. Otherwise,

Y =
⋃

i=1,..,n

Yi and P (s1, s2) =

n∏

i=1

Pi(s1|Yi , s2|Yi)

– J{[p1]α1 + · · ·+ [pn]αn}Ksρ = 〈Y, P 〉

Let JαiKsρ = 〈Yi, Pi〉, for i = 1, .., n.

Y =
⋃

i=1,..,n

Yi and P (s1, s2) =

n∑

i=1

pi · PYi (s1|Yi , s2|Yi)
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Notice that there are some state-dependent semantic restrictions over probabilistic ex-
pressions. If, in a given state s, an expression α does not meet these conditions, then α
does not impose any restriction in the evolution of the system state (i.e., Y = ∅).

Proposition 1. If JαKsρ = 〈Y, P : [SY ]× [SY ] → [0, 1]〉, then P is a transition proba-
bilistic matrix, i.e.,

∑
s2∈[SY ] P (s1, s2) = 1, for every s1 ∈ [SY ]. 2

The quantization of component and connector properties may invalidate an impact
model, by making pairs of constraints that were mutually exclusive, non mutually ex-
clusive anymore. Invalid adaptation action models are inconsistent (i.e., they do not
admit any interpretation) and, hence, we limit our attention to valid impact models.

Definition 7 (Semantics of Impact Models). An impact model I is valid if for every
s ∈ S , there exists at most one element 〈φ, α〉 ∈ I such that [s] |= φ. The semantics of
a valid impact model I is the DTMC 〈[S], P : [S] × [S] → [0, 1]〉 where P is defined
as follows:

If the graph of s1and s2 is not the same then P (s1, s2) = 0,
else if exists 〈φ, α〉 ∈ I s.t. s1 |= φ then P (s1, s2) = P

Ys1
α (s1|Yα , s2|Yα)

else if s1 6= s2 then P (s1, s2) = 0 else P (s1, s2) = 1

where Ys denotes the set of all properties of components and connectors in a system
state s, i.e., Ys = {c.p : d | c is a node in s, p ∈ Π(type(c)), d = dtype(p)}.

As an example, consider an impact model defined by 〈size(E)>0, α〉 with α =
(foreach x:E | x.isActive’ = true) and E=(s:ServerT|!s.isActive). Let s, s1, s2 be three
system states with servers z1, z2, z3 that only differ in the number of active servers: (i)
in s only z3 is active, (ii) in s1 only z2 is inactive and (iii) in s2 only z1 is inactive.
According to definition above, we have for instance that P (s, s1) = P (s, s2) =

1
2 and

P (s, s′) = 0, for every other system state s′ different from s1 and s2.

5 Predicting Adaptation Strategy Impact

In this section we show how the proposed impact models can be used when the adapta-
tion of the managed system is achieved through the execution of an adaptation strategy
selected from a portfolio of strategies specified in Stitch [5].

5.1 Adaptation Strategies

Strategies are built from tactics, which are Stitch’s adaptation actions. Strategies have
an applicability condition and a body. The body of a strategy σ is a tree Tσ whose edges
n → m are labelled by a guard condition, a tactic and a success condition. Once at
node n, if the guard condition is true, it means that the edge can be taken. When a
edge is taken, the corresponding tactic is executed. Upon its termination the success
condition is evaluated to determine if the tactic achieved what was expected and node
m is reached. Guards include a special symbol success capturing whether the last tactic
had succeeded or not.

2 The proof of this result and an example of application of Def. 6 can be found in the Appendix.
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An example of a strategy for Znn is simpleReduceResponseTime presented in
Fig. 2. hiLoad, hiLatency and hiRspTime are formulas expressing respectively that the
system load, latency and response time is high. hiRspTime, for instance, is defined in
terms of the average response time of the clients by:

(sum(c.expRspTime|c: ClientT)/count(c: ClientT) > MAX RSPTIME)

The body of the strategy defines that initially there are three alternatives, depending
on the load and latency of the system. If the latency is high, then a possibility defined
by the strategy is to just apply the tactic switchToTextualMode. The success condition
in this case is hiRspTime that expresses that the average response time is below a given
threshold. If the load is high, then a possibility is to apply the tactic enlistServer and,
depending on the success of the application of this tactic, either terminate with skip or
still try the application of the tactic switchToTextualMode. If neither the latency nor the
load is high, the strategy does not offer any remedy.

5.2 Strategy Selection

switchToTextualMode
hiLatency ! hiLatency ∧ ! hiLoad

! success
switchToTextualMode

success

! hiRspTime false
skip

enlistServer
hiLoad

skip
true

! hiRspTime

! hiRspTime

(exists c:ClientT | c.expRspTime > MAX_RSPTIME)

Fig. 2. A strategy for Znn.

A particular situation that requires adaptation can
typically be addressed in different ways by exe-
cuting alternative adaptation strategies, many of
which may be applicable under the same run time
conditions. Different strategies impact quality at-
tributes in different ways; thus there is a need
to choose a strategy that will result in the best
outcome with respect to achieving the system’s
desired quality objectives. To enable decision-
making for selecting strategies Stitch uses util-
ity functions and preferences, which are sensitive
to the context of use and able to consider trade-
offs among multiple potentially conflicting objec-
tives. Specifically, the process consists in select-
ing the strategy that maximizes its expected util-
ity, which entails: (i) defining quality objectives,
relating them to specific run-time conditions, and
(ii) assessing the expected aggregate utility of ev-
ery applicable strategy, based on the impact model of its tactics on the system’s quality
objectives (using utility functions and preferences).

Defining Quality Objectives Defining quality objectives requires identifying the con-
cerns for the different stakeholders. In Znn, users are concerned with experiencing ser-
vice without any disruptions, which can be mapped to specific run-time conditions such
as response time. In contrast, the organization is interested in minimizing the cost of op-
erating the infrastructure, which can be mapped to the cost of specific resources used at
run-time (e.g., active servers). In short, we identify two quality objectives: maintaining
low client response time (R), and cost (C). Table 1 summarizes the utility functions for
Znn defined by an explicit set of value pairs (where intermediate points are linearly in-
terpolated). Function UR maps low response times (up to 100ms) with maximum utility,
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whereas values above 2000ms are highly penalized (utility below 0.25), and response
times above 4000ms provide no utility. Function UC maps a increasing cost (derived
from the number of active servers) to lower utility values. Utility preferences capture
business preferences over the quality dimensions, assigning a specific weight (wUR

,
wUC

) to each one of them. In Znn, preference is given to performance over cost.

UR(wUR = 0.6) UC(wUC = 0.4)
0 : 1.00 200 : 0.99 1000 : 0.70 2000 : 0.25 0 : 1.00 2 : 0.90 4 : 0.00

100 : 1.00 500 : 0.90 1500 : 0.50 4000 : 0.00 1 : 1.00 3 : 0.30
Table 1. Utility functions and preferences for Znn

To compute the utility of a given system state s (denoted as Util(s)), we first need
to map the values of the different qualities 3 to their corresponding utility values. In a
system state with 1250 ms of response time and a cost of 2 usd/hour, based on the utility
functions defined in Table 1, we have [UR(1250),UC(2)]=[0.625, 0.9]. Finally, all utilities
are combined into a single value, using utility preferences: 0.625*0.6+0.9*0.4=0.735.

Assessing the Aggregate Utility of Strategies The expected utility of a strategy σ
in a given system state s can be formulated in terms of a tree like that presented in
Fig. 3, i.e., a labelled tree with two types of nodes — normal and chance nodes, that
alternate in consecutive depth levels of the tree. As with decision trees, chance nodes
represent situations in which the choice between the different alternatives is external
(i.e., not under the system’s control), and is governed according to a given probability
distribution function. Normal nodes, as decision nodes of decision trees, represent sit-
uations in which the choice between the different alternatives is internal. These nodes
reflect situations of non-determinism during the execution of the strategy (that arise
when more than one edge can be executed) that we assume are solved by a fair sched-
uler and, hence, all alternatives have the same probability of being taken. In this way,
all edges 〈n,m〉 of the tree are labelled with a probability p; if n is a normal node then
the edge is additionally labelled by a tactic t. For short we write, respectively, n

p

m

and n
p

t m. Chance nodes are not labelled whereas every normal node n is labelled by
a system state.

Formally, this type of labelled trees can be represented as a tuple 〈N, st, E, l〉 with
N=H∪A, where H and A are the sets of, respectively, chance and normal nodes, st is
a function that labels nodes in H with system states, E is the set of edges and l labels
edges with a probability and, optionally, a tactic. The tree defined by a strategy σ in a
given system state s, which we denote by TI(σ, s), is defined as follows.

Definition 8 (TI(σ, s)). Let σ be a strategy and s a system state. Given an impact
model It for every tactic t used in σ, TI(σ, s) is the labelled tree obtained as follows:

1. Start with an empty set of chance nodes and edges and with a single normal node
root(Tσ) labelled by [s].

3 For utility calculation, we assume a representation of system state in terms of qualities. In Znn,
we take the average of response time in all clients and the sum of the costs of active servers.
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Fig. 3. Tree for simpleReduceResponseTime and a system state with 2000 ms of response
time, and a cost of 2 usd/hour.

2. While there exists a normal node n that has not been considered before:
(a) Find the edges of Tσ that start in n and can be executed in state st(n):

En = {n 〈φ,t,ψ〉
m in Tσ : st∗(n) � φ}

where, supposing that k is the parent node of n and ψ′ is the success condition
of the edge that leads to n in Tσ , st∗(n) is the extension of st(n) with the
interpretation of success with true if ψ′ holds in st(k) and false , otherwise.

(b) For every n
〈φ,t,ψ〉

m ∈ En:
i. add m to the set of chance nodes and n

1/|E|
t m to the set of edges.

ii. for every state s′ such that p = PJIt)K(st(n), s
′) > 0, add the node ms′

labelled by s′ to the set of normal nodes and m
p

ms′ to the set of edges.

Fig. 3 presents the tree TI(simpleReduceResponseTime, s) where s is system state
with two clients (c0, c1) and three servers (z0, z1, z2). Only server z0 is active in s and is
not working in textual mode. The cost assigned to all servers is 1 and the load assigned
to z0, z1, z2 is, respectively, 2, 0 and 0. The response time for c0 is 1700 and for c1 is
2300. The considered impact models for tactics switchToTextualMode and enlistServer
were those presented, respectively, in Listings 1.1 and 1.3. For readability reasons we
represented in the figure only the part of the system state that is directly manipulated or
affected by the two tactics. Then, using the utility profile, we can calculate the utility of
the state associated with each leaf node. The expected utility of the strategy is given by
the sum of these utilities weighted by the probability of the path that leads to that node.

Definition 9 (Expected Utility of a Strategy). Given a set of impact models I, the
expected utility of a strategy σ in a system state s is given by
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n pn avg. expRspTime (ms) cost (usd/hour) UR(st(n)) UC(st(n)) Util(st(n)) pn · Util(st(n))
l1 0.4 1330 1 0.585 1 0.751 0.3004
l2 0.1 1000 1 0.75 1 0.85 0.085
l3 0.057 965 2 0.7605 0.9 0.8163 0.046529
l4 0.01425 410 2 0.927 0.9 0.9162 0.013056
l5 0.16625 1695 2 0.4025 0.9 0.6105 0.1014496
l6 0.057 565 1 0.8805 1 0.9283 0.052913
l7 0.01425 245 2 0.9765 1 0.9859 0.014049
l8 0.16625 1695 2 0.4025 0.9 0.6105 0.101496
l9 0.02 1200 1 0.65 1 0.79 0.0158
l10 0.005 670 1 0.849 1 0.9094 0.004245

total 1 - - - - - 0.734937
Table 2. Sample calculation of aggregate utility for strategy simpleReduceResponseTime

∑
n∈leaves(TI(σ,s))

pn · Util(st(n))
where pn is the product of the probabilities in the path leading from the root to n.

Table 5.2 illustrates the utility calculation for strategy simpleReduceResponse-
Time that corresponds to the tree shown in Fig. 3. Note that nodes l1 and l2 contribute
half of the utility, and that the sum of all pn assigned to leaf nodes adds to one.

6 Experimental Results

To quantify the benefits of using probabilistic impact models in Rainbow, we consid-
ered two alternative models of Znn, one using impact vectors 4 and the other using
the proposed impact models. We manually encoded the two models in the language of
PRISM [13] and assessed the quality of the models that we are able to specify in each
case by quantifying: (i) impact of tactics on the state of the target system, and (ii) impact
of strategies on system utility. In addition, both models incorporate an M/M/c queuing
model [7], which is able to compute the response time of the system based on the rate
of request arrivals to the system, number of active servers, and the service rate (i.e., the
time that it takes to service a request, which in this case is directly proportional to the
fidelity level). In our experiments, we assume that the response time computed with the
queuing model is considered as the actual response time of the system, against which
we compare the predictions made using either vectors or probabilistic models.

Using each of the alternative models, we explored a state space [S] = [1, 9]× [1, 3],
which includes the request arrival rate in the interval [1, 9] requests/s, and the number
of active servers in the interval [1, 3] (i.e., a valid system configuration can have up to a
maximum of 4 active servers). For the sake of clarity, we fixed in our experiments the
values of other variables which could have been considered as additional dimensions in
our state space (network latency is 0 ms, whereas service rate is fixed at 1 ms).

6.1 Impact of Tactics on System State

To quantify the improvement obtained using vectors with the results of employing prob-
abilistic models, we focused on the enlistServer tactic, for which we encoded two alter-
native impact descriptions:

4 The impact of individual adaptation actions is specified in terms of constant impact vectors
(called cost/benefit attribute vectors) which describe how the execution of adaptation actions
affects system quality attributes [5].
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Cost-benefit Attribute Vectors. For the vector-based version of the model, we com-
puted the average impact in response time of adding a server in all points of the ex-
plored region of the state space, making use of the M/M/c queuing model, which is
the best approximation that can be obtained, given by (

∑
s∈[S] MMc(ars, ass + 1) −

MMc(ars, ass))/|[S]|, where MMc(a, b) returns the response time for request arrival
rate a and number of active servers b. Moreover, ars and ass designate the request
arrival rate, and number of active servers in state s, respectively.

For our state space, this calculation yielded a reduction of response time of 714 ms.
Since the cost is increased in 1 unit, and fidelity is not changed by enlistServer, the
vector used in our experiments for the tactic is [−714,+1, 0].

Probabilistic Impact Models. The probabilistic version of the model employed for the
experiments is analogous to the one described in Listing 1.3.
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Fig. 4. Deviation in response time impact prediction for tactic enlistServer: cost/benefit vector
(left) and probabilistic impact model (right).

Fig. 4 shows the deviation from actual response time impact values (computed using
the M/M/c model) for tactic enlistServer. The values computed using the probabilistic
impact model (right) are much more accurate, since their deviation is far less promi-
nent than the one presented when computing impact with vectors (average deviation
∆rt in values computed using vectors is ' 315% wrt the values obtained using im-
pact models). Moreover, while the values computed using vectors are not sensitive to
context, presenting reduced deviations wrt actual response times only in states that are
close to the average (e.g., 1 server, 3-5 requests/s), values obtained with the probabilis-
tic model better approximate actual impact, reflecting the fact that a higher number of
active servers noticeably reduces the impact of the tactic on response time.

6.2 Impact of Strategies on System Utility

The use of different models to express the impact of tactics on system state also af-
fects the predictions that concern the expected utility of the system after the execution
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of adaptation strategies. To assess how utility prediction is affected by the constructs
available to express tactic impact, we included in our PRISM model an encoding of the
strategy simpleReduceResponseTime shown in Fig. 2, and computed the expected util-
ity after its execution for each of the states included in [S] for each of the alternatives.
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Fig. 5. Utility prediction for the execution of strategy reduceResponseTime based on: queuing
model, impact model, and impact vector. Lighter colors represent higher utility improvements.

Fig. 5 shows how the utility values predicted using probabilistic impact models
(center) exhibit a similar pattern to the one obtained using the queuing model (left). In
contrast, vectors (right) show an entirely different pattern, which only coincides with
the one resulting from the queuing model in the area in which the impact of tactics is
close to their average impact (i.e., when there are two active servers).

It is worth noticing that the overall average difference in utility ∆U across the state
space does not constitute a representative indicator of the accuracy of utility predictions,
since positive and negative utility deltas in different states can cancel each other (i.e.,
the average ∆U yielded by vectors is +0.113, which is closer to the one obtained with
the queuing model of +0.057, even if the absolute value of the deviation in individual
states in vectors is greater than in the case of impact models).

7 Conclusions and Future Work

In this paper we addressed the specification of impact models for self-adaptive systems
and presented a declarative language that allows one to explicitly represent the uncer-
tainty in the outcome of adaptation actions. The mathematical underpinnings of the
language were heavily influenced by the input language of PRISM [13], but its syntax
is also based on the language of structural constraints of Acme [10]. The language was
shown to have the ability to express sophisticated impact models, providing expressive
and compact descriptions. Although there is an upfront investment in learning the no-
tation and specifying these impact models compared to other approaches [17,5], the
fact that we can model variability improves reusability (e.g., across systems sharing the
same architectural style).
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We also showed how the proposed impact models can be used in the context of
Rainbow with adaptation strategies defined in the language Stitch [5], and proposed a
new method for calculating the utility of a strategy. The benefits of the proposed impact
models can be extended to other architecture-based approaches to self-adaptation that
rely on impact models for adaptation decision-making such as [17] and [14].

Regarding future work, we plan on extending our declarative language to cater to
architectural styles that support structural changes. Moreover, we plan on leveraging
and furthering formal analysis of adaptation behavior by encoding impact models de-
scribed in our language into existing tools. A third research direction aims at further
refining our approach to consider time as a first-class entity in impact models.
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Appendix

The Semantics of Probabilistic Expressions: an example

An example of probabilistic expression α presented in Section 4 is

foreach x:E | foreach y:E minus x | {x.isActive’ = true & y.isActive’ = true}

where E is (s:ServerT|!s.isActive).
Informally, α was said to express that exactly two servers are activated and that all

pairs of distinct inactive servers have the same probability of being activated. Formally,
according to Definition 6, the evaluation of this expression in a given system state s is
given by a set of properties Y of components and connectors in s and a probability func-
tion for state transitions P :[SY ]× [SY ]→ [0, 1]. Below, we show, step by step, how Y
and P are calculated, considering that the system state s has servers z1, z2, z3, z4, all but
z1 inactive. We conclude the example by showing that the informal meaning assigned to
the expression corresponds to P (s, ), i.e., the probability of making a transition from
the state where α is being evaluated to each state in [SY ].

Y =
[

c2C

Yc and P (s1, s2) =

8
<
:

X

c2C

1
|C| · PY

c (s1|Yc
, s2|Yc

) if |C| > 0

0 otherwise

– J{↵1& · · · &↵n}Ks
⇢

Let J↵iKs
⇢ = hYi, Pii, for i = 1, .., n. J{↵1& · · · &↵n}Ks

⇢ is defined if Y1, · · · , Yn

are mutually disjoint. In this case,

Y =
[

i=1,..,n

Yi and P (s1, s2) =

nY

i=1

Pi(s1|Yi
, s2|Yi

)

– J{[p1]↵1 + · · · + [pn]↵n}Ks
⇢

Let J↵iKs
⇢ = hYi, Pii, for i = 1, .., n. Then, J{[p1]↵1 + · · ·+[pn]↵n}Ks

⇢= hY, P i

with Y =
[

i=1,..,n

Yi and P (s1, s2) =

nX

i=1

pi · PY
i (s1|Yi

, s2|Yi
)

Notice that some semantic restrictions are imposed over probabilistic expres-
sions. If an expression ↵ does not meet these conditions, then J↵Ks

⇢ is not defined.

Proposition 1. If J↵Ks
⇢ = hY, P : [SY ] ⇥ [SY ] ! [0, 1]i, then P is a transition

probabilistic matrix, i.e.,
P

s22[SY ] P (s1, s2) = 1, for every s1 2 [SY ].

As an example, consider again the expression

↵ = foreach x:E |foreach y:E minus x | {x.isActive’ = true & y.isActive’ = true}

, where E=(s:ServerT|!s.isActive) and a system state s with servers zs1, zs2, zs3, zs4,
all but zs1 inactive. Through the application of the rules above, we get that
J↵Ks

; = h{}, P i

1. JEKs = {zs2, zs3, zs4}
2. J↵Ks

; = hY2 [ Y3 [ Y4, P = P2+P3+P4

3 i
3. hY2, P2i = J↵1Ks

⇢2
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In what follows we use ⊥ and > to represent, respectively, false and true. Through
successive applications of Definition 6, according to the structure of α, we have JαKs∅ =
〈Y, P 〉 s.t.:

JEKs = {z2, z3, z4}, Y = Y2 ∪ Y3 ∪ Y4 and P =
PY2 +PY3 +PY4

3
〈Yk, Pk〉 = Jα1Ksρk , ρk = {x 7→ {zk}}, for k = 2, 3, 4

JEKs \ ρ2(x) = {z3, z4}, Y2 = Y23 ∪ Y24 and P2 =
P
Y2
23 +P

Y2
24

2
〈Y2i, P2i〉 = Jα2Ksρ2i , ρ2i = {x 7→ {z2}, y 7→ {zi}}, for i = 3, 4
Y2i = Y2il ∪ Y2ir and P2i = P2il ∗ P2ir

〈Y2il, P2il〉 = Jx.isActive′ = trueKsρ2i , 〈Y2ir, P2ir〉 = Jy.isActive′ = trueKsρ2i
JEKs \ ρ3(x) = {z2, z4}, Y3 = Y32 ∪ Y34 and P3 =

P
Y3
32 +P

Y3
34

2
〈Y3i, P3i〉 = Jα2Ksρ32 , ρ3i = {x 7→ {z3}, y 7→ {zi}}, for i = 2, 4
Y3i = Y3il ∪ Y3ir and P3i = P3il ∗ P3ir

〈Y3il, P3il〉 = Jx.isActive′ = trueKsρ3i , 〈Y3ir, P3ir〉 = Jy.isActive′ = trueKsρ3i
JEKs \ ρ4(x) = {z2, z4}, Y4 = Y42 ∪ Y43 and P4 =

P
Y4
42 +P

Y4
43

2
〈Y4i, P4i〉 = Jα2Ksρ4i , ρ4i = {x 7→ {z4}, y 7→ {zi}}, for i = 2, 3

Yki = {zk.isActive, zi.isActive}, for k = 2, 3, 4
Pki(s1, s2) = 1 if Jzk.isActiveKs2 = Jzi.isActiveKs2 = >, 0 otherwise
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Y2 = {z2.isActive, z3.isActive, z4.isActive}, P2(s1, s2) =
case Jz3.isActiveKs1 = > and Jz4.isActiveKs1 = ⊥:
= 1

2 if Jz2.isActiveKs2 = Jz3.isActiveKs2 = >, 0 otherwise
case Jz3.isActiveKs1 = ⊥ and Jz4.isActiveKs1 = >:
= 1

2 if Jz2.isActiveKs2 = Jz4.isActiveKs2 = >, 0 otherwise
case Jz3.isActiveKs1 = > and Jz4.isActiveKs1 = >:
= 1 if Jz2.isActiveKs2=Jz3.isActiveKs2=Jz4.isActiveKs2=>, 0 otherwise

case Jz3.isActiveKs1 = ⊥ and Jz4.isActiveKs1 = ⊥:
= 1

2 if Jz2.isActiveKs2=> and Jz3.isActiveKs2=¬Jz4.isActiveKs2 , 0 otherwise

Y3 = {z2.isActive, z3.isActive, z4.isActive} and P3(s1, s2) =
case Jz2.isActiveKs1 = > and Jz4.isActiveKs1 = ⊥:
= 1

2 if Jz3.isActiveKs2 = Jz2.isActiveKs2 = >, 0 otherwise
case Jz2.isActiveKs1 = ⊥ and Jz4.isActiveKs1 = >:
= 1

2 if Jz3.isActiveKs2 = Jz4.isActiveKs2 = >, 0 otherwise
case Jz2.isActiveKs1 = > and Jz4.isActiveKs1 = >:
= 1 if Jz2.isActiveKs2=Jz3.isActiveKs2=Jz4.isActiveKs2=>, 0 otherwise

case Jz2.isActiveKs1 = ⊥ and Jz4.isActiveKs1 = ⊥:
= 1

2 if Jz3.isActiveKs2=> and Jz2.isActiveKs2=¬Jz4.isActiveKs2 , 0 otherwise

Y4 = {z2.isActive, z3.isActive, z4.isActive} and P4(s1, s2) =
case Jz2.isActiveKs1 = > and Jz3.isActiveKs1 = ⊥:
= 1

2 if Jz4.isActiveKs2 = > and Jz2.isActiveKs2 = >, 0 otherwise
case Jz2.isActiveKs1 = ⊥ and Jz3.isActiveKs1 = >:
= 1

2 if Jz4.isActiveKs2 = > and Jz3.isActiveKs2 = >, 0 otherwise
case Jz2.isActiveKs1 = > and Jz3.isActiveKs1 = >:
= 1 if Jz4.isActiveKs2=Jz2.isActiveKs2=Jz3.isActiveKs2=>, 0 otherwise

case Jz2.isActiveKs1 = ⊥ and Jz3.isActiveKs1 = ⊥:
= 1

2 if Jz4.isActiveKs2=> and Jz2.isActiveKs2=¬Jz3.isActiveKs2 , 0 otherwise

Finally, we can deduce that:
Y = {z2.isActive, z3.isActive, z4.isActive} and P (s1, s2) =
case Jz2.isActiveKs1=> and Jz3.isActiveKs1=> and Jz4.isActiveKs1=>:

= 1
2 if Jz2.isActiveKs2 = Jz3.isActiveKs2 = Jz4.isActiveKs2 = >, 0 otherwise

case Jz2.isActiveKs1=> and Jz3.isActiveKs1=> and Jz4.isActiveKs1=⊥:
= 1

3 if Jz2.isActiveKs2=Jz3.isActiveKs2=> and Jz4.isActiveKs2=⊥
= 2

3 if Jz2.isActiveKs2 = Jz3.isActiveKs2 = Jz4.isActiveKs1 = >, 0 otherwise
case Jz2.isActiveKs1=> and Jz3.isActiveKs1=⊥ and Jz4.isActiveKs1=>:

= 1
3 if Jz2.isActiveKs2=Jz4.isActiveKs2=> and Jz3.isActiveKs2=⊥

= 2
3 if Jz2.isActiveKs2 = Jz3.isActiveKs2 = Jz4.isActiveKs2 = >, 0 otherwise

case Jz2.isActiveKs1=⊥ and Jz3.isActiveKs1=> and Jz4.isActiveKs1=>:
= 1

3 if Jz3.isActiveKs2=Jz4.isActiveKs2=> and Jz2.isActiveKs2=⊥
= 2

3 if Jz2.isActiveKs2 = Jz3.isActiveKs2 = Jz4.isActiveKs2 = >, 0 otherwise
case Jz2.isActiveKs1=> and Jz3.isActiveKs1=⊥ and Jz4.isActiveKs1=⊥:

= 1
3 if Jz2.isActiveKs2=> and (Jz3.isActiveKs2=> or Jz4.isActiveKs2=>)

= 0 otherwise
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case Jz2.isActiveKs1=⊥ and Jz3.isActiveKs1=> and Jz4.isActiveKs1=⊥:
= 1

3 if Jz23.isActiveKs2=> and (Jz2.isActiveKs2=> or Jz4.isActiveKs2=>)
= 0 otherwise

case Jz2.isActiveKs1=⊥ and Jz3.isActiveKs1=⊥ and Jz4.isActiveKs1=>:
= 1

3 if Jz4.isActiveKs2=> and (Jz2.isActiveKs2=> or Jz3.isActiveKs2=>)
= 0 otherwise

case Jz2.isActiveKs1=⊥ and Jz3.isActiveKs1=⊥ and Jz4.isActiveKs1=⊥:
= 1

3 if {Jz2.isActiveKs2 , Jz3.isActiveKs2 , Jz4.isActiveKs2} = {>,>,⊥}
= 0 otherwise

Notice that the probability of making a transition from the state s (where the ex-
pression was evaluated) to each state in [SY ] is defined by the last case above (server
z1 is active and z2, z3 and z4 are inactive). We can see that the probability of making a
transition to any state where z1 remains active and exactly two servers among z2, z3, z4
are activated is 1

3 . Moreover, the probability of making a transition that involves acti-
vating more or less than two servers or deactivating z1 is 0. This is consistent with the
informal meaning assigned to the expression: exactly two servers are activated and that
all pairs of distinct inactive servers have the same probability of being activated.

Proof of Proposition 1

If JαKsρ = 〈Y, P : [SY ]× [SY ]→ [0, 1]〉, then P is a transition probabilistic matrix, i.e.,∑
s2∈[SY ] P (s1, s2) = 1, for every s1 ∈ [SY ].

Proof. The proof proceeds by induction in the structure of expressions α:

case (x.p′ = t) : In this case the result follows from the fact that the term t uniquely
defines the values of all properties in Y in the next state. That is, for every s1 in
[SY ], there is a single state s such that JyKs = JtKs1ρc , for every y ∈ Y . Hence, the
probability of transition to s is 1 and is 0 for any other state different from s, and
hence, the sum P (s1, s2) for all states s2 is 1.

case (forall x : ε | α) : In this case the result follows immediately from the hypothesis
of induction.

case (foreach x : ε | α) : Let C=JεKs. If |C| = 0, then Y = ∅. This implies that [SY ] =
∅ and, hence, the result is vacuosly true. Otherwise, Y =

⋃
c∈C Yc and

∑

s2∈[SY ]

P (s1, s2) =
∑

s2∈[SY ]

∑

c∈C

1

|C| · P
Y
c (s1|Yc , s2|Yc)

=
∑

s2∈[SY ]

∑

c∈C

1

|C| · Pc(s1|Yc , s2|Yc) · (s1 =Y \Yc s2)

=
∑

c∈C

1

|C| ·
∑

s2∈[SY ]

Pc(s1|Yc , s2|Yc) · (s1 =Y \Yc s2)
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=
∑

c∈C

1

|C| ·
∑

sc2∈[SYc ]
Pc(s1|Yc , s

c
2)

where (s1=Y ′s2) denotes 1 if JyKs2=JyKs1 , for every y ∈ Y ′, and 0 otherwise.
Using the hypothesis of induction for each JαKsρc , with c ∈ C, we reach the result.

case (foreach x : ε minus D | α) : Similar to the previous case.

case {α1& . . .&αn} : If n = 1, then the result follows immediately from the hypoth-
esis of induction. Without loss of generality, we will prove for the case n = 2. If
Y1, Y2 are not disjoint, as before, the result is vacuosly true. Otherwise, we have

∑

s2∈[SY ]

P (s1, s2) =
∑

s2∈[SY ]

P1(s1|Y1
, s2|Y1

) · P2(s1|Y2
, s2|Y2

)

=
∑

s12∈[SY1 ]
(P1(s1|Y1

, s12) ·
∑

s22∈[SY2 ]
P2(s1|Y2

, s22))

The last equality holds because, since Y1, Y2 are disjoint, [SY ] is isomorphic to
[SY1

]× [SY2
]. Using the hypothesis of induction for each JαiKsρ, we reach the result.

case {[p1]α1 + · · ·+ [pn]αn} : In this case Y =
⋃
i=1,..,n Yi and

∑

s2∈[SY ]

P (s1, s2) =
∑

s2∈[SY ]

n∑

i=1

pi · PYi (s1|Yi , s2|Yi)

=
∑

s2∈[SY ]

n∑

i=1

pi · Pi(s1|Yi , s2|Yi) · (s1 =Y \Yi s2)

=

n∑

i=1

pi ·
∑

si2∈[SYi ]
Pi(s1|Yi , s

i
2)

Using the hypothesis of induction for each JαiKsρ and the fact that
∑n
i=1 pi = 1, we

reach the result.
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