
Stitch: A Language for Architecture-Based Self-Adaptation

S.-W. Cheng∗, D. Garlan, B. Schmerl

School of Computer Science, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA, 15213 USA

Abstract

Requirements for high availability in computing systems today demand that
systems be self-adaptive to maintain expected qualities-of-service in the pres-
ence of system faults, variable environmental conditions, and changing user
requirements. Autonomic computing tackles the challenge of automating
tasks that humans would otherwise have to perform to achieve this goal.
However, existing approaches to autonomic computing lack the ability to
capture routine human repair tasks in a way that takes into account the
business context that humans use in selecting an appropriate form of adap-
tation, while dealing with timing delays and uncertainties in outcome of
repair actions. In this article, we present Stitch, a language for representing
repair strategies within the context of an architecture-based self-adaptation
framework. Stitch supports the explicit representation of repair decision
trees together with the ability to express business objectives, allowing a
self-adaptive system to select a strategy that has optimal utility in a given
context, even in the presence of potential timing delays and outcome uncer-
tainty.

Keywords: Rainbow, self-adaptation, strategy, tactic, uncertainty, utility

1. Introduction

High availability has become an increasingly important quality attribute
in computing systems ranging from critical infrastructures to daily business
operations. Traditionally, high availability has been achieved in one of two

∗Corresponding author, now working at the Jet Propulsion Laboratory
Email addresses: chengs@cmu.edu (S.-W. Cheng), garlan@cs.cmu.edu (D. Garlan),

schmerl@cs.cmu.edu (B. Schmerl)

Preprint submitted to Journal of Software and Systems May 1, 2011

Manuscript
Click here to view linked References

Submitted for publication.

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=5084&rev=0&fileID=78566&msid={C0A57C03-FDC4-41EE-83B4-1E0D97EC09DF}
schmerl
Rectangle

schmerl
Sticky Note
Marked set by schmerl

schmerl
Rectangle

ways: (a) through failure-handling code embedded within the system, and
(b) through human oversight and intervention.

In the first case, self-adaptation capabilities typically use mechanisms
such as program exceptions and network time-outs to trigger repairs. Such
low-level mechanisms are good for detecting problems quickly and provid-
ing application-specific responses, but they lack a global system perspective,
making it difficult for the repair code to identify the source of a systemic
problem or detect softer anomalies such as trends in performance degrada-
tion. Furthermore, adaptation logic is dispersed throughout the implemen-
tation, making it costly to modify and maintain, challenging to analyze, and
infeasible to reuse.

In the second case, human operators monitor a system and make adjust-
ments when they detect problems, or, more generally, observe opportunities
to improve the performance of the system. (This activity is often enabled by
system infrastructure monitoring tools such as Microsoft Operations Man-
ager [1]). While humans are better at understanding the overall problem
context than computers, human operators are prone to long reaction time,
fatigue, errors, and varying and potentially inconsistent expertise. Indeed,
industry data indicate that the cost of ownership of IT systems attributable
to managing a system ranges from 70–90 cents per dollar [2, 3, 4] and that
20%–50% of system outages are due to operator error [5].

Autonomic Manager

Execute Monitor

AnalyzePlan

Knowledge

Managed Element

Figure 1: IBM MAPE Loop

In recent years, the emergence of Auto-
nomic Computing [3] offers an alternative
approach, where self-adaptation is designed
independently of, and external to, the tar-
get system in order to automate tasks that
humans would otherwise perform. Shown
in Fig. 1, the IBM Autonomic Comput-
ing MAPE control loop embodies this ap-
proach, to monitor, analyze, plan, and
execute changes for self-management [6].

A key issue in this approach is how to
program the policies for doing adaptation:

Can one define adaptation strategies to capture what humans do? What
would that language look like? What kinds of special language features are
required to support such self-adaptation?

In principle, a variety of ways exists to program adaptation, ranging from
general-purpose programming languages (e.g., Java) to languages and tech-
niques from the AI community to express complex dynamic reasoning (e.g.,
Markov Decision Processes and Q-learning) [7]. In this article, we focus on

2

Submitted for publication.

an important class of policies and strategies, namely those carried out by sys-
tem administrators (sys-admins) that are routine but complex. Our goal is to
provide a language that can capture the key ingredients for decision making
in this domain, including complex decision paths that take into considera-
tion how effective previously executed steps have been in order to determine
the next step, ways to evaluate the utility of a strategy in a given context
so that the best strategy can be selected, and mechanisms to account for
asynchrony, uncertainty, and timing delays inherent in externalized control.

Specifically, we propose a language for expressing adaptation strate-
gies, called Stitch, which builds on an architecture-based approach to self-
adaptation. Key features of this language are:

• definition of adaptation strategies using a control-theoretic point of
view in which system feedback and dynamically-updated models (here,
architectural models) are used to determine the next course of action;

• explicit representation of quality-of-service (QoS) objectives and pri-
orities for capturing business context;

• the ability to calculate the best strategy in a given problem scenario,
where best is determined in a utility-theoretic way based on business
and system context, as well as prior history of strategy outcomes; and

• explicit representation of uncertainties in adaptation outcome and tim-
ing delays.

In Section 2 we set the context for this work with a brief overview of soft-
ware architecture-based self-adaptation . We then consider the requirements
for an appropriate adaptation language in Section 3. Next we describe Stitch
in Section 4, illustrate the expressiveness of this language for representing
realistic adaptation expertise and supporting multi-objective trade-offs with
a full example in Section 5, and present evidence of Stitch’s expressiveness
for adaptation concerns in Section 6. In Section 7 we describe related work.
Finally, we conclude with a discussion of the strengths and weaknesses of
Stitch and consider future work in Section 8.

2. Context of Self-Adaptation

As noted earlier, autonomic computing is typically based on a MAPE-
like externalized control regime in which systems are dynamically monitored
to update control models. These models are analyzed to decide if conditions
warrant self-adaptation. If so, an adaptation strategy is determined. The

3

Submitted for publication.

strategy is then executed using adaptation hooks into the running system.
There are many variations on this theme, depending on the nature of the
monitoring mechanisms, the kinds of models that are maintained in the
control layer, whether strategies are selected from a fixed set or created on-
the-fly, and the kinds of adaptation interface that a system provides.

One particularly important class of self-adaptation approach relies pri-
marily on architectural models of the system in the control layer [8, 9, 10].
An architectural model provides a high-level view of a system as a collec-
tion of components and connectors, annotated with properties that indicate
component and system attributes such as reliability, performance, security,
etc. [11]. Such models are particularly attractive for self-adaptation since
they allow one to detect when a system is failing to meet its objectives,
either through hard component failures or through aberrations in softer dy-
namic QoS behavior [12].

System
Layer

Architecture Layer

Target System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

System API
Probes

Resource
DiscoveryEffectors

Gauges

Architecture
Evaluator

Figure 2: The Rainbow Framework

Rainbow is a particular instance of an architecture-based self-adaptation
framework. As pictured in Fig. 2, and described in detail elsewhere [13,
14, 15], Rainbow uses Probes to monitor the target system and Gauges to
aggregate and abstract monitored information to update its control mod-
els (maintained with the Model Manager). These models consist of system
architecture and environment models that are used to reason about the tar-
get system and its execution context. It uses an Architecture Evaluator to
detect when a target-system is in a state suitable for repair, an Adaptation

4

Submitted for publication.

Manager to select an appropriate repair strategy, and a Strategy Executor to
carry out the actions in the strategy, along with appropriate infrastructure
for effecting changes in the target system.

Repair strategies, housed within the Adaptation Manager, are written in
Stitch, the subject of this article. As we detail later, Stitch takes advantage
of the overall framework in several ways. Most importantly, it uses the
state of the architecture and environment models to determine both (a)
conditions of applicability for selecting an appropriate repair strategy from
a fixed repertoire, and also (b) the outcome of an intermediate step in the
execution of a strategy in order to choose the next step.

While Stitch relies on the Rainbow infrastructure for its execution, the
design of the language goes far beyond this particular embodiment of au-
tonomic computing. The ideas behind Stitch could be applied directly to
virtually any architecture-based adaptive approach, and, with minor modi-
fications, more generally to most existing autonomic approaches.

3. Requirements for a Self-Adaptation Language

System adaptations can be viewed along a spectrum of complexity. At
one end of the spectrum are highly routine operations, such as rebooting a
crashed server, which can be easily automated and require minimal decision-
making skills. At the other end of the spectrum are operations that require
complex, domain-specific, context-sensitive and dynamically changing cog-
nitive processes, such as directing the trajectory of a Mars rover in order
to avoid some newly-encountered obstacle. In between these extremes is a
large and important space of human-assisted adaptive control activities that
are routine, but context-dependent, and involve dynamic decisions to select
an appropriate repair and to carry it out. These represent a sweet spot for
autonomic computing, as they are typically not automated today, but in
principle could be. This is the domain of adaptation that Stitch addresses.

3.1. A Motivating Example: Znn.com

To make this class of adaptation concrete, and to illustrate the kinds
of requirements that are thereby implied for representing repair strategies,
consider an example of a web-based news provider called Znn.com. Mod-
eled after typical infrastructure for news websites like CNN.com, Znn.com
has a tiered architecture consisting of a set of application servers that serve
content from backend databases to clients via front-end presentation logic.
As illustrated in Fig. 3, Znn.com uses a load balancer (lbproxy) to balance

5

Submitted for publication.

requests across a pool of replicated servers, the size of which can be manu-
ally adjusted to balance server utilization against service response time. In
the figure, the dashed connectors and components represent those that are
available in the pool, but not yet utilized by the load balancer. A total of
four servers can be used to balance server usage. A set of client processes
makes stateless content requests from the servers. In response a server de-
livers static files (e.g., images and videos), as well as dynamic content (e.g.,
news populated from periodically-updated sources).1

Figure 3: The Znn.com system architecture
(dashed lines represent available but inactive ele-
ments)

For a system like Znn.com
there are a number of business
concerns that determine the sys-
tem’s QoS objectives. First
is response time: response la-
tency for client requests should
be kept low. Second is qual-

ity : ideally content is served in
full fidelity, including video, im-
ages, etc., although sometimes it
may be acceptable to deliver de-
graded content (e.g., text only).
Third is cost : to keep operating
costs low, it is important to minimize the number of active servers. As is
typical with complex system design, these qualities are not independent. For
instance, performance can be improved, but only at the cost of a larger server
pool and lower fidelity.

In the normal course of operations, there are a variety of situations that
may impact the achievement of quality objectives. Servers may crash. Load
balancers may crash. High demand for news items may overload the system.
Low demands on a slow day may leave servers under-utilized. To handle
such situations, systems like Znn.com typically provide several mechanisms
for human operators to adapt them. These include the ability to dynamically
reboot servers and load balancers, the ability to bring servers on- or off-line,
and the ability to reduce the fidelity of content provided by the servers.
To assist the operator in knowing when to perform such operations, such
systems also include various monitoring mechanisms, such as the ability to
display server status or response latency for client requests.

1To keep the example simple here we have not included the databases in the model.

6

Submitted for publication.

3.2. The Nature of System Administration Tasks

Imagine a sys-admin, Sam, who manages the Znn.com infrastructure.
Suppose that a system monitor indicates that average request-response la-
tency is exceeding some threshold (say, 2 seconds). What does Sam have to
do? First, Sam needs to decide on a course of action. Since such problems
are typical, it is likely that Sam has a repertoire of strategies that he uses.
For example, one strategy might be to bring new servers on-line until enough
have been activated to improve performance. Another strategy might be to
reduce the fidelity for some or all of the clients.

Importantly, choice of strategy is highly context-dependent. For instance,
it makes no sense to adopt a strategy of adding servers if the pool of free
servers has been used up. Moreover, business priorities play a role. Even if
spare servers do exist, Sam may choose not to add more of them in order
to keep cost of operations low. Furthermore, Sam may have to balance
short-term and long-term effects: for example, rebooting a set of poorly-
performing servers may actually degrade performance in the short term, but
lead to overall higher performance in the end.

Having chosen a strategy, Sam needs to carry it out. In most cases the
process of doing this is not a simple atomic operation, but rather a decision
process in which certain actions (e.g., adding a server) are attempted and
the results of that action are used to determine what to do next (e.g., adding
another server). Note that in doing this Sam will need to exercise judgment
to figure out how long to wait to observe the effects of one action, since most
system adaptation actions take time to accomplish and for their effects to
propagate.

Finally, as Sam gains experience with various strategies, he may learn
which of them tend to work better and in which situations. That will allow
him to adapt his strategy selection process over time.

3.3. Implications for a Strategy Definition Language

The nature of system administration tasks, sketched above (and substan-
tiated in more detail in Section 6), frames a set of requirements for a strategy
definition language.

First, it must support the definition of adaptation decision processes in
which the choice of the next action may depend on the outcome of previous
actions. Each such action may involve a set of lower-level activities (often
implemented today as execution scripts that use configuration operators pro-
vided by the system). As we will see in the next section, Stitch addresses
this requirement by defining strategies as decision trees in which each node

7

Submitted for publication.

is the application of a change-producing action (termed a tactic), and fu-
ture actions are guarded by conditions that can depend on the state of the
system, as reflected through a dynamically-updated architectural model.

Second, the evaluation of the outcome of a tactic executed as part of a
strategy must take into account potential delays in observing the result of
that tactic. This is because of the asynchronous nature of an externalized
control model, and the fact that system changes take time to achieve their
effects. Stitch addresses this requirement by allowing a strategy writer to
indicate a delay window within which the effect is expected to be observed.

Third, it must be possible to define the conditions under which it makes
sense to consider a particular strategy. In Stitch this is accomplished by
including a dynamically-evaluated applicability condition with each strategy.

Fourth, given a set of applicable strategies it must be possible to deter-
mine which is the best one to execute. The notion of best will depend on
the current context, the business priorities and objectives of the organization
hosting the system, and the relative costs and benefits that each strategy has
to offer. Such priorities are typically multi-dimensional, requiring tradeoffs
between qualities such as performance, cost, and fidelity. Stitch addresses
this requirement through the specification of business priorities in terms of a
multi-dimensional utility space, together with functions that assign values to
quality levels within those dimensions. Further, each tactic is associated with
an impact vector, which determines its expected contribution to the utility
dimensions. Such vectors can be used to calculate the expected aggregate
utility of a strategy in the current run-time context, and thereby provide a
quantitative basis for strategy selection.

Fifth, past successes or failures of strategies should contribute to the eval-
uation process. Stitch addresses this requirement by incorporating a quality
dimension that reflects past behavior, allowing overall utility calculation to
take this into account when choosing a strategy.

4. Stitch

We now describe Stitch. In Section 4.1 we explain how the language is
used to define adaptation strategies as decision trees built up from adapta-
tion tactics, which are in turn defined in terms of more primitive operators.
Next, in Section 4.2 we describe how Stitch supports the selection of the
highest utility strategy from a repertoire of available strategies, taking into
consideration the current system state, applicability conditions of the in-
dividual strategies, their expected costs and benefits, and prior history of

8

Submitted for publication.

Table 1: Feature summary of the Stitch Strategy Definition Language

Stitch feature Support for adaptation decision processes

operator System-provided configuration command

tactic Action primitive with conditions, operators, & effects

strategy Decision tree of condition-tactic-delay nodes

quality dimensions Business quality-of-service concerns

utility preferences Business priorities over quality dimensions

impact vectors Tactic cost-benefit attributes w.r.t quality dimensions

branch probabilities Likelihood of strategy branch conditions evaluating to true

adaptation conditions System indicators of opportunities for improvement

strategy selection Choice of best strategy w.r.t. quality dimensions

strategy invocation. A summary of these concepts appear in Table 1. Fi-
nally, in Section 4.3 we sketch the formal execution semantics of the language.
Throughout we will use the Znn.com example to illustrate the key features of
the language. For reference Stitch’s grammar is shown (in slightly redacted
form) in Appendix A.

4.1. Specifying adaptation strategies

4.1.1. Operators

The most primitive unit of execution for an adaptation process is the
operator. An operator represents a basic configuration command provided
by the target system, and thus corresponds to a system-level effector (see
Fig. 2).

In the context of Rainbow, we assume that the architectural style [11, 16]
of the target system, which defines the class of models to which the target
system architecture belongs, determines the operators representing available
configuration changes on systems in that style. For example, in the Znn.com
example the architectural style would define a vocabulary of clients, servers,
databases, etc. Architectural operators on systems of this style would include
stopService to terminate a running service process. Other operators include
startServer and setFidelity.

In Stitch, an operator is syntactically a function. A set of such operators
can be imported and then called by a tactic, as explained below.

4.1.2. Tactics

A tactic provides an abstraction that (a) packages operators into larger
units of change to form steps of adaptation used by strategies, and (b) serves

9

Submitted for publication.

as a logical unit for specifying the cost and benefit impact of an adaptation
step with respect to the quality dimensions important to the system.

Specifically, a tactic is characterized as follows

• It encapsulates a sequence of calls to operators and serves as an action
primitive for strategy definition.2

• It is guarded by a dynamically evaluated pre-condition that determines
its applicability.

• It defines the effects that it is attempting to achieve.

• It defines an impact vector that specifies how it will affect the quality
dimensions of the system (cf., Section 4.2)

During execution a tactic is given read-only access to the system model,
captured at the time the tactic is invoked. This allows its internal logic
to depend on the state of the system (as viewed through its architectural
model), and hence respond to dynamic changes that occurred within the
system up to the point at which it is invoked. Tactics are not allowed to
invoke other tactics, but only operators. (We return to this restriction in
Section 8.)

As an example, Fig. 4 shows a tactic to switch servers to textual mode.
The module containing this tactic first imports the architectural style Znn-
Fam, referred to as (T), the model instance (M), and the style operators (lines
1–3). The condition block specifies its condition of applicability: at least one
client component’s response time (stored in the expRspTime property) exceeds
a maximum threshold (lines 6–8). The action block finds all servers that are
not already in textual mode and sets them to textual mode via an imported
operator with signature, setTextualMode(ServerT, boolean) (lines 9–14). The
effect block specifies the expected outcome of the tactic: no Client exhibits
an above-threshold response time, and all Servers should be in textual mode
(lines 15–18). Constraints in condition and effect blocks can be written using a
form of first-order predicate logic over properties in the architectural model
(similar to the Object Constraint Language in UML).

A tactic can terminate in one of four ways. In the successful case, the
condition block evaluates to true, signifying that the tactic is applicable; the

2In principle each operator could be wrapped as a tactic, but in practice we have found
that tactics typically bundle up patterns of operations into higher-level primitives for use
in strategies.

10

Submitted for publication.

1 module znn . t a c t i c s ;
2 import model "ZnnSys . acme" { ZnnSys as M, ZnnFam as T } ;
3 import op "znn . o p e r a t o r s . ArchOps " { ArchOps as Sys } ;
4
5 t a c t i c switchToTextualMode () {
6 cond i t ion {
7 e x i s t s c :T. C l i e n tT i n M. components | c . expRspTime > M.MAX_RSPTIME;
8 }
9 ac t ion {

10 s v r s = { s e l e c t s : T . ServerT | ! s . i sTextua lMode } ;
11 f o r (T . ServerT s : s v r s) {
12 Sys . setTextua lMode (s , t rue) ;
13 }
14 }
15 e f f e c t {
16 f o r a l l c :T. C l i e n tT i n M. components | c . expRspTime ≤ M.MAX_RSPTIME;
17 f o r a l l s :T. ServerT i n M. components | s . i sTextua lMode ;
18 }
19 }

Figure 4: An example tactic switchToTextualMode

action block completes, signifying that no operators have failed; and the effect

block evaluates to true, signifying that the tactic has achieved its aim. There
are correspondingly three unsuccessful situations: (1) the condition block eval-
uates to false, signifying inapplicability; (2) the condition block evaluates to
true, but the action block fails to complete, signifying some operator has failed;
(3) the condition block evaluates to true, the action block completes, but the
effect block evaluates to false, signifying that the tactic has not achieved its
aim. We will see how tactic failure is handled in the strategy section below.

4.1.3. Strategies

A strategy encapsulates a dynamic adaptation process in which each step
is the conditional execution of some tactic. Conditions along the path allow
us to make the path sensitive to how effective the tactics have been. In Stitch,
a strategy is characterized as a tree of condition-action-delay decision nodes,
with explicitly defined probability for conditions and a delay time-window for
observing tactic effects. A strategy also specifies an applicability condition as
a predicate that is evaluated on the mode during strategy selection. Finally,
it supports the specification of utility impact for its constituent tactics and
thereby enables the computation of aggregate utility for strategy selection
(as described in Section 4.2).

In Stitch a collection of strategies is packaged as a module. Fig. 5 shows
an example of a simple module for Znn.com containing a single strategy that
attempts to reduce system response time. First, the module imports (lines 2–

11

Submitted for publication.

5) the namespace of the architecture style (T), architecture and environment
(M & E) models, the tactics module defined in Fig. 4, and a library of utilities
(Model) for querying the model.

1 module znn . s t r a t e g i e s ;
2 import model "ZnnSys . acme" { ZnnSys as M, ZnnFam as T } ;
3 import model "ZnnEnv . acme" { ZnnEnv as E } ;
4 import l i b "znn . t a c t i c s " ;
5 import op " org . sa . ra inbow . s t i t c h . l i b . ∗ " ; // Model , Set , & U t i l
6
7 def ine boolean s t y l e A p p l i e s = Model . hasType (M, " C l i e n tT ") // . . " ServerT " ;
8 def ine boolean cV i o l a t i o n =
9 e x i s t s c :T. C l i e n tT i n M. components | c . expRspTime > M.MAX_RSPTIME;

10
11 s t r a t egy SimpleReduceResponseTime [s t y l e A p p l i e s && cV i o l a t i o n] {
12 def ine boolean h i La t ency =
13 e x i s t s k :T. HttpConnT i n M. connec to r s | k . l a t e n c y > M.MAX_LATENCY;
14 def ine boolean hiLoad =
15 e x i s t s s :T. ServerT i n M. components | s . l oad > M.MAX_UTIL ;
16
17 t1 : (#[Pr{ t1 }] h i La t ency) −> switchToTextualMode () @[1000 /∗ms∗/] {
18 t1a : (succes s) −> done ;
19 }
20 t2 : (#[Pr{ t2 }] h iLoad) −> e n l i s t S e r v e r (1) @[2000 /∗ms∗/] {
21 t2a : (! h iLoad) −> done ;
22 t2b : (! succes s) −> do [1] t1 ;
23 }
24 t3 : (de f au l t) −> f a i l ;
25 }

Figure 5: An example strategy SimpleReduceResponseTime

Next the strategy specifies its applicability condition, which is used in
strategy selection to determine whether the strategy should be considered.
In this example SimpleReduceResponseTime (line 11) is defined using a set of
convenience predicates styleApplies and cViolation. The predicate styleApplies

(line 7) checks whether the model defines the architectural types ClientT and
ServerT used in the strategy. The predicate cViolation (lines 8–9) checks for
the condition that some client is experiencing above-normal response time.

The body of a strategy is modeled after Dijkstra’s Guarded Command
Language [17], which provides condition-action and while-loop constructs,
but is augmented in several important ways, described below. In the exam-
ple, the top-level condition-action blocks in the strategy body are labeled t1,
t2, and t3.

The example strategy first defines two Boolean auxiliary functions, hi-

Latency (lines 12–13) and hiLoad (lines 14–15). In node t1 (lines 17–19), if
condition hiLatency evaluates to true, then tactic switchToTextualMode is exe-

12

Submitted for publication.

cuted (line 17 after arrow).
To account for the delay in observing the outcome of tactic execution in

the system, t1 specifies a delay window of 1000 milliseconds (end of line 17).
During execution the child node t1a is evaluated as soon as the tactic effect
is observed or the delay window expires, whichever comes first.

Several keywords can be used within the body of a strategy to support
control flow and termination: success is true if the tactic completes success-
fully; done terminates the strategy, signifying that the strategy has achieved
its adaptation aims, whereas fail terminates the strategy, signifying that the
adaption aims have not been achieved; the default keyword specifies what
should happen if none of the other nodes is applicable.

In the strategy in Fig. 5, if the tactic switchToTextualMode successfully
completes, then the strategy terminates with success (node t1a, line 18). In
the unsuccessful case, since no other peer nodes match, the default branch
is chosen (and the strategy fails, on line 24). If condition hiLatency evaluates
to false, but hiLoad is true, then node t2 (lines 20–23) is evaluated and tactic
enlistServer is executed to enlist an available server.

Again, due to asynchrony, t2 specifies up to 2000 ms for observing the
tactic effect. After completion of the tactic, in the case that hiLoad is true
and tactic enlistServer does not succeed, child node t2b is chosen and the
do-repetition is evaluated, which is semantically equivalent to repeating the
subtree rooted at node t1 as a child node, t1’, of t2b. Evaluation proceeds
with the hiLatency condition of node t1’ : if true, then the rest of the node is
evaluated as described before; if false, then the implied default branch aborts
the strategy. The [1] indicates the number of times the do repetition can
occur within a single evaluation of this strategy if the do node is revisited
(not illustrated by this example).

In the example strategy, if both top-level node conditions hiLatency and
hiLoad are true, then one is chosen non-deterministically. If neither hiLatency

nor hiLoad is true, then node t3 is chosen, and the strategy aborts.
Note that this strategy has five termination points: nodes t1a and t2a

define two success points, node t3 defines an explicit failure point, and nodes
t1 and t2 have two implicit child-level failure points. Thus, for nodes t1 and
t2, under unsuccessful cases, or if none of the conditions apply, the default
branch is chosen.

When a strategy fails, the Adaptation Manager handles any unresolved
adaptation conditions in the next adaptation cycle by triggering another
round of strategy selection and execution.

Although we have used a simplified strategy to illustrate Stitch syntax,
Stitch is sufficiently expressive for defining more elaborate strategies. For

13

Submitted for publication.

the Stitch grammar, see Appendix A. More complex examples from the
Znn.com system can be found in Cheng’s Ph.D. dissertation [18].

4.2. Strategy Selection

As we argued earlier, a key requirement for a strategy language is the
ability to select a strategy that is consistent with the business objectives of
the organization. In the context of Rainbow, where we work with a fixed
repertoire of strategies, this amounts to identifying the strategy with the
highest utility among those that are applicable in a given situation. To
do this Stitch requires the specification of four kinds of information: qual-
ity dimensions, utility preferences, impact vectors, and branch probabilities.
Additionally, we define a set of adaptation conditions, which serve as triggers
for initiating the process of strategy selection and execution.

Quality dimensions specify the dimensions of the multi-dimensional util-
ity space that captures business QoS concerns for the target system (e.g.,
system reliability, service availability, or database performance). A qual-
ity dimension provides a notion of utility for particular values of a quality
attribute. Each dimension defines a utility function and maps to an archi-
tectural property monitored in the model.

Table 2: Data schema for a Utility Profile

Field Definition Description Example

identifier : string A unique mnemonic “uR”

label : string Human-readable name “Average Response Time”

description : string Descriptive comment “R, client experienced

response time (ms), float

arch property”

mapping : string Monitored arch property “ClientT.expRspTime”

utility function : linear

| sigmoid | custom:

〈(xi, yi)〉

Type & domain-range custom: 〈(0, 1) , (500, .9) ,

(1500, .5) , (4000, 0)〉

Each quality dimension is captured as a Utility Profile using a data
schema summarized in Table 2. The profile consists of an identifier, label,
description, mapping to a monitored architectural property, and utility func-
tion definition. The mapping refers to a property defined in the architectural
style. A utility function defines how the values of a given quality dimension
correspond to happiness, with values in the range [0, 1], where 0 is undesirable

and 1 is desirable. Such utility functions can take many forms (depending on

14

Submitted for publication.

the way in which that quality affects happiness. Stitch supports three kinds
of functions: linear, sigmoid function with two defining points, and as a set
of value pairs (with intermediate points linearly interpolated).

Utility preferences are used to define business priorities, or relative im-
portance, between the quality dimensions. Following standard utility the-
ory [19], we specify a set of weights, wi. in the range [0, 1], one for each dimen-

sion, and summing to 1. The overall utility is then given by U =
∑

d

wdud,

where d is the number of quality dimensions.
Impact vectors define the expected cost and benefit of a tactic on each of

the quality dimensions, and hence capture the causal relationship between an
adaptation step and the quality dimensions. They are represented as a vector
of dimension-value pairs, where the value component captures delta value of
cost or benefit. Thus, if a target system owner defines three quality dimen-
sions, then the attribute vector would look like [a1 : ∆v1, a2 : ∆v2,a3 : ∆v3].

For instance, tactic enlistServers for Znn.com is defined with the impact
vector, [aR : −1000, aF : 0, aC : +1.00], which specifies that the tactic is ex-
pected to reduce the average response time by 1000, to have no impact on
content fidelity, and to increase cost by 1. (The delta values are understood
to have the units of the quality dimension as defined in the utility profile.)

Branch probabilities. Because there is uncertainty in whether (a) a tactic
achieves its intended effect and (b) a condition is observed, we estimate the
likelihood of observing the branch conditions. As we will see later, stochastic
branch conditions allow an aggregate impact vector to be computed for each
strategy in utility-based selection. The probabilities can be captured explic-
itly for each strategy node condition. The Pr{*} expression preceding each
of the conditions of t1 and t2 (Fig. 5, lines 17 and 20) denotes the estimated
probability that the condition will evaluate to true among the peer-node con-
ditions. Actual probability values are defined elsewhere and not significant
during strategy execution. Peer-node probabilities must sum to 1; thus, in
the example, t3’s probability is an implied complement.

Adaptation conditions identify system states for which adaptation should
be considered, including the handling of faults, system degradation, and,
more generally, opportunities for improving the target system. To automate
self-adaptation, we define quantitative expressions with respect to specific
quality dimensions, such as the maximum latency for the response-time di-
mension. Further, we specify in the architecture model a measurable thresh-
old quantity as a system-instance architectural property and an adaptation
condition as an architectural constraint, a violation of which identifies an
opportunity for adaptation:

15

Submitted for publication.

1 // t h r e s h o l d q u a n t i t y (p r ope r t y d e f i n e d i n s t y l e ; v a l ue , s y s i n s t a n c e)
2 Property MAX_RSPTIME : f l o a t = 1000 . 0 ;
3 // adap ta t i on c o nd i t i o n (d e f i n e d i n the s t y l e)
4 i n v a r i a n t s e l f . avg_latency < MAX_RSPTIME;

Once we have defined an impact vector for each tactic and specified utility
preferences over the quality dimensions, the next step is to compute the
expected aggregate attribute vector for each strategy. Recall that a strategy
is composed of a tree of tactics, and the condition of each node is annotated
with the likelihood of matching. Computing the aggregate vector consists
of descending the strategy tree, unfolding do-repetitions, and collecting the
impact vector values of each tactic.

The probabilities defined for the conditions allow the attribute values to
be propagated up the strategy tree and eventually collected into an expected
aggregate attribute vector. The vector values designate aggregate delta costs
and benefits against the quality dimensions, so they are combined with archi-
tectural property values representing current system conditions, as identified
by the mappings of corresponding quality dimensions (e.g., the exponential
average of the client-experienced response time for the uR dimension). Using
the utility profiles, these aggregate values are converted to utility values per
dimension, then a weighted sum is computed using the preference weights to
yield an expected utility score for each strategy. Finally, the strategy with
the highest score is selected.

Once a selected strategy is executed, its success or failure, i.e., prior

history, provides additional clue to its fitness for future consideration. One
can think of success history as a predefined quality attribute that the strategy
writer can use, as with any other quality dimension, for strategy selection.
In Stitch, one can define a strategy-failure utility profile to enable a basic
learning feature in the Adaptation Manager to track the historical failure
rate of each strategy, computed as its failure count divided by how many
times it was selected, and to incorporate it as a utility component in the
utility score. Prior history thus provides control over how likely a strategy,
which has been prone to failure, is selected in the future.

4.3. Execution Semantics

We now sketch the operational semantics of Stitch constructs.3 In the
context of the Rainbow framework, an adaptation cycle repeatedly monitors
the target system for adaptation conditions, and triggers the Adaptation

3See [18] for details of the language semantics, including its denotational semantics as
a Markov Decision Process.

16

Submitted for publication.

Manager to take appropriate actions when such conditions are detected.
Specifically, the adaptation cycle proceeds as follows:

1. Detecting an adaptation condition triggers a round of adaptation.

2. For each strategy in the strategy repertoire, first check the strategy
applicability conditions to filter a subset of applicable strategies based
on current system conditions (reflected in the model), then select the
best strategy from that subset by computing the expected utility of
each strategy as follows:

(a) Compute the expected aggregate impact of each strategy on each
quality dimension using the impact vector specified for the tactics;

(b) Score strategies using utility preferences over the dimensions; and
(c) Select the highest-scoring strategy, Gbest.

3. Execute Gbest as follows:

(a) Check its applicability condition to confirm that it still applies.
(b) If so, find all its top-level nodes.
(c) For each node, evaluate the condition on the incoming edge.
(d) If none matches and no default branch is defined, abort strategy.
(e) If more than one branch matches, pick a branch randomly.
(f) Taking the matching branch, evaluate the node by action type:

i. If done, terminate strategy with success.
ii. If fail, abort strategy.
iii. If a do loop, set the corresponding do counter, find the node

referenced by the do label, and continue strategy execution
from step 3c.

iv. If a tactic, execute the tactic as follows:

A. Check tactic condition; if applicable, continue the next
step; otherwise, abort tactic.

B. Execute tactic action; if any operator fails, abort tactic.

v. Evaluate the tactic effect until it is observed in the target
system’s model, which signifies tactic success, or until the
delay expires.

(g) Find the next level nodes, and continue execution from step 3c,
noting that the keyword success in any branch condition is syn-
onymous with querying whether the parent-node tactic was ef-
fected successfully.

17

Submitted for publication.

5. Znn.com Illustration

To bring together the concepts, we now illustrate the features of Stitch
using the Znn.com example system. We start with the three high-level,
potentially competing, objectives and specify a set of utility functions and
preferences for those. We illustrate the definition of adaptation tactics with
their impact vectors and demonstrate strategy selection using the defined
utility preferences.

Typical of news-provider concerns, the quality objective of Znn.com is
to serve news content to its customers within a reasonable response time,
while keeping the cost of the server pool within a certain operating budget.
From time to time, due to highly popular events, Znn.com experiences spikes
in news requests that it cannot serve adequately, even at maximum pool
size. To prevent losing customers, we opt to serve minimal textual contents
during such peak times in lieu of providing zero service to the customers. In
short, we identify three quality objectives for the system to self-adapt—(A)
performance, (B) cost, and (C) content fidelity—from which we derive three
quality dimensions, captured as discrete value sets:

1. Response time: low, medium, high

2. Quality: graphical or multimedia

3. Budget: within or over

We elicit from the service providers the utility values and preferences for
these dimensions. In addition, since response time is affected by the amount
of time required to complete a tactic, we also need to consider a fourth
dimension, disruption, which should be minimized. We use an ordinal scale
of 1 to 5 to express the degree of disruption. Given our understanding of
the quality dimensions, we can specify discrete utility functions for these
four dimensions and complete the utility profiles (description elided). To
determine the utility preferences, assume that Znn.com considers response
time the most important, followed by budget, then content quality, and
finally disruption. This might yield a set of linear, relative weights as shown
in Table 3.

The quality dimensions correspond to measurable properties in the tar-
get system, which has an N-tier-client-server architectural style defining the
types ClientT, ServerT, ProxyT, HttpConnT. Performance analysis of Znn.com
suggests that we monitor the request-response time (ClientT.experRespTime),
server load (ServerT.load), and connection bandwidth of the system (Http-

ConnT.bandwidth). Cost analysis identifies the number of active servers as the
primary contributor to cost (ServerT.cost); hence we monitor the server count.

18

Submitted for publication.

Table 3: Znn.com utility profiles and preferences

ID
Label

Utility Function wi

(Mapping)

uR

Avg Response Time
〈(low, 1) , (medium, 0.5) , (high, 0)〉 0.4

(ClientT.experRespTime)

uF

Avg Content Quality
〈(textual, 0) , (multimedia, 1)〉 0.2

(ServerT.fidelity)

uC

Avg Budget
〈(within, 1) , (over, 0)〉 0.3

(ServerT.cost)

uD

Disruption
〈(1, 1) , (2, 0.75) , (3, 0.5) , (4, 0.25) , (5, 0)〉 0.1

(ServerT.rejectedRequests)

Finally, we characterize three different levels of content fidelity (ServerT.fidelity)
ranging from full multimedia to static text (high, medium, and low).

The operators ServerT.activate() and deactivate() activate and deactivate a
ServerT instance, respectively. The operator ServerT.setFidelity(level:int) sets
the server content fidelity to the level identified by the input parameter. Us-
ing these operators, we specified two pairs of tactics with opposing effects.
One pair enlists or discharges servers while the other pair raises or lowers
the server content fidelity. In effect, these tactics stratify the service level of
the Znn.com system into gradients to trade off the various objectives. Asso-
ciated with each tactic is an impact vector, each consisting of four elements
corresponding to the four previously described quality dimensions, shown in
Table 4. The following example illustrates how these tactics might interact:

When response time is high, objective A (above) suggests that Znn.com
should increment its server pool size (using the enlistServer tactic) if it is
within budget; otherwise, Znn.com should switch the servers to textual mode
(using lowerFidelity). When the response time is low, objective C suggests
that Znn.com should decrement its server pool size (using dischargeServer)
if it is near budget limit; objective B suggests that Znn.com should switch
the servers to multimedia mode (using raiseFidelity) if they are not already
in that mode. When the response time is in the normal range, objective B
suggests that Znn.com should switch the servers to multimedia mode if they
are currently textual, while the server pool size may either be incremented
to decrease response time or decremented to reduce cost.

In our case study, we have defined several adaptation strategies from
these tactics, with juxtapositions that allow system adaptation to balance
the overall objectives (cf. p.109 in [18]). Here we focus our illustration on

19

Submitted for publication.

Table 4: Znn.com tactic cost-benefit attribute vectors

Tactic uR uF uC uD

enlistServers(int ∆k)
−2 steps if ∆k > 4,

−1 step otherwise
+0

+1 step if

c(k+∆k) ≥ Thbud,

+0 step otherwise

+1

dischargeServers(int ∆k)
+2 steps if ∆k > 4,

+1 step otherwise
+0

−1 step if

c(k+∆k) < Thbud,

+0 step otherwise

+1

lowerFidelity(int ∆f) −∆f steps −∆f step +0 (no change) +3

raiseFidelity(int ∆f) +∆f step +∆f step +0 +3

Table 5: Znn.com utility evaluation for two applicable strategies

Strategy
uR uF uC uD

Weighted Utility Evaluation

DropFidelityStrategy
-2⇒low -1⇒textual +0⇒within 3

U = 0.4 (1) + 0.2 (0) + 0.3 (1) + 0.1 (0.5) = 0.75

EnlargeServerPoolStrategy
-2⇒low +0⇒multimedia +1⇒over 1

U = 0.4 (1) + 0.2 (1) + 0.3 (0) + 0.1 (1) = 0.70

utility-based strategy selection—skipping the step to calculate the aggregate
impact vectors—by defining two placeholder strategies: DropFidelityStrategy,
which invokes the tactic lowerFidelity(-2); and EnlargeServerPoolStrategy, which
invokes the tactic enlistServers(5) (∆k = 5 yields a -2-step effect on uR).

Let us assume that Znn.com hits a peak load period, and the system state
falls into a problem state in which the response time is high, the infrastructure
cost is within budget, and the content mode is multimedia. In this case, both
strategies are applicable: one to change the content mode to textual and the
other to increase the size of the server pool. So we need to score the strategies
to determine which one is most appropriate given the utility preferences. The
specified tactic impact vectors would yield aggregate attribute vectors for the
two strategies, which are then used to compute the weighted utility score, as
shown in Table 5.

The utility scores indicate DropFidelityStrategy as the better adaptation
strategy, given the current system conditions. Note that if Znn.com at-
tributed a lower weight to budget, or higher weight to disruption, or swapped
the importance of disruption versus budget, then the other strategy would
have scored higher.

Using such utility-based analysis, we can choose a strategy by considering

20

Submitted for publication.

four dimensions and accounting for trade-offs across those using the addi-
tional input of business utility preferences. Although this example shows
simple utility functions with few discrete values, one can define more com-
plex utility functions and benefit from this utility-based technique.

6. Evaluation

The design of the Stitch language was informed by our understanding of
how sys-admins perform adaptive administrative tasks when they encounter
system problems. We developed this insight over time from personal experi-
ences and interactions with five system administrators. To substantiate the
expressiveness Stitch and the suitability of its design, we evaluate Stitch on
three fronts by showing that:

1. realistic sys-admin concerns and practices can be expressed in the lan-
guage;

2. others besides the authors can capture adaptation policies in Stitch;
and

3. runtime overhead of strategy selection is reasonably low.

In this section, we summarize results from a case study to express sys-
admin tasks in Stitch, a preliminary set of interviews with sys-admins, and
a performance evaluation of the runtime overhead of the strategy selection
algorithm in Stitch. Details are found in Cheng’s dissertation [18].

6.1. Real-World Adaptive Scripts in Stitch

Over the past decade, Carnegie Mellon University has invested extensive
engineering efforts to improve its networking infrastructure and automate
system administration, making it a prime candidate to find evidence of sys-
tem adaptation processes. Of the network administrative subsystems, one
is the network bandwidth enforcement (netbwe) subsystem, which enforces
bandwidth quota per machine. The netbwe subsystem is a set of Perl scripts
that are executed daily and gather information from sensors installed on cam-
pus routers. Using a database, netbwe tracks usage history, records quota
violation, and tracks violation states. It interacts with another subsystem,
epidemic, to alert offending machine owners by email, and interacts with a
netblock component to block network access for repeat offenders. In short,
netbwe has the monitoring, detection, decision, and action elements of a
self-adaptive system. To evaluate the expressiveness of Stitch, we examined
whether it could faithfully represent the adaptations contained within the
Perl scripts.

21

Submitted for publication.

Table 6: Strategies and Tactics for netbwe.

Strategies

EscalateViolationStates escalates violation states of machines exceeding
daily quota.

RestoreViolationStates reverses violation states of machines that pass
probation.

BlockMachines blocks network access of machines with a ban

violation state.

ExemptMachines adjusts violation states of machines with exemp-
tion override.

Tactics

markViolation marks machines with the next state of violation.

emailNotify notifies machine owners of quota violation.

modifyMachines modifies the violation or exemption state of ma-
chines.

netblockMachines issues a block request on machines via netblock.

setExempt] sets exempt privileges machines.

From talking with the network admins, netbwe has these adaptation ob-

jectives: (i) fair usage; (ii) system fit-for-purpose (i.e., campus researchers
can perform research); and (iii) reasonable campus connectivity cost, as de-
termined by capacity and usage. These objectives correspond roughly to
adaptation conditions predicated on (a) bandwidth usage threshold and (b)
exemptions and dated restoration of violation states.

The netbwe subsystem consists of 19 Perl source files with about 10k
source lines of code. In particular, three frontend Perl programs and two
backend Perl module subroutines comprise the core adaptation functionality,
while some of the subroutines act as effectors with operator counterparts
for the adaptation script, and the remainder serve as library utilities. The
required operators are translated to effectors realized by the corresponding
Perl subroutines. By analyzing the adaptation objectives in combination
with the Perl subroutines, we identified four strategies and five tactics, which
we were able to capture in Stitch, as summarized in Table 6. (Again for
details see [18].)

This case study of CMU’s network bandwidth enforcement subsystem,
by identifying and extracting parallel adaptation elements from the scenario,
provides evidence that Stitch is capable of representing the adaptation-
oriented concerns embodied in real-world, system-administrative Perl scripts.

22

Submitted for publication.

Furthermore, this exercise demonstrated additional benefits in representing
the netbwe subsystem using Stitch. Stitch helps separate the concerns of
adaptation, so that monitored properties, operators to change the system,
and adaptation choices are not distributed throughout the management logic.
In particular, adaptation choices are made prominent in strategies, rather
than being buried deep inside a Perl subroutine. Finally, the distinction be-
tween strategy and tactic enables the adaptation engineer to reason about
and describe the specifics of an adaptation action as an intellectually separate
process from deciding when to take each action.

6.2. Interviews with System Administrators

To evaluate whether the concepts embodied in Stitch match system ad-
ministrative processes, we arranged to interview sys-admins. Here we sum-
marize results from two sys-admins, one from interview, another from self-
guided decision analysis.4

We conducted an interview with a former Carnegie Mellon University
sys-admin who described a self-adaptive scenario for managing students who
abuse network bandwidth. In a network bandwidth abuse case, a student
had backed up ~80 GB of his hard disk onto his server space. The sys-admin
observed a spike in bandwidth usage the next day and a technician noticed
that the backup tape was exhausted at around the same time. To prevent
future repeat of similar situations, the sys-admin would ideally want to track
disk usage by file type, such as MP3s. The sys-admin also contemplated
enforcing per-user disk quota, but that policy would have unjustly prevented
legitimate users from transferring large quantities of data; one solution was
to enforce disk quota on only the users with excessive usage. Finally, a
monitoring capability with email notification might have alerted the sys-
admin to a bandwidth abuse problem much sooner than the next day.

Based on the description of the abuse problem and potential solutions,
we were able to capture three adaptive concerns, three tactics, and an overall
strategy, summarized in Table 7. Only one of the tactics was directly drawn
from the interview, the others being inferred from context. Whether inferred
or directly elicited, since these tactics fit the problem context, they serve our
purpose to assess the expressiveness of Stitch.

The three adaptation objectives are shown below, where cost captures a
potential for dollar value lost when executing a particular tactic.

4Derived from the work of Ali Almossawi, an undergraduate student with prior experi-
ence as a sys-admin, who performed a summer independent study on Rainbow under our
supervision.

23

Submitted for publication.

Table 7: Summary of White’s solution strategy and tactics

[S] DealWithAbusiveUser

trigger: notable spike in bandwidth usage

trigger: backup tape unexpectedly runs out

[T] increaseServerPoolSize (User user, Host h, int n)

guard: bandwidth is high

[overhead: 0.5; ill-feeling: 1; cost: 0]

[T] banAbusiveUser (User user)

guard: bandwidth is high

guard: the offense has been committed n times (where n>1)

guard: the disk space usage is high

[overhead: 1; ill-feeling: 0; cost: 1]

[T] warnAbusiveUser (User user)

guard: bandwidth is high

guard: the offense has been committed once before

guard: the disk space usage is at least medium*

[overhead: 1; ill-feeling: 0.5; cost: 1]

1. Overhead: 1 if low, 0.5 if medium, 0 if high

2. Ill-feeling: 1 if low, 0.5 if medium, 0 if high

3. Cost (dollars): 1 if low, 0.5 if medium, 0 if high

From our analysis of the interview, we were able to develop an architec-
ture for this system and compose a Stitch module that corresponds closely to
what is described in Table 7. Interested readers are referred to the Appendix
in [18] for details. The module uses both an architectural and environment
model, and is able to express predicates that reference elements simultane-
ously from both models (users belong to the environment). This expres-
siveness empowers the adaptation engineer to reason about adaptations by
combining information from both the architecture and the environment.

As additional supporting evidence that others can capture their adapta-
tion process in Stitch, we had a sys-admin who was familiar with Stitch, but
not one of the authors, structure his decision-making process when managing
a webserver against intrusion. He noted two primary concerns in choosing
an adaptation: (a) which course of action requires the least effort and (b)
how severe is the situation. To combat suspicious activity on a server, this
sys-admin followed the decision process outlined below:

|_ Logwatch ema i l i n d i c a t e s s u s p i c i o u s IP add r e s s or b r u t e f o r c e
attempt

24

Submitted for publication.

|_ Add IP add r e s s to f i r e w a l l ’ s "deny " l i s t
|_ F lush f i r e w a l l ’ s r u l e s then r e s t a r t i t
|_ Check s e r v e r l o g s and look up IP add r e s s to see i f i t has a

h i s t o r y
|_ I f i t does

|_ Change supe r u s e r ’ s password
|_ Check s e r v e r l o g s to en su r e IP add r e s s didn ’ t ga i n a c c e s s to the

system
|_ I f I s u s pe c t i t d i d

|_ Immed ia te l y run r o o t k i t checke r
|_ Immed ia te l y run ant i −v i r u s s canne r
|_ I f f o r some rea son I ’m s t i l l s u s p i c i o u s

|_ Backup a l l data
|_ Reformat webse rv e r
|_ Re s to r e data

Based on these interviews, the concerns, problems, and solutions ex-
pressed corroborate the concepts embodied in Stitch. In particular, evident
in the documented responses were objectives, observable system conditions,
specific actions in response to specific conditions, and, to a lesser extent,
preferences. Assessed abstractly, Stitch provides the appropriate constructs
and has the expressiveness for capturing an adaptive administrative strategy
concisely and intuitively.

6.3. Performance of the Strategy-Selection Algorithm

A long decision-making process hinders the usefulness of a self-adaptive
approach. The main decision-making process in Stitch is embodied in its
utility-based strategy-selection algorithm. As described in Section 4.2, dur-
ing the selection process, the Adaptation Manager traverses the tree of each
applicable strategy to compute an aggregate vector of cost and benefits, then
calculates its expected utility as a weighted sum across the utility dimen-
sions. If q = the number of dimensions, n = the number of nodes per strategy
tree, and s = the number of strategies, the algorithm has a complexity of
O (nqs), in other words, linear with the number of strategies.

In practical usage, the size of the strategy repertoire in any particular
target system is expected to range from a handful to several dozens (< 100),
while the number of nodes per strategy and the size of quality dimensions
would likely be no more than a dozen. For good measures, we vary the
number of strategies by orders of magnitude from 10 to 10000, and the
number of dimensions at 5, 10, 50, and 100. Strategy node counts range
from 4 to 15 nodes. All strategies are made applicable in each run.

Using a 3.00 GHz Intel Pentium 4 machine with 2 GB of RAM, we

25

Submitted for publication.

Table 8: Summary of performance (milliseconds) for Stitch’s strategy-selection algorithm.

Strategy count s
Quality Dimensions q

5 10 50 100

10 23 19 17 17

100 171 173 169 167

1000 1495 1468 1465 1454

10000 13761 13742 13639 13730

performed 50 trial runs for each s-q pair5 and measured the duration of
time beginning when adaptation is triggered and ending when the Executor
receives the best-scoring strategy to execute. Table 8 summarizes the data.
Note that s is the primary determinant of algorithm run time, and the data
confirms the analytic result that a 10x increase in the number of strategies
roughly yields 10x increase in run time. The data indicate that utility-based
strategy-selection algorithm performs very well in nominal usage cases (≤
100 strategies), and even handles 1000 strategies decently well. If necessary,
algorithmic optimization can further improve performance.

In summary, the netbwe case study provided solid anecdotal evidence
that system-administrative concerns can be expressed as Stitch policies in
an intuitive, arguably more transparent manner. Interviews with sys-admins
strengthened confidence that Stitch naturally captures the way in which sys-
admins think about and resolve system problems, and that others could
express adaptive concerns in Stitch. Finally, performance evaluation demon-
strated favorably low runtime overhead in the utility-based strategy selection
algorithm, the decision-making part of Stitch.

7. Related Work

In the Rainbow approach, a run-time software architecture model of the
target system is maintained to manage the system. The adaptation language
proposed in this article allows adaptation policies and decision criteria to be
expressed in a form that the adaptation framework can analyze and auto-
mate. This section discusses two areas of related work to the Stitch language:
adaptation frameworks and languages for specifying adaptation policies.

531 runs for s = 10000, but with only 5 runs at q = 100.

26

Submitted for publication.

7.1. Adaptation frameworks

To date, many dynamic software architectures and architecture-based
adaptation frameworks have been proposed and developed [8, 9, 10], often
targeting specific architectural styles (e.g., Weaves for data-flow systems [20],
ArchStudio for C2 hierarchical publish-subscribe systems [21], and [22] for
managing robotics systems), and quality dimensions (e.g., Willow for surviv-
ability [23], Plastik for performance properties [24], and CASA for resource
availability concerns in mobile network environments [25]). These related
approaches on self-adaptive systems generally share a structure similar to
the MAPE control cycle from IBM’s Autonomic Computing initiative [6].
Viewed as an instance of the MAPE loop, Rainbow uses a shared knowl-
edge base consisting of an explicit architecture model, a fixed repertoire of
adaptation strategies, and utility preferences to monitor system states, de-
tect problems, decide on a suitable strategy, and act on the system to effect
adaptation. Furthermore, whereas most approaches assume certain struc-
tures in the target system and adapt for a single, or handful of, quality
attributes, Rainbow is generic to architectural styles and handles multiple
objectives.

Existing approaches also vary in the kind of systems that they can man-
age. For example, CoBRA manages service-oriented systems by weaving in
changes via dynamic aspect-oriented programming (d-AOP) [26], limiting
them to Java-based systems. IRIDIUM is based on a light-weight CORBA
middleware for managing high-performance and real-time distributed sys-
tems [27]. StarMX is a framework exploiting standard Java MX manage-
ment infrastructure to effect management and uses standard policy engines
(e.g., JESS or QEngine) for specifying adaptation [28]. Weyns et al. use a
multi-agent approach to provide flexible, context-driven dynamic organiza-
tions [29]. In terms of Rainbow, these complementary approaches typically
provide versatile translation layer infrastructures and mechanisms for adap-
tation engineers to tailor monitoring and effecting to specific target systems,
but are agnostic to using run-time architecture models.

7.2. Languages for specifying adaptation policies

Stitch comprises a number of key features for codifying how to adapt
a system: a domain-specific language for self-adaptation, architectural ab-
stractions as first-class entities, QoS-based choice, utility-based conflict res-
olution of policies, constraints, event-condition-actions, timing, and proba-
bilities. Poladian and colleagues have argued a case for multi-dimensional
utility analysis because converting all costs to a common currency was prob-
lematic [30]. We applied their ideas in our language to support analysis

27

Submitted for publication.

of choice based on multi-dimensional adaptation attributes. Many adaptive
approaches, especially Kephart and colleagues from IBM, leverage utility
theory to select the best adaptation policy.

While various languages and tools have been developed with subsets of
similar features as Stitch, none that we know of integrates these adaptation-
enabling features into a single language. In most cases, a language may
offer the operational constructs, but lack inherent support for one or more
of Stitch’s declarative constructs. CoBRA adaptation policies are mani-
fest as Java aspects [26]; Edwards et. al. specify policies as Java classes
in the Prism-MX platform [22]; IRIDIUM adaptation policies map fault-
tree-like rules to an action, at a configurable evaluation rate [27]; Starfish
provides a policy language that supports event-condition-actions as well as
authorization (which Stitch does not have) [31]; Vogel and Giese’s model-
driven approach specifies adaptation policies in terms of model transforma-
tion rules [32]; although versatile and powerful, these policy mechanisms lack
support for timing and uncertainty, and make it difficult to specify impact
on quality-of-service and, thus, to resolve conflicts as well as to make QoS-
based choice of the best adaptation. PBAAM [33] and StarMX [28] specify
policies as expert system rules, which supports notions of uncertainty, but
does not inherently support QoS evaluation, conflict resolution, and settling
time. Petrucci et al. use a Python-based language with explicit notions of
control and settling time [34], but lacks support for QoS-based evaluation
and conflict resolution.

Ponder [35] is a full-featured policy languages that supports the speci-
fication of management policies for distributed systems and networks man-
agement. Ponder can capture roles and relationships of entities in a system,
specify security policies, and even support service-related policies. However,
policy specifications do not currently capture explicit preference and trade-
off information to support high-level decision of choices.

Some work has been done on formally modeling languages used to spec-
ify adaptations. For example, Darwin [36] and ArchWare [37] are mod-
eled using π-calculus semantics to specify reconfigurations of distributed sys-
tems. While temporal-based and probabilistic model checkers (e.g., Symbolic
Model Verifier [38], Spin [39], and PRISM [40]) can verify system properties
at design time, Stitch harnesses temporal and probabilistic specification at
runtime to control system properties for quality-of-service.

Finally, a number of researchers are looking into approaches to dynami-
cally generate adaptations from high-level specifications of goals (cf. Kramer
and Magee’s three-layered approach [41]), using a variety of techniques such
as planners [42, 43, 44] and workflow generators [45]. These approaches can

28

Submitted for publication.

account for new components not conceived at design time, and so are quite
flexible. However, it is difficult to analyze these plans to ensure that system
qualities are maintained, and it is difficult to convey to sys-admins how these
plans manage the system. In contrast, it is possible to statically analyze
adaptation strategies in Stitch, and for sys-admins to specify adaptations
using Stitch. On a spectrum of self-adaptive systems, from a completely
static and manually managed system at one extreme, to a fully dynamic and
autonomic system at the other, Stitch hits an important sweet spot: It offers
an analyzable and declarative language that builds in more things statically
and and takes advantage of the routine nature of adaptation. It may be
possible to use a planning approach where statically specified strategies like
those in Stitch could be used to prune the search space. Such an approach
would require future research.

8. Discussion and Conclusion

In this article, we motivated and identified a set of language require-
ments to codify dynamic but routine system-administrative adaptation pro-
cesses and presented the strategy definition language, Stitch. We presented
Stitch’s operational constructs (operator, tactic, strategy), declarative con-
structs (adaptation conditions, quality dimensions, utility preferences, tactic
impact vectors, and strategy applicability conditions), its strategy selection
algorithm, and its execution semantics in brief. We then illustrated Stitch
using the example system, Znn.com. Finally, we provided evidence demon-
strating the expressiveness and usefulness of Stitch. The Stitch language has
been integrated into the Rainbow framework, which compiles and executes
repairs, and uses the strategy meta-data to choose appropriate actions to
take to adapt a system being managed by Rainbow.

In the remainder of this article, we discuss some limitations and open
issues with the design of Stitch, and share some insights and future work.

Why three operational constructs?. By observing commonly performed sys-
tem administration tasks, we have extracted a set of three constructs —
operators, tactics, and strategies — and thus a basic ontology of adaptation
language for automating mundane tasks in system management. Together
with utilities, control of timing, and probabilities, these concepts form an
adaptation language with the expressiveness to represent human adaptation
expertise and the flexibility to incorporate dynamic preferences.

It might be argued that only two operational constructs suffices: one for
the primitive steps, the other for the adaptation plan. In Stitch, the choice

29

Submitted for publication.

Table 9: Invocation relationship between Stitch operational constructs

Invokes⇒ Operator Tactic Strategy

Operator Unspecified X X

Tactic
√

X X

Strategy X
√

?

of three constructs was motivated by the needs of abstraction, packaging,
and separation of concerns. Operators are provided by an architectural style
and are mapped to effectors in the target system. A system represented by
an architectural style may have many different ways to adapt, but will likely
have a fixed set of operators that change the model correctly. Therefore,
operators are a crucial reuse link between the adaptation mechanism and the
architecture model, as well as the translation link between the adaptation
mechanism and the target system.

However, operators do not suffice as an adaptation primitive for two
reasons. First, the style writer who provides the architectural operators
generally cannot know the adaptation context in which the operators will
be used. Knowledge of the adaptation context and, particularly, the impact
of operators on the utility dimensions for the target system are separate
concerns of the adaptation engineer. Second, the adaptation engineer may
need to define larger steps of adaptation than is provided by architectural
operators. Hence, we need a second, distinct concept of tactics.

The third concept, strategies, embody explicit decision choices of the
sys-admin and provide a packaging construct to constrain adaptation to in-
dividual domains of expertise for tractable reasoning.

Invocation relationship between constructs. The invocation relationship cur-
rently implemented in Stitch is summarized in Table 9. It should be obvious
that no construct may invoke constructs above it, as that would defeat our
expressed intent for abstraction, packaging, and separating concerns. Since
operators are not implemented in Stitch (only used), Stitch does not des-
ignate whether operators can call other operators. If realized as programs,
operators might conceivably invoke other, reusable modules of operators.

In contrast, nesting tactics makes cycles possible, complicating the single-
step semantics of the tactic, as well as the evaluation of the condition and
effect blocks. In particular, it is not obvious what role the condition block of
a called tactic should play: Should it be allowed to abort the calling tactic?
Should it be ignored altogether? Whether a strategy should be allowed to
invoke another strategy is not immediately obvious. If such invocation were

30

Submitted for publication.

allowed, the natural semantics would be to graft the tree of the invoked
strategy at the node of the invoking strategy. However, we have chosen not
to allow such invocation for simplicity, as it is unclear (a) how to reconcile
the applicability conditions in the called strategy, (b) what it would mean
for a strategy written for one quality to invoke a strategy intended for a
different quality, and (c) how to handle recursive invocations. Furthermore,
utility-based scoring of nested strategies would be greatly complicated.

Eliciting a large number of inputs. Stitch requires a number of different
inputs from the stakeholders of a self-adaptive system, inputs which may
be hard to elicit. Among these, utilities and probabilities are notoriously
difficult for humans to capture precisely and correctly [46, 47]. Fortunately,
our approach allows utility and probability specifications (and all aspects of
Stitch specifications, for that matter) to be defined and refined incrementally.
As Sousa has shown [47], a small set of simple utility function curves (linear,
step, sigmoid, etc.) suffices to capture a significant variation of utility spaces
while imposing low cognitive burden. For probability values, our preliminary
analysis simulating adaptation scenarios using Markov Decision Processes
suggests that adaptation decision outcomes are not overly sensitive to minor
perturbations in probability values. While the complexity of utility and
probability specifications will depend on domain and scope of adaptation,
we could apply learning and simulation techniques to obtain these values.

Strategies versus plans. Given the current state of the target system as ob-
served through the model (conditions) and a set of available tactics (actions),
it is possible to use a planning algorithm to search for the best sequence
(path) of tactics, and thus generate a strategy, as others have done (see
Section 7). In our approach, we elicit strategies rather than use a plan-
ning algorithm for a number of reasons. Planning is ideal for exploring a
large space of potential paths, but in the domains we are targeting, adap-
tation decisions are often known or, at least, constrained in scope. Because
plans are generated on-the-fly, from a utility perspective, the uncertainty
and potentially large number of generated plans make it difficult to perform
an end-to-end, closed analysis of adaptation outcomes. In contrast, during
adaptation, the set of strategies to explore is much smaller and, thus, a
more efficient set on which to perform utility-based analysis of adaptation
outcomes. A strategy yields consistent, verifiable, and reusable adaptation
outcomes. Furthermore, we believe the notion of strategy is intuitive, giving
sys-admins greater control over Stitch-type representations and its decision
outcome.

31

Submitted for publication.

Historical information. To avoid repeated invocation of strategies that have
not historically resulted in system improvements, we incorporate simple his-
tory in subsequent strategy selections as a strategy failure profile that is
factored into the utility calculation. Having access to history, we can in-
tegrate learning as part of the selection process to avoid oscillation and to
improve selection quality. The next leap would be to integrate predictions
into the monitoring infrastructure, possibly via predictor gauges [48] to an-
ticipate certain quality-of-service problems, such as a rise in CPU load, drop
in available bandwidth, or even change in the state of user tasks.

Dynamic update of strategies and strategy selection information. Currently,
Rainbow does not support dynamic updates to account for changing user
concerns or new strategies. Strategy meta-data, such as user preference pro-
files, could be easily changed at runtime. Furthermore, information about
the strategies themselves, including branch probabilities, timing windows,
impact vectors, and utility profiles could also be updated dynamically based
on historical information or user preferences. We anticipate another layer
above Rainbow that explicitly models user goals and preferences, and pro-
vides this information to Rainbow. The final form of this layer is a topic of
future work, but a good starting point is our prior work on modeling user
tasks and preferences in Aura [49, 47].

In terms of adding new strategies dynamically, because the Adaptation
Manager of Rainbow chooses among a set of strategies each time an ada-
pation cycle is performed, it would be feasible for this set to be changed,
allowing incorporation and removal of strategies at run time. This forms
another area of future work.

Opportunistic Improvement. The Adaptation Manager of Rainbow is reac-
tive to problems in the system, invoking Stitch when constraints fail. While
this favors rapid recognition of problems, it means that Rainbow is currently
only reactive to problems in the system. Replacing the simple constraint
evaluation mechanism with a more sophisticated QoS Analyzer would en-
able more proactive adaptation by looking for opportunities for system im-
provement. However, this would incur a greater computation overhead and
potentially be more disruptive to the system. We do not envisage that this
would result in changes to Stitch, but experimenting with more proactive
approaches to adaptation is a rich area of future research.

Fault Localization. The first step of a tactic is typically identifying the el-
ements of the system that caused the failure, to target the tactic to adapt
those elements. This means that fault localization is done in Stitch. We

32

Submitted for publication.

are investigating an alternative approach that factors fault localization out
of the Stitch, and uses Spectrum-Based Multiple Fault Localization [50] to
elicit sets of candidates for the most likely cause of a problem. These would
then be passed to the Stitch strategies. Such an approach will allow us to
also detect problems that are caused by multiple components [51].

Strategy Assurance. There are two aspects to assurance that we can inves-
tigate in future work. Does a strategy leave the system in a legal state?
Does a strategy have the effect that it was designed to achieve? In the for-
mer, we can use Kim’s work [52] to check the combination of operators to
assure that a strategy produces legal systems according to the architectural
style. In the latter, Stitch is amenable to utility-based analysis and perhaps
model-checking with PRISM [40] or SPIN [39].

Stitch strikes a balance of allowing imperative specification of procedural
algorithms, as well as declarative specification of decisions. It naturally cap-
tures human cognitive models when performing routine, but dynamic tasks,
and provides simple constructs to control timing and handle uncertainties in
the outcome of computation. We believe we may have struck a sweet spot
of expressiveness and analysis capability for a class of systems with inherent
uncertainties and timing concerns. While there may be many ways to specify
the scripts themselves, an effective adaptation language must address certain
critical issues, such as how long an adaptation takes, its effect on quality-of-
service dimensions, and so on. We believe that these aspects of Stitch will
generalize to other approaches to adaptation.

Acknowledgements

We would like to thank Ali Almossawi, who performed a summer independent
study on Rainbow, during which he interviewed sys-admins and wrote a Stitch
Editor Eclipse plug-in.

This research was sponsored by DARPA under grants N66001-99-2-8918 and

F30602-00-2-0616, the US Army Research Office (ARO) under grants DAAD19-

01-1-0485 and DAAD19-02-1-0389 ("Perpetually Available and Secure Information

Systems") to Carnegie Mellon University’s CyLab, the NASA High Dependability

Computing Program under cooperative agreement NCC-2-1298, and a 2004 IBM

Eclipse Innovation Grant. The views and conclusions contained in this document

are those of the author and should not be interpreted as representing the official

policies, either expressed or implied, of DARPA, the ARO, the U.S. government,

NASA, IBM, or any other entity.

33

Submitted for publication.

References

[1] Microsoft Corporation, System center operations manager 2007, http://www.

microsoft.com/systemcenter/opsmgr/ (2008).

[2] C. Frye, Self-healing systems, Application Development Trends (2003) 29–34.

[3] A. G. Ganak, T. A. Corbi, The dawning of the autonomic computing era, IBM
Systems Journal 42 (1) (2003) 5–18.

[4] K. Scott, Computer, heal thyself, Information Week.

[5] A. B. Brown, D. A. Patterson, Undo for operators: Building an undoable e-mail
store, in: In Proceedings of the 2003 USENIX Annual Technical Conference, 2003,
pp. 1–14.

[6] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50.

[7] T. M. Mitchell, Machine Learning, McGraw-Hill series in computer science, McGraw-
Hill, New York, 1997.

[8] J. S. Bradbury, J. R. Cordy, J. Dingel, M. Wermelinger, A survey of self-management
in dynamic software architecture specifications, in: WOSS ’04: Proc. of the 1st ACM
SIGSOFT Workshop on Self-managed Systems, ACM, New York, NY, 2004, pp.
28–33.

[9] D. Ghosh, R. Sharman, H. R. Rao, S. Upadhyaya, Self-healing systems - survey and
synthesis, Decis. Support Syst. 42 (4) (2007) 2164–2185.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, A. L. Wolf, An architecture-based approach to self-
adaptive software, IEEE Intelligent Systems 14 (3) (1999) 54–62.

[11] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Prentice-Hall, 1996.

[12] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow:
Architecture-based self adaptation with reusable infrastructure, IEEE Computer
37 (10).

[13] S.-W. Cheng, D. Garlan, B. Schmerl, J. a. P. Sousa, B. Spitznagel, P. Steenkiste,
Using architectural style as a basis for self-repair, in: J. Bosch, M. Gentleman,
C. Hofmeister, J. Kuusela (Eds.), Software Architecture: System Design, Develop-
ment, and Maintenance, Kluwer Academic Publishers, Massachusetts, USA, 2002,
pp. 45–59.

[14] D. Garlan, S.-W. Cheng, B. Schmerl, Increasing system dependability through
architecture-based self-repair, in: R. de Lemos, C. Gacek, A. Romanovsky (Eds.),
Architecting Dependable Systems, Lecture Notes in Computer Science, Springer-
Verlag, Inc., New York, NY, USA, 2003, pp. 61–89.

34

Submitted for publication.

[15] S.-W. Cheng, D. Garlan, B. Schmerl, Making self-adaptation an engineering reality,
in: O. Babaoghu, M. Jelasity, A. Montroser, C. Fetzer, S. Leonardi, A. Van Moorsel
(Eds.), Proceedings of the Conference on Self-Star Properties in Complex Information
Systems, Vol. 3460 of LNCS, Springer-Verlag, 2005, also available from Springer-
Verlag here.

[16] G. D. Abowd, R. Allen, D. Garlan, Formalizing style to understand descriptions of
software architecture, ACM Trans. Softw. Eng. Methodol. 4 (4) (1995) 319–364.

[17] E. W. Dijkstra, Guarded commands, non-determinacy and formal derivation of pro-
grams, Communications of the ACM 18 (8) (1975) 453–457.

[18] S.-W. Cheng, Rainbow: Cost-effective software architecture-based self-adaptation,
Technical Report CMU-ISR-08-113, Carnegie Mellon University School of Computer
Science, 5000 Forbes Avenue, Pittsburgh, PA 15213 (May 17, 2008).

[19] Wikipedia, Utility — wikipedia, the free encyclopedia, http://en.wikipedia.org/w/
index.php?title=Utility&oldid=200699805, [Online; accessed 25-March-2008] See
"Expected utility" section. (Mar. 17, 2008).

[20] M. M. Gorlick, R. R. Razouk, Using Weaves for software construction and analysis,
in: Proc. of the 13th International Conf. of Software Engineering, IEEE Computer
Society Press, Los Alamitos, CA, USA, 1991, pp. 23–34.

[21] E. M. Dashofy, A. Hoek, R. N. Taylor, Towards architecture-based self-healing sys-
tems, ACM Press, New York, NY, USA, 2002, pp. 21–26.

[22] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic, G. Sukhatme,
B. Petrus, Architecture-driven self-adaptation and self-management in robotics sys-
tems, [53], pp. 142–151.

[23] A. L. Wolf, D. Heimbigner, A. Carzaniga, K. M. Anderson, N. Ryan, Achieving
survivability of complex and dynamic systems with the Willow framework, in: Pro-
ceedings of the Working Conference on Complex and Dynamic Systems Architecture,
2001.

[24] T. V. Batista, A. Joolia, G. Coulson, Managing dynamic reconfiguration in
component-based systems., in: EWSA, Vol. 3527 of LNCS, Springer, 2005, pp. 1–17.

[25] A. Mukhija, M. Glinz, A framework for dynamically adaptive applications in a self-
organized mobile network environment, in: ICDCSW ’04: Proceedings of the 24th
International Conference on Distributed Computing Systems Workshops - W7: EC
(ICDCSW’04), IEEE Computer Society, Washington, DC, 2004, pp. 368–374.

[26] F. Irmert, T. Fischer, K. Meyer-Wegener, Runtime adaptation in a service-oriented
component model, in: Proceedings of the 2008 international workshop on Software
engineering for adaptive and self-managing systems [54], pp. 97–104, 529080.

[27] S. S. Andrade, R. J. de Araujo Macedo, A non-intrusive component-based approach
for deploying unanticipated self-management behaviour, [53], pp. 152–161.

35

Submitted for publication.

[28] R. Asadollahi, M. Salehie, L. Tahvildari, Starmx: A framework for developing self-
managing java-based systems, [53], pp. 58–67.

[29] D. Weyns, R. Haesevoets, B. Van Eylen, A. Helleboogh, T. Holvoet, W. Joosen,
Endogenous versus exogenous self-management, in: Proceedings of the 2008 inter-
national workshop on Software engineering for adaptive and self-managing systems
[54], pp. 41–48, 529080.

[30] V. Poladian, S. Butler, M. Shaw, D. Garlan, Time is not money: The case for multi-
dimensional accounting in value-based software engineering, in: Fifth Workshop on
Economics-Driven Software Engineering Research (EDSER-5), 2003.

[31] T. Bourdenas, M. Sloman, Starfish: policy driven self-management in wireless sensor
networks, in: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems [55], pp. 75–83.

[32] T. Vogel, H. Giese, Adaptation and abstract runtime models, in: Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems [55], pp. 39–48.

[33] J. C. Georgas, R. N. Taylor, Policy-based self-adaptive architectures: a feasibility
study in the robotics domain, in: Proceedings of the 2008 international workshop
on Software engineering for adaptive and self-managing systems [54], pp. 105–112,
529080.

[34] V. Petrucci, O. Loques, D. Mossé, A framework for dynamic adaptation of power-
aware server clusters, in: Proceedings of the 2009 ACM symposium on Applied Com-
puting, SAC ’09, ACM, New York, NY, USA, 2009, pp. 1034–1039.

[35] N. Damianou, N. Dulay, E. Lupu, M. Sloman, The ponder policy specification lan-
guage, in: POLICY ’01: Proc. of the International Workshop on Policies for Dis-
tributed Systems and Networks, Springer-Verlag, London, UK, 2001, pp. 18–38.

[36] J. Magee, J. Kramer, Dynamic structure in software architectures, in: SIGSOFT ’96:
Proc. of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering,
ACM, New York, NY, USA, 1996, pp. 3–14.

[37] R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys, R. M. Greenwood, An
active architecture approach to dynamic systems co-evolution, in: ECSA, Vol. 4758
of LNCS, Springer, 2007, pp. 2–10.

[38] J. R. Burch, E. M. Clarke, D. E. Long, Symbolic model checking with partitioned
transition relations, in: VLSI 91, 1990.

[39] G. J. Holzmann, The spin model-checker, in: Proc. FORTE 1999, Vol. 28, 1997, pp.
481–497.

[40] M. Kwiatkowska, G. Norman, D. Parker, Prism: Probabilistic symbolic model
checker, in: T. Field, P. Harrison, J. Bradley, U. Harder (Eds.), Proc. TOOLS 2002,
Vol. 2324 of Lecture Notes in Computer Science, Springer, 2002, pp. 200–204.

36

Submitted for publication.

[41] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: 2007
Future of Software Engineering, FOSE ’07, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 259–268.

[42] D. Kim, S. Park, Reinforcement learning-based dynamic adaptation planning method
for architecture-based self-managed software, [53], pp. 76–85.

[43] D. Sykes, W. Heaven, J. Magee, J. Kramer, Exploiting non-functional preferences in
architectural adaptation for self-managed systems, in: Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, ACM, New York, NY, USA, 2010, pp.
431–438.

[44] C. Ghezzi, M. Pradella, G. Salvaneschi, Programming language support to context-
aware adaptation: a case-study with erlang, in: Proceedings of the 2010 ICSE Work-
shop on Software Engineering for Adaptive and Self-Managing Systems [55], pp. 59–
68.

[45] C. E. da Silva, R. de Lemos, Using dynamic workflows for coordinating self-adaptation
of software systems, [53], pp. 86–95.

[46] S. A. Butler, Security attribute evaluation method: a cost-benefit approach, in: Proc.
of the 24th International Conf. on Software engineering, ACM Press, 2002, pp. 232–
240.

[47] J. P. Sousa, Scaling task management in space and time: Reducing user overhead
in ubiquitous-computing environments, Technical Report CMU-CS-05-123, Carnegie
Mellon University School of Computer Science, 5000 Forbes Avenue, Pittsburgh, PA
15213 (Mar. 28, 2005).

[48] V. Poladian, D. Garlan, M. Shaw, B. Schmerl, J. P. Sousa, M. Satyanarayanan, Lever-
aging resource prediction for anticipatory dynamic configuration, in: Proc. of the 1st
IEEE International Conf. on Self-Adaptive and Self-Organizing Systems (SASO ’07),
2007, pp. 214–223.

[49] J. P. Sousa, D. Garlan, Aura: an architectural framework for user mobility in ubiqui-
tous computing environments, in: J. Bosch, M. Gentleman, C. Hofmeister, J. Kuusela
(Eds.), Software Architecture: System Design, Development, and Maintenance (Proc.
of the 3rd Working IEEE/IFIP Conf. on Software Architecture), Kluwer Academic
Publishers, 2002, pp. 29–43.

[50] R. Abreu, A. J. C. van Gemund, Diagnosing multiple intermittent failures using
maximum likelihood estimation, Artif. Intell. 174 (18) (2010) 1481–1497.

[51] P. Casanova, B. Schmerl, D. Garlan, R. Abreu, Architecture-based run-time fault
diagnosis, submitted for Publication (2011).

[52] J. S. Kim, D. Garlan, Analyzing architectural styles, Journal of Software and Systems
83 (7) (2010) 1216–1235.

[53] 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems, IEEE Computer Society, Los Alamitos, CA, USA, 2009.

37

Submitted for publication.

[54] SEAMS ’08: Proceedings of the 2008 international workshop on Software engineering
for adaptive and self-managing systems, ACM, New York, NY, USA, 2008, 529080.

[55] SEAMS ’10: Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, ACM, New York, NY, USA, 2010.

Appendix A. Stitch Grammar

The Stitch grammar is shown below. Details of statements and expres-
sions have been elided for space considerations.

1 # ANTLR EBNF grammar : l owe r ca s e f o r non−t e rm i n a l ; uppercase , t e rm i n a l
2
3 module : := MODULE IDEN SEMI # SEMI := semico l on
4 (impor t) ∗ (f u n c t i o n) ∗ (t a c t i c)∗ (s t r a t e g y) ∗ EOF ;
5
6 impor t : := IMPORT (LIB |MODEL|OP) STR_LIT impRenameList ? SEMI ;
7 impRenameList : := LBRACE impRenamePair (COMMA impRenamePair)∗ RBRACE ;
8 impRenamePair : := IDEN AS IDEN ; # IDEN := i d e n t i f i e r
9

10 f u n c t i o n : := DEFINE type IDEN ASSIGN e x p r e s s i o n SEMI ;
11 ope r a to r : := IDEN (LPAREN a r gE x p r L i s t RPAREN) ? ;
12
13 t a c t i c : := TACTIC s i g n a t u r e LBRACE
14 (d e c l a r a t i o n SEMI) ∗
15 CONDITION LBRACE (boo l eanExpr SEMI) ∗ RBRACE
16 ACTION LBRACE (s ta tement) ∗ RBRACE
17 EFFECT LBRACE (boo l eanExpr SEMI) ∗ RBRACE
18 RBRACE ;
19
20 s t r a t e g y : := STRATEGY IDEN
21 LBRACKET boo l eanExpr RBRACKET
22 LBRACE (f u n c t i o n) ∗ (s t r a t e g y E x p r) ∗ RBRACE ;
23 s t r a t e g y E x p r : := IDEN COLON st ra tegyCond IMPLIES s t r a t e g yA c t i o n ;
24 s t r a tegyCond : := LPAREN (HASH LBRACKET condProbVal RBRACKET) ?
25 (boo l eanExpr | SUCCESS | DEFAULT) RPAREN ;
26 s t r a t e g yA c t i o n : := s t r a t e g yC l o s e d SEMI
27 | s t r a tegyOpen (AT LBRACKET ex p r e s s i o n RBRACKET) ?
28 LBRACE (s t r a t e g y E x p r)+ RBRACE ;
29 s t r a t e g yC l o s e d : := DONE | FAIL
30 | DO LBRACKET (IDEN | INT_LIT) ? RBRACKET IDEN ;
31 s t r a tegyOpen : := IDEN LPAREN a r gE x p r L i s t RPAREN
32 | NULLTACTIC ;
33 condProbVal : := FLOAT_LIT | IDEN (LBRACE IDEN RBRACE) ?
34
35 s i g n a t u r e : := IDEN LPAREN (type IDEN (COMMA type IDEN) ∗) ? RPAREN;
36 d e c l a r a t i o n : := type IDEN (ASSIGN e x p r e s s i o n) ?
37 (COMMA IDEN (ASSIGN e x p r e s s i o n) ?) ∗ ;

38

Submitted for publication.

