
Handling Uncertainty in Autonomic Systems
Shang-Wen Cheng

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
+1-412-567-0426

chengs@cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
+1-412-268-5056

garlan+@cs.cmu.edu

ABSTRACT

Autonomic, or self-adaptive, systems are increasingly important.
One of the most prevalent techniques is to adopt a control systems
view of the solution: adding a runtime, separate control unit that
monitors and adapts the system under consideration. A problem
with this paradigm for system engineering is that the control and
the system are loosely coupled, introducing a variety of sources of
uncertainty. In this paper we describe three specific sources of
uncertainty, and briefly explain how we address those in the
Rainbow Project.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous – architecture-
based self-adaptive system, autonomic computing.

General Terms
Management, Design, Languages

Keywords
Rainbow, self-adaptation, Stitch, strategy, tactic, uncertainty.

1. INTRODUCTION
Autonomic, or self-adaptive, systems are increasingly important.
One of the most prevalent techniques is to adopt a control systems
view of the solution: adding a runtime, separate control unit that
monitors and adapts the system under consideration (the target).

Figure 1. Control systems paradigm of self-adaptation

The separate, external control typically maintains one or more
explicit models of the running system and uses these as a basis for
configuring, repairing, and optimizing the system. A recent
branch of work suggests an architectural model of the software as
a useful basis for dynamically changing the system [3][6][7]. An
architectural model can provide a global system perspective,
expose important properties and constraints, and support problem
analysis. It therefore allows adaptation to be done in a principled
and possibly automated fashion. Using the architectural model as
a basis to monitor and adapt a running system is known as
architecture-based self-adaptation.

A problem with this paradigm for system engineering is that the
controller and the system are loosely coupled, introducing a
variety of sources of uncertainty. In this paper we describe three
specific sources of uncertainty and briefly explain how we address
those in the Rainbow Project.

2. RAINBOW APPROACH
Architecture-based feedback control raises the challenges of
developing and using a control model, getting information out of
the target system, interpreting system states, reasoning about
actions to take, making decisions, and effecting changes on the
system, as well as the overall challenge of engineering such a
system cost-effectively.

Rainbow provides an engineering approach and a framework of
mechanisms to monitor system and environment states, manage
and use an architectural model to detect problems, determine
problem state and decide on a course of action, and act on the
adaptation, corresponding to the MAPE loop of IBM autonomic
computing shown in Figure 1.

Figure 2. Rainbow self-adaptation framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’07, November 5, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

�

Illustrated in Figure 2, the Rainbow self-adaptation framework [2]
functions as follows. Monitoring mechanisms, consisting of
various kinds of probes, observe the running system. Gauges
relate observations to properties in the architecture model
managed by the Model Manager. When new updates occur, the
Architecture Evaluator checks the model to ensure that the system
is operating within an envelope of acceptable range, determined
by constraints on the architecture. If the evaluation determines
that the system is not operating within an acceptable range, the
Adaptation Engine is triggered to determine the appropriate
adaptation action to take. The Executor carries out the chosen
action on the running system via system-level effectors.

A critical piece of the Rainbow framework, and more generally
autonomic systems with a similar adaptation cycle, is the decision
component. Although there are many ways to design this decision
piece, our experience indicates that we can draw inspiration from
system administrators (sys-admin), who are experts at handling
adaptations of systems they manage. By considering the mental
model, knowledge, and cognitive tasks of the sys-admin in
keeping a system operational, we can emulate the decision-
making process as well as formulate a set of first-class concepts
important to self-adaptation.

We have thus developed a self-adaptation language called Stitch,
for which we derive the ontology from system administration
tasks and base the underlying formalism on utility theory [1].
Table 1 summarizes the self-adaptation concepts that comprise the
Stitch self-adaptation language. Of note are three core concepts.
The operator represents a single action taken by the sys-admin on
the system, such as starting or killing a process. The tactic
represents a script of such actions, and is more formally defined
with conditions of applicability, as well as intended effects on the
target system. The strategy represents a collection of possible
actions that can be executed in response to the same system
condition and that target the same quality objective. More
formally, a strategy is a tree of tactics with root and branch
conditions. No system observation occurs during the execution of
a tactic, while intermediate observation of the system, through the
architectural model, is possible at every branching, or decision,
point within a strategy.

In such an adaptation framework, the management components, in
particular the monitoring and effecting mechanisms, are loosely
coupled from the target system by design. The major advantage
provided by loose coupling is the ability to target the Rainbow
framework to a variety of system types and adaptation needs. By
the same token, it has a major disadvantage: the introduction of a
variety of sources of uncertainty. We now examine these sources.

Table 1. Stitch self-adaptation concepts

Self-adaptation concept Sys-admin inspiration

Operator Single action on system, e.g., kill proc

Tactic Script of actions, e.g., addWebServer

Strategy Course of possible actions for problem

Strategy selection Decision path taken

Objective + Preference Business objective & op requirements

Tactic meta-information Factors considered in action choice

3. ADAPTATION UNCERTAINTIES
In a Rainbow-like autonomic system, the steps to detect the
existence of a problem, to decide on adaptation actions, and to
carry out the actions, each contribute a source of uncertainty.

3.1 Problem-State Identification
Let us assume that system probes are well-designed and
appropriately deployed to provide accurate readings, so that we
avoid sensor measurement problems that one often encounters in
control systems. The first challenging source of uncertainty lies in
knowing when there is a problem in the system.

A common and effective way to identify a problematic system
state is to define bounds for specific system properties, such as
CPU load above 75% or end-to-end latency above X number of
seconds. Even for quality attributes that do not have
straightforward numeric measurements, such as intrusion or other
security concerns, it is often possible to derive a numeric or
discrete state representation (e.g., probability of intrusion) for
which bounds can be defined.

Once bounds have been defined for relevant system properties,
identifying problem state is still not straightforward simply due to
the transient or stochastic nature of many system properties, such
as CPU load or network latency. For instance, it is possible for the
CPU load reading of a server to spike to 90% for a very brief
moment. The fact that it is above the 75% threshold at that
moment is not necessarily indicative of a problem that requires
system adaptation. On the other hand, if the CPU load has been
steadily rising over the previous minute, even if it has not yet
triggered the 75% threshold, it may still indicate a problem
worthy of system adaptation.

In Rainbow, we use two techniques to address the uncertainties
with problem-state identification. First, to counter transient or
stochastic properties, we use gauges that apply a moving-average
filter to the probed values. A moving average computes the next
value, y(k+1), by summing the product of a constant, c (0 < c < 1),
with the previous average, and the product of 1-c times the new
value, i.e., y(k+1) = cy(k) + (1-c)u(k). Thus, moving average
requires knowing only one previous value. The moving-average
filter is a well-known technique in control system to smooth
measurement readings without affecting the “gain,” that is,
without shifting the system response from its intended target [4].
Averaging has the advantage of smoothing out the “sudden
jumps,” or outlier values, but also the disadvantage of increasing
reaction time. The choice of c allows the engineer to decide
whether to give more weight to the historical, or the new, value.

As another technique, ongoing work in our research group
augments architectural description with probabilistic distributions
beyond the basic Gaussian. This technique would enable
engineers to explicitly characterize an expected distribution for a
system property—e.g., Gaussian, exponential, or Weibull—and
develop gauges that compare observations against the expected
distribution, compute errors, and react to alarming error trends.1

1 See paper on “Augmenting Architectural Modeling to Cope with

Uncertainty” in this workshop by Celiku, Garlan, and Schmerl.

Second, to handle trends in readings that indicate problematic
conditions, we rely on gauges with predictive capabilities,
drawing on resource prediction work that enables anticipatory
system adaptation, e.g., [8]2. Poladian’s prediction framework
provides runtime, multi-step ahead predictions for (a) short-term
trends based on recent history, (b) long-term seasonal trends, and
(c) bounding trends.

3.2 Strategy Selection
Once a problem has been identified, the second source of
uncertainty lies in determining which repair action to pick. When
a sys-admin determines a course of action, he bases his decision
on his knowledge and experiences given his observations of the
system. He most likely considers various factors of cost and
benefit when he makes his choice. After he chooses his adaptation
strategy, he may change his mind based on changes in system
condition. Also, he may perform more detailed inquiries into
particular states of the system before committing to a strategy,
such as deciding whether a sudden increase in network traffic is
due to legitimate requests or a denial-of-service attack.

In the context of Rainbow, this step consists of selecting, from a
potentially large adaptation repertoire, the adaptation strategy that
best fits the current conditions of the system. To emulate the sys-
admin’s decision process, all of the considerations described
above would manifest themselves as uncertainties. In particular,
the cost and effect of actions are uncertain, conditions of
applicability are uncertain, and outcomes of actions are uncertain.
Nonetheless, Rainbow must select a strategy while accounting for
all of these uncertainties up-front.

Figure 3. An illustrative strategy

To address the many facets of uncertainty in strategy selection, we
provide for a rich notion of strategy in the Stitch language. Figure
3 illustrates a simple strategy to reduce the response time of a
news provider system. In brief, this strategy defines a Boolean
condition, c0, and uses the up-to-date value of that condition to
determine how to traverse the tree. The strategy tree consists of
four nodes: a root node at t0 with enabling condition c0; two
nodes, t1 and t2, branching from t0 with corresponding
conditions, and a single node t2a branching from t2. The strategy
uses two tactics, one to switch server content quality to “textual,”
and the other to enlist more servers. The keyword success is
shorthand for a Boolean that conjoins two predicates: (a) the
condition that enabled the parent node is false, and (b) the
expected effect of the parent-node tactic is true. The keyword

2 See also the paper in this workshop by Vahe Poladian.

done, if reached, tells Rainbow to observe for and expect
successful execution of the strategy.

To narrow the scope of uncertainty, Rainbow first evaluates the
root-node condition of all available strategies and filters out the
inapplicable strategies (i.e., root-node condition yields false).
Note that although not explicitly illustrated here, the root-node
condition could capture more elaborate predicates, for instance, to
prescribe the type of system in which a strategy could apply.

Next, Rainbow computes a scalar score for each strategy based on
its aggregate costs and benefits, and selects the strategy with the
highest expected utility (in a probabilistic sense). Costs and
benefits are defined at the tactic level as cost and effect elements
of the tactic attribute vector (details in [1]). Each of the attribute
elements must correspond to a utility dimension (e.g., response
time, quality, cost, disruption) with a predefined value function
that maps an attribute value to a utility value between 0 and 1.
Essentially, the set of utility dimensions and their value functions
correspond to the experiences that the sys-admin draws from to
assess goodness and badness of respective system attributes.

One more aspect of uncertainty remains: the outcome of a tactic is
uncertain at strategy-selection time, so how does one determine
which branch to take, and consequently, which tactic attribute
vector to use for scoring the strategy? In short, we estimate the
likelihood that the known possible effects of a tactic would be
observed once that tactic is executed. Then, we assign to each
strategy tree branch a probability that the branch condition
evaluates to true. For example, the strategy in Figure 3 suggests
that tactic switchToTextualContent() has two outcomes, with
a probability of prob{ t1} being the t1 condition, and a probability
of prob{ t2} being the t2 condition. The branch probabilities are
used to discount the expected contribution of each attribute vector
element from tactics below that branch. Note that these branch
probabilities need not be fixed, but can be updated dynamically by
learners that track the outcomes of adaptations.

To score a strategy, we must first compute its aggregate attribute
vector at the root node of that strategy. Note that this vector can
be constructed from individual scalar attribute values. We define a
simple recursive algorithm for computing this aggregate attribute
vector; however, we must consider cost and effects separately
since cost accumulates down the tree while effects are only
applicable at the leaf node. Given a strategy with the root tactic X,
children tactics A, B, etc., with corresponding probabilities pA,
pB, etc., we can recursively compute:

EΑΑΑΑ_cost(X) = Agg_AVcost(X) =
 tAVcost(X)+(pA×Agg_AVcost(A) + pB×Agg_AVcost(B) + …)

EΑΑΑΑ_effect(X) = Agg_AVeffect(X) =
 pA × Agg_AVeffect(A) + pB × Agg_AVeffect(B) + …

A strategy score is a fraction between 0 and 1, and it gives some
confidence that, given the current set of system conditions, the
strategy has that much expected likelihood of bringing the system
back within normal operational bounds.

3.3 Strategy Success or Failure
The third challenging uncertainty lies in knowing if a given
strategy has succeeded or failed in terms of achieving its intended
effects. Naturally, as soon as we observe the set of conditions that

strategy SimpleReduceResponseTime() {
 boolean c0 = responseTime() > RespTimeLimit;

 t0: (c0) -> switchToTextualContent() {
 t1: (#[prob{t1}] success @[1000/*ms*/])
 -> done ;
 t2: (#[prob{t2}] c0 @[2000/*ms*/])
 -> enlistServer(1) {
 t2a: (success @[1000/*ms*/]) -> done ;
 }
 }
}

match the intended strategy effect, we would know the strategy
succeeded. What is uncertain is the length of the time window
within which to observe that effect. If the window is too short,
Rainbow could misjudge the outcome of a strategy and potentially
exhibit the problematic adaptation behavior of oscillating between
two competing strategies.

To address this uncertainty, we import the notion of settling time
from control theory. In essence, settling time gives us an
indication of how long to wait before we could expect to observe
the steady-state effects of an executed strategy. Assuming each
strategy could be specified with a settling time, after executing a
strategy, Rainbow would know approximately how long to wait to
observe its effects. If the settling-time technique proves effective,
then it might enable us to achieve the desirable hysteresis—lag
between making changes—in triggering adaptations.

Recall that a strategy is composed of a tree of tactics. Uncertainty
in the observation time window also applies after the execution of
each tactic. Rainbow addresses this uncertainty by allowing the
engineer to explicitly capture an estimated time window of
observation, as illustrated by the millisecond value in each of the
branches, t1 and t2, in Figure 3. The time window for t1 indicates
that if the success condition holds true within 1000 milliseconds
after the execution of switchToTextualContent() in t0, then
the overall branching condition of t1 holds true. The time window
for t2 indicates, on the other hand, that if condition c0 holds true
within 2000 milliseconds after the execution of
switchToTextualContent() in t0, then the overall branching
condition of t2 holds true.

Although this technique does not eliminate the uncertainty,
explicitly estimating and capturing observation time windows at
the tactic-choice level increases confidence that the expected
conditions are observed within sufficiently allotted time.

4. RELATED WORK
Similar to Rainbow, related researches on self-adaptive systems
generally assume a control loop of some form to monitor and
control a target system [6][7][9]. The Architecture Evolution
Framework at UCI dynamically evolves systems using a
monitoring and execution loop controlled by a planning loop [3].
IBM’s Autonomic Computing initiative outlines an architecture
where a computing element is managed by an autonomic manager
that monitors the element, analyzes it and its environment for
potential problems, plans actions, and executes changes in a
control loop [5]. Rainbow’s architecture corresponds closely with
that presented in IBM’s autonomic computing blueprint,
particularly with respect to the MAPE loop. We contend that
similar sources and issues of uncertainty exist in these autonomic
or self-adaptive systems.

5. CONCLUSION
In this paper, we have briefly introduced Rainbow as a
representative approach to engineer self-adaptive systems and
identified three challenging sources of uncertainty in such
systems—when identifying a system problem, when selecting the
adaptation strategy, and when determining whether a strategy
effected changes on the system successfully—and explained how
we address them. We plan to continue present evaluation of these
techniques as well as find more techniques, particularly for

determining whether a strategy succeeded or failed, to enhance the
self-adaptive capabilities of the Rainbow framework.

6. ACKNOWLEDGMENTS
This research was supported by DARPA under grants N66001-99-
2-8918 and F30602-00-2-0616, by the US Army Research Office
(ARO) under grant numbers DAAD19-02-1-0389 ("Perpetually
Available and Secure Information Systems") to Carnegie Mellon
University's CyLab and DAAD19-01-1-0485, and the National
Science Foundation under Grant No. 0205266. The views and
conclusions described here are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of DARPA, the ARO, NSF, the US
government, or any other entity.

7. REFERENCES
[1] Cheng, S-W., Garlan, D., and Schmerl, B. Architecture-

based Self-Adaptation in the Presence of Multiple
Objectives. Proc. of ICSE 2006 Workshop on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS’06), Shanghai, China, May 21-22, 2006.

[2] Cheng, S-W., Huang, A-C., Garlan, D., Schmerl, B., and
Steenkiste, P. Rainbow: architecture-based self-adaptation
with reusable infrastructure. IEEE Computer, 37, 10,
October 2004.

[3] Dashofy, E. M., van der Hoek, A., and Taylor, R. N.
Towards architecture-based self-healing systems. Garlan, D.,
Kramer, J., and Wolf, A., eds., Proceedings of the First ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS’02),
(New York, NY, USA, Nov 18–19, 2002). ACM Press,
2002, 21–26.

[4] Hellerstein, J. L., Diao, Y., Parekh, S., Tilbury, D. M.
Feedback Control of Computing Systems, IEEE Press, John
Wiley & Sons, Inc., NJ, 2004.

[5] Kephart, J. O. and Chess, D. M. The vision of autonomic
computing. IEEE Computer, 36, 1, Jan 2003.

[6] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
Specifying Distributed Software Architectures. Schafer, W.
and Botella, P., eds, Proc. of 5th European Software
Engineering Conference (ESEC’95) (Sitges, Spain, Sep 26,
1995). Springer-Verlag, Berlin, 1995, 137–153.

[7] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. S.,
and Wolf, A. L. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems, 14, 3, May–Jun
1999, 54–62.

[8] Poladian, V., Garlan, D., Shaw, M., Schmerl, B., and Sousa,
J. P. Leveraging Resource Prediction for Anticipatory
Dynamic Configuration. In Proc. of the First IEEE
International Conference on Self-Adaptive and Self-
Organizing Systems (SASO-2007), Jul 2007.

[9] Wolf, A. L., Heimbigner, D., Carzaniga, A., Anderson, K.
M., and Ryan, N.. Achieving survivability of complex and
dynamic systems with the Willow framework. Proceedings of
the Working Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, Dec 12-14, 2001.

