
Handling Uncertainty in Autonomic Systems
Shang-Wen Cheng

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
+1-412-567-0426

chengs@cmu.edu

David Garlan
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
+1-412-268-5056

garlan+@cs.cmu.edu

ABSTRACT

Autonomic, or self-adaptive, systems are increasingly important.

One of the most prevalent techniques is to adopt a control systems

view of the solution: adding a runtime, separate control unit that

monitors and adapts the system under consideration. A problem

with this paradigm for system engineering is that the control and

the system are loosely coupled, introducing a variety of sources of

uncertainty. In this paper we describe three specific sources of

uncertainty, and briefly explain how we address those in the

Rainbow Project.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous – architecture-

based self-adaptive system, autonomic computing.

General Terms
Management, Design, Languages

Keywords
Rainbow, self-adaptation, Stitch, strategy, tactic, uncertainty.

1. INTRODUCTION

Autonomic, or self-adaptive, systems are increasingly important.

One of the most prevalent techniques is to adopt a control systems

view of the solution: adding a runtime, separate control unit that

monitors and adapts the system under consideration (the target).

Figure 1. Control systems paradigm of self-adaptation

The separate, external control typically maintains one or more

explicit models of the running system and uses these as a basis for

configuring, repairing, and optimizing the system. A recent

branch of work suggests an architectural model of the software as

a useful basis for dynamically changing the system [3][6][7]. An

architectural model can provide a global system perspective,

expose important properties and constraints, and support problem

analysis. It therefore allows adaptation to be done in a principled

and possibly automated fashion. Using the architectural model as

a basis to monitor and adapt a running system is known as

architecture-based self-adaptation.

A problem with this paradigm for system engineering is that the

controller and the system are loosely coupled, introducing a

variety of sources of uncertainty. In this paper we describe three

specific sources of uncertainty and briefly explain how we address

those in the Rainbow Project.

2. RAINBOW APPROACH
Architecture-based feedback control raises the challenges of

developing and using a control model, getting information out of

the target system, interpreting system states, reasoning about

actions to take, making decisions, and effecting changes on the

system, as well as the overall challenge of engineering such a

system cost-effectively.

Rainbow provides an engineering approach and a framework of

mechanisms to monitor system and environment states, manage

and use an architectural model to detect problems, determine

problem state and decide on a course of action, and act on the

adaptation, corresponding to the MAPE loop of IBM autonomic

computing shown in Figure 1.

Figure 2. Rainbow self-adaptation framework

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ASE’07, November 5, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

�

To appear in the International Workshop on Living with Uncertainties (IWLU’07), co-

located with the 22nd International Conference on Automated Software Engineering

(ASE’07), November 5, 2007, Atlanta, Georgia, USA.

Illustrated in Figure 2, the Rainbow self-adaptation framework [2]

functions as follows. Monitoring mechanisms, consisting of

various kinds of probes, observe the running system. Gauges

relate observations to properties in the architecture model

managed by the Model Manager. When new updates occur, the

Architecture Evaluator checks the model to ensure that the system

is operating within an envelope of acceptable range, determined

by constraints on the architecture. If the evaluation determines

that the system is not operating within an acceptable range, the

Adaptation Engine is triggered to determine the appropriate

adaptation action to take. The Executor carries out the chosen

action on the running system via system-level effectors.

A critical piece of the Rainbow framework, and more generally

autonomic systems with a similar adaptation cycle, is the decision

component. Although there are many ways to design this decision

piece, our experience indicates that we can draw inspiration from

system administrators (sys-admin), who are experts at handling

adaptations of systems they manage. By considering the mental

model, knowledge, and cognitive tasks of the sys-admin in

keeping a system operational, we can emulate the decision-

making process as well as formulate a set of first-class concepts

important to self-adaptation.

We have thus developed a self-adaptation language called Stitch,

for which we derive the ontology from system administration

tasks and base the underlying formalism on utility theory [1].

Table 1 summarizes the self-adaptation concepts that comprise the

Stitch self-adaptation language. Of note are three core concepts.

The operator represents a single action taken by the sys-admin on

the system, such as starting or killing a process. The tactic

represents a script of such actions, and is more formally defined

with conditions of applicability, as well as intended effects on the

target system. The strategy represents a collection of possible

actions that can be executed in response to the same system

condition and that target the same quality objective. More

formally, a strategy is a tree of tactics with root and branch

conditions. No system observation occurs during the execution of

a tactic, while intermediate observation of the system, through the

architectural model, is possible at every branching, or decision,

point within a strategy.

In such an adaptation framework, the management components, in

particular the monitoring and effecting mechanisms, are loosely

coupled from the target system by design. The major advantage

provided by loose coupling is the ability to target the Rainbow

framework to a variety of system types and adaptation needs. By

the same token, it has a major disadvantage: the introduction of a

variety of sources of uncertainty. We now examine these sources.

Table 1. Stitch self-adaptation concepts

Self-adaptation concept Sys-admin inspiration

Operator Single action on system, e.g., kill proc

Tactic Script of actions, e.g., addWebServer

Strategy Course of possible actions for problem

Strategy selection Decision path taken

Objective + Preference Business objective & op requirements

Tactic meta-information Factors considered in action choice

3. ADAPTATION UNCERTAINTIES
In a Rainbow-like autonomic system, the steps to detect the

existence of a problem, to decide on adaptation actions, and to

carry out the actions, each contribute a source of uncertainty.

3.1 Problem-State Identification
Let us assume that system probes are well-designed and

appropriately deployed to provide accurate readings, so that we

avoid sensor measurement problems that one often encounters in

control systems. The first challenging source of uncertainty lies in

knowing when there is a problem in the system.

A common and effective way to identify a problematic system

state is to define bounds for specific system properties, such as

CPU load above 75% or end-to-end latency above X number of

seconds. Even for quality attributes that do not have

straightforward numeric measurements, such as intrusion or other

security concerns, it is often possible to derive a numeric or

discrete state representation (e.g., probability of intrusion) for

which bounds can be defined.

Once bounds have been defined for relevant system properties,

identifying problem state is still not straightforward simply due to

the transient or stochastic nature of many system properties, such

as CPU load or network latency. For instance, it is possible for the

CPU load reading of a server to spike to 90% for a very brief

moment. The fact that it is above the 75% threshold at that

moment is not necessarily indicative of a problem that requires

system adaptation. On the other hand, if the CPU load has been

steadily rising over the previous minute, even if it has not yet

triggered the 75% threshold, it may still indicate a problem

worthy of system adaptation.

In Rainbow, we use two techniques to address the uncertainties

with problem-state identification. First, to counter transient or

stochastic properties, we use gauges that apply a moving-average

filter to the probed values. A moving average computes the next

value, y(k+1), by summing the product of a constant, c (0 < c < 1),

with the previous average, and the product of 1-c times the new

value, i.e., y(k+1) = cy(k) + (1-c)u(k). Thus, moving average

requires knowing only one previous value. The moving-average

filter is a well-known technique in control system to smooth

measurement readings without affecting the “gain,” that is,

without shifting the system response from its intended target [4].

Averaging has the advantage of smoothing out the “sudden

jumps,” or outlier values, but also the disadvantage of increasing

reaction time. The choice of c allows the engineer to decide

whether to give more weight to the historical, or the new, value.

As another technique, ongoing work in our research group

augments architectural description with probabilistic distributions

beyond the basic Gaussian. This technique would enable

engineers to explicitly characterize an expected distribution for a

system property—e.g., Gaussian, exponential, or Weibull—and

develop gauges that compare observations against the expected

distribution, compute errors, and react to alarming error trends.1

1 See paper on “Augmenting Architectural Modeling to Cope with

Uncertainty” in this workshop by Celiku, Garlan, and Schmerl.

Second, to handle trends in readings that indicate problematic

conditions, we rely on gauges with predictive capabilities,

drawing on resource prediction work that enables anticipatory

system adaptation, e.g., [8] 2 . Poladian’s prediction framework

provides runtime, multi-step ahead predictions for (a) short-term

trends based on recent history, (b) long-term seasonal trends, and

(c) bounding trends.

3.2 Strategy Selection
Once a problem has been identified, the second source of

uncertainty lies in determining which repair action to pick. When

a sys-admin determines a course of action, he bases his decision

on his knowledge and experiences given his observations of the

system. He most likely considers various factors of cost and

benefit when he makes his choice. After he chooses his adaptation

strategy, he may change his mind based on changes in system

condition. Also, he may perform more detailed inquiries into

particular states of the system before committing to a strategy,

such as deciding whether a sudden increase in network traffic is

due to legitimate requests or a denial-of-service attack.

In the context of Rainbow, this step consists of selecting, from a

potentially large adaptation repertoire, the adaptation strategy that

best fits the current conditions of the system. To emulate the sys-

admin’s decision process, all of the considerations described

above would manifest themselves as uncertainties. In particular,

the cost and effect of actions are uncertain, conditions of

applicability are uncertain, and outcomes of actions are uncertain.

Nonetheless, Rainbow must select a strategy while accounting for

all of these uncertainties up-front.

Figure 3. An illustrative strategy

To address the many facets of uncertainty in strategy selection, we

provide for a rich notion of strategy in the Stitch language. Figure

3 illustrates a simple strategy to reduce the response time of a

news provider system. In brief, this strategy defines a Boolean

condition, c0, and uses the up-to-date value of that condition to

determine how to traverse the tree. The strategy tree consists of

four nodes: a root node at t0 with enabling condition c0; two

nodes, t1 and t2, branching from t0 with corresponding

conditions, and a single node t2a branching from t2. The strategy

uses two tactics, one to switch server content quality to “textual,”

and the other to enlist more servers. The keyword success is

shorthand for a Boolean that conjoins two predicates: (a) the

condition that enabled the parent node is false, and (b) the

expected effect of the parent-node tactic is true. The keyword

2 See also the paper in this workshop by Vahe Poladian.

done, if reached, tells Rainbow to observe for and expect

successful execution of the strategy.

To narrow the scope of uncertainty, Rainbow first evaluates the

root-node condition of all available strategies and filters out the

inapplicable strategies (i.e., root-node condition yields false).

Note that although not explicitly illustrated here, the root-node

condition could capture more elaborate predicates, for instance, to

prescribe the type of system in which a strategy could apply.

Next, Rainbow computes a scalar score for each strategy based on

its aggregate costs and benefits, and selects the strategy with the

highest expected utility (in a probabilistic sense). Costs and

benefits are defined at the tactic level as cost and effect elements

of the tactic attribute vector (details in [1]). Each of the attribute

elements must correspond to a utility dimension (e.g., response

time, quality, cost, disruption) with a predefined value function

that maps an attribute value to a utility value between 0 and 1.

Essentially, the set of utility dimensions and their value functions

correspond to the experiences that the sys-admin draws from to

assess goodness and badness of respective system attributes.

One more aspect of uncertainty remains: the outcome of a tactic is

uncertain at strategy-selection time, so how does one determine

which branch to take, and consequently, which tactic attribute

vector to use for scoring the strategy? In short, we estimate the

likelihood that the known possible effects of a tactic would be

observed once that tactic is executed. Then, we assign to each

strategy tree branch a probability that the branch condition

evaluates to true. For example, the strategy in Figure 3 suggests

that tactic switchToTextualContent() has two outcomes, with

a probability of prob{t1} being the t1 condition, and a probability

of prob{t2} being the t2 condition. The branch probabilities are

used to discount the expected contribution of each attribute vector

element from tactics below that branch. Note that these branch

probabilities need not be fixed, but can be updated dynamically by

learners that track the outcomes of adaptations.

To score a strategy, we must first compute its aggregate attribute

vector at the root node of that strategy. Note that this vector can

be constructed from individual scalar attribute values. We define a

simple recursive algorithm for computing this aggregate attribute

vector; however, we must consider cost and effects separately

since cost accumulates down the tree while effects are only

applicable at the leaf node. Given a strategy with the root tactic X,

children tactics A, B, etc., with corresponding probabilities pA,

pB, etc., we can recursively compute:

EΑΑΑΑ_cost(X) = Agg_AVcost(X) =

 tAVcost(X)+(pA×Agg_AVcost(A) + pB×Agg_AVcost(B) + …)

EΑΑΑΑ_effect(X) = Agg_AVeffect(X) =

 pA × Agg_AVeffect(A) + pB × Agg_AVeffect(B) + …

A strategy score is a fraction between 0 and 1, and it gives some

confidence that, given the current set of system conditions, the

strategy has that much expected likelihood of bringing the system

back within normal operational bounds.

3.3 Strategy Success or Failure
The third challenging uncertainty lies in knowing if a given

strategy has succeeded or failed in terms of achieving its intended

effects. Naturally, as soon as we observe the set of conditions that

strategy SimpleReduceResponseTime() {

 boolean c0 = responseTime() > RespTimeLimit;

 t0: (c0) -> switchToTextualContent() {

 t1: (#[prob{t1}] success @[1000/*ms*/])

 -> done ;

 t2: (#[prob{t2}] c0 @[2000/*ms*/])

 -> enlistServer(1) {

 t2a: (success @[1000/*ms*/]) -> done ;
 }
 }
}

match the intended strategy effect, we would know the strategy

succeeded. What is uncertain is the length of the time window

within which to observe that effect. If the window is too short,

Rainbow could misjudge the outcome of a strategy and potentially

exhibit the problematic adaptation behavior of oscillating between

two competing strategies.

To address this uncertainty, we import the notion of settling time

from control theory. In essence, settling time gives us an

indication of how long to wait before we could expect to observe

the steady-state effects of an executed strategy. Assuming each

strategy could be specified with a settling time, after executing a

strategy, Rainbow would know approximately how long to wait to

observe its effects. If the settling-time technique proves effective,

then it might enable us to achieve the desirable hysteresis—lag

between making changes—in triggering adaptations.

Recall that a strategy is composed of a tree of tactics. Uncertainty

in the observation time window also applies after the execution of

each tactic. Rainbow addresses this uncertainty by allowing the

engineer to explicitly capture an estimated time window of

observation, as illustrated by the millisecond value in each of the

branches, t1 and t2, in Figure 3. The time window for t1 indicates

that if the success condition holds true within 1000 milliseconds

after the execution of switchToTextualContent() in t0, then

the overall branching condition of t1 holds true. The time window

for t2 indicates, on the other hand, that if condition c0 holds true

within 2000 milliseconds after the execution of

switchToTextualContent() in t0, then the overall branching

condition of t2 holds true.

Although this technique does not eliminate the uncertainty,

explicitly estimating and capturing observation time windows at

the tactic-choice level increases confidence that the expected

conditions are observed within sufficiently allotted time.

4. RELATED WORK
Similar to Rainbow, related researches on self-adaptive systems

generally assume a control loop of some form to monitor and

control a target system [6][7][9]. The Architecture Evolution

Framework at UCI dynamically evolves systems using a

monitoring and execution loop controlled by a planning loop [3].

IBM’s Autonomic Computing initiative outlines an architecture

where a computing element is managed by an autonomic manager

that monitors the element, analyzes it and its environment for

potential problems, plans actions, and executes changes in a

control loop [5]. Rainbow’s architecture corresponds closely with

that presented in IBM’s autonomic computing blueprint,

particularly with respect to the MAPE loop. We contend that

similar sources and issues of uncertainty exist in these autonomic

or self-adaptive systems.

5. CONCLUSION
In this paper, we have briefly introduced Rainbow as a

representative approach to engineer self-adaptive systems and

identified three challenging sources of uncertainty in such

systems—when identifying a system problem, when selecting the

adaptation strategy, and when determining whether a strategy

effected changes on the system successfully—and explained how

we address them. We plan to continue present evaluation of these

techniques as well as find more techniques, particularly for

determining whether a strategy succeeded or failed, to enhance the

self-adaptive capabilities of the Rainbow framework.

6. ACKNOWLEDGMENTS
This research was supported by DARPA under grants N66001-99-

2-8918 and F30602-00-2-0616, by the US Army Research Office

(ARO) under grant numbers DAAD19-02-1-0389 ("Perpetually

Available and Secure Information Systems") to Carnegie Mellon

University's CyLab and DAAD19-01-1-0485, and the National

Science Foundation under Grant No. 0205266. The views and

conclusions described here are those of the authors and should not

be interpreted as representing the official policies, either

expressed or implied, of DARPA, the ARO, NSF, the US

government, or any other entity.

7. REFERENCES
[1] Cheng, S-W., Garlan, D., and Schmerl, B. Architecture-

based Self-Adaptation in the Presence of Multiple

Objectives. Proc. of ICSE 2006 Workshop on Software

Engineering for Adaptive and Self-Managing Systems

(SEAMS’06), Shanghai, China, May 21-22, 2006.

[2] Cheng, S-W., Huang, A-C., Garlan, D., Schmerl, B., and
Steenkiste, P. Rainbow: architecture-based self-adaptation

with reusable infrastructure. IEEE Computer, 37, 10,

October 2004.

[3] Dashofy, E. M., van der Hoek, A., and Taylor, R. N.
Towards architecture-based self-healing systems. Garlan, D.,

Kramer, J., and Wolf, A., eds., Proceedings of the First ACM

SIGSOFT Workshop on Self-Healing Systems (WOSS’02),

(New York, NY, USA, Nov 18–19, 2002). ACM Press,

2002, 21–26.

[4] Hellerstein, J. L., Diao, Y., Parekh, S., Tilbury, D. M.
Feedback Control of Computing Systems, IEEE Press, John

Wiley & Sons, Inc., NJ, 2004.

[5] Kephart, J. O. and Chess, D. M. The vision of autonomic
computing. IEEE Computer, 36, 1, Jan 2003.

[6] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
Specifying Distributed Software Architectures. Schafer, W.

and Botella, P., eds, Proc. of 5th European Software

Engineering Conference (ESEC’95) (Sitges, Spain, Sep 26,

1995). Springer-Verlag, Berlin, 1995, 137–153.

[7] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. S.,

and Wolf, A. L. An architecture-based approach to self-

adaptive software. IEEE Intelligent Systems, 14, 3, May–Jun

1999, 54–62.

[8] Poladian, V., Garlan, D., Shaw, M., Schmerl, B., and Sousa,
J. P. Leveraging Resource Prediction for Anticipatory

Dynamic Configuration. In Proc. of the First IEEE

International Conference on Self-Adaptive and Self-

Organizing Systems (SASO-2007), Jul 2007.

[9] Wolf, A. L., Heimbigner, D., Carzaniga, A., Anderson, K.
M., and Ryan, N.. Achieving survivability of complex and

dynamic systems with the Willow framework. Proceedings of

the Working Conference on Complex and Dynamic Systems

Architecture, Brisbane, Australia, Dec 12-14, 2001.

