Handling Uncertainty in Autonomic Systems

Shang-Wen Cheng
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
+1-412-567-0426

chengs@cmu.edu

ABSTRACT

Autonomic, or self-adaptive, systems are incredgingportant.

One of the most prevalent techniques is to ad@pinérol systems
view of the solution: adding a runtime, separateta unit that
monitors and adapts the system under considerafigoroblem

with this paradigm for system engineering is the tontrol and
the system are loosely coupled, introducing a taoésources of
uncertainty. In this paper we describe three sjesifurces of
uncertainty, and briefly explain how we addressséhin the
Rainbow Project.

Categoriesand Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous -architecture-
based self-adaptive system, autonomic computing.

General Terms
Management, Design, Languages

Keywords

Rainbow, self-adaptation, Stitch, strategy, tactitgertainty.

1. INTRODUCTION

Autonomic, or self-adaptive, systems are incredgingportant.

One of the most prevalent techniques is to ad@pinérol systems
view of the solution: adding a runtime, separatet@ unit that

monitors and adapts the system under considergétiertarget).

Model & adaptation mechanism Autonomic manager

control monitor ->

Managed element

Figure 1. Control systems paradigm of self-adaptation

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers oremistribute to lists,
requires prior specific permission and/or a fee.

ASE’07 November 5, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 1-58113-000-0/00/0004...$5.00.

David Garlan
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
+1-412-268-5056

garlan+@cs.cmu.edu

The separate, external control typically maintaome or more
explicit models of the running system and usesettaasa basis for
configuring, repairing, and optimizing the system. recent
branch of work suggests an architectural modehefsoftware as
a useful basis for dynamically changing the systgji6][7]. An
architectural model can provide a global systemspestive,
expose important properties and constraints, apgat problem
analysis. It therefore allows adaptation to be diona principled
and possibly automated fashion. Using the architatimodel as
a basis to monitor and adapt a running system @whnas
architecture-based self-adaptation

A problem with this paradigm for system engineerisghat the
controller and the system are loosely coupled,othicing a
variety of sources of uncertainty. In this paper describe three
specific sources of uncertainty and briefly explagw we address
those in the Rainbow Project.

2. RAINBOW APPROACH

Architecture-based feedback control raises the |lemgds of
developing and using a control model, getting infation out of
the target system, interpreting system states,on@#ag about
actions to take, making decisions, and effectingnges on the
system, as well as the overall challenge of engingesuch a
system cost-effectively.

Rainbow provides an engineering approach and aeframk of

mechanisms tanonitor system and environment states, manage

and use an architectural model detect problems, determine
problem state andecideon a course of action, aratt on the

adaptation, corresponding to tMAPE loop of IBM autonomic
computing shown in Figure 1.

trchitecture Layer >

D :>Adaptat iar :
H h H

Adsptation fes| Engife (l«—parchitechure

_> Executor $ Ev aluator !
L
! L Model Manager :;:'J
il
| Fauges]

.. |_,\ Translation vy
A Infrastructure "

i System API (Resouce HE

o S1erm 71 (R0 e

————— ittt Tt
- :

Systerm Target Systen <
: Layer

Figure 2. Rainbow self-adaptation framework

Illustrated in Figure 2, the Rainbow self-adaptati@mework [2]
functions as follows. Monitoring mechanisms, cotisg of
various kinds ofprobes observe the running syster@auges
relate observations to properties in the architectmodel
managed by th&odel Manager. When new updates occur, the
Architecture Evaluator checks the model to ensure that the system
is operating within an envelope of acceptable ramigéermined
by constraints on the architecture. If the evabratidletermines
that the system is not operating within an accdetadnge, the
Adaptation Engine is triggered to determine the appropriate
adaptation action to take. Thexecutor carries out the chosen
action on the running system via system-lefédctors

A critical piece of the Rainbow framework, and maenerally
autonomic systems with a similar adaptation cyisléhe decision
component. Although there are many ways to designdecision
piece, our experience indicates that we can drapitiation from
system administrators (sys-admin), who are exparteandling
adaptations of systems they manage. By considehagmental
model, knowledge, and cognitive tasks of the sysiadin
keeping a system operational, we can emulate theside-
making process as well as formulate a set of lia$s concepts
important to self-adaptation.

We have thus developed a self-adaptation langualigdStitch
for which we derive the ontology from system adrstiration
tasks and base the underlying formalism on utilitgory [1].
Table 1 summarizes the self-adaptation conceptsstmprise the
Stitch self-adaptation language. Of note are tlw@e concepts.
The operatorrepresents a single action taken by the sys-admin
the system, such as starting or killing a procé@se tactic
represents a script of such actions, and is maredity defined
with conditions of applicability, as well as intexaieffects on the
target system. Thetrategy represents a collection of possible
actions that can be executed in response to the system
condition and that target the same quality objectimore
formally, a strategy is a tree of tactics with ramtd branch
conditions. No system observation occurs duringetkecution of
a tactic, while intermediate observation of theteys through the
architectural model, is possible at every branchiorgdecision,
point within a strategy.

In such an adaptation framework, the managemenpooents, in
particular the monitoring and effecting mechanisarg loosely
coupled from the target system by design. The magwantage
provided by loose coupling is the ability to targbé Rainbow
framework to a variety of system types and adapiatieeds. By
the same token, it has a major disadvantage: thedinction of a
variety of sources of uncertainty. We now examiresé sources.

Table 1. Stitch self-adaptation concepts

Self-adaptation concept Sys-admin inspiration

Operator Single action on system, e.g., kill proc
Tactic Script of actions, e.g., addWebServer
Strategy Course of possible actions for problem

Strategy selection Decision path taken

Obijective + Preference Business objective & op irequents

Tactic meta-information Factors considered in actiboice

3. ADAPTATION UNCERTAINTIES

In a Rainbow-like autonomic system, the steps ttedethe
existence of a problem, to decide on adaptatioiort and to
carry out the actions, each contribute a souraeoértainty.

3.1 Problem-State | dentification

Let us assume that system probes are well-desigredi
appropriately deployed to provide accurate readisgsthat we
avoid sensor measurement problems that one oftesuaters in
control systems. The first challenging source afeutainty lies in
knowing when there is a problem in the system.

A common and effective way to identify a probleroasystem
state is to define bounds for specific system prigse such as
CPU load above 75% or end-to-end latency above ibeu of
seconds. Even for quality attributes that do notveha
straightforward numeric measurements, such assiotnuor other
security concerns, it is often possible to derivenuaneric or
discrete state representation (e.g., probabilityintfusion) for
which bounds can be defined.

Once bounds have been defined for relevant systepefies,
identifying problem state is stifiot straightforward simply due to
the transient or stochastic nature of many systempesties, such
as CPU load or network latency. For instance, fiissible for the
CPU load reading of a server to spike to 90% foreey brief
moment. The fact that it is above the 75% thresteticthat
moment is not necessarily indicative of a problémat trequires
system adaptation. On the other hand, if the CRid loas been
steadily rising over the previous minute, eventihas not yet
triggered the 75% threshold, it may still indicate problem
worthy of system adaptation.

In Rainbow, we use two techniques to address tlertainties
with problem-state identification. First, to counteansient or
stochastic properties, we use gauges that applgvéngraverage
filter to the probed values. A moving average cotepuhe next
value,y(k+1), by summing the product of a constanQ <c < 1),
with the previous average, and the product aftltnes the new
value, i.e.,y(k+1) = cy(k) + (1c)u(k). Thus, moving average
requires knowing only one previous value. The mgwnerage
filter is a well-known technique in control systetm smooth
measurement readings without affecting the “gaithéat is,
without shifting the system response from its idiexh target [4].
Averaging has the advantage of smoothing out theddsn
jumps,” or outlier values, but also the disadvaetafincreasing
reaction time. The choice af allows the engineer to decide
whether to give more weight to the historical, lee hew, value.

As another technique, ongoing work in our reseagtbup
augments architectural description with probabdististributions
beyond the basic Gaussian. This technique wouldblena
engineers to explicitly characterize an expectetribution for a
system property—e.g., Gaussian, exponential, orb\Wetand
develop gauges that compare observations agaiaséxpected
distribution, compute errors, and react to alarmgmgr trends.

! See paper on “Augmenting Architectural ModelingCmpe with
Uncertainty” in this workshop by Celiku, GarlandaBchmerl.

Second, to handlé&rends in readings that indicate problematic
conditions, we rely on gauges with predictive calias,
drawing on resource prediction work that enablescigatory
system adaptation, e.g., f8] Poladian’s prediction framework
provides runtime, multi-step ahead predictions (8)r short-term
trends based on recent history, (b) long-term sedgeends, and
(c) bounding trends.

3.2 Strategy Selection

Once a problem has been identified, the secondcsoof
uncertainty lies in determining which repair actionpick. When
a sys-admin determines a course of action, he Haseagecision
on his knowledge and experiences given his obsensabf the
system. He most likely considers various factorsco$t and
benefit when he makes his choice. After he chob&seadaptation
strategy, he may change his mind based on chamgegstem
condition. Also, he may perform more detailed immgs into
particular states of the system before committiongatstrategy,
such as deciding whether a sudden increase in rietinaffic is
due to legitimate requests or a denial-of-servitach.

In the context of Rainbow, this step consists ¢écteng, from a

potentially large adaptation repertoire, the adaptastrategy that
best fits the current conditions of the system.efimilate the sys-
admin’s decision process, all of the consideraticiescribed
above would manifest themselves as uncertaintieqatticular,

the cost and effect of actions are uncertain, dondi of

applicability are uncertain, and outcomes of actiare uncertain.
Nonetheless, Rainbow must select a strategy whieunting for

all of these uncertainties up-front.

strategy Sinpl eReduceResponseTi ne() {
bool ean c0 = responseTi ne() > RespTineLimit;

t0: (c0) -> switchToTextual Content() {
t1l: (#[prob{tl}] success @ 1000/ *ms*/])
-> done ;
t2: (#[prob{t2}] cO @2000/*ns*/])
-> enlistServer(1) {
t2a: (success @1000/*ms*/]) -> done ;
}
}

}

Figure 3. Anillustrative strategy

To address the many facets of uncertainty in giyaselection, we
provide for a rich notion aftrategyin the Stitch language. Figure
3 illustrates a simple strategy to reduce the nespdime of a
news provider system. In brief, this strategy dedira Boolean
condition, cO, and uses the up-to-date value of that condition t
determine how to traverse the tree. The strategg tonsists of
four nodes: a root node #b with enabling conditiorcO; two
nodes, t1 and t2, branching fromt0 with corresponding
conditions, and a single notf2a branching front2. The strategy
uses two tactics, one to switch server contentityual “textual,”
and the other to enlist more servers. The keywsnctess is
shorthand for a Boolean that conjoins two prediata) the
condition that enabled the parent nodefatsse and (b) the
expected effect of the parent-node tactidrige. The keyword

2 See also the paper in this workshop by Vahe Patadi

done, if reached, tells Rainbow to observe for and ekpe
successful execution of the strategy.

To narrow the scope of uncertainty, Rainbow firgaleates the
root-node condition of all available strategies dittérs out the
inapplicable strategies (i.e., root-node conditigields falseg.
Note that although not explicitly illustrated hetlée root-node
condition could capture more elaborate predicdtesnstance, to
prescribe the type of system in which a strategyiccapply.

Next, Rainbow computes a scalar score for eactegirdased on
its aggregate costs and benefits, and selectstridiegy with the
highest expected utility (in a probabilistic sens€psts and
benefits are defined at the tactic level as codteffect elements
of the tacticattribute vector(details in [1]). Each of the attribute
elements must correspond to a utility dimensiog.(eesponse
time, quality, cost, disruption) with a predefinedlue function
that maps an attribute value to a utility valuewsstn 0 and 1.
Essentially, the set of utility dimensions and theilue functions
correspond to the experiences that the sys-adnaiwsdfrom to
assess goodness and badness of respective systboted.

One more aspect of uncertainty remains: the outaafraetactic is
uncertain at strategy-selection time, so how daes determine
which branch to take, and consequently, which daatiribute
vector to use for scoring the strategy? In shog, estimate the
likelihood that the known possible effects of atitaevould be
observed once that tactic is executed. Then, wigrage each
strategy tree branch a probability that the bramcimdition
evaluates to true. For example, the strategy imrEi@ suggests
that tacticswi t chToText ual Cont ent () has two outcomes, with
a probability ofprob{t1} being thetl condition, and a probability
of prob{t2} being thet2 condition. The branch probabilities are
used to discount the expected contribution of edtifbute vector
element from tactics below that branch. Note tlhasé branch
probabilities need not be fixed, but can be upddtedmically by
learners that track the outcomes of adaptations.

To score a strategy, we must first computeaggregateattribute

vector at the root node of that strategy. Note thit vector can
be constructed from individual scalar attributeuesl. We define a
simple recursive algorithm for computing this agmte attribute
vector; however, we must consider cost and effeefzarately
since cost accumulates down the tree while effeces only

applicable at the leaf node. Given a strategy wighroot tactic X,

children tactics A, B, etc., with corresponding lpabilities pA,

pB, etc., we can recursively compute:

EA_cos(X) = Agg_A\éos{X) =
tAVos(X)+(PAXAGY_AVos(A) + PBXAGY_AV,s(B) + ...)

EA_effec(X) = Agg_A\éffec(X) =
PA X Agg_AVrec(A) + PB X Agg_AVrec(B) + ...

A strategy score is a fraction between 0 and 1,iagives some
confidence that, given the current set of systemditmns, the
strategy has that much expected likelihood of bingdhe system
back within normal operational bounds.

3.3 Strategy Successor Failure

The third challenging uncertainty lies in knowinfj @ given
strategy has succeeded or failed in terms of attgats intended
effects. Naturally, as soon as we observe thefsairalitions that

match the intended strategy effect, we would knbe s$trategy
succeeded. What is uncertain is the length of ittne window
within which to observe that effect. If the windasvtoo short,
Rainbow could misjudge the outcome of a strategyotentially
exhibit the problematic adaptation behavior of beiing between
two competing strategies.

To address this uncertainty, we import the notibsaitling time
from control theory. In essence, settling time gives an
indication of how long to wait before we could egp& observe
the steady-state effects of an executed strategguring each
strategy could be specified with a settling timigeraexecuting a
strategy, Rainbow would know approximately how leagvait to

observe its effects. If the settling-time technigueves effective,
then it might enable us to achieve the desirabktengsis—Ilag
between making changes—in triggering adaptations.

Recall that a strategy is composed of a tree ditadJncertainty
in the observation time window also applies after ¢xecution of
each tactic. Rainbow addresses this uncertaintgllowing the
engineer to explicitly capture an estimated timendew of
observation, as illustrated by the millisecond eailu each of the
branchestl andt2, in Figure 3. The time window fdf indicates
that if thesuccess condition holds true within 1000 milliseconds
after the execution ofwi t chToText ual Cont ent () in t0, then
the overall branching condition tf holds true. The time window
for t2 indicates, on the other hand, that if conditafnholds true
within 2000 milliseconds after the execution of
swi t chToText ual Cont ent () in tO, then the overall branching
condition oft2 holds true.

Although this technique does not eliminate the uadety,
explicitly estimating and capturing observation giwindows at
the tactic-choice level increases confidence tima éxpected
conditions are observed within sufficiently allattéme.

4. RELATED WORK

Similar to Rainbow, related researches on self-tdasystems
generally assume a control loop of some form to itnorand

control a target system [6][7][9]. The ArchitectuEvolution

Framework at UCI dynamically evolves systems usiag
monitoring and execution loop controlled by a plagnioop [3].

IBM’s Autonomic Computing initiative outlines an chitecture

where acomputing elemeris managed by aautonomic manager
that monitors the element, analyzes it and its renment for

potential problems, plans actions, and executemigdsa in a
control loop [5]. Rainbow’s architecture correspsmibsely with

that presented in IBM’s autonomic computing bluepri
particularly with respect to the MAPE loop. We camd that
similar sources and issues of uncertainty exish@se autonomic
or self-adaptive systems.

5. CONCLUSION

In this paper, we have briefly introduced Rainbow a
representative approach to engineer self-adaptysterms and
identified three challenging sources of uncertainty such
systems—when identifying a system problem, wheacsielg the
adaptation strategy, and when determining whethetrategy
effected changes on the system successfully—anihisgpg how
we address them. We plan to continue present diauaf these
techniques as well as find more techniques, paatigu for

determining whether a strategy succeeded or faiteenhance the
self-adaptive capabilities of the Rainbow framework

6. ACKNOWLEDGMENTS

This research was supported by DARPA under gra6&0N1-99-
2-8918 and F30602-00-2-0616, by the US Army Rese@itice
(ARO) under grant numbers DAAD19-02-1-0389 ("Peupdy
Available and Secure Information Systems") to Cgimévellon
University's CyLab and DAAD19-01-1-0485, and thetibiaal
Science Foundation under Grant No. 0205266. The/sviand
conclusions described here are those of the auimarshould not
be interpreted as representing the official paodiciesither
expressed or implied, of DARPA, the ARO, NSF, th& U
government, or any other entity.

7. REFERENCES

[1] Cheng, S-W., Garlan, D., and Schmerl, B. Architestu
based Self-Adaptation in the Presence of Multiple
ObjectivesProc. of ICSE 2006 Workshop on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS’06), Shanghai, China, May 21-22, 2006.

[2] Cheng, S-W., Huang, A-C., Garlan, D., Schmerl,aBd
Steenkiste, P. Rainbow: architecture-based selftatian
with reusable infrastructurédEEE Computer37, 10,
October 2004.

[3] Dashofy, E. M., van der Hoek, A., and Taylor, R. N.
Towards architecture-based self-healing systemdageD.,
Kramer, J., and Wolf, A., ed®roceedings of the First ACM
SIGSOFT Workshop on Self-Healing Systém@SS’'02),
(New York, NY, USA, Nov 18-19, 2002). ACM Press,
2002, 21-26.

[4] Hellerstein, J. L., Diao, Y., Parekh, S., TilbuBy, M.
Feedback Control of Computing SystefBEE Press, John
Wiley & Sons, Inc., NJ, 2004.

[5] Kephart, J. O. and Chess, D. M. The vision of aoitoic
computing|EEE Computer36, 1, Jan 2003.

[6] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
Specifying Distributed Software Architectures. SenaW.
and Botella, P., ed®roc. of 5th European Software
Engineering Conferencg=SEC’95) (Sitges, Spain, Sep 26,
1995). Springer-Verlag, Berlin, 1995, 137-153.

[7]1 Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbign D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblun S.,
and Wolf, A. L. An architecture-based approachei®-s
adaptive softwardEEE Intelligent Systems, 14, Bay—Jun
1999, 54-62.

[8] Poladian, V., Garlan, D., Shaw, M., Schmerl, Bd &ousa,
J. P. Leveraging Resource Prediction for Anticipato
Dynamic Configuration. IfProc. of the First IEEE
International Conference on Self-Adaptive and Self-
Organizing SystemS&ASO-2007), Jul 2007.

[9] Wolf, A. L., Heimbigner, D., Carzaniga, A., Andersd.
M., and Ryan, N.. Achieving survivability of comgland
dynamic systems with the Willow framewoRRroceedings of
the Working Conference on Complex and Dynamic Bgste
Architecture Brisbane, Australia, Dec 12-14, 2001.

