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ABSTRACT 

Autonomic, or self-adaptive, systems are increasingly important. 
One of the most prevalent techniques is to adopt a control systems 
view of the solution: adding a runtime, separate control unit that 
monitors and adapts the system under consideration. A problem 
with this paradigm for system engineering is that the control and 
the system are loosely coupled, introducing a variety of sources of 
uncertainty. In this paper we describe three specific sources of 
uncertainty, and briefly explain how we address those in the 
Rainbow Project. 

Categories and Subject Descriptors 
D.2.m [Software Engineering]: Miscellaneous – architecture-
based self-adaptive system, autonomic computing. 

General Terms 
Management, Design, Languages 

Keywords 
Rainbow, self-adaptation, Stitch, strategy, tactic, uncertainty. 

1. INTRODUCTION 
Autonomic, or self-adaptive, systems are increasingly important. 
One of the most prevalent techniques is to adopt a control systems 
view of the solution: adding a runtime, separate control unit that 
monitors and adapts the system under consideration (the target). 

 
Figure 1. Control systems paradigm of self-adaptation 

The separate, external control typically maintains one or more 
explicit models of the running system and uses these as a basis for 
configuring, repairing, and optimizing the system. A recent 
branch of work suggests an architectural model of the software as 
a useful basis for dynamically changing the system [3][6][7]. An 
architectural model can provide a global system perspective, 
expose important properties and constraints, and support problem 
analysis. It therefore allows adaptation to be done in a principled 
and possibly automated fashion. Using the architectural model as 
a basis to monitor and adapt a running system is known as 
architecture-based self-adaptation. 

A problem with this paradigm for system engineering is that the 
controller and the system are loosely coupled, introducing a 
variety of sources of uncertainty. In this paper we describe three 
specific sources of uncertainty and briefly explain how we address 
those in the Rainbow Project. 

2. RAINBOW APPROACH 
Architecture-based feedback control raises the challenges of 
developing and using a control model, getting information out of 
the target system, interpreting system states, reasoning about 
actions to take, making decisions, and effecting changes on the 
system, as well as the overall challenge of engineering such a 
system cost-effectively. 

Rainbow provides an engineering approach and a framework of 
mechanisms to monitor system and environment states, manage 
and use an architectural model to detect problems, determine 
problem state and decide on a course of action, and act on the 
adaptation, corresponding to the MAPE loop of IBM autonomic 
computing shown in Figure 1. 

 

Figure 2. Rainbow self-adaptation framework 
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Illustrated in Figure 2, the Rainbow self-adaptation framework [2] 
functions as follows. Monitoring mechanisms, consisting of 
various kinds of probes, observe the running system. Gauges 
relate observations to properties in the architecture model 
managed by the Model Manager. When new updates occur, the 
Architecture Evaluator checks the model to ensure that the system 
is operating within an envelope of acceptable range, determined 
by constraints on the architecture. If the evaluation determines 
that the system is not operating within an acceptable range, the 
Adaptation Engine is triggered to determine the appropriate 
adaptation action to take. The Executor carries out the chosen 
action on the running system via system-level effectors. 

A critical piece of the Rainbow framework, and more generally 
autonomic systems with a similar adaptation cycle, is the decision 
component. Although there are many ways to design this decision 
piece, our experience indicates that we can draw inspiration from 
system administrators (sys-admin), who are experts at handling 
adaptations of systems they manage. By considering the mental 
model, knowledge, and cognitive tasks of the sys-admin in 
keeping a system operational, we can emulate the decision-
making process as well as formulate a set of first-class concepts 
important to self-adaptation. 

We have thus developed a self-adaptation language called Stitch, 
for which we derive the ontology from system administration 
tasks and base the underlying formalism on utility theory [1]. 
Table 1 summarizes the self-adaptation concepts that comprise the 
Stitch self-adaptation language. Of note are three core concepts. 
The operator represents a single action taken by the sys-admin on 
the system, such as starting or killing a process. The tactic 
represents a script of such actions, and is more formally defined 
with conditions of applicability, as well as intended effects on the 
target system. The strategy represents a collection of possible 
actions that can be executed in response to the same system 
condition and that target the same quality objective. More 
formally, a strategy is a tree of tactics with root and branch 
conditions. No system observation occurs during the execution of 
a tactic, while intermediate observation of the system, through the 
architectural model, is possible at every branching, or decision, 
point within a strategy. 

In such an adaptation framework, the management components, in 
particular the monitoring and effecting mechanisms, are loosely 
coupled from the target system by design. The major advantage 
provided by loose coupling is the ability to target the Rainbow 
framework to a variety of system types and adaptation needs. By 
the same token, it has a major disadvantage: the introduction of a 
variety of sources of uncertainty. We now examine these sources. 

Table 1. Stitch self-adaptation concepts 

Self-adaptation concept Sys-admin inspiration 

Operator Single action on system, e.g., kill proc 

Tactic Script of actions, e.g., addWebServer 

Strategy Course of possible actions for problem 

Strategy selection Decision path taken 

Objective + Preference Business objective & op requirements 

Tactic meta-information Factors considered in action choice 

3. ADAPTATION UNCERTAINTIES 
In a Rainbow-like autonomic system, the steps to detect the 
existence of a problem, to decide on adaptation actions, and to 
carry out the actions, each contribute a source of uncertainty. 

3.1 Problem-State Identification 
Let us assume that system probes are well-designed and 
appropriately deployed to provide accurate readings, so that we 
avoid sensor measurement problems that one often encounters in 
control systems. The first challenging source of uncertainty lies in 
knowing when there is a problem in the system. 

A common and effective way to identify a problematic system 
state is to define bounds for specific system properties, such as 
CPU load above 75% or end-to-end latency above X number of 
seconds. Even for quality attributes that do not have 
straightforward numeric measurements, such as intrusion or other 
security concerns, it is often possible to derive a numeric or 
discrete state representation (e.g., probability of intrusion) for 
which bounds can be defined. 

Once bounds have been defined for relevant system properties, 
identifying problem state is still not straightforward simply due to 
the transient or stochastic nature of many system properties, such 
as CPU load or network latency. For instance, it is possible for the 
CPU load reading of a server to spike to 90% for a very brief 
moment. The fact that it is above the 75% threshold at that 
moment is not necessarily indicative of a problem that requires 
system adaptation. On the other hand, if the CPU load has been 
steadily rising over the previous minute, even if it has not yet 
triggered the 75% threshold, it may still indicate a problem 
worthy of system adaptation. 

In Rainbow, we use two techniques to address the uncertainties 
with problem-state identification. First, to counter transient or 
stochastic properties, we use gauges that apply a moving-average 
filter to the probed values. A moving average computes the next 
value, y(k+1), by summing the product of a constant, c (0 < c < 1), 
with the previous average, and the product of 1-c times the new 
value, i.e., y(k+1) = cy(k) + (1-c)u(k). Thus, moving average 
requires knowing only one previous value. The moving-average 
filter is a well-known technique in control system to smooth 
measurement readings without affecting the “gain,” that is, 
without shifting the system response from its intended target [4]. 
Averaging has the advantage of smoothing out the “sudden 
jumps,” or outlier values, but also the disadvantage of increasing 
reaction time. The choice of c allows the engineer to decide 
whether to give more weight to the historical, or the new, value. 

As another technique, ongoing work in our research group 
augments architectural description with probabilistic distributions 
beyond the basic Gaussian. This technique would enable 
engineers to explicitly characterize an expected distribution for a 
system property—e.g., Gaussian, exponential, or Weibull—and 
develop gauges that compare observations against the expected 
distribution, compute errors, and react to alarming error trends.1 

                                                                 
1 See paper on “Augmenting Architectural Modeling to Cope with 

Uncertainty” in this workshop by Celiku, Garlan, and Schmerl. 



Second, to handle trends in readings that indicate problematic 
conditions, we rely on gauges with predictive capabilities, 
drawing on resource prediction work that enables anticipatory 
system adaptation, e.g., [8]2. Poladian’s prediction framework 
provides runtime, multi-step ahead predictions for (a) short-term 
trends based on recent history, (b) long-term seasonal trends, and 
(c) bounding trends. 

3.2 Strategy Selection 
Once a problem has been identified, the second source of 
uncertainty lies in determining which repair action to pick. When 
a sys-admin determines a course of action, he bases his decision 
on his knowledge and experiences given his observations of the 
system. He most likely considers various factors of cost and 
benefit when he makes his choice. After he chooses his adaptation 
strategy, he may change his mind based on changes in system 
condition. Also, he may perform more detailed inquiries into 
particular states of the system before committing to a strategy, 
such as deciding whether a sudden increase in network traffic is 
due to legitimate requests or a denial-of-service attack. 

In the context of Rainbow, this step consists of selecting, from a 
potentially large adaptation repertoire, the adaptation strategy that 
best fits the current conditions of the system. To emulate the sys-
admin’s decision process, all of the considerations described 
above would manifest themselves as uncertainties. In particular, 
the cost and effect of actions are uncertain, conditions of 
applicability are uncertain, and outcomes of actions are uncertain. 
Nonetheless, Rainbow must select a strategy while accounting for 
all of these uncertainties up-front. 

 

Figure 3. An illustrative strategy 

To address the many facets of uncertainty in strategy selection, we 
provide for a rich notion of strategy in the Stitch language. Figure 
3 illustrates a simple strategy to reduce the response time of a 
news provider system. In brief, this strategy defines a Boolean 
condition, c0, and uses the up-to-date value of that condition to 
determine how to traverse the tree. The strategy tree consists of 
four nodes: a root node at t0 with enabling condition c0; two 
nodes, t1 and t2, branching from t0 with corresponding 
conditions, and a single node t2a branching from t2. The strategy 
uses two tactics, one to switch server content quality to “textual,” 
and the other to enlist more servers. The keyword success is 
shorthand for a Boolean that conjoins two predicates: (a) the 
condition that enabled the parent node is false, and (b) the 
expected effect of the parent-node tactic is true. The keyword 
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done, if reached, tells Rainbow to observe for and expect 
successful execution of the strategy. 

To narrow the scope of uncertainty, Rainbow first evaluates the 
root-node condition of all available strategies and filters out the 
inapplicable strategies (i.e., root-node condition yields false). 
Note that although not explicitly illustrated here, the root-node 
condition could capture more elaborate predicates, for instance, to 
prescribe the type of system in which a strategy could apply. 

Next, Rainbow computes a scalar score for each strategy based on 
its aggregate costs and benefits, and selects the strategy with the 
highest expected utility (in a probabilistic sense). Costs and 
benefits are defined at the tactic level as cost and effect elements 
of the tactic attribute vector (details in [1]). Each of the attribute 
elements must correspond to a utility dimension (e.g., response 
time, quality, cost, disruption) with a predefined value function 
that maps an attribute value to a utility value between 0 and 1. 
Essentially, the set of utility dimensions and their value functions 
correspond to the experiences that the sys-admin draws from to 
assess goodness and badness of respective system attributes. 

One more aspect of uncertainty remains: the outcome of a tactic is 
uncertain at strategy-selection time, so how does one determine 
which branch to take, and consequently, which tactic attribute 
vector to use for scoring the strategy? In short, we estimate the 
likelihood that the known possible effects of a tactic would be 
observed once that tactic is executed. Then, we assign to each 
strategy tree branch a probability that the branch condition 
evaluates to true. For example, the strategy in Figure 3 suggests 
that tactic switchToTextualContent() has two outcomes, with 
a probability of prob{ t1} being the t1 condition, and a probability 
of prob{ t2} being the t2 condition. The branch probabilities are 
used to discount the expected contribution of each attribute vector 
element from tactics below that branch. Note that these branch 
probabilities need not be fixed, but can be updated dynamically by 
learners that track the outcomes of adaptations. 

To score a strategy, we must first compute its aggregate attribute 
vector at the root node of that strategy. Note that this vector can 
be constructed from individual scalar attribute values. We define a 
simple recursive algorithm for computing this aggregate attribute 
vector; however, we must consider cost and effects separately 
since cost accumulates down the tree while effects are only 
applicable at the leaf node. Given a strategy with the root tactic X, 
children tactics A, B, etc., with corresponding probabilities pA, 
pB, etc., we can recursively compute: 

EΑΑΑΑ_cost(X) = Agg_AVcost(X) = 
 tAVcost(X)+(pA×Agg_AVcost(A) + pB×Agg_AVcost(B) + …) 

EΑΑΑΑ_effect(X) = Agg_AVeffect(X) = 
 pA × Agg_AVeffect(A) + pB × Agg_AVeffect(B) + … 

A strategy score is a fraction between 0 and 1, and it gives some 
confidence that, given the current set of system conditions, the 
strategy has that much expected likelihood of bringing the system 
back within normal operational bounds. 

3.3 Strategy Success or Failure 
The third challenging uncertainty lies in knowing if a given 
strategy has succeeded or failed in terms of achieving its intended 
effects. Naturally, as soon as we observe the set of conditions that 

strategy SimpleReduceResponseTime() { 
  boolean c0 = responseTime() > RespTimeLimit; 
 
  t0: (c0) -> switchToTextualContent() { 
    t1: (#[prob{t1}] success @[1000/*ms*/]) 
        -> done ; 
    t2: (#[prob{t2}] c0 @[2000/*ms*/]) 
        -> enlistServer(1) { 
      t2a: (success @[1000/*ms*/]) -> done ; 
    } 
  } 
} 



match the intended strategy effect, we would know the strategy 
succeeded. What is uncertain is the length of the time window 
within which to observe that effect. If the window is too short, 
Rainbow could misjudge the outcome of a strategy and potentially 
exhibit the problematic adaptation behavior of oscillating between 
two competing strategies. 

To address this uncertainty, we import the notion of settling time 
from control theory. In essence, settling time gives us an 
indication of how long to wait before we could expect to observe 
the steady-state effects of an executed strategy. Assuming each 
strategy could be specified with a settling time, after executing a 
strategy, Rainbow would know approximately how long to wait to 
observe its effects. If the settling-time technique proves effective, 
then it might enable us to achieve the desirable hysteresis—lag 
between making changes—in triggering adaptations. 

Recall that a strategy is composed of a tree of tactics. Uncertainty 
in the observation time window also applies after the execution of 
each tactic. Rainbow addresses this uncertainty by allowing the 
engineer to explicitly capture an estimated time window of 
observation, as illustrated by the millisecond value in each of the 
branches, t1 and t2, in Figure 3. The time window for t1 indicates 
that if the success condition holds true within 1000 milliseconds 
after the execution of switchToTextualContent() in t0, then 
the overall branching condition of t1 holds true. The time window 
for t2 indicates, on the other hand, that if condition c0 holds true 
within 2000 milliseconds after the execution of 
switchToTextualContent() in t0, then the overall branching 
condition of t2 holds true. 

Although this technique does not eliminate the uncertainty, 
explicitly estimating and capturing observation time windows at 
the tactic-choice level increases confidence that the expected 
conditions are observed within sufficiently allotted time. 

4. RELATED WORK 
Similar to Rainbow, related researches on self-adaptive systems 
generally assume a control loop of some form to monitor and 
control a target system [6][7][9]. The Architecture Evolution 
Framework at UCI dynamically evolves systems using a 
monitoring and execution loop controlled by a planning loop [3]. 
IBM’s Autonomic Computing initiative outlines an architecture 
where a computing element is managed by an autonomic manager 
that monitors the element, analyzes it and its environment for 
potential problems, plans actions, and executes changes in a 
control loop [5]. Rainbow’s architecture corresponds closely with 
that presented in IBM’s autonomic computing blueprint, 
particularly with respect to the MAPE loop. We contend that 
similar sources and issues of uncertainty exist in these autonomic 
or self-adaptive systems. 

5. CONCLUSION 
In this paper, we have briefly introduced Rainbow as a 
representative approach to engineer self-adaptive systems and 
identified three challenging sources of uncertainty in such 
systems—when identifying a system problem, when selecting the 
adaptation strategy, and when determining whether a strategy 
effected changes on the system successfully—and explained how 
we address them. We plan to continue present evaluation of these 
techniques as well as find more techniques, particularly for 

determining whether a strategy succeeded or failed, to enhance the 
self-adaptive capabilities of the Rainbow framework. 
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