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ABSTRACT 

Autonomic, or self-adaptive, systems are increasingly important. 

One of the most prevalent techniques is to adopt a control systems 

view of the solution: adding a runtime, separate control unit that 

monitors and adapts the system under consideration. A problem 

with this paradigm for system engineering is that the control and 

the system are loosely coupled, introducing a variety of sources of 

uncertainty. In this paper we describe three specific sources of 

uncertainty, and briefly explain how we address those in the 

Rainbow Project. 

Categories and Subject Descriptors 
D.2.m [Software Engineering]: Miscellaneous – architecture-

based self-adaptive system, autonomic computing. 

General Terms 
Management, Design, Languages 

Keywords 
Rainbow, self-adaptation, Stitch, strategy, tactic, uncertainty. 

1. INTRODUCTION 

Autonomic, or self-adaptive, systems are increasingly important. 

One of the most prevalent techniques is to adopt a control systems 

view of the solution: adding a runtime, separate control unit that 

monitors and adapts the system under consideration (the target). 

 
Figure 1. Control systems paradigm of self-adaptation 

The separate, external control typically maintains one or more 

explicit models of the running system and uses these as a basis for 

configuring, repairing, and optimizing the system. A recent 

branch of work suggests an architectural model of the software as 

a useful basis for dynamically changing the system [3][6][7]. An 

architectural model can provide a global system perspective, 

expose important properties and constraints, and support problem 

analysis. It therefore allows adaptation to be done in a principled 

and possibly automated fashion. Using the architectural model as 

a basis to monitor and adapt a running system is known as 

architecture-based self-adaptation. 

A problem with this paradigm for system engineering is that the 

controller and the system are loosely coupled, introducing a 

variety of sources of uncertainty. In this paper we describe three 

specific sources of uncertainty and briefly explain how we address 

those in the Rainbow Project. 

2. RAINBOW APPROACH 
Architecture-based feedback control raises the challenges of 

developing and using a control model, getting information out of 

the target system, interpreting system states, reasoning about 

actions to take, making decisions, and effecting changes on the 

system, as well as the overall challenge of engineering such a 

system cost-effectively. 

Rainbow provides an engineering approach and a framework of 

mechanisms to monitor system and environment states, manage 

and use an architectural model to detect problems, determine 

problem state and decide on a course of action, and act on the 

adaptation, corresponding to the MAPE loop of IBM autonomic 

computing shown in Figure 1. 

 

Figure 2. Rainbow self-adaptation framework 
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Illustrated in Figure 2, the Rainbow self-adaptation framework [2] 

functions as follows. Monitoring mechanisms, consisting of 

various kinds of probes, observe the running system. Gauges 

relate observations to properties in the architecture model 

managed by the Model Manager. When new updates occur, the 

Architecture Evaluator checks the model to ensure that the system 

is operating within an envelope of acceptable range, determined 

by constraints on the architecture. If the evaluation determines 

that the system is not operating within an acceptable range, the 

Adaptation Engine is triggered to determine the appropriate 

adaptation action to take. The Executor carries out the chosen 

action on the running system via system-level effectors. 

A critical piece of the Rainbow framework, and more generally 

autonomic systems with a similar adaptation cycle, is the decision 

component. Although there are many ways to design this decision 

piece, our experience indicates that we can draw inspiration from 

system administrators (sys-admin), who are experts at handling 

adaptations of systems they manage. By considering the mental 

model, knowledge, and cognitive tasks of the sys-admin in 

keeping a system operational, we can emulate the decision-

making process as well as formulate a set of first-class concepts 

important to self-adaptation. 

We have thus developed a self-adaptation language called Stitch, 

for which we derive the ontology from system administration 

tasks and base the underlying formalism on utility theory [1]. 

Table 1 summarizes the self-adaptation concepts that comprise the 

Stitch self-adaptation language. Of note are three core concepts. 

The operator represents a single action taken by the sys-admin on 

the system, such as starting or killing a process. The tactic 

represents a script of such actions, and is more formally defined 

with conditions of applicability, as well as intended effects on the 

target system. The strategy represents a collection of possible 

actions that can be executed in response to the same system 

condition and that target the same quality objective. More 

formally, a strategy is a tree of tactics with root and branch 

conditions. No system observation occurs during the execution of 

a tactic, while intermediate observation of the system, through the 

architectural model, is possible at every branching, or decision, 

point within a strategy. 

In such an adaptation framework, the management components, in 

particular the monitoring and effecting mechanisms, are loosely 

coupled from the target system by design. The major advantage 

provided by loose coupling is the ability to target the Rainbow 

framework to a variety of system types and adaptation needs. By 

the same token, it has a major disadvantage: the introduction of a 

variety of sources of uncertainty. We now examine these sources. 

Table 1. Stitch self-adaptation concepts 

Self-adaptation concept Sys-admin inspiration 

Operator Single action on system, e.g., kill proc 

Tactic Script of actions, e.g., addWebServer 

Strategy Course of possible actions for problem 

Strategy selection Decision path taken 

Objective + Preference Business objective & op requirements 

Tactic meta-information Factors considered in action choice 

3. ADAPTATION UNCERTAINTIES 
In a Rainbow-like autonomic system, the steps to detect the 

existence of a problem, to decide on adaptation actions, and to 

carry out the actions, each contribute a source of uncertainty. 

3.1 Problem-State Identification 
Let us assume that system probes are well-designed and 

appropriately deployed to provide accurate readings, so that we 

avoid sensor measurement problems that one often encounters in 

control systems. The first challenging source of uncertainty lies in 

knowing when there is a problem in the system. 

A common and effective way to identify a problematic system 

state is to define bounds for specific system properties, such as 

CPU load above 75% or end-to-end latency above X number of 

seconds. Even for quality attributes that do not have 

straightforward numeric measurements, such as intrusion or other 

security concerns, it is often possible to derive a numeric or 

discrete state representation (e.g., probability of intrusion) for 

which bounds can be defined. 

Once bounds have been defined for relevant system properties, 

identifying problem state is still not straightforward simply due to 

the transient or stochastic nature of many system properties, such 

as CPU load or network latency. For instance, it is possible for the 

CPU load reading of a server to spike to 90% for a very brief 

moment. The fact that it is above the 75% threshold at that 

moment is not necessarily indicative of a problem that requires 

system adaptation. On the other hand, if the CPU load has been 

steadily rising over the previous minute, even if it has not yet 

triggered the 75% threshold, it may still indicate a problem 

worthy of system adaptation. 

In Rainbow, we use two techniques to address the uncertainties 

with problem-state identification. First, to counter transient or 

stochastic properties, we use gauges that apply a moving-average 

filter to the probed values. A moving average computes the next 

value, y(k+1), by summing the product of a constant, c (0 < c < 1), 

with the previous average, and the product of 1-c times the new 

value, i.e., y(k+1) = cy(k) + (1-c)u(k). Thus, moving average 

requires knowing only one previous value. The moving-average 

filter is a well-known technique in control system to smooth 

measurement readings without affecting the “gain,” that is, 

without shifting the system response from its intended target [4]. 

Averaging has the advantage of smoothing out the “sudden 

jumps,” or outlier values, but also the disadvantage of increasing 

reaction time. The choice of c allows the engineer to decide 

whether to give more weight to the historical, or the new, value. 

As another technique, ongoing work in our research group 

augments architectural description with probabilistic distributions 

beyond the basic Gaussian. This technique would enable 

engineers to explicitly characterize an expected distribution for a 

system property—e.g., Gaussian, exponential, or Weibull—and 

develop gauges that compare observations against the expected 

distribution, compute errors, and react to alarming error trends.1 

                                                                 

1 See paper on “Augmenting Architectural Modeling to Cope with 

Uncertainty” in this workshop by Celiku, Garlan, and Schmerl. 



Second, to handle trends in readings that indicate problematic 

conditions, we rely on gauges with predictive capabilities, 

drawing on resource prediction work that enables anticipatory 

system adaptation, e.g., [8] 2 . Poladian’s prediction framework 

provides runtime, multi-step ahead predictions for (a) short-term 

trends based on recent history, (b) long-term seasonal trends, and 

(c) bounding trends. 

3.2 Strategy Selection 
Once a problem has been identified, the second source of 

uncertainty lies in determining which repair action to pick. When 

a sys-admin determines a course of action, he bases his decision 

on his knowledge and experiences given his observations of the 

system. He most likely considers various factors of cost and 

benefit when he makes his choice. After he chooses his adaptation 

strategy, he may change his mind based on changes in system 

condition. Also, he may perform more detailed inquiries into 

particular states of the system before committing to a strategy, 

such as deciding whether a sudden increase in network traffic is 

due to legitimate requests or a denial-of-service attack. 

In the context of Rainbow, this step consists of selecting, from a 

potentially large adaptation repertoire, the adaptation strategy that 

best fits the current conditions of the system. To emulate the sys-

admin’s decision process, all of the considerations described 

above would manifest themselves as uncertainties. In particular, 

the cost and effect of actions are uncertain, conditions of 

applicability are uncertain, and outcomes of actions are uncertain. 

Nonetheless, Rainbow must select a strategy while accounting for 

all of these uncertainties up-front. 

 

Figure 3. An illustrative strategy 

To address the many facets of uncertainty in strategy selection, we 

provide for a rich notion of strategy in the Stitch language. Figure 

3 illustrates a simple strategy to reduce the response time of a 

news provider system. In brief, this strategy defines a Boolean 

condition, c0, and uses the up-to-date value of that condition to 

determine how to traverse the tree. The strategy tree consists of 

four nodes: a root node at t0 with enabling condition c0; two 

nodes, t1 and t2, branching from t0 with corresponding 

conditions, and a single node t2a branching from t2. The strategy 

uses two tactics, one to switch server content quality to “textual,” 

and the other to enlist more servers. The keyword success is 

shorthand for a Boolean that conjoins two predicates: (a) the 

condition that enabled the parent node is false, and (b) the 

expected effect of the parent-node tactic is true. The keyword 

                                                                 

2 See also the paper in this workshop by Vahe Poladian. 

done, if reached, tells Rainbow to observe for and expect 

successful execution of the strategy. 

To narrow the scope of uncertainty, Rainbow first evaluates the 

root-node condition of all available strategies and filters out the 

inapplicable strategies (i.e., root-node condition yields false). 

Note that although not explicitly illustrated here, the root-node 

condition could capture more elaborate predicates, for instance, to 

prescribe the type of system in which a strategy could apply. 

Next, Rainbow computes a scalar score for each strategy based on 

its aggregate costs and benefits, and selects the strategy with the 

highest expected utility (in a probabilistic sense). Costs and 

benefits are defined at the tactic level as cost and effect elements 

of the tactic attribute vector (details in [1]). Each of the attribute 

elements must correspond to a utility dimension (e.g., response 

time, quality, cost, disruption) with a predefined value function 

that maps an attribute value to a utility value between 0 and 1. 

Essentially, the set of utility dimensions and their value functions 

correspond to the experiences that the sys-admin draws from to 

assess goodness and badness of respective system attributes. 

One more aspect of uncertainty remains: the outcome of a tactic is 

uncertain at strategy-selection time, so how does one determine 

which branch to take, and consequently, which tactic attribute 

vector to use for scoring the strategy? In short, we estimate the 

likelihood that the known possible effects of a tactic would be 

observed once that tactic is executed. Then, we assign to each 

strategy tree branch a probability that the branch condition 

evaluates to true. For example, the strategy in Figure 3 suggests 

that tactic switchToTextualContent() has two outcomes, with 

a probability of prob{t1} being the t1 condition, and a probability 

of prob{t2} being the t2 condition. The branch probabilities are 

used to discount the expected contribution of each attribute vector 

element from tactics below that branch. Note that these branch 

probabilities need not be fixed, but can be updated dynamically by 

learners that track the outcomes of adaptations. 

To score a strategy, we must first compute its aggregate attribute 

vector at the root node of that strategy. Note that this vector can 

be constructed from individual scalar attribute values. We define a 

simple recursive algorithm for computing this aggregate attribute 

vector; however, we must consider cost and effects separately 

since cost accumulates down the tree while effects are only 

applicable at the leaf node. Given a strategy with the root tactic X, 

children tactics A, B, etc., with corresponding probabilities pA, 

pB, etc., we can recursively compute: 

EΑΑΑΑ_cost(X) = Agg_AVcost(X) = 

 tAVcost(X)+(pA×Agg_AVcost(A) + pB×Agg_AVcost(B) + …) 

EΑΑΑΑ_effect(X) = Agg_AVeffect(X) = 

 pA × Agg_AVeffect(A) + pB × Agg_AVeffect(B) + … 

A strategy score is a fraction between 0 and 1, and it gives some 

confidence that, given the current set of system conditions, the 

strategy has that much expected likelihood of bringing the system 

back within normal operational bounds. 

3.3 Strategy Success or Failure 
The third challenging uncertainty lies in knowing if a given 

strategy has succeeded or failed in terms of achieving its intended 

effects. Naturally, as soon as we observe the set of conditions that 

strategy SimpleReduceResponseTime() { 

  boolean c0 = responseTime() > RespTimeLimit; 
 

  t0: (c0) -> switchToTextualContent() { 

    t1: (#[prob{t1}] success @[1000/*ms*/]) 

        -> done ; 

    t2: (#[prob{t2}] c0 @[2000/*ms*/]) 

        -> enlistServer(1) { 

      t2a: (success @[1000/*ms*/]) -> done ; 
    } 
  } 
} 



match the intended strategy effect, we would know the strategy 

succeeded. What is uncertain is the length of the time window 

within which to observe that effect. If the window is too short, 

Rainbow could misjudge the outcome of a strategy and potentially 

exhibit the problematic adaptation behavior of oscillating between 

two competing strategies. 

To address this uncertainty, we import the notion of settling time 

from control theory. In essence, settling time gives us an 

indication of how long to wait before we could expect to observe 

the steady-state effects of an executed strategy. Assuming each 

strategy could be specified with a settling time, after executing a 

strategy, Rainbow would know approximately how long to wait to 

observe its effects. If the settling-time technique proves effective, 

then it might enable us to achieve the desirable hysteresis—lag 

between making changes—in triggering adaptations. 

Recall that a strategy is composed of a tree of tactics. Uncertainty 

in the observation time window also applies after the execution of 

each tactic. Rainbow addresses this uncertainty by allowing the 

engineer to explicitly capture an estimated time window of 

observation, as illustrated by the millisecond value in each of the 

branches, t1 and t2, in Figure 3. The time window for t1 indicates 

that if the success condition holds true within 1000 milliseconds 

after the execution of switchToTextualContent() in t0, then 

the overall branching condition of t1 holds true. The time window 

for t2 indicates, on the other hand, that if condition c0 holds true 

within 2000 milliseconds after the execution of 

switchToTextualContent() in t0, then the overall branching 

condition of t2 holds true. 

Although this technique does not eliminate the uncertainty, 

explicitly estimating and capturing observation time windows at 

the tactic-choice level increases confidence that the expected 

conditions are observed within sufficiently allotted time. 

4. RELATED WORK 
Similar to Rainbow, related researches on self-adaptive systems 

generally assume a control loop of some form to monitor and 

control a target system [6][7][9]. The Architecture Evolution 

Framework at UCI dynamically evolves systems using a 

monitoring and execution loop controlled by a planning loop [3]. 

IBM’s Autonomic Computing initiative outlines an architecture 

where a computing element is managed by an autonomic manager 

that monitors the element, analyzes it and its environment for 

potential problems, plans actions, and executes changes in a 

control loop [5]. Rainbow’s architecture corresponds closely with 

that presented in IBM’s autonomic computing blueprint, 

particularly with respect to the MAPE loop. We contend that 

similar sources and issues of uncertainty exist in these autonomic 

or self-adaptive systems. 

5. CONCLUSION 
In this paper, we have briefly introduced Rainbow as a 

representative approach to engineer self-adaptive systems and 

identified three challenging sources of uncertainty in such 

systems—when identifying a system problem, when selecting the 

adaptation strategy, and when determining whether a strategy 

effected changes on the system successfully—and explained how 

we address them. We plan to continue present evaluation of these 

techniques as well as find more techniques, particularly for 

determining whether a strategy succeeded or failed, to enhance the 

self-adaptive capabilities of the Rainbow framework. 

6. ACKNOWLEDGMENTS 
This research was supported by DARPA under grants N66001-99-

2-8918 and F30602-00-2-0616, by the US Army Research Office 

(ARO) under grant numbers DAAD19-02-1-0389 ("Perpetually 

Available and Secure Information Systems") to Carnegie Mellon 

University's CyLab and DAAD19-01-1-0485, and the National 

Science Foundation under Grant No. 0205266. The views and 

conclusions described here are those of the authors and should not 

be interpreted as representing the official policies, either 

expressed or implied, of DARPA, the ARO, NSF, the US 

government, or any other entity. 

7. REFERENCES 
[1] Cheng, S-W., Garlan, D., and Schmerl, B. Architecture-

based Self-Adaptation in the Presence of Multiple 

Objectives. Proc. of ICSE 2006 Workshop on Software 

Engineering for Adaptive and Self-Managing Systems 

(SEAMS’06), Shanghai, China, May 21-22, 2006. 

[2] Cheng, S-W., Huang, A-C., Garlan, D., Schmerl, B., and 
Steenkiste, P. Rainbow: architecture-based self-adaptation 

with reusable infrastructure. IEEE Computer, 37, 10, 

October 2004. 

[3] Dashofy, E. M., van der Hoek, A., and Taylor, R. N. 
Towards architecture-based self-healing systems. Garlan, D., 

Kramer, J., and Wolf, A., eds., Proceedings of the First ACM 

SIGSOFT Workshop on Self-Healing Systems (WOSS’02), 

(New York, NY, USA, Nov 18–19, 2002). ACM Press, 

2002, 21–26. 

[4] Hellerstein, J. L., Diao, Y., Parekh, S., Tilbury, D. M. 
Feedback Control of Computing Systems, IEEE Press, John 

Wiley & Sons, Inc., NJ, 2004. 

[5] Kephart, J. O. and Chess, D. M. The vision of autonomic 
computing. IEEE Computer, 36, 1, Jan 2003. 

[6] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. 
Specifying Distributed Software Architectures. Schafer, W. 

and Botella, P., eds, Proc. of 5th European Software 

Engineering Conference (ESEC’95) (Sitges, Spain, Sep 26, 

1995). Springer-Verlag, Berlin, 1995, 137–153. 

[7] Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., 
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. S., 

and Wolf, A. L. An architecture-based approach to self-

adaptive software. IEEE Intelligent Systems, 14, 3, May–Jun 

1999, 54–62. 

[8] Poladian, V., Garlan, D., Shaw, M., Schmerl, B., and Sousa, 
J. P. Leveraging Resource Prediction for Anticipatory 

Dynamic Configuration. In Proc. of the First IEEE 

International Conference on Self-Adaptive and Self-

Organizing Systems (SASO-2007), Jul 2007. 

[9] Wolf, A. L., Heimbigner, D., Carzaniga, A., Anderson, K. 
M., and Ryan, N.. Achieving survivability of complex and 

dynamic systems with the Willow framework. Proceedings of 

the Working Conference on Complex and Dynamic Systems 

Architecture, Brisbane, Australia, Dec 12-14, 2001.


