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Abstract

The backbone of most software architectures and component integration frame-
works is one or more architectural styles that provide a domain-specific design
vocabulary and a set of constraints on how that vocabulary is used. Today’s archi-
tectural styles are increasingly complex, involving rich vocabularies and numerous
constraints. Hence, designing a sound and appropriate style becomes an intellectu-
ally challenging activity. Unfortunately, although there are numerous tools to help
in the analysis of architectures for individual systems, relatively less work has been
done on tools to help in the design of architectural styles. In this paper we address
this gap by showing how to map an architectural style, expressed formally in an
architectural description language, into a relational model that can then be checked
for properties, such as whether a style is consistent, whether a style satisfies some
predicates over its architectural structure, and whether two styles are compatible
for composition.

1 Introduction

The discipline of software architecture has matured substantially over the past
decade: today we find growing use of standards [1,39,43], architecture-based
development methods [9,13,32], and handbooks for architectural design and
documentation [10,12]. And, as a significant indicator of engineering maturity,
we are also seeing a growing body of research on ways to formally analyze
properties of architectures, such as component compatibility [7], performance
[15], reliability [49], style conformance [44], and many others.

One of the important pillars of modern software architecture is the use of
architectural styles [5,10,12,45]. An architectural style defines a family of re-
lated systems, typically by providing a domain-specific architectural design
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vocabulary together with constraints on how the parts may fit together. Ex-
amples of common styles range from the very generic, such as client-server
and pipe-filter [45,10], to the very domain-specific, such as NASA’s Mission
Data Systems (MDS) style [18,17] and the IEEE Distributed Simulation Stan-
dard [31,2].

The use of styles as a vehicle for characterizing a family of software architec-
tures is motivated by a number of benefits. Styles provide a common vocab-
ulary for architects, allowing developers to more easily understand a routine
architectural design. They form the backbone of product-line approaches, al-
lowing the reuse of architectures across many products, and supporting com-
ponent integration. By constraining the design space, they provide opportu-
nities for specialized analysis [4]. And in many cases they can be linked to an
implementation framework that provides a reusable code base, and, in some
situations, code generators for significant parts of the system (such as [22]).

Consequently an ever-increasing number of architectural styles are being de-
fined. In many cases new styles are elaborations of existing styles. For example,
a company might constrain Java EE-based architectures [37] to support par-
ticular types of business services. In other situations new styles may be combi-
nations of other styles. For example, one might combine a closed-loop control
architecture with a publish-subscribe style to satisfy needs for monitoring of
automotive control software.

Defining a new style, however, is not an easy task. One must take care that the
system building blocks fit together in the ways expected, that each instance
of the style satisfies certain key properties, and that constraints on the use of
the style are neither too strong nor too weak. Thus defining styles becomes
an intellectual challenge in its own right. Indeed, in many ways the need
for careful design of architectural styles far exceeds the needs for individual
systems, since flaws in an architectural style can impact every system that is
built using it.

Unfortunately, despite significant progress in formal analysis of the architec-
tures for individual systems, there is relatively little to guide the style designer.
Answering questions like whether a given style specifies an appropriate set of
systems, whether it can be combined consistently with another, or whether it
retains the essential properties of some parent style, is today largely a matter
of trial and error. In fact, typically style designers cannot detect fundamental
errors in a style until someone actually tries to implement a particular system
in that style, when the cost of change is very high.

To address this gap, ideally what we would like to have is a way to formally
express and verify properties of architectural styles. Even better would be a set
of standard sanity checks that every style designer should consider. Better still,
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we would hope that many of these checks could be carried out automatically.

In this paper we describe an approach that does exactly that with respect to
structural aspects of architectural styles. Specifically, we show how to map an
architectural style, expressed in an architectural description language, into a
relational model that can be checked tractably for various properties relevant
to a style designer using existing model checkers and model generators. Ad-
ditionally, significant parts of this approach can be automated, including the
translation of a style into a relational model, invocation of a set of standard
sanity checks on styles, and reverse translation of the output of the analy-
sis tools (e.g., counterexamples) back into an architectural model where the
results of the analysis can be viewed in terms of architectural structures.

The main contributions of this work include (a) a translation scheme from
architectural style definitions into relational models, and specifically those
supported by Alloy [26,27]; (b) an enumeration of a number of important
classes of properties that a style designer should be concerned with, such as
style consistency and compatibility of two styles for merging; (c) techniques to
encode such properties in the relational model where they can be checked using
tools such as the Alloy Analyzer; and (d) performance measurements that
demonstrate the tractability of the techniques and explore size and complexity
limitations.

In Section 2 we consider related work. Section 3 discusses architectural styles:
what they are, how they can be characterized formally, and what kinds of
properties we would like them to have. Section 4 provides a brief introduction
to Alloy and the Alloy Analyzer, the target modeling language and analysis
tool that we will be using to check properties of styles. Section 5 provides an
overview of the approach and tools. Section 6 then presents the translation
approach, showing how to map formal descriptions of architectural styles into
Alloy, and highlighting places where that translation is non-trivial. Section 7
examines a variety of important style analyses and shows how to map these
into Alloy where the Alloy Analyzer can be used to check them. Section 8
demonstrates how a realistic architectural style can be analyzed using the ap-
proach presented in this paper and explores some of the performance issues
related to scaling to large-scale styles. Section 9 considers how the performance
of the analysis scales with respect to several model complexity dimensions. Sec-
tion 10 discusses the strengths and limitations of the approach, and considers
future work.

2 Related Work

There are three broad areas of related work. The first is formal representation
and analysis of software architecture. Since the inception of software architec-
ture over a decade ago, there have been a large number of researchers interested
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in formal description of architectures. These efforts have largely focused on the
definition and use of architecture description languages (ADLs) [35]. Many of
these languages were explicitly defined to support formal analysis, often using
existing (non-architectural) formalisms for modeling behavior. For example, a
number of ADLs have used process algebras [7,34] to specify abstract behavior
of an architecture, and to check for properties like deadlock freedom of con-
nector specifications. Others have used rewriting rules [25], sequence diagrams
[24], event patterns [33], and many other formal underpinnings.

This existing body of work on analysis of software architectures has primarily
focused on the problem of analyzing the properties of individual systems.
That is, given an architectural description of a particular system, the goal is
to formally evaluate some set of properties of that system. Properties include
things like consistency of interfaces [42], performance [15,47], and reliability
[43]. While many of these analyses assume that a system is described in a
particular style (such as one amenable to rate-monotonic analysis or queuing
theoretic modeling), unlike our work, the issue of analyzing the style itself is
not directly addressed.

There has been some research on ways to formally model architectural styles
and their properties. Early work on this carried out by Abowd et al. [5] mod-
eled styles using Z [48]. In that approach one can specify general properties of
architectural styles, but the work lacks explicit guidance on what properties
should be evaluated, and it does not provide any tool-assisted support for anal-
ysis. Other work has investigated formal properties of particular styles, such
as EJB [46] or publish-subscribe [16], but these have not provided any general
style-independent analyses. Finally, the Acme ADL was developed with the
specific intent of providing a way to formally define architectural styles, in
general, and to check conformance between the architecture of a system and
its purported styles, in particular [20]. As we describe later, our work builds
directly on that formalism, extending the possibilities of analysis to the styles
themselves.

The second area of related research is model-based design. Independently of
software architecture, there has been a lot of research on using models to
develop and gain confidence in systems. Most of these have been targeted to
standard general-purpose modeling notations, such as UML [39], Z [48], or
B [6], as opposed to domain-specific modeling languages, such as architectural
description languages. In this work we build on these general specification
languages using Alloy [26], one such general-purpose modeling language, as
the “assembly language” for our own analyses.

Also closely related to our research is work on model-based software engineer-
ing [40]. In particular, the work by Karsai et al. [28] adopts a similar approach
to meta-modeling in which new kinds of modeling languages and analyses can
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be defined for a particular domain. This work shares the general goals of our
approach: that it should be possible to provide customized modeling notations
and analyses to take advantage of them. However, unlike their approach, ours
is focused specifically on software architectural styles and their properties.
This makes our work less general, but at the same time allows us to tailor our
approach specifically to the needs of the architectural style designer.

A third related area is that of formal languages [23]. Since an architectural
style defines a kind of design language, some of the problems of understand-
ing a style are related to those of understanding formal languages in general.
For example, determining whether a given sentence belongs to the language
generated by a grammar is similar to determining whether the architecture of
an individual system conforms to an architectural style. Moreover formal lan-
guage results have been extended to graphs grammars, which can also be used
to represent architectural styles [36]. However, there is a significant difference
between the kinds of properties that can be checked over such grammars and
the properties we explore in this work. Specifically, the constraint languages
for defining architectural styles in ADLs like Acme include full first-order pred-
icate logic, rendering many properties of interest undecidable [38]. As a result,
in this work we take a pragmatic approach to analysis of styles, by investigat-
ing the use of model checking (or more accurately, model generating) tools for
carrying out analyses.

3 Architectural Style

Software architecture is concerned with the high-level structure and proper-
ties of a system [45,41]. Over time there has emerged a general consensus that
modeling of complex architectures is best done through a set of complemen-
tary views [12,1]. Among the most important types of views are those that
represent the run-time structures of a system. This type of view consists of
a description of the system’s components – its principle computational ele-
ments and data stores – and its connectors – the pathways of interaction and
communications between the components. In addition, an architecture of a
system typically includes a set of properties of interest, representing things
like expected latencies on connectors, transaction rates of databases, etc.

While it is possible to model the architecture of a system using generic con-
cepts of components and connectors, it is often beneficial to use a more special-
ized architectural modeling vocabulary that targets a family of architectures
for a particular domain [5,10,12,45]. We refer to these specialized modeling
languages as architectural styles. 1

1 Styles are sometimes referred to as “architecture families,” “architectural pat-
terns,” or “architectural frameworks.”
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Architectural styles have a number of significant benefits. First, styles pro-
mote design reuse, since the same architectural design is used across a set of
related systems. Second, styles can lead to significant code reuse. For example
many styles (like Java EE, .Net, and most commercial service-oriented ar-
chitectures) provide prepackaged middleware to support connector implemen-
tations. Similarly, Unix-based systems adopting a pipe-filter style can reuse
operating system primitives to implement task scheduling, synchronization,
and communication through buffered pipes. Pipe-filter styles are also seen in
modern web-based applications, such as Yahoo Pipes [3]. Third, it is easier for
others to understand a system’s organization if standard architectural struc-
tures are used. For example, even without specific details, knowing that a
system’s architecture is based on a client-server style immediately conveys an
intuition about the kinds of pieces in the system and how they fit together.
Fourth, styles support component interoperability. Examples include CORBA
component-based architectures [14] and event-based tool integration [8]. Fifth,
by constraining the design space, an architectural style often permits special-
ized analyses. For example, it is possible to analyze certain systems built in a
pipe-filter style for schedulability, throughput, latency, and deadlock-freedom.
Such analyses might not be meaningful for an arbitrary, ad hoc architecture
– or even one constructed in a different style.

Consequently, there is a large number of architectural styles that are in use
today – even if they are not formally named or defined as such. Indeed, the
recent industrial interest in product lines and frameworks invariably results
in the creation of new styles. This is because product lines and frameworks
implicitly define a family of systems, where architectural issues (such as what
kinds of components can be added, and how they are composed with other
components) are a significant part of the design. Many of these styles are
specializations or combinations of existing styles. For example, a company
specializing in inventory management might provide a specialization of Java
EE that captures the common structures in that product domain. Other styles
may be defined from scratch.

3.1 Formal Modeling of Architectures

Building on the large body of existing formal modeling techniques for component-
and-connector architectures, we model an architecture using the following core
concepts that appear in most modern ADLs [35], as well as UML 2.0 [39].

• Components: Components represent the principal computational elements
and data stores of a system. A component has a set of run-time interfaces,
called ports, which define the points of interaction between that component
and its environment.
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• Connectors: Connectors identify the pathways of interaction between com-
ponents. Connectors may represent simple interactions, such as a single ser-
vice invocation between a client and server. Or they may represent complex
protocols, such as the control of a robot on Mars by a ground control sta-
tion. A connector defines a set of roles that identify the participants in
the interaction. For example, a pipe might have reader and writer roles;
a publish-subscribe connector might have multiple announcer and listener
roles.
• Configurations: An architectural configuration (or simply architecture or

system) is a graph that defines how a set of components are connected to
each other via connectors. The graph is defined by associating component
ports with the connector roles in which they participate. For example, ports
of filter components are associated with roles of the pipe connectors through
which they read and write streams of data.
• Properties: In addition to defining high-level structure, most architectures

also associate properties with the elements 2 of an architectural model. For
example, for an architecture whose components are associated with periodic
tasks, properties might define the period, priority, and CPU usage of each
component. Properties of connectors might include latency, throughput, re-
liability, protocol of interaction, etc.

To make such definitions precise, however, we need a formal language. In this
work we use the Acme ADL [21], although other ADLs could have been used
instead. Figure 1 illustrates the basic constructs in Acme for defining con-
figurations. 3 The figure specifies a very simple repository architecture con-
sisting of two components – a database (db) and a client (client) – con-
nected by a database access connector (db access). Each component has a
single port (request and provide), and the connector through which they in-
teract has two roles (user and provider). The client has a single property
(avg trans per sec), its average number of transactions per second.

Implicit in most ADLs are a set of basic common structural constraints on
how ports, roles, components, and connectors may be combined. In Acme
these include the following constraints:

(1) Each port is associated with a unique component. That is, there are no
orphaned ports, and no port may be part of more than one component.

(2) Dually, each role is associated with a unique connector.
(3) A role may be attached to at most one port.
(4) Ports may only be attached to roles, and vice versa. Hence, components

2 We use the term “elements” to refer generically to any kind of architectural
structure: component, connector, port, or role.
3 In this paper we discuss only the aspects of Acme that are necessary to explain
our approach to style analysis. For a more details on the language see [21].
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System simple_repository_system = {
Component client = {
Port request;
Property avg_trans_per_sec: int;

}
Component db = {
Port provide;

}
Connector db_access = {
Role user;
Role provider;

}
Attachments = {
client.request to db_access.user;
db.provide to db_access.provider;

}
}

Fig. 1. Simple repository system

may only interact with other components through connectors, and con-
nectors may not be directly connected to other connectors. 4

Other potential topological restrictions are left unconstrained, but may be in-
troduced later when defining specific styles, as noted in the next section. These
include things such as the permissibility of unattached ports, unattached roles,
the existence of at least one port on a component or one role on a connector,
whether more than one role may be attached to a port, etc.

3.2 Formal Modeling of Architectural Styles

To define a style we add the following concepts:

• Design vocabulary: This can be specified as a set of component, connec-
tor, port and role types that are available for defining a specific architecture
in that style. For example, a pipe-filter style would include a pipe connec-
tor type and a filter type, and a client-server style would include a client
type and a server type, etc. Additionally, a style may define a set of prop-
erty types. For example, a property type BufferSize might be defined to
represent the buffer size of a pipe.
• Constraints: A style may also include constraints that describe the allow-

able configurations of elements from its design vocabulary. Some constraints
may restrict overall topology. For example, a pipeline architecture might
constrain the configurations to be linear sequences of pipes and filters. Or,

4 This restriction is relaxed in some ADLs, such as C2, where components may be
directly connected to other components[35].
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a N-tiered style might restrict clients from interacting directly with a back-
end database. Other constraints may be associated with specific elements.
For example, a client-server connector may be constrained to connect only
a client and a server. Constraints are therefore used to restrict the possible
configurations that may be created using the design vocabulary. Thus con-
straints determine the set of possible systems that can be created using the
building blocks defined by the design vocabulary.

A style can be formally specified as a set of architectural element types to-
gether with a set of constraints specified in first-order predicate logic. Types
may be subtypes of other types, with the interpretation that a subtype satis-
fies all of the structural properties of its supertype(s) and that it respects all
of the constraints of those supertypes. For instance, a UnixFilter component
type may be declared to be a subtype of Filter, adding an additional constraint
that there are exactly three ports, one each of type stdIn, stdOut, and stdErr.

A style naturally determines a collection of possible configurations: namely,
those whose element types are defined by the style, and whose overall struc-
ture satisfies the predicates associated with the style. We say that a system
conforms to a style if it is a member of the family of configurations determined
by that style.

Styles can be formally related to each other in various ways. One relationship
is specialization. A style can be a substyle of another by strengthening the
constraints, or by providing more-specialized versions (i.e., subtypes) of some
of the element types. For instance, a pipeline style might specialize the pipe-
filter style by prohibiting non-linear structures and by specializing a filter
element type to a pipeline “stage” that has a single input and output port.
An N-tiered client-server style might specialize the more general client-server
by restricting interactions between non-adjacent tiers. As with element types,
a substyle must respect the constraints of its superstyle, and hence defines a
subset of the possible systems that the superstyle represents.

A second important relationship is conjunction. One can combine two styles by
taking the union of their design vocabularies, and conjoining their constraints.
For example, one might add a database component to a pipe-filter system by
conjoining a pipe-filter style with a database style. In such cases it may be
necessary to also define new types of components or connectors that pertain
to more than one style, such as a component type that has filter-like behavior,
but that can also access a database.

Figure 2 illustrates the definition of a simple repository style in Acme. The
RepositoryStyle style includes definitions of various types of interfaces: Provide
and Use port types for components, and Provider and User roles for connec-
tors. The Database component type and the Access connector type provide

9



Style RepositoryStyle = {
Port Type Provide = {
invariant forall r:role in self.attachedRoles |

declaresType(r, Provider);
}
Port Type Use = {
invariant forall r:role in self.attachedRoles |

declaresType(r, User);
}
Role Type Provider = {
invariant size(self.attachedPorts) == 1;
invariant forall p: port in self.attachedPorts |

declaresType(p, Provide);
}
Role Type User = {
invariant size(self.attachedPorts) == 1;
invariant forall p: port in self.attachedPorts |

declaresType(p, Use);
}
Component Type Database = {
Port provide: Provide = new Provide;

}
Connector Type Access = {
Role provider: Provider = new Provider;
Role user: User = new User;

}
invariant
exists c: component in self.components |

declaresType(c, Database);
invariant
exists n: connector in self.connectors |

declaresType(n, Access);
}

Fig. 2. Repository style specified in Acme

the component and connector design vocabulary.

In the example the port and role types specify constraints (termed “invari-
ants”) that constrain attachments between ports and roles. Specifically, con-
straints on ports specify that a Provide port must be attached to a Provider

role, and that a Use port must be attached to a User role. The constraints on
the roles specify that each role must be attached to some port – that is, there
are no dangling connectors. The style also includes constraints on configura-
tions dictating that at least one database and one access connector must exist
in any system in this style. Although not illustrated in this example, one can
also specify properties in type definitions. For example, the Provide port type
might include a property such as max-trans-per-sec, with the meaning that
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System simple_repository_system: RepositoryStyle = {
Component client = {
Port request: Use = new Use;
Property avg_trans_per_sec: int;

}
Component db:Database = new Database;
Connector db_access:Access = new Access;
Attachments = {
client.request as db_access.user;
db.provide as db_access.provider;

}
}

Fig. 3. Repository system specified using the style

every instance of this port must provide a value for this property.

As noted earlier, constraints are first-order predicates. Acme uses a notation
similar to UML’s OCL to specify these, for example, representing universal
and existential quantification with forall and exists.

To simplify specifications of constraints Acme also provides a number of built-
in functions. For example, in Figure 2 attachedPorts returns the ports at-
tached to the role represented by self, while declaresType(e,T) returns true
if an element e is declared to have type T. The term self refers to the entity
to which the constraint is associated.

To see how this style would be used, Figure 3 shows how the system of Figure 1
would be described using the style. Note how the declaration of that system
is simplified, at the same time making explicit its commonality with other
systems that use the same style.

Although the example used above is relatively simple, in practice styles may
be quite complex. They may define a rich vocabulary of elements, and the rules
for configuration may be numerous. For example, the Mission Data Systems
(MDS) defined by NASA JPL as a style for space systems [18,17,42] includes
nine component types (actuators, sensors, etc.), twelve connector types, and
seventy nine constraints over configurations. Figure 4 shows one such con-
straints: when associated with an MDS system, it specifies that it is possible
to connect at most one controller to any of an actuator’s ports. (We will revisit
this style in Section 8.)

forall compA: ActuatorT in self.components |
numberOfPorts(compA,CommandSubmitProvPortT) > 1
-> (exists unique compC: ControllerT
in self.components |connected(compA, compC))

Fig. 4. Example constraint of the MDS style
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Definition of architectural styles such as MDS is a challenging intellectual ef-
fort. The style designer must worry about providing an expressive and appro-
priate vocabulary, as well as making sure that the style contains appropriate
constraints. If the constraints are too strong, it will rule out systems that
should be included; if too weak, it will allow configurations that should not
be permitted.

4 Alloy

Alloy 5 is a modeling language based on first-order relational logic [26,27]. An
Alloy model represents a set of instances, and is defined using signatures and
facts. Signatures provide the vocabulary of a model by defining the types of
objects in the model and relations between those objects. Facts are Boolean
expressions that every instance of a model must satisfy, thus restricting the
instance space of the model. Consider the following Alloy model:

module publication
sig Person {}
sig Book {author: Person}
sig Autobiography extends Book {}
fact {
all disj b1,b2:Autobiography | b1.author!=b2.author

}

Three Alloy signatures are defined: Person, Book, and Autobiography. The
author relation is defined over Book and Person. The Autobiography signature
is defined using signature extension as a subtype of the Book type. A global
fact in the above example prescribes that a person cannot write two autobi-
ographies. It uses the Alloy keyword disj which enforces the two quantified
objects are distinct.

The semantics of Alloy’s subtyping is that of subsets. Additionally, any two
subtypes of a type are disjoint: they share no element. There are two built-in
types in Alloy: univ and none. univ is the supertype of all other types (and
includes all elements), and none is the subtype of all other types (and includes
no element).

Models written in Alloy can be analyzed by the Alloy Analyzer, which searches
for an instance of an Alloy model. Depending on the type of command to exe-
cute, the Alloy Analyzer can be used either as a prover which finds a solution
that satisfies a given predicate, or as a refuter which finds a counterexample
that violates a given assertion.

5 For this research we used Alloy Version 4.
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The Alloy Analyzer is a bounded checker, guaranteeing the correctness of the
result only within a bounded instance space. The maximum number of objects
for each top-level type can be specified when giving the Analyzer a command
to execute.

Consider the following Alloy model, which extends the previously defined
publication model by additionally defining a command to execute:

module analysis
open publication
pred good_world[] {
all p: Person | some b: Book | b.author = p

}
run good_world for 5

When executed, the Alloy Analyzer searches for a solution that satisfies the
predicate good world, which claims that it is possible for every person to write
at least one book. The solution should have no more than five objects for each
top-level type (Person and Book in this example).

We will introduce additional details of the Alloy language as necessary to
explain our use of it for modeling architectural styles. For further information
about Alloy refer to [27].

5 Overview of Approach

As illustrated in Figure 5, our overall approach is to provide a translation
scheme to map Acme style specifications into Alloy models. In addition, we
provide a way to specify (in architectural terms) analyses that we wish to carry
out on that style. These are translated into Alloy analysis specifications that,
in combination with the translated style and a set of baseline shared definitions
(Common Model in the figure) can be performed by the Alloy Analyzer. Results
from the Alloy analysis are then automatically mapped back to architectural
specifications in Acme, where style designers can use them to improve their
style specifications.

In the next section we examine in detail how we map styles to Alloy. Examples
of common analyses for architectural styles and their translation to Alloy are
discussed in Section 7.

6 Representing Styles in Alloy

We now present our style translation scheme, illustrating the ideas with the
repository style presented in Section 3. We begin with a high-level overview
and then consider in more detail how styles are translated.
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Fig. 5. Overall flow of style analysis

To translate a style into a relational model such as Alloy one must handle four
things.

1. Basic architectural types and relations: Our approach is to encode
the four basic element types (components, connectors, ports and roles) as
top-level Alloy signatures. Containment and attachment relations are en-
coded as binary relations between the respective types. A system can then
be encoded as a top-level signature containing sets of components and con-
nectors.

2. Style-specific architectural types: The element types defined by a spe-
cific style are modeled as Alloy signatures extending the signature of their
respective supertypes. For example, the Database type in the repository
style is modeled as a signature extending the Component signature. This ap-
proach naturally accommodates new architectural types defined as subtypes
of other style-specific types. Here we exploit the crucial point of agreement
between an ADL (like Acme) and Alloy that subtyping is viewed as a subset
relationship.

3. Constraints: Architectural constraints are modeled in a straightforward
way as Alloy formulae, since both are expressed in predicate logic. Com-
mon constraints (in the Common Model of Figure 5) are modeled as Alloy
facts that must be satisfied. Style-specific constraints are modeled as Alloy
predicates that can be selectively enabled depending on the type of analysis.

4. Functions and Expressions: As noted earlier, Acme provides a set of
built-in functions (such as connected(c1,c2) that test for the existence of
a direct connection between two components) that are crucial for making it
easy to express constraints in natural architectural terms. To handle these,
we use Alloy functions. Additionally one must handle the data types in
constraint expressions. Integers and sets are straightforward, because Alloy
supports these directly. However, care must be taken for other expressions
like floats, strings.
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To carry out the translation we begin by defining a common Alloy model,
cnc view, that models the generic style-independent architectural types (com-
ponent, connector, port, role, and system) and the implicit constraints that
every architectural model must obey (as enumerated in Section 3.1). Next we
translate an individual style into an Alloy model that imports the common
model so that generic style constraints are enforced in the translated model. If
a style is derived from other styles, those superstyles must also be translated
into their own models, and imported into the translated substyle.

Mechanically, the translation of a style is a multi-step process. First the target
style is parsed. The parsed style is then preprocessed to mitigate some of the
modeling incompatibilities between Acme and Alloy and to reduce the size
of the translated model. For example, as explained later, certain Acme data
types that are missing in Alloy are converted into integers. The translation
scheme is then applied to the preprocessed Acme style. Once translated, the
resulting Alloy model is optimized to make analysis run faster.

In the remainder of this section we first show how generic element types and
implicit constraints are translated into Alloy. Then we show how a style is
translated. 6 Along the way, we consider some of the areas where style trans-
lation is problematic, or where there are alternative approaches for translation
that might have been chosen.

6.1 An Alloy Model for Shared Architectural Concepts

We model the basic element types as top-level Alloy signatures. The architec-
tural relations, specifically containment and attachment relations, are modeled
as Alloy relations. Additionally, Alloy facts are added to enforce implicit ar-
chitectural constraints. Consider the following Alloy model:

module cnc_view
sig Component {ports: set Port, system: System}
sig Connector {roles: set Role, system: System}
sig Port {comp: Component}
sig Role {conn: Connector, attachment: lone Port}

one sig self extends System {}
abstract sig System {components: set Component,

connectors: set Connector}

fact {~ports = comp && ~roles = conn}
fact {~components = Component<:system}

6 In this paper we define the translation rules informally. Formal translation rules
can be found in [30].
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fact {~connectors = Connector<:system}

There are four top-level signatures to model the basic element types and a
System signature to model a system. Note that System signature is defined as
abstract, meaning that the signature cannot have an object without explicitly
extending it. In the model above the self signature extends the System sig-
nature, and it is defined with the Alloy keyword one, thereby restricting the
signature to be a unique. This naming scheme allows us to use the term self

when we want to refer to the system being analyzed.

Containment relations (e.g., between ports and components) are defined as
Alloy relations. First, ports and roles relations identify the set of ports or roles
a component or connector has, respectively. comp and conn relations identify
the parent component or connector that a port or role belongs to. Likewise,
components, connectors, and system relations model the containment relation
between components or connectors and systems.

The attachment relation between ports and roles is defined as the attachment

relation, which identifies a port to which a role may be attached. Since, in
general, a role need not be attached to a port, it is modeled as an optional
relation using the Alloy keyword lone, which indicates zero or one.

By themselves, the signatures of cnc view model above provide the basic vo-
cabulary of generic architectural structure. They naturally encode the fact
that ports are part of components. (For example, we may access the ports of
a component c with the expression c.ports.) The same applies to connectors
and roles.

However, we also need to make sure that any declared port or role is associated
with the right component or connector, respectively. To do this we add an
additional fact in the model, which states that comp is the inverse relation of
port and that conn is the inverse relation of roles by using the Alloy inverse
relation operator ~. This fact guarantees that if a port appears in the set of
ports owned by a component, that component will also be the parent of the
port. The same applies to a role and a connector. Similarly, it is guaranteed
that if a component or connector belongs to a system, the system will also
be the parent of the component or connector. The Alloy operator <: denotes
domain restriction, which is used here to disambiguate two system relations.

This encoding is certainly not the only way of modeling the basic architectural
concepts in Alloy. In an earlier version of our translation scheme, for exam-
ple, we included a shared supertype of all architectural element types, called
Element [29]. However, we found that removing the shared supertype gave
more control over the search space when executing the Alloy Analyzer, result-
ing in larger scope of analysis in the same execution time. In our current ap-
proach Element is translated into the union Component+Connector+Port+Role
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for the same purpose.

Another alternative would be to remove redundant relations. In the model
above, for example, ports and comp depend on each other. Therefore, formally
speaking, one is redundant and could be removed by replacing its occurrence
with the inverse relation of the other. If comp is removed, however, one would
have to add additional facts to ensure that ports and roles have unique owners.
Without those facts the inverse of ports may not be a function, i.e., a port
may belong to more than one component or to no component at all. The same
reasoning for redundant relations applies to other containment relations.

6.1.1 Built-in functions

As illustrated earlier, Acme provides a collection of built-in functions that are
used for various purposes in constraint expressions: to check type conformance
or structural connectivity, to access the parent of an element, or to manipulate
sets. For example attached(r,p) returns true if role r is attached to port p.

Alloy allows one to define functions, thereby providing a natural way to encode
such built-in functions. An exception is that for the built-in functions returning
a Boolean value we use Alloy predicates rather than functions that return a
Boolean. Since Alloy has no built-in support for Booleans, one would otherwise
have to create these as user-defined signatures. Hence the use of predicates
makes analysis more efficient, not requiring extra signatures and the need to
encode (and decode) Boolean values.

The following are the Alloy translations of the built-in functions used in the
examples of this paper. 7 These predicates augment the cnc view model pre-
sented above.

pred declaresType [element: univ, type: set univ] {
element in type

}
pred attached [r: Role, p: Port] {

r -> p in attachment
}
pred attached [n: Connector, c: Component] {

n -> c in roles.attachment.component
}
pred connected [c1: Component, c2: Component] {

some c1.ports.~attachment.connector & c2.ports.~attachment.connector
}

The Alloy operator -> represents a binary relation between scalars. The opera-
tor in tests the subset relation. The dot operator is relational join. In the pred-

7 For the full translations of built-in functions see Appendix A.
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icates above, the roles relation is from Connector to Role, the attachment rela-
tion is from Role to Port, and the component relation is from Port to Component.
Therefore, the roles.attachment.component relation is from Connector to
Component.

As illustrated above, some built-in functions are overloaded. Here attached

can be applied to a role and a port, returning true if they are attached. It can
also be applied to a component and a connector, returning true if a role of
the connector is attached to a port of the component. Because these functions
have different parameter types, Alloy can resolve these overloaded function
names automatically.

6.2 Translating a Style

We now look at how we translate an Acme style into an Alloy model using
the repository style introduced in Figure 2 as a running example.

The translation of a style consists of the translation of its types and its con-
straints. Note that the common model cnc view, which contains basic def-
initions for built-in features of Acme language, is imported using the open

command. The overall structure of a translated Alloy model will look like
this:

module RepositoryStyle
open cnc_view
// translations of type definitions
...
// translations of constraints
...

6.2.1 Translating type definitions

After translation each new port and role type becomes an Alloy signature
extending the top-level signature, Port or Role respectively, either as an im-
mediate subtype or a subtype of another port or role signature. The same
is true for each component and connector type with respect to the top-level
signature Component or Connector, respectively.

To illustrate, the translation of the port, role, component and connector types
of the repository style is as follows:

sig Use extends Port {}
sig Provide extends Port {}
sig User extends Role {}
sig Provider extends Role {}
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sig Database extends Component {provide:Provide}
sig Access extends Connector {provider:Provider, user:User}

When a subtype is defined in Alloy, all the fields defined in its supertypes are
automatically made available in the subtype definition. For example, suppose
there is a role user of User type. Then an expression like user.attachment is
valid since attachment is defined in the supertype Role.

The same principle holds for style-specific types that are defined as subtypes of
other style-specific types: fields of the supertype are available to the subtype.
Thus we exploit the natural congruence between “subtyping as subsetting”
that exists in both Acme and Alloy.

One important issue for this translation step is that the uniqueness of ports
and roles is not guaranteed with the translation above. Suppose there are two
instances a1 and a2 of the Access connector type. With the model above it is
possible that a1.user and a2.user could refer to the same role. Furthermore,
it is also not enforced that the type-specific ports and roles are included in the
ports and roles relations defined in the Component and Connector signatures,
respectively. Hence, to enforce the rules of valid structure extra constraints
are needed. Consider the additional Alloy fact added to the translation above:

fact {
(Database<:provide) in ports
(Access<:provider + Access<:user) in roles

}

The Alloy binary operator <:, denoting domain restriction, is used to disam-
biguate overloaded relations by giving a specific domain, which in this case
is either a component type or a connector type. The keyword in denotes set
inclusion. Thus by using two such facts we can guarantee that all the type-
specific ports and roles are included in the ports and roles relations. As a
result, a1.roles always gives all the roles that belong to just the connector a1

regardless of its type. The same is true for components.

From this it can be inferred that all such type-specific ports and roles are
unique. Recall that the inverse of the ports and roles relations, which are
comp and conn relations respectively, are functions. Thus, there cannot be a
port or a role that belongs to more than one component or one connector.

Every port or role of components or connectors in a style is similarly included
in Alloy facts as above. The translation function automatically generates the
facts by scanning the type definitions of a style.
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6.2.2 Translating property types and expressions

Like other ADLs, Acme supports various property types. Primitive property
types in Acme are integer, string, float, enumeration, and boolean. Compound
type constructors supported in Acme are set, sequence, and record. Alloy, on
the other hand, currently supports only integer, boolean, and object expres-
sions. Thus, the translator must map the property types and expressions of
Acme into the supported types in Alloy.

During preprocessing, string, enumeration, and float types are converted into
integer types, while their values are encoded as integer values. Thus after pre-
processing there remain only two primitive property types and expressions to
translate: integer and boolean. During the translation both types are trans-
lated into integer object types in Alloy.

To translate Acme’s three compound property type constructors (set, se-
quence, record) is straightforward: set and sequence types are directly trans-
lated into the corresponding types in Alloy; record types are translated into a
new signature with each field recursively translated as necessary.

6.2.3 Translating constraints

Translation of Acme constraints is straightforward because constraints are
modeled as boolean expressions in both Acme and Alloy. When carrying out
the translation we translate “local” constraints separately – those that are at-
tached to individual types – from “global” constraints – those that are included
at the system level. Each of these is included in its own named predicate. This
is done to support analyses that need to refer to these separately, such as
showing that some global constraint is implied by the local constraints.

To illustrate, the following Alloy constraints represent the translation of the
local and global constraints in the repository style:

pred RepositoryStyle_constraints_local[] {
all self: Provide |

(all r: self.~attachment | declaresType[r, Provider])
all self: Use |

(all r: self.~attachment | declaresType[r, User])
all self: Provider |

(#(self.attachment) = 1) &&
(all p: self.attachment | declaresType[p, Provide])

all self: User |
(#(self.attachment) = 1) &&
(all p: self.attachment | declaresType[p, Use])

}
pred RepositoryStyle_constraints_global[] {
some c: self.components | declaresType[c, Database]
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some n: self.connectors | declaresType[n, Access]
}
pred RepositoryStyle_constraints[] {
RepositoryStyle_constraints_local()
RepositoryStyle_constraints_global()

}

The translation of each local constraint always begins with a universal quan-
tification using self as the name of bound variable. Use of the variable self

simplifies the translation functions because it is a built-in object name in
Acme, representing the element that the local constraints are applied to. Us-
ing this approach, constraints can be translated in a uniform way regardless
of whether they are local or global.

6.3 Optimization

A key issue when using any tool that relies on exhaustive state exploration is
tractability. If representations are not chosen carefully, the size of model that
can be explored in a reasonable amount of time may be seriously limited.

While we defer the discussion of overall performance analysis until later, we
note that an important step in our translation scheme is optimization. One
notable optimization that we apply is to exploit Alloy’s built-in capability to
perform relational joins. We can use this capability to eliminate certain forms
of quantifier nesting. 8

Specifically, a common form of constraint in a style definition is to specify
restrictions on ports or roles. For instance one might restrict the types of
ports that can be placed on a given type of component. Because a port or role
can only be accessed through its parent, such constraints result in two levels
of quantification, as illustrated below.

invariant forall c:T in self.components |
forall p in c.ports | predicate(p)

This constraint asserts that predicate(p) must hold for every port of every
component of T type. (Here self refers to the system as a whole, so that
self.components is the set of components in that system.) Note that two
levels of quantification are needed, and the quantified variable c is not used
in the body of the predicate. Without optimization the corresponding Alloy
predicate will look like this:

all c in (self.components & T) | all p in c.ports | predicate[p]

8 As we will see later, quantifier nesting causes an exponential increase in analysis
time.
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During optimization, however, the outer quantification is removed, and the
occurrences of its bound variables are replaced with the expression for its
range. Thus, after optimization the predicate above is simplified to this:

all p in (self.components & T).ports | predicate[p]

Specific examples of this kind of optimization are illustrated in Section 7.5.

7 Analyzing Styles

We now show how translated architectural styles can be analyzed using the
Alloy Analyzer. Our approach is to provide style designers with an analysis
generator that can generate various forms of Alloy specifications for analysis.
Supported analyses include checking of:

• consistency of a style
• constructability of specific architectural configuration
• properties of a style
• equivalence of global and local constraints
• style compatibility
• consistency of hybrid types

To carry out an analysis over a style the analysis generator takes one or more
styles as input, together with a specification of predicate to check against in-
stances of that style. The analysis generator can also take as input a predicate,
and then checks that the predicate implies the satisfaction of the constraints
of the styles. The output of the analysis generator in this case is an Alloy
model that imports the translated styles and includes a command to test the
predicate.

The Alloy Analyzer will take the generated Alloy model and execute the in-
cluded command over the instances of the translated style, each of which
corresponds to a constructible system using the style. There are conceptually
two types of command: one is to find an instance that passes the test, and the
other is to find a counterexample that fails the test. These correspond to dif-
ferent kinds of Alloy analysis models, as detailed later. In both cases, instances
are back-translated to systems of the original style for further investigation.

As noted in Section 4 the Alloy Analyzer is a bounded checker and therefore
requires the user to set scope of analysis in the form of the maximum number
of objects for each top-level signature. Under our translation scheme there are
five top-level signatures: component, connector, port, role, and system. The
system signature is constrained to be a singleton, reflecting the fact that we
are interested in analyzing individual systems. A style designer can specify the
bounds of the other top-level elements when generating an analysis model. If
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left unspecified, the analysis generator uses a default bound of 10 components,
10 connectors, 20 ports, and 20 roles. 9

Let us now see how this works for specific kinds of analyses that are relevant
to style designers.

7.1 Checking the Consistency of a Style

A style is consistent if there exists at least one architectural configuration that
conforms to the style (i.e., that satisfies the style’s architectural constraints).
Consistency checking is the most basic analysis to make sure that there are
no internal contradictions within a style.

Style consistency can be checked simply by using the Alloy Analyzer to find
an instance of the translated model of the style: if an instance is found, the
style is consistent. If no instance can be found, the style cannot be satisfied
by any model up to the specified bound on model size.

Consider the previous example of the repository style shown in Figure 2. Sup-
pose the first two universal quantifications of the constraints had been mis-
takenly written, erroneously interchanging User and Provider:

Style RepositoryStyle = {
Port Type Provide = {
invariant

forall r in self.attachedRoles | declaresType(r, User);
}
Port Type Use = {
invariant

forall r in self.attachedRoles | declaresType(r, Provider);
}
...

}

The input to the analysis generator is simply:

Check RepositoryStyle

The output of the analysis generator is the Alloy description:

module analysis
open cnc_view
open RepositoryStyle
run RepositoryStyle_constraints for 10 but 20 Port, 20 Role

9 It is usually the case that the number of ports and roles required to construct a
system is more than the number of components and connectors.
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Since no specific bounds were indicated the scope is taken to be the default:
up to 10 components and 10 connectors, and up to 20 ports and 20 roles.
When executed, the Alloy Analyzer reports that no instance can be found
within the specified scope. At this point a style designer must decide whether
to investigate the style for conflicting constraints or to expand the scope of
search.

7.2 Checking the Constructability of Specific Architectural Configurations

While consistency checking formally establishes the existence of some systems
in the style, in most cases this is not as strong a check as we might like. In
particular, we may want to explore whether there exist systems that include
certain kinds of structure. Such structures may represent configurations that
we would expect to be consistent with the style specification. Or, they might
be configurations that we would expect not to be representable in the style.

To check if a specific architectural configuration is constructible using a style,
it is necessary to translate the architectural configuration of interest into Alloy
facts that require this configuration be present in the instances of the trans-
lated style. If the Alloy Analyzer can find an instance of the translated style,
supplemented with the additional facts, the specific architectural configuration
is constructible.

As an example, suppose that the repository style designer wants to make
sure that it is possible for two components to access a database at the same
time. To check this, we specify as input to the analysis generator the following
command. (Note the use of Acme syntax to specify the structure.)

Check RepositoryStyle Using

component c1 = {port use:Use = new Use;}
component c2 = {port use:Use = new Use;}
connector a1:Access = new Access;
connector a2:Access = new Access;
component d:Database = new Database;

attachment a1.user to c1.use;
attachment a2.user to c2.use;
attachment a1.provider to d.provide;
attachment a2.provider to d.provide;

The analysis generator will create an Alloy model that augments the translated
style with Alloy facts that require any instance of the translated model to have
two components connected to the same database. Specifically, the following
Alloy model will be produced:
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module analysis
open cnc_view
open RepositoryStyle

one sig c1 extends Component { use: Use }
one sig c2 extends Component { use: Use }
one sig a1 extends Access {}
one sig a2 extends Access {}
one sig d extends Database {}

fact { c1<:use + c2<:use in ports }
fact { a1.user.attachment = c1.use

a2.user.attachment = c2.use
a1.provider.attachment = d.provide
a2.provider.attachment = d.provide

}
run RepositoryStyle_constraints for 10 but 20 Port, 20 Role

When executed, the Alloy Analyzer returns an instance that satisfies the ad-
ditional facts, confirming that it is possible to have two components connected
to the same database.

In a similar way one can check that some undesirable configuration cannot
exist. For instance, to check that no architecture in this style can have two
databases the style designer would request the system to produce an instance
of a system in this style that does have that property. Any system produced
by Alloy will represent a counterexample.

7.3 Checking Properties of a Style

While constructability checking demonstrates the existence of a system (in
a given style) that includes specific structures, it requires style designers to
explicitly describe those structures. As a more general alternative, style de-
signers can check if certain properties of a style hold for all of its constructible
systems.

A property of a style can be checked by invoking the Alloy Analyzer with an
assertion that all instances of the translated style must satisfy the property.
The Alloy Analyzer then attempts to find a counterexample – i.e., an instance
that does not satisfy the property. If one is found it indicates that the property
is not guaranteed by the style.

Consider the property of the repository style that every system of the style
must have at least one component with a Use port. The input to the analysis
generator is as follows. (Note the use of an Acme predicate to specify the
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property.)

Check RepositoryStyle Satisfies
exists c in self.components |
exists p in c.ports | declaresType(p, Use)

The output of the analysis generator is the following analysis model, which
asserts that all instances of the repository style within the scope of analysis
have at least one component that has a Use port. 10

module analysis
open cnc_view
open RepositoryStyle
check { RepositoryStyle_constraints[] =>
some p: self.components.ports | declaresType[p, Use]

} for 10 but 20 Port, 20 Role

When executed the Alloy Analyzer reports that there is no counterexample
that violates the assertion within the specified scope. As an aside, note that
we would expect this result to be the case, since the Acme constraints require
that there be a connector of Access type that has a role of User type, and that
it must be attached to a port of Use type. Thus, there must be a component
that has a Use port.

7.4 Checking Global and Local Constraint Equivalence

There are often several ways in which one can incorporate constraints into
a style. One is to do it at a global level. For example, Figure 4 illustrated
a global constraint (or universally quantified predicate) for the MDS style
that expresses a property about all attachments to ports of actuators. An
alternative is to include local constraints associated directly with the ports
and roles to achieve an equivalent effect.

In general, global constraints are easier to understand and specify. However,
local constraints are more efficient to evaluate incrementally by tools, and
may provide better error reporting when they are violated. As a consequence,
it is sometimes useful to specify constraints locally, and then check that they
collectively imply some global constraint. For this reason we may be interested
in checking the equivalence of global and local constraints.

Consider the example of the repository style, where each port and role type
has local constraints restricting the way they can be attached – specifically
that Use roles can only be attached to User ports, and that Provide roles can

10 The nested existential quantifications have been simplified using the optimization
technique explained in Section 6.3.
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only be attached to Provider ports. Suppose the style designer is considering
an alternative using global constraints to specify the same thing. The style
designer can check the equivalence between these two forms as follows:

Check RepositoryStyle Locally Iff
forall c in self.components | forall p in c.ports |
forall n in self.connectors | forall r in n.roles |
attached(r,p) =>
(declaresType(p, Use) <=> declaresType(r, User)) &&
(declaresType(p, Provide) <=> declaresType(r, Provider))

As the result the following Alloy specification will be generated. The local
constraints of the repository style should imply the alternative global version,
and vice versa. Note that the original global constraints of the style are also
included in the assertion.

module analysis
open cnc_view
open RepositoryStyle
check {
RepositoryStyle_constraints_global[]
RepositoryStyle_constraints_local[] <=>
{ all p: self.components.ports |
all r: self.connectors.roles |

attached[r,p] =>
(declaresType[p, Use] <=> declaresType[r, User]) &&
(declaresType[p, Provide] <=> declaresType[r, Provider])

}
} for 10 but 20 Port, 20 Role

When executed, the Alloy Analyzer reports that there is a counterexample
that violates the assertion. This means that the local constraints of the repos-
itory style and the alternative in global format are, in fact, not equivalent. In-
spection of the counterexample reveals that the alternative global constraints
permit a system to have unattached roles of User or Provider type, while this
is prohibited by the original local constraints.

7.5 Checking Style Compatibility

It is often the case that real world systems combine multiple styles. Unfortu-
nately, not all styles can be used together because they might not be compat-
ible. Two styles are compatible if any system satisfying the constraints of one
style also satisfies the constraints of the other. Note that this definition still
allows each style to have its own types and constraints over them. But where
constraints refer to types in both styles, they must be consistent. In other
words, when styles are compatible, any system of an individual style should
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still be constructible using the merged set of styles.

Consider the case of merging the previously defined repository style and a
new pipe-filter style shown below (after translation and simplification). We
will test if these two styles are compatible.

module PipeAndFilter
open cnc_view

sig Input extends Port {}
sig Output extends Port {}
sig Source extends Role {}
sig Sink extends Role {}

sig DataSource extends Component {output: Output}
sig DataSink extends Component {input: Input}
sig Filter extends Component {input: Input, output: Output}
sig Pipe extends Connector {source: Source, sink: Sink}

fact {
(Filter<:input + Filter<:output +
DataSource<:output + DataSink<:input) in ports
(Pipe<:source + Pipe<:sink) in roles

}
pred PipeAndFilter_constraints[] {
all r:Input .~attachment | declaresType[r, Sink]
all r:Output.~attachment | declaresType[r, Source]
all r:Source | one p:Output | attached[r, p]
all r:Sink | one p:Input | attached[r, p]
some Filter
some Pipe
all p:Filter.ports | declaresType[p, Input] || declaresType[p, Output]
all r:Pipe.roles | declaresType[r, Source]|| declaresType[r, Sink]

}

The last two predicates constrain the allowed port or role types in a filter or a
pipe. In the original Acme specification they were expressed using two levels
of quantification (i.e., forall f:Filter in self.components | forall p in

self.ports |...). After translation and optimization this is reduced into one
level of Alloy quantification (cf., Section 6.3).

The following command is provided as input to the analysis generator.

Check RepositoryStyle,PipeAndFilter Compatibility

The following Alloy model will be generated, asserting bi-implication between
the constraints of the repository style and the constraints of the pipe-filter
style.
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module analysis
open cnc_view
open RepositoryStyle
open PipeAndFilter
check {
RepositoryStyle_constraints[] <=> PipeAndFilter_constraints[]

} for 10 but 20 Port, 20 Role

When executed the Alloy Analyzer reports that there is a counterexample,
indicating that certain systems are not constructible using the merged style.
Further inspection reveals that constraints in the pipe-filter style imply that
every system must contain at least one Filter component and Pipe connector
– something that systems of the pure repository style cannot satisfy.

7.6 Checking Hybrid Types

A more interesting (and practical) use of multiple styles is the situation in
which a system contains architectural elements of hybrid types – created by
combining types from different styles. When merging multiple styles, it is
helpful to check if instances of such types can exist.

Building on the previous example of checking the compatibility of the reposi-
tory style and the pipe-filter style, let us assume that we want to check if there
can be a filter that at the same time can access to the database. The following
is the input to the analysis generator to check this. A filter component with
a Use port (to access the database) is declared as being part of the required
structure (similar to the constructability analysis above).

Check RepositoryStyle,PipeAndFilter Using
component userFilter: Filter
= new Filter extended with {port use: Use = new Use;}

The result is the following analysis model, which checks the existence of such
a hybrid filter.

module analysis
open cnc_view
open RepositoryStyle
open PipeAndFilter

one sig userFilter extends Filter {use: Use}
fact{ userFilter<:use in ports }
run {
RepositoryStyle_constraints[] && PipeAndFilter_constraints[]

} for 10 but 20 Port, 20 Role
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When executed, the Alloy Analyzer reports that there is no solution within
the specified scope, indicating that it is not possible for a filter to access
a database. Inspection of the constraints of the pipe-filter style reveals that
the original filter definition allows only ports of Input or Output type, which
prevents a filter from having an extra port of Use type.

8 Case Study: MDS Style

To investigate the applicability of our approach to realistic examples, we for-
malized and analyzed NASA’s Mission Data System (MDS) [18,17,19,42].
MDS is an experimental architectural style for NASA space systems devel-
oped at the Jet Propulsion Lab. It consists of a set of component types (e.g.,
sensors, actuators, state variables), and connector types (e.g., sensor query). It
also includes a number of rules that define legal combinations of those types.
When modeled in Acme the MDS style consists of 9 component types, 12 con-
nector types, 22 port types, 22 role types. The component types included in
MDS are summarized in Figure 6.

Figure 7 illustrates a simple system constructed using the MDS style. It uses
7 component types and 7 connector types of the MDS style to define a simple
temperature control system. A temperature sensor (TSEN) feeds sensed data
to a temperature estimator (TEST), which in turn updates a temperature state
variable (CTSV). The health status of the temperature sensor is stored in SHSV.
An executive component (EXEC) sets the target temperature, while a controller
(TCON) sends commands to a heater actuator (SACT).

MDS also included a set of 19 rules that specify what is a valid MDS configu-
ration. These were initially defined in English and had to be hand translated
into Acme constraints, which resulted in 79 Acme constraints for the style.
(Appendix B contains a list of the rules as specified by NASA engineers, and
[30] contains the full Acme specification of this style.)

A simple example of such a rule is “For any given Sensor, the number of
Measurement Notification ports must be equal to the number of Measurement
Query ports (rule R5A)”. In general, however, MDS rules are much more
complex. For example, one of their rules reads:

Every estimator requires 0 or more Measurement Query ports. It can be
0 if estimator does not need/use measurements to make estimates, as in
the case of estimation based solely on commands submitted and/or other
states. Every sensor provides one or more Measurement Query ports. It can
be more than one if the sensor has separate sub-sensors and there is a desire
to manage the measurement histories separately. For each sensor provided
port there can be zero or more estimators connected to it. It can be zero
if the measurement is simply raw data to be transported such as a science
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SchedulerT A scheduler component is used to coordinate real-time
scheduling of taskswith and MDS architecture.

ExecutableT A component type that is combined with other component
types to designate a component as one that is associated with
a separate thread

ExecutiveT A component that sets high-level objectives of and MDS sys-
tem.

ControllerT A controller is responsible for delegating the goals to other
states, or for issuing commands to adaptors to achieve the
state, if there are goals associated with a state variable.

ActuatorT An actuator represents the interface between a controller and
the hardware. Commands are issued to actuators to get the
spacecraft to do something.

EstimatorT An estimator is responsible for examining all of the available
cues (other states, sensors, or goals) and updating state vari-
ables periodically to provide a current best estimate of the
states value based on available evidence (command history,
other states, sensor values, etc.).

SensorT A sensor represents an interface to hardware sensor, for use
by estimators.

StateVarT A state variable contains the record of the state over time,
and goals associated with the state.

HealthStateVarT A health state variable stores a discrete set of data. For ex-
ample, they may be used to store the history of commands
sent to an actuator by a controller.

Fig. 6. Summary of component types in MDS Style

image. It can be more than one if the measurements are informative in the
estimation of more than one state variable.

Formulating such constraints by hand may introduce mistakes and/or un-
wanted side-effects. Therefore, automated analysis can potentially provide
significant benefits in dealing with the complexity of the style and gaining
insight into it.

Our first check was to establish that MDS was consistent for a reasonable
bound on the model size. (Section 9 contains details.) Although formal con-
sistency of the MDS style was easily demonstrated, a more interesting kind of
check was to investigate the existence of candidate architectures that contain
certain minimal structures: for example, at least one controller, actuator, es-
timator, sensor, and state variable. As illustrated earlier, we can do this using
the analysis generator by providing the following input.
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Fig. 7. An example MDS system

Fig. 8. An MDS system constructed by the Alloy Analyzer and translated into Acme

Check MDSFam Using
component controller: ControllerT = new ControllerT;
component actuator : ActuatorT = new ActuatorT;
component estimator : EstimatorT = new EstimatorT;
component sensor : SensorT = new SensorT;
component statevar : StateVarT = new StateVarT;
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The Alloy Analyzer found the instance shown in Figure 8, confirming that
such a structure is constructible. One interesting consequence of this process
was that while the analysis confirmed the existence of the requested struc-
ture within the style, it yielded a counterintuitive example. Specifically, the
generated model uses a single connector to connect a controller, actuator and
estimator. This was hardly the intention of the original MDS style, and indi-
cates that despite the large number of rules in MDS, the given formalization is
under-constrained. This caused us to go back and refine the style specification,
adding new rules to eliminate structures that should not be included.

9 Performance

Whenever one uses automated tools for analysis, a critical question is how well
those tools scale to the task at hand. This is particularly critical for exhaustive
state exploration-based tools such as model checkers, whose execution time
may vary dramatically depending on the encodings of models and the nature
of the properties to be checked.

In this section we examine the way in which architecture style analysis scales
relative to three specific factors. First is the number of architectural element
types in the style. Second is the number and complexity of architectural con-
straints in the style, where complexity is primarily determined by quantifier
nesting depth. Third is the maximum model size (or bound) in terms of num-
bers of components and connectors.

Before we begin, we first note that there are conceptually two types of analysis
in Alloy. One is existential analysis, which attempts to find an instance of a
model that satisfies a given predicate. For example, this kind of analysis is
used to perform a style-consistency check, since consistency is guaranteed by
the existence of a single system satisfying the style. The other is universal
analysis, which checks all instances (within the bound set for the analysis)
against a predicate that every instance must satisfy.

In either case, the analyzer may have to search the entire state space: for an
existential analysis, if no model exists; and for a universal analysis, if every
model satisfies the predicate. In conducting our experiments, we carried out
both existential and universal analyses on valid styles. In the former case
typically a single system is required to be constructed, constituting a best-case
analysis. In the later case, the analysis is required to examine every system
instance in the search space, and hence provides a worst-case analysis.

Analysis consists of four phases. First, the architectural style is translated into
an Alloy model. Second, the Alloy Analyzer translates an Alloy model into
Conjunctive Normal Form (CNF). Next, it passes the translated CNF to one
of several off-the-shelf SAT solvers to do the actual analysis. Finally, the result
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of the SAT solver is translated back to Alloy and presented to the user. Since
the translations involved in the first and last steps take negligible time, our
experiments focus on how the phases two and three affect performance.

9.1 Experimental Setup

To evaluate performance we use the following experimental architectural style
template, which can be instantiated with a variable number of component
types and constraints. Each component type has two ports. Associated with
each component type is an optional local constraint (i.e., a component type-
specific constraint) stating that each port should be attached to at least one
role. Additionally a global constraint (i.e., a system-wide constraint) is speci-
fied; it states that every connector should have exactly two roles.

Style Experiment = {
Component type CT;
Component type CT1 extends CT with { port p1; port p2;
invariant forall p:self.ports | size(p.attachedroles)>0; }

Component type CT2 extends CT with { port p1; port p2;
invariant forall p:self.ports | size(p.attachedroles)>0; }

...
Component type CTn extends CT with { port p1; port p2;
invariant forall p:self.ports | size(p.attachedroles)>0; }

invariant forall n in self.connectors | size(n.roles) == 2;
}

In all of the experiments we use an equal number of components and connec-
tors for the model bound. The number of ports and roles is set to be double
the number of components and connectors, for reasons indicated earlier. We
use MiniSat as the SAT solver.

9.2 Existential Analysis

To evaluate the best-case performance of existential analysis we check the
consistency of the (valid) styles instantiated from the template by varying the
number of component types, the number of local constraints, and the model
bound. In each case the consistency check succeeds, because the empty system
– without any components or connectors – is valid for any style that has been
instantiated from the style template.

9.2.1 The number of element types

Since each element type in a style is translated into an Alloy signature (as
described in Section 6), the more element types a style has, the more Alloy
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signatures the translated model has. Hence, one would expect performance to
be affected by the number of element types in a style.

The following graph shows how performance varies according to the number
of component types in the style, ranging from 3 to 30, and using the model
bound of 30. For the analysis we consider two cases: with and without opti-
mization (cf., Section 6.3). As shown, an optimized analysis for a style with
30 component types completes in under 10 seconds, and the bulk of that time
is spent in CNF generation. Further, performance scales roughly linearly in
the number of component types, and the slope is affected by the complexity
of the constraints associated with those types. 11

9.2.2 The number of constraints

Each constraint in a style is translated into an Alloy predicate. One would
expect that the more complex the constraints are, the longer it should take to
generate and evaluate predicates (with respect to both CNF generation and
SAT solving). The following graph shows how the performance grows with
the number of local constraints in the style. For the analysis the number of
component types is fixed at 30, but we vary how many of these have an asso-
ciated (local) constraint. Furthermore, to see how the performance is affected
by the complexity of constraints, we ran the experiments using both optimized
and unoptimized constraints. As can be seen, performance increases in a lin-
ear fashion for the unoptimized version, and is roughly constant for optimized
analysis of the test styles.

11 Deviations from a strictly linear slope are caused by the variable nature of SAT
solving.
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At this point it is worth asking how the complexity of an individual constraint
affects performance, especially in the case of a quantified predicate. When a
quantifier is encountered during CNF generation, the Alloy Analyzer expands
the body of the quantification using all the possible objects in the quantified
range. Therefore, when quantifiers are nested, the body at inner quantification
levels will be expanded multiple times depending on the quantifier depth. 12

This suggests that the quantification level will affect performance exponen-
tially.

To confirm this, we checked the consistency of the following style template by
varying the number of quantified variables in a single global constraint with
model bound set to 10.

Style Experiment2 = {
invariant forall c1,c2,...,cn in self.components |
connected(c1, c2) &&
connected(c2,...) &&
connected(...,cn) => connected(cn,c1)

}

The following graph shows that the execution time does indeed grow expo-
nentially. (Note that the vertical axis has a logarithmic scale.)

12 The same is true for quantified expressions using multiple variables, since these
are equivalent to nested quantifications.
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9.2.3 The model bound

Larger model bounds (which determine the maximum number of architectural
elements in a system) can increase analysis time in two ways. First, as noted
in the previous experiment, it increases the CNF generation time when a
quantified predicate is encountered. Second, as we will see in more detail later,
it increases SAT solving time when a universal analysis is performed.

The following graph shows how the experimental style scales in terms of the
model bound ranging from 3 to 30, using 30 component types with local con-
straints. We again consider two cases: with and without optimization. When
the optimization is on growth is linear. When the optimization is not used,
growth is exponential, which is consistent with the earlier experiment regard-
ing constraint complexity.
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9.3 Universal analysis

To evaluate worst-case performance we performed a universal analysis by
checking a property that states that a component of type CT must be at-
tached to a connector, for each of the styles instantiated from the template
by varing the number of component types and the model bound. The prop-
erty holds if all the local constraints are present, because the local constraints
require all the ports of a component of type CT to be attached to a role. For
the styles in the experiment this triggers an exhaustive analysis of the state
space of possible architectures for that style.

9.3.1 The number of element types

Although the number of element types does not affect the number of instances
to check, it does affect the complexity of constraints to check for each instance.
The following graph shows how the analysis scales in terms of the number of
element types when checking a property, where the model bound is set to 20.
A linear increase in time is observed, consistent with the previous consistency
check experiment. Note, however, in this case SAT solving time dominates
because in an exhaustive analysis much more work is being done by that
phase.

9.3.2 The model bound

Larger model bounds affect performance significantly in the case of univer-
sal analysis for a valid style, because as the model bound grows, there are
more instances to check. As the number of components grows, the number of
other top-level types (connectors, ports, and roles) also grows. Therefore it is
expected that the analysis time increases exponentially. The following graph
shows how the experimental style scales in terms of the model bound using ten
component types. As expected exponential increase is observed, although for
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up to 27 model elements (of each top-level type) the analysis remains under
10 minutes.

9.4 Evaluating MDS

To investigate the scalability of our analysis approach to a larger example,
we applied similar experiments to the MDS style (Section 8). Specifically, we
performed a consistency check on the translated Alloy model allowing the
maximum number of components and connectors to range from 1 to 16. The
results are shown below.

Within an hour we were able to check its consistency with up to 16 compo-
nents, 16 connectors, 32 ports and 32 roles. Considering that the machine that
we used for the experiment was a modest one, 13 and that the number and
complexity of constraints in this style is quite high, this is a reasonable stress

13 We used a 1.6GHz Core2 CPU processor.
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test for consistency checking of a valid style.

9.5 Performance summary and discussion

Based on our benchmarking examples, we would argue that Alloy-based anal-
ysis of architectural styles is tractable for realistic-sized styles. Specifically,
best-case analysis scales tractably to styles with (a) up to 30 element types;
(b) constraints with complexity of up to 6 levels of quantifier nesting, and (c)
model generation bounds of up to 30 top-level instances of both components
and connectors. These figures were confirmed on a style developed for practical
space flight systems (MDS), with many types and constraints.

There are a number of additional factors worth noting. First, optimization
played a significant role in improving analysis performance by removing one
level of depth in quantification (when applicable) and thereby reducing both
CNF generation time (with one less nested loop) and SAT solving time (with
simpler predicates). Since in practice many style constraints are represented
as quantifications with at least two levels of depth, as explained in 6.3 and
illustrated in 7.5, this kind of optimization has a large overall impact.

Second, existential analysis for a valid style depends heavily on CNF gener-
ation, because SAT solving stops immediately once a satisfying instance is
found. On the other hand, universal analysis depends heavily on SAT solving,
because all instances within bound must be exhaustively tested. Since the Al-
loy Analyzer uses external off-the-shelf SAT solvers, we can expect that as the
performance of SAT solvers improves – a trend that has been evident over the
past few years – we can expect that performance of style analysis will likewise
continue to improve.

10 Conclusions and Future Work

In this paper we have described a technique for formal analysis of the struc-
tural aspects of architectural styles. As we have illustrated, a relational model
generator, such as the Alloy Analyzer, can be used to automatically check crit-
ical properties of styles, including consistency, existence of specific structures,
implied properties, equivalence of global and local constraints, and compati-
bility between multiple styles.

Since specification languages such as Acme have the expressive power of first-
order predicate logic, such properties are in general undecidable and typically
require mathematical proof. This makes it unlikely that in practice style de-
signers will be inclined to check these properties by hand. Hence, having a
tool to assist in this effort represents a major advance.
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However the approach has some limitations. First, since the Alloy-based model
generator can only work over finite models, for many systems one can only
approximate a solution. That is, if the tool says there is no problem within a
given model bound, it may be that this holds for all models, or only for those
of that finite size. Experience has shown, however, that if a specification has
a flaw, it can usually be demonstrated by a relatively small counterexample.

A second issue is the need to relate counterexamples back to the source spec-
ification. While our tools automatically map Alloy counterexamples back into
an architectural model, a tricky issue is understanding what flaw in the design
caused the counterexample to be generated in the first place. This problem is
common to any model checking approach, and is an area of active research in
that community [11].

A final limitation of our current tool is the fact that it deals only with struc-
tural properties of architectural styles. It does not handle, for example, ar-
chitectural behavior, dynamic changes to architectural models, and quality
attributes. However, these are not intrinsic limitations, and we believe the
current structural analysis techniques can be naturally extended to include
other kinds of analyses. This remains an important area for future work.
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Appendices

A cnc view Model Specification

//////////////////////////////////////////////////////////////////////
// This model includes the built-in features (types and functions) of
// the Acme language, and additionally contains several predefined
// predicates for convenience. This model should be imported by any
// translated model.
//////////////////////////////////////////////////////////////////////

module cnc_view’

//....................................................................
// Built-In Types
//....................................................................

sig Component {ports: set Port, system: System}
sig Connector {roles: set Role, system: System}
sig Port {component: Component}
sig Role {connector: Connector, attachment: lone Port}

one sig self extends System {}
abstract sig System {components: set Component,

connectors: set Connector}

fact {~ports = component && ~roles = connector}
fact {~components = Component<:system}
fact {~connectors = Connector<:system}

//....................................................................
// Built-In Type Test Functions
//....................................................................

pred declaresType [e: univ, t: set univ] { e in t }
pred satisfiesType [e: univ, t: set univ] { e in t }
pred declaredSubtype[t: set univ, u: set univ] { t in u }

// "satisfiesType" is modeled the same as declaresType.
// "typesDeclared" is not modeled because it returns high-order value.
// "superTypes" is not modeled because it returns high-order value.

//....................................................................
// Built-In Connectivity Funcitons
//....................................................................

pred attached[r: Role, p: Port] { r->p in attachment }
pred attached[p: Port, r: Role] { r->p in attachment }
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pred attached[n: Connector, c: Component] {
n->c in roles.attachment.component

}
pred attached[c: Component, n: Connector] {

n->c in roles.attachment.component
}
pred connected[p1: Port, p2: Port] {

some p1.~attachment.connector & p2.~attachment.connector
}
pred connected[c1: Component, c2: Component] {

some c1.ports.~attachment.connector & c2.ports.~attachment.connector
}
pred reachable[c1: Component, c2: Component] {

c1->c2 in ^(ports.~attachment.connector.roles.attachment.component)
}

//....................................................................
// Built-In Ownership Funcitons
//....................................................................

fun parent[p: Port]: Component { p.component }
fun parent[r: Role]: Connector { r.connector }
fun parent[c: Component]: System { c.system }
fun parent[n: Connector]: System { n.system }

// "parant" is not modeled for systems, properties, and representations

//....................................................................
// Built-In Set Functions
//....................................................................

pred contains [e: univ, s: set univ] { e in s }
pred isSubset [s: set univ, t: set univ] { s in t }
fun union [s: set univ, t: set univ]: univ { s + t }
fun intersection [s: set univ, t: set univ]: univ { s & t }
fun setDifference[s: set univ, t: set univ]: univ { s - t }
fun size [s: set univ ]: Int { #s }
fun sum [s: set Int ]: Int { sum i:s|i }

// "flattern" is not modeled because the input is high-order.
// "product" is not modeled because they require recursion.

//....................................................................
// Predefined properties
//....................................................................
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pred predefined_no_unattached_port[cs: set Component] {
all p: component.cs | some r: Role | attached[r,p]

}
pred predefined_no_unattached_role[ns: set Connector] {

all r: connector.ns | some p: Port | attached[r,p]
}
pred predefined_no_unattached_component[cs: set Component] {

all c: cs | some n: Connector | attached [n,c]
}
pred predefined_no_unattached_connector[ns: set Connector] {

all n: ns | some c: Component | attached [n,c]
}
pred predefined_no_unconnected_component[cs: set Component] {

all c: cs | some d: Component | connected[c,d]
}

pred predefined_topology_star[cs: set Component] {
one core: cs |
( all c: cs-core | connected[c, core] ) &&
( no disj c1,c2: cs-core | connected[c1, c2] )

}

pred predefined_topology_linear[cs: set Component] {
some disj c1, c2: cs |
( one c: cs-c1 | connected[c1, c] ) &&
( one c: cs-c2 | connected[c2, c] ) &&
all c: cs-c1-c2 |
some disj c3, c4: cs-c | connected[c, c3] && connected[c, c4] &&

no c5: cs-c-c3-c4 | connected[c, c5]
}

pred predefined_topology_ring[cs: set Component] {
all c: cs | predefined_topology_linear[cs-c]

}

pred predefined_no_cycle[cs: set Component] {
no cs’: set cs | predefined_topology_ring[cs’]

}
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B Mission Data Systems Configuration Rules

The following configuration rules and guidelines were provided by NASA for
the Mission Data Systems architectural style.

Rule 1: Every controller requires 1 or more Command Submit ports. Every
actuator provides 1 or more Command Submit ports. An actuator can have
more than 1 if it has separately commandable sub-units and there is a
desire to manage the command histories separately. There must be exactly
one controller port connected to each actuator port.

Rule 1A: If actuator A has more than one Command Submit ports then all
such ports must be connected to the same controller C. This ensures that
control of A is the responsibility of a single controller C.

Rule 2: Every actuator requires 1 or more Command Notification ports, one
per Command Submit port. Every estimator provides 0 or more Command
Notification ports; it can be 0 if the estimator has no need to be event
driven. For every actuator Command Notification Port there may be 0 or
more estimators connected to it.

Rule 2A: For any given actuator the number of Command Submit ports and
Command Query ports and Command Notification ports must be equal, i.e.,
there must be a 1:1:1 association among them.

Rule 2B: If estimator E has a Command Notification connection with actu-
ator A, then it must also have a Command Query connection with A for the
same command history. Otherwise it will be getting command notifications
with no way to obtain the commands that were submitted.

Rule 3: Every estimator requires 0 or more Command Query ports; it can
be 0 if there is no command evidence for a particular state. Every actuator
provides 1 or more Command Query ports. For each actuator-provided port
there can be 0 or more estimators connected to it. It can be more than 1
if command submittal is informative to more than one estimator. Though
unusual, it can be 0 if no estimator chooses to use command submittal
evidence, instead relying on other sources of evidence.

Rule 4: Every estimator requires 0 or more Measurement Query ports. It can
be 0 if the estimator does not need/use measurements to make estimates, as
in the case of estimation based solely on commands submitted and/or other
states. Every sensor provides 1 or more Measurement Query ports. It can
be more than one if the sensor has separate sub-sensors and there is a desire
to manage the measurement histories separately. For each sensor-provided
port there can be 0 or more estimators connected to it. It can be zero if
the measurement is simply raw data to be transported, such as a science
image. It can be more than one if the measurements are informative in the
estimation of more than one state variable.

Rule 5: Every sensor requires 1 or more Measurement Notification ports, one
per Measurement Query port. Every estimator provides 0 or more Measure-
ment Notification ports. It can be 0 if the estimator has no need to be event
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driven. For every sensor port there may be 0 or more estimators connected
to it.

Rule 5A: For any given sensor the number of Measurement Notification ports
must equal the number of Measurement Query ports.

Rule 5B: If estimator E has a Command Notification connection with ac-
tuator A, then E must also also have a Command Query connection with
A for the same command history. Otherwise it will be getting command
notifications with no way to obtain the commands that were submitted.

Rule 6: Every state variable provides exactly 1 State Query port. There can
be any number of components connected to that port. It would be suspicious
if there were no connections at all, but it is valid for states that are estimated
purely for transport to another deployment.

Rule 7: Every estimator requires 1 or more State Update ports, one per state
variable that it estimates. Every state variable provides exactly 1 State
Update port, and has exactly 1 estimator connected to it.

Rule 8: Every state variable requires exactly 1 State Notification port and
can have any number of other components connected to it.

Rule 8A: If component C has a connection to the State Notification port of
state variable S, then C must also have a connection to the State Query
port of S. Otherwise, C will be getting notifications with no way to obtain
the updated state.

Rule 9: Every executable component provides exactly 1 Execute port. There
must be a 1-to-1 association of thread scheduler ports to executable com-
ponent ports.

Rule 10: No two ports of a component should be connected to the same
target port. This could happen due to a cut-and-paste error where, say, a
controller has two State Query ports connected to the same state variable.

Rule 11: Every connection must be ”property compatible.” System engineers
will specify properties at four levels: component type, component instance,
port type, and port instance. For example, suppose that there is a single
position and heading controller for the six wheels of a rover, and that it
requires 12 Command Submit ports (6 for steering and 6 for driving). Here
are examples of properties at each of the four levels:
• component type: property = executable, controller
• component instance: property = position and heading
• port type: property = steering, multiplicity=1
• port instance: property = left-front
Thus, in attempting a connection, property checking at the port instance
would prevent a left/right error, and property checking at the port type
would prevent a steering/driving error as well as a multiplicity error (0
connections where exactly 1 is required).

Note for Consideration: There ought to be enough information specified
in properties such that there is only one valid arrangement of connections
(or that all possible arrangements are equivalent). Otherwise, system en-
gineers are leaving something unsaid, open to creative interpretation by
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others downstream in the development process. Thus, we should view the
property information as part of a prescription. In addition to the prescrip-
tion, we need to specify requirements on evolution so that thread manage-
ment (for example) while creating, configuring, and connecting components
is specified.

Rule 12: There are several ”don’t do this” kind of rules. For example, never
connect a controller to a sensor (because then it is doing its own private
estimation), and never connect an estimator to a Command Submit port of
an actuator (because only a controller is allowed to submit commands).

Rule 13: For every estimator/controller pair where the controller controls a
state variable that is estimated by that estimator, the order of dispatch
for the pair of executables must be deterministic. If either the estimator or
controller or both are connected to executable hardware adapter(s), then the
hardware adapter(s) must be included in the deterministic ordering check.
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C Abstract Syntax of Acme Language

The following abstract syntax is a subset of Acme language that is trans-
latable to Alloy using the technique presented in this paper.

Style ::= style id [ extends id+ ] Decl∗

Decl ::=

fun id ( ( id: Type )∗ ): Type Expr
| type id extends ElemType+ Decl∗

| type id = [ ( id: PropType )∗ ]
| element id: ElemType
| property id: PropType
| attachment id.id to id.id
| invariant Expr

Expr ::=

unary op Expr
| Expr binary op Expr
| Xid (Expr∗ )
| Xid
| id
| Expr.id
| Expr.reference
| select id [ : Type ] in Expr | Expr
| collect id.id in Expr | Expr
| {Expr∗ }
| <Expr∗ >
| quantifier id [ : Type ] in Expr | Expr
| integer

ElemType ::= Xid | element | component | connector | port | role
PropType ::= Xid | int | set int | seq int

Type ::= ElemType | PropType | set ElemType | system
Xid ::= [ id /] id

id ::= identifier

unary op := ! | -
binary op := or | -> | <-> | and | == | != | < | > | <= | >= | + | - | * | / | %
reference := components | connectors | ports | roles | attachedports | attachedroles

quantifier := forall | exists | unique
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