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Abstract 
 

This paper is an experience report on a first attempt 
to develop and apply a new form of software: a full-
service testbed designed to evaluate alternative software 
dependability technologies, and to accelerate their 
maturation and transition into project use. The SCRover 
testbed includes not only the specifications, code, and 
hardware of a public safety robot, but also the package of 
instrumentation, scenario drivers, seeded defects, 
experimentation guidelines, and comparative effort and 
defect data needed to facilitate technology evaluation 
experiments. 

The SCRover testbed’s initial operational capability 
has been recently applied to evaluate two architecture 
definition languages (ADLs) and toolsets, Mae and 
AcmeStudio. The testbed evaluation showed (1) that the 
ADL-based toolsets were complementary and cost-
effective to apply to mission-critical systems; (2) that the 
testbed was cost-effective to use by researchers; and (3) 
that collaboration in testbed use by researchers and the 
Jet Propulsion Laboratory (JPL) project users resulted in 
actions to accelerate technology maturity and transition 
into project use. The evaluation also identified a number 
of lessons learned for improving the SCRover testbed, 
and for development and application of future technology 
evaluation testbeds. 
 
1. Introduction 
 

The NASA High Dependability Computing Program 
(HDCP) is a major investment in new research and 
technology to improve the dependability of NASA 
mission software, and of software-intensive systems in 

general. The research program addresses new capabilities 
in such areas as lightweight formal methods, model 
checking, architecture analysis, human factors, code 
analysis, and testing The HDCP strategy for accelerating 
the usual 18-year transition time for software engineering 
technology [20] employs common-use technology 
evaluation testbeds representative of NASA mission 
software. 

One such testbed is the SCRover robot testbed based 
on NASA JPL's Mission Data System (MDS). This paper 
summarizes the experiences to date of the collaborative 
effort between the University of Southern California 
(USC), the Jet Propulsion Laboratory (JPL), and Carnegie 
Mellon University (CMU) in developing and exercising 
this testbed.  Section 2 describes the HDCP testbed 
approach, the MDS technology, and their relationships to 
the SCRover testbed.  Section 3 describes the SCRover 
testbed and its constituent elements.  Section 4 
summarizes the approach and results of the initial 
technology evaluation, using the Mae architecture 
definition language (ADL) and the Mae set of analysis 
and execution monitoring tools, and documents some 
complementary results from a partial evaluation of CMU's 
AcmeStudio technology.  Section 5 summarizes the 
implications for the use of Mae and AcmeStudio on JPL 
MDS software applications, showing how the testbed 
results are beginning to accelerate technology maturity 
and transition1. Section 6 presents the conclusions, 

                                                 
1 Note to reviewers: A related paper [27], also submitted to this 

conference, provides a complementary view of this effort. While that 
paper focuses on the use of ADLs for modeling and analyzing 
specifications like SCRover’s, this paper focuses on the use of testbeds 
like SCRover for speeding technology evaluation, maturation, and 
transition into project use. 



including lessons learned from the testbed development 
and technology evaluations, and future plans for 
improving and experimenting with the testbed. 
 
2. The NASA HDC testbed approach and 
relations to the SCRover testbed 
 
2.1. The NASA HDC testbed approach 

 
Risk considerations and economic considerations 

make it generally impractical to experimentally apply 
immature research artifacts to operational mission 
software. In response, the HDCP testbed approach has 
defined a series of four testbed stages that enable a highly 
cost-effective progression through increasingly 
challenging and realistic experimental applications of 
HDC technology.  The four stages are: 

1. Experimental scenarios roughly representative of 
NASA missions, developed or adapted by 
researchers to fit their technology capabilities.  

2. Tailorable testbed suites with hardware, 
software, and specifications representative of 
NASA missions; provided to researchers along 
with representative mission scenarios, 
instrumentation, seeded defects, installation and 
experimentation guidelines, and baseline data for 
comparative evaluation of a technology’s cost-
effectiveness; 

3. Application of more mature technologies to 
NASA operational mission software in a NASA 
simulation environment; 

4. Application of matured technologies to NASA 
operational mission software in a NASA 
operational environment. 

The use of these testbeds and complementary 
approaches such as Technology Maturation Teams 
enables NASA and HDCP to accelerate the maturation of 
an emerging HDC technology, using criteria such as the 
NASA Technology Readiness Levels [16,24]. 
Experimentation at each stage can be done with relatively 
low marginal expenditure of effort, based on the feedback 
received in earlier stages.  Involving NASA mission 
personnel in defining representative mission scenarios 
and evaluating experimental results on a technology’s 
cost-effectiveness will also enable mission personnel to 
adopt new technology earlier.  Researchers will also be 
able to concurrently pipeline more advanced and more 
mature versions of their technology through the testbed 
stages.  A major hypothesis to be tested by the HDCP is 
that the staged testbed approach will be able to compress 
the traditional 18 year interval from concept emergence to 
regular mission usage [20] to 5-7 years. 
 
 

2.2. The JPL Mission Data System technology 
 

In 1998, the NASA Jet Propulsion Laboratory (JPL) 
initiated a project called the Mission Data System (MDS) 
to develop a core system engineering methodology and 
software toolset for the next generation of deep space 
missions.  Currently MDS technology is baselined to 
support system engineering and software development for 
the Mars Science Laboratory Project, scheduled to launch 
in the Fall of 2009. 

The MDS goal has been to develop a set of closely 
matched tools and techniques to reduce development and 
debugging cost, promote reusability and increase 
reliability throughout a project’s lifecycle.  The principal 
MDS products include a system engineering methodology 
called the State Analysis Process, a software framework, 
a goal-based operational methodology, and a cost 
estimation model based on COCOMO II [2].  Each of 
these products is briefly described below: 
 
2.2.1. State Analysis Engineering process. MDS 
provides a collaborative engineering methodology and 
tools for systems engineers to capture requirements in 
terms of familiar concepts: states, commands, 
measurements, estimators, controllers, and hardware 
devices. Requirements are captured in a database that can 
be checked for validity and completeness.  The resulting 
requirements are organized into a state-oriented model of 
the system's behavior, which maps directly into the 
software framework (discussed below), eliminating errors 
in translation and reducing cycle time. 
 
2.2.2. Framework. The MDS Framework consists of 
over 35 reusable packages for common functionality such 
as state-oriented control, event logging, time services, 
data management, visualization, units of measurement, 
state variables, and an interface to real or simulated 
hardware called the hardware proxy. The entire set is 
organized into a modular architecture supportive of state-
oriented real-time control systems. 

 
2.2.3. Operational tools. Operators of MDS-based 
systems specify activities in terms of “what” rather than 
“how,” or, in MDS parlance, in goals rather than 
commands.  Goal-driven operation provides a level of 
control that can vary from purely time-scripted to fully-
autonomous operations.  A goal is simply a constraint on 
the value of a state variable over a time interval.  Goals 
are assembled into goal networks that prescribe timing 
and prerequisites (or preconditions) for goals.  Goal 
networks are scripted in a Goal Elaboration Language 
(GEL) that provides an unambiguous expression of 
operational intent.  
 



2.2.4. Cost estimation model. MDS defines a cost model 
that helps customers reliably estimate adaptation cost and 
schedule.  The models are based on the COCOMO II cost 
modeling methodology and confirmed with objective 
metrics captured by ongoing MDS adaptation efforts. The 
current cost model parameter values are preliminary. 
However, as more projects develop MDS adaptations, 
these parameter values will be refined. 

 
2.3. Relations to the SCRover testbed 

 
Originally, the HDCP testbed approach involved 

provision of subsets of actual NASA mission software 
and specifications to researchers for experimental 
application of their technologies at testbed stages 1 and 2.  
But the heightened national concern with mission security 
occasioned by the events of September 11, 2001 caused 
most U.S. government mission applications software to 
be placed under the International Traffic in Arms 
Regulation (ITAR) distribution limitations, making them 
available only to U.S. citizens.  As much of HDC 
research is being performed by mixed teams of U.S. 
citizens and foreign nationals, this caused a rethinking of 
HDCP testbed stages 1 and 2.  

The resulting testbed strategy currently being 
pursued by HDCP is to create Stage 2 testbed suites 
representative of NASA missions that are not subject to 
ITAR constraints, and that can be tailored by mixed-
nationality HDC research teams to provide both Stage 1 
and Stage 2 testbed capabilities.  The overall set of 
success criteria for these testbed suites includes having: 

• Capabilities and usage scenarios representative 
of NASA missions; 

• Application characteristics not subject to ITAR 
constraints; 

• Full testbed support, including tailorable mission 
scenarios, instrumentation, seeded defects, 
installation and experimentation guidelines, and 
baseline data for comparative evaluations; 

• Ease of distribution and use; 
• Cost-effective development, operations, and 

maintenance. 
The SCRover testbed is a collaborative effort by 

USC and JPL to develop a campus public safety robot 
performing mission scenarios representative of JPL 
planetary rover missions and using the JPL MDS 
Framework.  The SCRover software is being developed 
by U.S. citizen graduate students with access to the JPL 
MDS internals, but it is being developed with open MDS 
interfaces not subject to ITAR constraints.  The next 
section describes the elements of the SCRover testbed, 
and our experience to date in satisfying the testbed suite 
success criteria above. 

 

3. Elements of the SCRover testbed 
 

3.1. SCRover operational concept 
 

The SCRover testbed provides an experimental 
framework that allows researchers to evaluate the 
efficiency of their HDC technology on a NASA-like 
project. The testbed contains software, supporting 
information such as documentation, metrics, 
instrumentation, seeded defects, and guidelines, a robotic 
platform (both real and simulated), and a development 
environment. To use the testbed, researchers start by 
applying their technology to the SCRover specification 
and code. Then, based on the evaluation criteria defined 
by them, appropriate instrumentation and seeded defects 
are applied to the project artifacts. These features will 
help gather the necessary data used to evaluate the 
performance of the technology. 

The next step is to define the appropriate operational 
scenarios under which the technology will be evaluated. 
These operational scenarios are represented by goal 
networks that are transmitted to the system in the form of 
GEL files. The code is then executed. 

After the execution of the system, the researchers use 
the data provided by the instrumentation to determine the 
percentage of seeded and unseeded defects of each type 
that were found. This enables an analysis of how well the 
technology performs in detecting, avoiding, or 
compensating for various classes of seeded and 
previously undiscovered defects, in comparison to 
alternative technologies. The data and the analysis are 
then stored in an experience base to be accessed by 
project managers interested in technology to increase the 
dependability of their delivered systems. 
 
3.2. SCRover testbed architecture, specification, 
and code 

 
Development within the MDS Framework to operate 

our robotic platform (Pioneer 2-AT) has focused on the 
Hardware Proxy, State Knowledge, State Determination, 
and State Control components of the framework’s four 
component cycle as expressed on the left side of Figure 1. 

In the following sections, we describe our efforts to 
enable MDS to communicate with the robot (Hardware 
Proxy) and our implementation of three top-level 
components (State Knowledge, State Control, and State 
Determination). 
 
3.2.1. Behaviors. We have successfully implemented two 
separate high-level behaviors for the SCRover as a proof-
of-concept, and to provide a baseline for our ongoing 
development of more complex behaviors.  In Increment 1, 
we duplicated the functionality of JPL’s MRE4 (Mars 



Rover Example 4).  This demonstration required the rover 
to turn 90 degrees and drive three meters. The simple 
scenario enabled us to establish the basic interoperability 
preconditions and protocols between the MDS 
Framework, the robot, and its simulator. 

 
Figure 1 – MDS and SCRover high-level 

architecture 

In Increment 2, we implemented reactive “wall-
following” behavior.  In this mode, the rover uses the 
laser rangefinder to determine the distance to the wall, 
drives forward while maintaining a fixed distance from 
that wall, and turns both inside and outside corners when 
it encounters them.  An additional state in this behavior is 
that of the laser rangefinder’s profile of obstacles (walls) 
in its surroundings. This scenario, involving both sensing 
and controlled locomotion (including reducing speed 
when approaching obstacles), provided an initial 
representative capability for technology evaluation. 
 
3.2.2. State knowledge. State Knowledge is used to 
maintain the current state of the rover. For the two 
behaviors implemented, we adapted two State Knowledge 
components. One was called the PositionAndHeading 
state variable and holds the estimated position of the 
rover. The other is called the Obstacle State Variable and 
holds the estimated position of the nearest wall(s) in its 
frontal 180 degree view. 
 
3.2.3. State control. The purpose of the State Controller 
is to collect the robot's current state from the State 
Knowledge components and to generate the proper 
commands for the robot to achieve the goal being 
executed. The commands generated then get submitted to 
the Hardware Proxy. For the two behaviors described, we 
built a controller that subscribed to the Obstacle State 
Variable and the PositionAndHeading State Variable. The 
controller would use this state information to generate the 
correct movement commands. 
 
3.2.4. Hardware proxy. Our implementation of the 
Hardware Proxy in the MDS Framework is a stub for the 

Player rover API. Player [9] is developed at USC to 
communicate with the Pioneer family of robots.  Player 
supports driving the robot’s wheel motors, controlling the 
camera’s pan/tilt unit, and querying a variety of on-board 
sensors.  Access to these functions is provided through a 
client API, which communicates with a server process 
running on the rover itself.  The client-server interaction 
can be conducted over a TCP/IP link, allowing us to 
execute the MDS Framework on a machine separate from 
the rover’s on-board PC.  Our MDS Hardware Proxy 
makes calls to a Player client shared library, various 
functions of which allow us to operate the drive motors, 
operate the camera, read the rover’s position (maintained 
by the Player server process), and obtain a profile of the 
environment generated by the laser rangefinder.  Figure 1 
details this interaction. 
 
3.2.5. State determination. Another component that we 
adapted is the State Determination Component. This 
component takes the sensor readings from the Hardware 
Proxy and uses this information to estimate current state 
of the robot. Once a state has been estimated, this 
information gets stored in the State Knowledge 
component. For the two behaviors described, we adapted 
two State Determination components. One component 
estimates the position and heading of the robot using the 
wheel sensors as its data while the other component 
estimates distance to the nearest wall with its laser 
rangefinder’s values. 
 
3.3. SCRover testbed support capabilities 

 
To facilitate experiments using the SCRover testbed, 

the testbed provides several additional support 
capabilities.  These capabilities include seeded defects, 
code instrumentation, scenario drivers, an instrumented 
development process, and experimentation guidelines. 
 
3.3.1. Seeded defects. Suppose an experiment shows that 
in a given situation, the technology being evaluated finds 
3 defects. How can we tell whether this is 100% of 3 
defects or 3% of 100 defects? The best technique found to 
date is the seeded defect technique adapted from previous 
statistical techniques to software testing [18]. If we insert 
10 representative defects into the software, and the 
technology being evaluated finds 6 of them, the 
maximum likelihood estimate is that the technology has 
found 60% of both the seeded and the unseeded defects. 
In general, if we insert I seeded defects, and the 
technology finds S seeded defects and U unseeded defects 
the maximum likelihood estimate of the total number T of 
unseeded defects is T = I*(U/S). 

Of course, this estimate is only as good as the 
assumption that the seeded defects are representative of 
the remaining defects [23]. We have tried to avoid the 



known shortfall of people’s inability to invent sets of 
representative defects by using as our pool of seeded 
defects the defects actually found in the specifications 
and code through peer reviews and a formal architecture 
review by JPL personnel. Researchers conducting their 
experiments simply modify a configuration file to insert 
selected defect(s) into the code without the need to 
recompile it. Once the configuration file is changed, the 
researcher can run the code with the defects and try to 
detect them with his/her technology. 
 
3.3.2. Code instrumentation. The SCRover testbed 
provides guidelines to the researchers on how to 
instrument the code for collecting the statistics they wish 
to track. For the first set of analysis performed with the 
SCRover testbed, the development team implemented an 
instrumentation class on top of one of the features offered 
by the MDS Framework that allows programmers/ 
researchers to report events that occur in the code. The 
instrumentation class generates an output file containing a 
list of the events that occurred in the system and when 
each one of them happened. This file can then be 
analyzed by a researcher.  
 
3.3.3. Scenario drivers. A mission/scenario is specified 
in MDS by using the Goal Elaboration Language (GEL). 
At the beginning of a mission, a scientist passes the GEL 
file to the rover and the rover executes the mission as 
stated in the file. Researchers who wish to create their 
own scenarios with the SCRover system may create their 
own GEL files. To create a goal for the rover to execute, 
researchers fill in the goal statement located in the GEL 
file with the appropriate values and the interval during 
which the goal should be achieved. Guidelines on how to 
create a GEL file are included in the SCRover testbed. 
Researchers can also execute the provided scenario 
drivers by simply executing the right command with the 
right GEL file. Currently, the SCRover system offers two 
GEL files for researchers to execute: the Increment 1 
(MRE4) and Increment 2 (wall-following) scenarios 
described in section 3.2.1. 
 
3.3.4. Instrumented development process. The 
SCRover team used a well-instrumented version of the 
Win-Win Spiral model called Model-Based (System) 
Architecting and Software Engineering (MBASE) [3,22] 
for system and software development. MBASE involves 
the concurrent development of the system’s operational 
concept, prototypes, requirements, architecture, and life-
cycle plans, plus a feasibility rationale ensuring that the 
artifact definitions are compatible, achievable, and 
satisfactory to the system’s success-critical stakeholders. 
MBASE shares many aspects with the Rational Unified 
Process (RUP) [14], including the use of the Unified 
Modeling Language (UML) [4] and the spiral model 

anchor point milestones [1]. The SCRover team was 
experienced in its use. 

While executing the development strategy, the team 
was able to collect data about the development process 
using various instrumentation techniques. In addition to 
the aforementioned defects found in the SCRover 
artifacts, the SCRover team kept track of its effort spent 
on the project. The effort data covered all the tasks 
performed by the SCRover team which includes writing 
each MBASE document, the system engineering aspects 
of the project, tool support, the defect reviews, coding, 
and testing. In addition, the developers used a tool called 
Hackystat developed by NSF-HDCP researcher Philip 
Johnson to collect the effort spent in coding the system 
[13]. 
 
3.3.5. Experimentation guidelines. Additional 
experimentation guidelines are being developed by the 
Fraunhofer Center at the University of Maryland to 
provide guidance on designing sound experimental 
evaluations, on which experimental technique is best for a 
given situation, and on most appropriate statistical data 
analysis techniques. 
 
4. Initial technology evaluation: Mae and 
AcmeStudio 
 
4.1. Mae technology summary 
 

The development team used UML to specify use-
cases, class diagrams, and sequence diagrams that 
combine to describe SCRover’s functionality visually and 
graphically. Further refinement of these diagrams into 
implementation-level specification helps the developers in 
building the “right” system. However, UML’s lack of a 
precise semantic underpinning prevents reliable detection 
of inconsistencies, mismatches, and other classes of 
defects. Beside the basic UML syntax checking provided 
by the Rational Rose tool [19] used by the project, the 
only mechanism to detect such errors was peer-review of 
the UML diagrams. These steps, although useful, are not 
sufficient in ensuring correctness of the specification. 

USC’s Mae technology serves as an intermediate step 
between the UML diagrams and the implemented system. 
Mae is an extensible architectural evolution environment 
developed on top of xADL 2.0 [6] that provides 
functionality for capturing, evolving, and analyzing 
functional architectural specification [21]. A set of XML 
extensions were developed to model specific 
characteristics of MDS architectures. Consequently, Mae-
MDS models of SCRover capture all functional properties 
of MDS style architectures [27].  
 



4.2. Experimental application of Mae technology 
to SCRover 
 

The Mae-MDS specification of SCRover architecture 
was built by refining the existing UML diagrams. In 
particular, the UML class and sequence diagrams were 
used in determining the architectural configuration of 
SCRover in terms of components and connectors, and 
their interaction. The components’ specifications were 
then further refined to specify components’ interface 
types (ports), associated interfaces (signatures), and the 
pre- and post-conditions that describe their static 
behaviors. The combination of this information, along 
with the domain knowledge of the MDS architectural 
style [7] was used in building SCRover models that can 
be analyzed in Mae.  

The example depicted in Figure 2 shows the class 
and sequence diagrams of the Position and Heading 
Estimator component, and its corresponding partial Mae-
MDS model. The Mae-MDS model is obtained by 
refining the UML's diagrams. The original class diagrams 
specify component interfaces but fail to model 
corresponding operations. Without detailed specification 
of component's operation, ambiguity arises in 
implementing the system. Additionally, since UML 
diagrams cannot be automatically analyzed, 
inconsistencies in the specification can hamper their 
usefulness. The UML sequence and class diagrams and 
specified component's operations associated with the 
interfaces were used to formally identify input/output 
parameters and conditions that must be satisfied prior to 
and after the corresponding interface is invoked. These 

pre- and post-conditions are modeled in first-order logic 
in Mae and thus can be further analyzed by the Mae tools. 

The analysis provided by Mae revealed several 
inconsistencies. These inconsistencies correspond to 
mismatches in the interface and behavioral specification 
of components’ services [17].  

The particular classes of defects detected by Mae 
were especially important in the context of the seeded 
defects. As part of our design and implementation 
process, we identified a set of defects in the requirements 
and UML specifications. These defects were classified 
under a categorization schema similar to Orthogonal 
Defect Classification [5] and their severity was identified. 
We then reviewed the defects and planted them into the 
Mae-MDS specification of SCRover where possible, to 
identify and track the class of defects that Mae analysis 
can detect. 
 
4.3. Experimental results 
 

As part of the standard peer-review process of our 
UML design documentation a set of 38 defects were 
identified and classified. The classification identifies each 
defect and assigns one of the predefined defect types of 
interface, object/class/function, method/logic/algorithm, 
ambiguity, data value, and other to each defect.  

The nature of the above 38 defects varied from 
English language problems and typographical errors, to 
sophisticated errors that could potentially cause harmful 
behaviors; some of them were architectural in nature 
while others were conceptual. A subset of architectural 
defects concerned functional behaviors that Mae-MDS 

 

Figure 2.  Position and Heading component’s UML class and sequence diagrams and corresponding 
partial specification as captured by Mae. 

Component 
Type 

PHEstimator; 

State 
Variable 

rawXPos : Float; 

 XPos: LengthType; 
 isDriveCom: Boolean 
 isTurnCom: Boolean 
 … 
Interface: Prov: Run(rtd: Duration); 
Behavior: Pre:  (rtd > 0 && constraint != 

NULL) 
 
Post:  (isDriveCom = true || is 
TurnCom = true)  

 

:Position & Heading 
Controller

:Obstacle State 
Variable

:Simulator-Hardware 
Adaptor

:Position & Heading 
Estimator

:Rover 
Hardware-Simulator

The next cycle of 
operations starts from 
Position & Heading 
Controller right after 
this point.

Request P&H_State_Var()

Issue Robot Command(command)
Execute(command)

Analyze Goal

Compare Goal vs. State

Determine Course of Action()

Request Sensor Values()

measurement:=CreateMeasurement(sensor values)

AddSampleItem(measurement)

Request(measurement)

state:=Verify Sta te(measurement)

Update PosAndHdg State Variable(state)

P o s t io n  &  H e a d i n g  E s t im a t o r

s e r i a li za t io n _ I D
t i m e T a g
c o n s t r a in t
m e a s u r e m e n t _ rc p
r a w X P o s
r a w Y P o s
r a w T h e t a A n g le
X P o s
Y P o s
T h e t a A n g le

< < p r o v > >  G e t T im e T a g ( )
< < p r o v > >  Is R e a d y T o S t a r t ( )
< < p r o v > >  S t a r t C o n s t r i a n t ( )
< < p r o v > >  Is A c h i e v a b l e ( )
< < p r o v > >  Is T r a n s it io n A c h i e v a b le ( )
< < p r o v > >  E a r l ie s t A c h ie v a b l e M e r g e ( )
< < p r o v > >  P r o j e c t e d C o n s tr a in t ( )
< < p r o v > >  R u n ( )
< < p r o v > >  S e t T im e T a g ( )
< < p r o v > >  G e t S e r i a l iz a t io n ID ( )
< < p r o v > >  G e t X P o s ( )
< < p r o v > >  G e t Y P o s ( )
< < p r o v > >  G e t T h e t a ( )
< < p r o v > >  G e t R a w X P o s ( )
< < p r o v > >  G e t R a w Y P o s ( )
< < p r o v > >  G e t R a w T h e t a ( )
< < r e q > >  G e t R o v e r X P o s ( )
< < r e q > >  G e t R o v e r Y P o s ( )
< < r e q > >  G e t R o v e r T h e t a ( )
< < r e q > >  S e t P H S t a t e V a r ia b l e ( )

( fr o m  N a v ig a ti o n  G u id a n c e  &  C o n t r o l)

< < S u b c o m p o n e n t > >



models capture, while others relate to other issues not 
currently captured by our models. Re-seeding these 
defects into the Mae-MDS models helped us identify and 
further classify the defects that MDS adaptation of Mae 
can detect. It also reveals the types of defects that Mae 
cannot detect, which is valuable in identifying 
complementary technologies necessary to detect 
additional classes of architectural defects. 

Out of the 38 identified defects, we were able to seed 
24 (63%) of them back into the Mae-MDS specification. 
The remaining 14 are conceptual defects that do not 
directly translate to functional specification of the system 
or its behavioral properties. Examples of this type of 
defects that Mae models do not capture is “Inaccurate 
purpose for a given component X”, or “Class Y should be 
split into classes Y1 and Y2”.   

The result of Mae analysis on the models containing 
the 24 seeded defects is as follows: 
• Mae analysis revealed 15 errors (62%).  
• Out of 9 defects not detected by Mae, 7 did not 

directly impact the execution of the system. 
Examples include specification of component’s 
provided interface or state variable (attributes) that 
were never used or required elsewhere. 

• Mae was unable to detect 2 critical defects in the 
specification. These defects would result in harmful 
interactions that undermine system’s operation. 
Particularly, these defects concerned stylistic 
constraints of MDS architectural style. An example 
of this type of defects is “Communication direction 
between X and Y must be reversed”. 

• Mae analysis revealed 6 additional defects that were 
previously undetected by the review process. These 
defects primarily concerned the inconsistency in the 
specification. Specifically, Mae detected inconsistent 
specification of interfaces and behaviors among 
interacting components, resulting in possibly harmful 
interactions in the system.  
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 Figure 3 – Mae defect detection yield by type 

Figure 3 summarizes the original number of defects 
(left column) against the subset that can be captured in 

Mae-MDS models (middle column), and those detected 
by Mae (right column).  

Incorporating defect seeding analysis to these results 
also demonstrates that, since Mae detected 15 of 38 
seeded defects as well as 6 unseeded defects, the 
maximum likelihood estimate of the total number of 
remaining defects is T = 38*(6/15) = 15. 

Since Mae found 6 unseeded defects, this leaves an 
estimate of 9 remaining defects. As a rough estimate of 
where to look for these defects, we can posit that their 
distribution is similar to the distribution of defects not 
found by Mae. This is often but not always true, as with 
other defect-proneness metrics such as module 
complexity metrics [25,26]. Table 1 shows the results. 

Table 1. Seeded defect estimate of remaining 
defect distribution 

 
Defect 
Class 

To
ta

l 

In
te

rfa
ce

 

C
la

ss
/  

O
bj

ec
t 

Lo
gi

c/
 

A
lg

or
ith

m
 

A
m

bi
gu

ity
 

D
at

a 
V

al
ue

s 

O
th

er
 

Unfound 
Seeded 
Defects 

 
23 

 
2 

 
4 

 
10 

 
3 

 
1 

 
3 

Remaining 
Unseeded 
Defects 

 
9 

 
0.8 

 
1.6 

 
3.9 

 
1.2 

 
0.4 

 
1.2 

 
The availability of the testbed support capabilities 

made the effort to perform the translation from UML to 
Mae-MDS and the Mae tool runs relatively low. The total 
effort was roughly 160 hours of which about 50 hours 
was spent on adapting the tool to model MDS 
architectures, 80 hours was spent on building Mae-MDS 
models out of UML models and  models while the 
remaining 30 hours was spent on building the model, 
using the tool, and performing the analyses. 

The testbed evaluation also showed that Mae’s 
analysis could be extended in two main directions that 
would result in further detection of architectural defects. 
First, Mae could perform stylistic constraint analysis that 
checks for specific defects related to MDS architectural 
style. This would result in detecting some of the interface 
and Logic/Algorithmic errors that were left undetected by 
Mae’s current analysis utility. Additionally, Mae could 
perform protocol matching to ensure proper dynamic 
behaviors of components. Thus, the testbed usage resulted 
in insights and plans for maturing and extending Mae’s 
defect detection capabilities. 

 
4.4. Early results from AcmeStudio 
 

An early opportunity to use the SCRover testbed to 
obtain comparative data on specification tool capabilities 
come with its recent experimental usage with the CMU 
Acme ADL [8] and AcmeStudio tool suite [28]. Among 



their other capabilities, Acme is particularly good at 
representing characteristics of architectural styles, and 
AcmeStudio is particularly good at verifying whether a 
system's architectural specifications are in appropriate 
compliance with the relationships and constraints 
imposed by the architectural style. These aspects of Acme 
and AcmeStudio were experimentally applied to an 
extended set of SCRover UML specifications covering 
additional equipment such as batteries and optical camera, 
but excluding the seeded defects. 

The major results of the experiment are: 
• AcmeStudio was able to find 3 previously 

detected interface defects and 8 previously 
undetected defects involving compliance of the 
SCRover architectural specifications with the 
MDS architectural style. 

• Although the full capabilities of AcmeStudio were 
not exercised, there were some defects found by 
Mae that would not be found by AcmeStudio and 
vice-versa. 

• As with Mae, a number of ambiguities were found 
in translating the UML specs into Acme that 
represented potential defects that would be 
avoided by using Acme. 

• The SCRover UML specs provided were not a 
good match to the state-oriented architecture used 
by the MDS. This could be improved by more 
extensive use of the UML State Machine 
constructs, which can be used at the system level 
and not just for modeling object lifetimes as in 
[4]. 

• The effort of roughly 120 hours required to 
perform the UML-Acme translation and 
AcmeStudio analysis was at a reasonable low 
level similar to that for Mae. Of those 120 hours, 
80 hours was spent developing the architectural 
style, independent of the SCRover development, 
30 hours was spent transforming the SCRover 
UML documentation to an architectural model in 
that style, and 10 hours was spent tailoring the 
environment, modeling the system, and 
conducting the analysis. 

• The AcmeStudio researchers identified several 
improvements in the SCRover testbed package 
that could have reduced the experimental effort, 
such as the organization of and access capabilities 
for the testbed artifacts. These improvements are 
being made to the testbed package. 

• A review of the results by Mae and AcmeStudio 
researchers indicated that combining their 
representations and tool capabilities was both 
feasible and advantageous. Explorations are now 
underway on the best ways to combine them. 

• The objectives of creating an exportable and 
externally usable SCRover testbed were 
reasonably well met on this first attempt with 
valuable feedback on how to improve subsequent 
external usage. 

 
5. Implications for JPL project use of Mae, 
AcmeStudio, and SCRover testbed results 
 

The results of the Mae and AcmeStudio experiments 
with the SCRover testbed have been of considerable 
interest to JPL MDS personnel, who had been 
experimenting individually with their capabilities. The 
complementarity of their defect identification and 
avoidance capabilities, the relatively low level of effort in 
developing and analyzing the specifications, and the 
prospect of combining the two toolsets opened up new 
prospects for using ADLs to supplement MDS's current 
state-oriented architectural approach. Potential benefits 
include stronger defect avoidance, detection, and 
diagnosis; stronger compositional modeling of MDS 
components and connectors; and an overall strong return-
on-investment (ROI) potential of software architecture 
modeling and analysis compared to that of traditional but 
expensive engineering review processes. The modeling 
effort required of software and system engineers has been 
convincingly low, in comparison to the added effort 
required for later manual defect detection and resolution. 

JPL MDS personnel and CMU and USC researchers 
are now exploring collaborative approaches to combine 
their ADL-based capabilities and apply them to MDS in 
ways that could push the ROI even further. For example, 
with a priori data about component-level criticality and 
susceptibility to failures, extensions of static analysis that 
propagate static constraints to the topology of the 
software architecture along component/connector paths 
could form the basis for evaluating the vulnerability of 
the system due to coupled interactions among threads. 

Even more promising is the possibility of performing 
this analysis continuously at runtime to maintain a level 
of self-awareness about criticality (because the goals on 
the system imply a number of state analysis elements) and 
vulnerability (because of past experience with failures), 
and use the resulting information to make better repair 
strategies. This would include leveraging available 
execution mechanisms and operating system features to 
partition and isolate critical components from couplings 
and interdependencies with potentially harmful 
components. 

Some further open issues remain about scalability 
and applicability of the technologies to more complex 
robot configurations and mission scenarios. These are 
being addressed in the definition and development of the 
Increment 3 of SCRover testbed capability. Based on 



discussions on architectural analysis priorities with the 
JPL Mars Science Laboratory project users of MDS, the 
Increment 3 capabilities will include obstacle avoidance, 
compensation for actuator drift, target encounter, payload 
capabilities, and multi-goal conflict resolution. 
 
6. Conclusions, lessons learned, and future 
plans 
 
1. Cost-effectiveness of Mae and AcmeStudio tools. 

Even in initial exploratory evaluations across 
somewhat different SCRover testbed configurations 
and limited mission scenarios, both Mae and Acme 
studio were cost-effective with respect to UML and 
peer-reviews in avoiding, detecting, and diagnosing 
mission-critical specification defects. Explorations 
are underway to extend the comparative evaluation to 
other specification technologies such a MIT’s Alloy 
[12], USC's dynamic analysis tools [10], Stanford 
University’s Maude high-performance reflective 
language and system [15], and University of 
Oregon's iSIM simulation tool [11]. Also, since the 
results were obtained on a relatively simple rover 
configuration and mission, efforts are underway to 
develop a significantly more extensive Increment 3 
SCRover testbed. 

2. Cost-Effectiveness of MDS and Player-Stage 
Frameworks. There is a non-trivial investment 
required in learning the frameworks and getting them 
to compile, run, and interoperate, but a significant 
acceleration in productivity thereafter.  For example, 
it took two person-months to get the very simple 
Increment 1 MRE4 capability to work with SCRover, 
and only one person-month to develop the 
considerably more complex Increment 2 wall-
following capability. Having the Player/Stage 
framework enabled us to implement the SCRover 
MRE4 capability in only 800 lines of code (LOC). 
This is a reduction of more than 80% over the 5000 
LOC implemented by JPL for their version of the 
MRE4. The MDS Event Logging Function was also 
a significant timesaver in developing and applying 
the SCRover testbed instrumentation package. 

3. Capabilities and limitations of seeded defect 
techniques. The seeded defect approach was effective 
in identifying the degree to which Mae could identify 
defects of various classes. However, after estimating 
9 likely remaining defects, we found that 
AcmeStudio alone discovered 8 remaining defects, 5 
of which were in categories (style usage, 
completeness) not in our defect categorization 
scheme. Thus it appears that the seeded defect 
technique’s maximum likelihood estimate is better 
considered as a lower-bound estimate of the defects 

remaining in the categories constituting the current 
universe of defect sources. As an analogy, since the 
seeded defect technique derives from the use of fish 
tagging to estimate the total number of fish in a body 
of water, the technique can only estimate the number 
of fish catchable by the type of net used in catching 
tagged and untagged fish. There may be a number of 
smaller but significant fish (i.e., defects) swimming 
around undetected. 

4. Testbed technology coverage: The SCRover testbed 
also includes requirements, code and test cases, but 
our initial experiments have focused on evaluation of 
architecture description language analysis tools, with 
some use of the ADL specifications for runtime 
assertion checking. Future plans for Increment 3 and 
beyond include testbed support for evaluating 
dependability technologies focused on requirements, 
code, or testing, and for evaluating combinations of 
technologies. 

5. Testbed support scalability: The current SCRover 
testbed was able to provide a fairly low entry barrier 
for the Mae and AcmeStudio researchers, but only 
with a nontrivial amount of support by SCRover 
developers. Plans for Increment 3 include 
considerably more support by automated aids for 
researcher tailoring of mission scenarios, 
instrumentation, and experimentation.  Examples are 
a command language and GUI for configuring and 
executing scenarios with various combinations of 
seeded defects, instrumentation, and data analysis. 

6. Broad Participation and Teambuilding.  Both for 
testbed technology and HDC technology adoption, 
user-supplier teambuilding is at least as important as 
technology excellence.  This is particularly true when 
multiple stakeholders need to rapidly adapt to 
unforeseeable changes, which happened frequently 
during the SCRover testbed development and 
experimental use. The number and diversity of 
contributing authors of this paper is a good example 
of this teambuilding strategy in action. 

7. Testbed ability to accelerate technology maturity and 
transition: The ability to evaluate alternative ADL-
based specification technologies on the common 
SCRover testbed enabled both technology 
researchers and project personnel to identify 
previously unrecognized technology 
complementarities and opportunities to combine the 
technologies to achieve significant project 
dependability benefits. As discussed in section 5, JPL 
project personnel and USC and CMU researchers 
have come together to explore and expedite these 
technology opportunities. This provides encouraging 
evidence that the testbed approach can cost-
effectively accelerate software engineering 
technology maturity and transition. 
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