
Using Testbeds to Accelerate Technology Maturity and Transition: The SCRover
Experience

Barry Boehm§, Jesal Bhuta§, David Garlan†, Eric Gradman§, LiGuo Huang§,
Alexander Lam§, Ray Madachy§, Nenad Medvidovic§, Kenneth Meyer*, Steven Meyers§,

Gustavo Perez§, Kirk Reinholtz*, Roshanak Roshandel§, Nicolas Rouquette*
§Computer Science Department

University of Southern California
Los Angeles, CA 90089

USA

*Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

USA

†School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
USA

{boehm,jesal,gradman,liguohua,
alexankl,madachy,neon,stevenme,

gup,roshande}@usc.edu

{kenny.meyer,kirk.reinholtz,
nicolas.f.rouquette}@jpl.nasa

.gov

garlan@cs.cmu.edu

Abstract

This paper is an experience report on a first attempt
to develop and apply a new form of software: a full-
service testbed designed to evaluate alternative software
dependability technologies, and to accelerate their
maturation and transition into project use. The SCRover
testbed includes not only the specifications, code, and
hardware of a public safety robot, but also the package of
instrumentation, scenario drivers, seeded defects,
experimentation guidelines, and comparative effort and
defect data needed to facilitate technology evaluation
experiments.

The SCRover testbed’s initial operational capability
has been recently applied to evaluate two architecture
definition languages (ADLs) and toolsets, Mae and
AcmeStudio. The testbed evaluation showed (1) that the
ADL-based toolsets were complementary and cost-
effective to apply to mission-critical systems; (2) that the
testbed was cost-effective to use by researchers; and (3)
that collaboration in testbed use by researchers and the
Jet Propulsion Laboratory (JPL) project users resulted in
actions to accelerate technology maturity and transition
into project use. The evaluation also identified a number
of lessons learned for improving the SCRover testbed,
and for development and application of future technology
evaluation testbeds.

1. Introduction

The NASA High Dependability Computing Program
(HDCP) is a major investment in new research and
technology to improve the dependability of NASA
mission software, and of software-intensive systems in

general. The research program addresses new capabilities
in such areas as lightweight formal methods, model
checking, architecture analysis, human factors, code
analysis, and testing The HDCP strategy for accelerating
the usual 18-year transition time for software engineering
technology [20] employs common-use technology
evaluation testbeds representative of NASA mission
software.

One such testbed is the SCRover robot testbed based
on NASA JPL's Mission Data System (MDS). This paper
summarizes the experiences to date of the collaborative
effort between the University of Southern California
(USC), the Jet Propulsion Laboratory (JPL), and Carnegie
Mellon University (CMU) in developing and exercising
this testbed. Section 2 describes the HDCP testbed
approach, the MDS technology, and their relationships to
the SCRover testbed. Section 3 describes the SCRover
testbed and its constituent elements. Section 4
summarizes the approach and results of the initial
technology evaluation, using the Mae architecture
definition language (ADL) and the Mae set of analysis
and execution monitoring tools, and documents some
complementary results from a partial evaluation of CMU's
AcmeStudio technology. Section 5 summarizes the
implications for the use of Mae and AcmeStudio on JPL
MDS software applications, showing how the testbed
results are beginning to accelerate technology maturity
and transition1. Section 6 presents the conclusions,

1 Note to reviewers: A related paper [27], also submitted to this

conference, provides a complementary view of this effort. While that
paper focuses on the use of ADLs for modeling and analyzing
specifications like SCRover’s, this paper focuses on the use of testbeds
like SCRover for speeding technology evaluation, maturation, and
transition into project use.

including lessons learned from the testbed development
and technology evaluations, and future plans for
improving and experimenting with the testbed.

2. The NASA HDC testbed approach and
relations to the SCRover testbed

2.1. The NASA HDC testbed approach

Risk considerations and economic considerations

make it generally impractical to experimentally apply
immature research artifacts to operational mission
software. In response, the HDCP testbed approach has
defined a series of four testbed stages that enable a highly
cost-effective progression through increasingly
challenging and realistic experimental applications of
HDC technology. The four stages are:

1. Experimental scenarios roughly representative of
NASA missions, developed or adapted by
researchers to fit their technology capabilities.

2. Tailorable testbed suites with hardware,
software, and specifications representative of
NASA missions; provided to researchers along
with representative mission scenarios,
instrumentation, seeded defects, installation and
experimentation guidelines, and baseline data for
comparative evaluation of a technology’s cost-
effectiveness;

3. Application of more mature technologies to
NASA operational mission software in a NASA
simulation environment;

4. Application of matured technologies to NASA
operational mission software in a NASA
operational environment.

The use of these testbeds and complementary
approaches such as Technology Maturation Teams
enables NASA and HDCP to accelerate the maturation of
an emerging HDC technology, using criteria such as the
NASA Technology Readiness Levels [16,24].
Experimentation at each stage can be done with relatively
low marginal expenditure of effort, based on the feedback
received in earlier stages. Involving NASA mission
personnel in defining representative mission scenarios
and evaluating experimental results on a technology’s
cost-effectiveness will also enable mission personnel to
adopt new technology earlier. Researchers will also be
able to concurrently pipeline more advanced and more
mature versions of their technology through the testbed
stages. A major hypothesis to be tested by the HDCP is
that the staged testbed approach will be able to compress
the traditional 18 year interval from concept emergence to
regular mission usage [20] to 5-7 years.

2.2. The JPL Mission Data System technology

In 1998, the NASA Jet Propulsion Laboratory (JPL)
initiated a project called the Mission Data System (MDS)
to develop a core system engineering methodology and
software toolset for the next generation of deep space
missions. Currently MDS technology is baselined to
support system engineering and software development for
the Mars Science Laboratory Project, scheduled to launch
in the Fall of 2009.

The MDS goal has been to develop a set of closely
matched tools and techniques to reduce development and
debugging cost, promote reusability and increase
reliability throughout a project’s lifecycle. The principal
MDS products include a system engineering methodology
called the State Analysis Process, a software framework,
a goal-based operational methodology, and a cost
estimation model based on COCOMO II [2]. Each of
these products is briefly described below:

2.2.1. State Analysis Engineering process. MDS
provides a collaborative engineering methodology and
tools for systems engineers to capture requirements in
terms of familiar concepts: states, commands,
measurements, estimators, controllers, and hardware
devices. Requirements are captured in a database that can
be checked for validity and completeness. The resulting
requirements are organized into a state-oriented model of
the system's behavior, which maps directly into the
software framework (discussed below), eliminating errors
in translation and reducing cycle time.

2.2.2. Framework. The MDS Framework consists of
over 35 reusable packages for common functionality such
as state-oriented control, event logging, time services,
data management, visualization, units of measurement,
state variables, and an interface to real or simulated
hardware called the hardware proxy. The entire set is
organized into a modular architecture supportive of state-
oriented real-time control systems.

2.2.3. Operational tools. Operators of MDS-based
systems specify activities in terms of “what” rather than
“how,” or, in MDS parlance, in goals rather than
commands. Goal-driven operation provides a level of
control that can vary from purely time-scripted to fully-
autonomous operations. A goal is simply a constraint on
the value of a state variable over a time interval. Goals
are assembled into goal networks that prescribe timing
and prerequisites (or preconditions) for goals. Goal
networks are scripted in a Goal Elaboration Language
(GEL) that provides an unambiguous expression of
operational intent.

2.2.4. Cost estimation model. MDS defines a cost model
that helps customers reliably estimate adaptation cost and
schedule. The models are based on the COCOMO II cost
modeling methodology and confirmed with objective
metrics captured by ongoing MDS adaptation efforts. The
current cost model parameter values are preliminary.
However, as more projects develop MDS adaptations,
these parameter values will be refined.

2.3. Relations to the SCRover testbed

Originally, the HDCP testbed approach involved

provision of subsets of actual NASA mission software
and specifications to researchers for experimental
application of their technologies at testbed stages 1 and 2.
But the heightened national concern with mission security
occasioned by the events of September 11, 2001 caused
most U.S. government mission applications software to
be placed under the International Traffic in Arms
Regulation (ITAR) distribution limitations, making them
available only to U.S. citizens. As much of HDC
research is being performed by mixed teams of U.S.
citizens and foreign nationals, this caused a rethinking of
HDCP testbed stages 1 and 2.

The resulting testbed strategy currently being
pursued by HDCP is to create Stage 2 testbed suites
representative of NASA missions that are not subject to
ITAR constraints, and that can be tailored by mixed-
nationality HDC research teams to provide both Stage 1
and Stage 2 testbed capabilities. The overall set of
success criteria for these testbed suites includes having:

• Capabilities and usage scenarios representative
of NASA missions;

• Application characteristics not subject to ITAR
constraints;

• Full testbed support, including tailorable mission
scenarios, instrumentation, seeded defects,
installation and experimentation guidelines, and
baseline data for comparative evaluations;

• Ease of distribution and use;
• Cost-effective development, operations, and

maintenance.
The SCRover testbed is a collaborative effort by

USC and JPL to develop a campus public safety robot
performing mission scenarios representative of JPL
planetary rover missions and using the JPL MDS
Framework. The SCRover software is being developed
by U.S. citizen graduate students with access to the JPL
MDS internals, but it is being developed with open MDS
interfaces not subject to ITAR constraints. The next
section describes the elements of the SCRover testbed,
and our experience to date in satisfying the testbed suite
success criteria above.

3. Elements of the SCRover testbed

3.1. SCRover operational concept

The SCRover testbed provides an experimental
framework that allows researchers to evaluate the
efficiency of their HDC technology on a NASA-like
project. The testbed contains software, supporting
information such as documentation, metrics,
instrumentation, seeded defects, and guidelines, a robotic
platform (both real and simulated), and a development
environment. To use the testbed, researchers start by
applying their technology to the SCRover specification
and code. Then, based on the evaluation criteria defined
by them, appropriate instrumentation and seeded defects
are applied to the project artifacts. These features will
help gather the necessary data used to evaluate the
performance of the technology.

The next step is to define the appropriate operational
scenarios under which the technology will be evaluated.
These operational scenarios are represented by goal
networks that are transmitted to the system in the form of
GEL files. The code is then executed.

After the execution of the system, the researchers use
the data provided by the instrumentation to determine the
percentage of seeded and unseeded defects of each type
that were found. This enables an analysis of how well the
technology performs in detecting, avoiding, or
compensating for various classes of seeded and
previously undiscovered defects, in comparison to
alternative technologies. The data and the analysis are
then stored in an experience base to be accessed by
project managers interested in technology to increase the
dependability of their delivered systems.

3.2. SCRover testbed architecture, specification,
and code

Development within the MDS Framework to operate

our robotic platform (Pioneer 2-AT) has focused on the
Hardware Proxy, State Knowledge, State Determination,
and State Control components of the framework’s four
component cycle as expressed on the left side of Figure 1.

In the following sections, we describe our efforts to
enable MDS to communicate with the robot (Hardware
Proxy) and our implementation of three top-level
components (State Knowledge, State Control, and State
Determination).

3.2.1. Behaviors. We have successfully implemented two
separate high-level behaviors for the SCRover as a proof-
of-concept, and to provide a baseline for our ongoing
development of more complex behaviors. In Increment 1,
we duplicated the functionality of JPL’s MRE4 (Mars

Rover Example 4). This demonstration required the rover
to turn 90 degrees and drive three meters. The simple
scenario enabled us to establish the basic interoperability
preconditions and protocols between the MDS
Framework, the robot, and its simulator.

Figure 1 – MDS and SCRover high-level

architecture

In Increment 2, we implemented reactive “wall-
following” behavior. In this mode, the rover uses the
laser rangefinder to determine the distance to the wall,
drives forward while maintaining a fixed distance from
that wall, and turns both inside and outside corners when
it encounters them. An additional state in this behavior is
that of the laser rangefinder’s profile of obstacles (walls)
in its surroundings. This scenario, involving both sensing
and controlled locomotion (including reducing speed
when approaching obstacles), provided an initial
representative capability for technology evaluation.

3.2.2. State knowledge. State Knowledge is used to
maintain the current state of the rover. For the two
behaviors implemented, we adapted two State Knowledge
components. One was called the PositionAndHeading
state variable and holds the estimated position of the
rover. The other is called the Obstacle State Variable and
holds the estimated position of the nearest wall(s) in its
frontal 180 degree view.

3.2.3. State control. The purpose of the State Controller
is to collect the robot's current state from the State
Knowledge components and to generate the proper
commands for the robot to achieve the goal being
executed. The commands generated then get submitted to
the Hardware Proxy. For the two behaviors described, we
built a controller that subscribed to the Obstacle State
Variable and the PositionAndHeading State Variable. The
controller would use this state information to generate the
correct movement commands.

3.2.4. Hardware proxy. Our implementation of the
Hardware Proxy in the MDS Framework is a stub for the

Player rover API. Player [9] is developed at USC to
communicate with the Pioneer family of robots. Player
supports driving the robot’s wheel motors, controlling the
camera’s pan/tilt unit, and querying a variety of on-board
sensors. Access to these functions is provided through a
client API, which communicates with a server process
running on the rover itself. The client-server interaction
can be conducted over a TCP/IP link, allowing us to
execute the MDS Framework on a machine separate from
the rover’s on-board PC. Our MDS Hardware Proxy
makes calls to a Player client shared library, various
functions of which allow us to operate the drive motors,
operate the camera, read the rover’s position (maintained
by the Player server process), and obtain a profile of the
environment generated by the laser rangefinder. Figure 1
details this interaction.

3.2.5. State determination. Another component that we
adapted is the State Determination Component. This
component takes the sensor readings from the Hardware
Proxy and uses this information to estimate current state
of the robot. Once a state has been estimated, this
information gets stored in the State Knowledge
component. For the two behaviors described, we adapted
two State Determination components. One component
estimates the position and heading of the robot using the
wheel sensors as its data while the other component
estimates distance to the nearest wall with its laser
rangefinder’s values.

3.3. SCRover testbed support capabilities

To facilitate experiments using the SCRover testbed,

the testbed provides several additional support
capabilities. These capabilities include seeded defects,
code instrumentation, scenario drivers, an instrumented
development process, and experimentation guidelines.

3.3.1. Seeded defects. Suppose an experiment shows that
in a given situation, the technology being evaluated finds
3 defects. How can we tell whether this is 100% of 3
defects or 3% of 100 defects? The best technique found to
date is the seeded defect technique adapted from previous
statistical techniques to software testing [18]. If we insert
10 representative defects into the software, and the
technology being evaluated finds 6 of them, the
maximum likelihood estimate is that the technology has
found 60% of both the seeded and the unseeded defects.
In general, if we insert I seeded defects, and the
technology finds S seeded defects and U unseeded defects
the maximum likelihood estimate of the total number T of
unseeded defects is T = I*(U/S).

Of course, this estimate is only as good as the
assumption that the seeded defects are representative of
the remaining defects [23]. We have tried to avoid the

known shortfall of people’s inability to invent sets of
representative defects by using as our pool of seeded
defects the defects actually found in the specifications
and code through peer reviews and a formal architecture
review by JPL personnel. Researchers conducting their
experiments simply modify a configuration file to insert
selected defect(s) into the code without the need to
recompile it. Once the configuration file is changed, the
researcher can run the code with the defects and try to
detect them with his/her technology.

3.3.2. Code instrumentation. The SCRover testbed
provides guidelines to the researchers on how to
instrument the code for collecting the statistics they wish
to track. For the first set of analysis performed with the
SCRover testbed, the development team implemented an
instrumentation class on top of one of the features offered
by the MDS Framework that allows programmers/
researchers to report events that occur in the code. The
instrumentation class generates an output file containing a
list of the events that occurred in the system and when
each one of them happened. This file can then be
analyzed by a researcher.

3.3.3. Scenario drivers. A mission/scenario is specified
in MDS by using the Goal Elaboration Language (GEL).
At the beginning of a mission, a scientist passes the GEL
file to the rover and the rover executes the mission as
stated in the file. Researchers who wish to create their
own scenarios with the SCRover system may create their
own GEL files. To create a goal for the rover to execute,
researchers fill in the goal statement located in the GEL
file with the appropriate values and the interval during
which the goal should be achieved. Guidelines on how to
create a GEL file are included in the SCRover testbed.
Researchers can also execute the provided scenario
drivers by simply executing the right command with the
right GEL file. Currently, the SCRover system offers two
GEL files for researchers to execute: the Increment 1
(MRE4) and Increment 2 (wall-following) scenarios
described in section 3.2.1.

3.3.4. Instrumented development process. The
SCRover team used a well-instrumented version of the
Win-Win Spiral model called Model-Based (System)
Architecting and Software Engineering (MBASE) [3,22]
for system and software development. MBASE involves
the concurrent development of the system’s operational
concept, prototypes, requirements, architecture, and life-
cycle plans, plus a feasibility rationale ensuring that the
artifact definitions are compatible, achievable, and
satisfactory to the system’s success-critical stakeholders.
MBASE shares many aspects with the Rational Unified
Process (RUP) [14], including the use of the Unified
Modeling Language (UML) [4] and the spiral model

anchor point milestones [1]. The SCRover team was
experienced in its use.

While executing the development strategy, the team
was able to collect data about the development process
using various instrumentation techniques. In addition to
the aforementioned defects found in the SCRover
artifacts, the SCRover team kept track of its effort spent
on the project. The effort data covered all the tasks
performed by the SCRover team which includes writing
each MBASE document, the system engineering aspects
of the project, tool support, the defect reviews, coding,
and testing. In addition, the developers used a tool called
Hackystat developed by NSF-HDCP researcher Philip
Johnson to collect the effort spent in coding the system
[13].

3.3.5. Experimentation guidelines. Additional
experimentation guidelines are being developed by the
Fraunhofer Center at the University of Maryland to
provide guidance on designing sound experimental
evaluations, on which experimental technique is best for a
given situation, and on most appropriate statistical data
analysis techniques.

4. Initial technology evaluation: Mae and
AcmeStudio

4.1. Mae technology summary

The development team used UML to specify use-
cases, class diagrams, and sequence diagrams that
combine to describe SCRover’s functionality visually and
graphically. Further refinement of these diagrams into
implementation-level specification helps the developers in
building the “right” system. However, UML’s lack of a
precise semantic underpinning prevents reliable detection
of inconsistencies, mismatches, and other classes of
defects. Beside the basic UML syntax checking provided
by the Rational Rose tool [19] used by the project, the
only mechanism to detect such errors was peer-review of
the UML diagrams. These steps, although useful, are not
sufficient in ensuring correctness of the specification.

USC’s Mae technology serves as an intermediate step
between the UML diagrams and the implemented system.
Mae is an extensible architectural evolution environment
developed on top of xADL 2.0 [6] that provides
functionality for capturing, evolving, and analyzing
functional architectural specification [21]. A set of XML
extensions were developed to model specific
characteristics of MDS architectures. Consequently, Mae-
MDS models of SCRover capture all functional properties
of MDS style architectures [27].

4.2. Experimental application of Mae technology
to SCRover

The Mae-MDS specification of SCRover architecture
was built by refining the existing UML diagrams. In
particular, the UML class and sequence diagrams were
used in determining the architectural configuration of
SCRover in terms of components and connectors, and
their interaction. The components’ specifications were
then further refined to specify components’ interface
types (ports), associated interfaces (signatures), and the
pre- and post-conditions that describe their static
behaviors. The combination of this information, along
with the domain knowledge of the MDS architectural
style [7] was used in building SCRover models that can
be analyzed in Mae.

The example depicted in Figure 2 shows the class
and sequence diagrams of the Position and Heading
Estimator component, and its corresponding partial Mae-
MDS model. The Mae-MDS model is obtained by
refining the UML's diagrams. The original class diagrams
specify component interfaces but fail to model
corresponding operations. Without detailed specification
of component's operation, ambiguity arises in
implementing the system. Additionally, since UML
diagrams cannot be automatically analyzed,
inconsistencies in the specification can hamper their
usefulness. The UML sequence and class diagrams and
specified component's operations associated with the
interfaces were used to formally identify input/output
parameters and conditions that must be satisfied prior to
and after the corresponding interface is invoked. These

pre- and post-conditions are modeled in first-order logic
in Mae and thus can be further analyzed by the Mae tools.

The analysis provided by Mae revealed several
inconsistencies. These inconsistencies correspond to
mismatches in the interface and behavioral specification
of components’ services [17].

The particular classes of defects detected by Mae
were especially important in the context of the seeded
defects. As part of our design and implementation
process, we identified a set of defects in the requirements
and UML specifications. These defects were classified
under a categorization schema similar to Orthogonal
Defect Classification [5] and their severity was identified.
We then reviewed the defects and planted them into the
Mae-MDS specification of SCRover where possible, to
identify and track the class of defects that Mae analysis
can detect.

4.3. Experimental results

As part of the standard peer-review process of our
UML design documentation a set of 38 defects were
identified and classified. The classification identifies each
defect and assigns one of the predefined defect types of
interface, object/class/function, method/logic/algorithm,
ambiguity, data value, and other to each defect.

The nature of the above 38 defects varied from
English language problems and typographical errors, to
sophisticated errors that could potentially cause harmful
behaviors; some of them were architectural in nature
while others were conceptual. A subset of architectural
defects concerned functional behaviors that Mae-MDS

Figure 2. Position and Heading component’s UML class and sequence diagrams and corresponding
partial specification as captured by Mae.

Component
Type

PHEstimator;

State
Variable

rawXPos : Float;

 XPos: LengthType;
 isDriveCom: Boolean
 isTurnCom: Boolean
 …
Interface: Prov: Run(rtd: Duration);
Behavior: Pre: (rtd > 0 && constraint !=

NULL)

Post: (isDriveCom = true || is
TurnCom = true)

:Position & Heading
Controller

:Obstacle State
Variable

:Simulator-Hardware
Adaptor

:Position & Heading
Estimator

:Rover
Hardware-Simulator

The next cycle of
operations starts from
Position & Heading
Controller right after
this point.

Request P&H_State_Var()

Issue Robot Command(command)
Execute(command)

Analyze Goal

Compare Goal vs. State

Determine Course of Action()

Request Sensor Values()

measurement:=CreateMeasurement(sensor values)

AddSampleItem(measurement)

Request(measurement)

state:=Verify Sta te(measurement)

Update PosAndHdg State Variable(state)

P o s t io n & H e a d i n g E s t im a t o r

s e r i a li za t io n _ I D
t i m e T a g
c o n s t r a in t
m e a s u r e m e n t _ rc p
r a w X P o s
r a w Y P o s
r a w T h e t a A n g le
X P o s
Y P o s
T h e t a A n g le

< < p r o v > > G e t T im e T a g ()
< < p r o v > > Is R e a d y T o S t a r t ()
< < p r o v > > S t a r t C o n s t r i a n t ()
< < p r o v > > Is A c h i e v a b l e ()
< < p r o v > > Is T r a n s it io n A c h i e v a b le ()
< < p r o v > > E a r l ie s t A c h ie v a b l e M e r g e ()
< < p r o v > > P r o j e c t e d C o n s tr a in t ()
< < p r o v > > R u n ()
< < p r o v > > S e t T im e T a g ()
< < p r o v > > G e t S e r i a l iz a t io n ID ()
< < p r o v > > G e t X P o s ()
< < p r o v > > G e t Y P o s ()
< < p r o v > > G e t T h e t a ()
< < p r o v > > G e t R a w X P o s ()
< < p r o v > > G e t R a w Y P o s ()
< < p r o v > > G e t R a w T h e t a ()
< < r e q > > G e t R o v e r X P o s ()
< < r e q > > G e t R o v e r Y P o s ()
< < r e q > > G e t R o v e r T h e t a ()
< < r e q > > S e t P H S t a t e V a r ia b l e ()

(fr o m N a v ig a ti o n G u id a n c e & C o n t r o l)

< < S u b c o m p o n e n t > >

models capture, while others relate to other issues not
currently captured by our models. Re-seeding these
defects into the Mae-MDS models helped us identify and
further classify the defects that MDS adaptation of Mae
can detect. It also reveals the types of defects that Mae
cannot detect, which is valuable in identifying
complementary technologies necessary to detect
additional classes of architectural defects.

Out of the 38 identified defects, we were able to seed
24 (63%) of them back into the Mae-MDS specification.
The remaining 14 are conceptual defects that do not
directly translate to functional specification of the system
or its behavioral properties. Examples of this type of
defects that Mae models do not capture is “Inaccurate
purpose for a given component X”, or “Class Y should be
split into classes Y1 and Y2”.

The result of Mae analysis on the models containing
the 24 seeded defects is as follows:
• Mae analysis revealed 15 errors (62%).
• Out of 9 defects not detected by Mae, 7 did not

directly impact the execution of the system.
Examples include specification of component’s
provided interface or state variable (attributes) that
were never used or required elsewhere.

• Mae was unable to detect 2 critical defects in the
specification. These defects would result in harmful
interactions that undermine system’s operation.
Particularly, these defects concerned stylistic
constraints of MDS architectural style. An example
of this type of defects is “Communication direction
between X and Y must be reversed”.

• Mae analysis revealed 6 additional defects that were
previously undetected by the review process. These
defects primarily concerned the inconsistency in the
specification. Specifically, Mae detected inconsistent
specification of interfaces and behaviors among
interacting components, resulting in possibly harmful
interactions in the system.

In
te

rf
ac

e

C
la

ss
/O

bj

Lo
gi

c/
A

lg

A
m

bi
gu

ity

D
at

aV
al

ue
s

O
th

er

In
co

ns
is

te
nc

y

0

5

10

15

20

25

#Defects #Represented in Mae #Mae Detected

 Figure 3 – Mae defect detection yield by type

Figure 3 summarizes the original number of defects
(left column) against the subset that can be captured in

Mae-MDS models (middle column), and those detected
by Mae (right column).

Incorporating defect seeding analysis to these results
also demonstrates that, since Mae detected 15 of 38
seeded defects as well as 6 unseeded defects, the
maximum likelihood estimate of the total number of
remaining defects is T = 38*(6/15) = 15.

Since Mae found 6 unseeded defects, this leaves an
estimate of 9 remaining defects. As a rough estimate of
where to look for these defects, we can posit that their
distribution is similar to the distribution of defects not
found by Mae. This is often but not always true, as with
other defect-proneness metrics such as module
complexity metrics [25,26]. Table 1 shows the results.

Table 1. Seeded defect estimate of remaining
defect distribution

Defect
Class

To
ta

l

In
te

rfa
ce

C
la

ss
/

O
bj

ec
t

Lo
gi

c/

A
lg

or
ith

m

A
m

bi
gu

ity

D
at

a
V

al
ue

s

O
th

er

Unfound
Seeded
Defects

23

2

4

10

3

1

3

Remaining
Unseeded
Defects

9

0.8

1.6

3.9

1.2

0.4

1.2

The availability of the testbed support capabilities

made the effort to perform the translation from UML to
Mae-MDS and the Mae tool runs relatively low. The total
effort was roughly 160 hours of which about 50 hours
was spent on adapting the tool to model MDS
architectures, 80 hours was spent on building Mae-MDS
models out of UML models and models while the
remaining 30 hours was spent on building the model,
using the tool, and performing the analyses.

The testbed evaluation also showed that Mae’s
analysis could be extended in two main directions that
would result in further detection of architectural defects.
First, Mae could perform stylistic constraint analysis that
checks for specific defects related to MDS architectural
style. This would result in detecting some of the interface
and Logic/Algorithmic errors that were left undetected by
Mae’s current analysis utility. Additionally, Mae could
perform protocol matching to ensure proper dynamic
behaviors of components. Thus, the testbed usage resulted
in insights and plans for maturing and extending Mae’s
defect detection capabilities.

4.4. Early results from AcmeStudio

An early opportunity to use the SCRover testbed to
obtain comparative data on specification tool capabilities
come with its recent experimental usage with the CMU
Acme ADL [8] and AcmeStudio tool suite [28]. Among

their other capabilities, Acme is particularly good at
representing characteristics of architectural styles, and
AcmeStudio is particularly good at verifying whether a
system's architectural specifications are in appropriate
compliance with the relationships and constraints
imposed by the architectural style. These aspects of Acme
and AcmeStudio were experimentally applied to an
extended set of SCRover UML specifications covering
additional equipment such as batteries and optical camera,
but excluding the seeded defects.

The major results of the experiment are:
• AcmeStudio was able to find 3 previously

detected interface defects and 8 previously
undetected defects involving compliance of the
SCRover architectural specifications with the
MDS architectural style.

• Although the full capabilities of AcmeStudio were
not exercised, there were some defects found by
Mae that would not be found by AcmeStudio and
vice-versa.

• As with Mae, a number of ambiguities were found
in translating the UML specs into Acme that
represented potential defects that would be
avoided by using Acme.

• The SCRover UML specs provided were not a
good match to the state-oriented architecture used
by the MDS. This could be improved by more
extensive use of the UML State Machine
constructs, which can be used at the system level
and not just for modeling object lifetimes as in
[4].

• The effort of roughly 120 hours required to
perform the UML-Acme translation and
AcmeStudio analysis was at a reasonable low
level similar to that for Mae. Of those 120 hours,
80 hours was spent developing the architectural
style, independent of the SCRover development,
30 hours was spent transforming the SCRover
UML documentation to an architectural model in
that style, and 10 hours was spent tailoring the
environment, modeling the system, and
conducting the analysis.

• The AcmeStudio researchers identified several
improvements in the SCRover testbed package
that could have reduced the experimental effort,
such as the organization of and access capabilities
for the testbed artifacts. These improvements are
being made to the testbed package.

• A review of the results by Mae and AcmeStudio
researchers indicated that combining their
representations and tool capabilities was both
feasible and advantageous. Explorations are now
underway on the best ways to combine them.

• The objectives of creating an exportable and
externally usable SCRover testbed were
reasonably well met on this first attempt with
valuable feedback on how to improve subsequent
external usage.

5. Implications for JPL project use of Mae,
AcmeStudio, and SCRover testbed results

The results of the Mae and AcmeStudio experiments
with the SCRover testbed have been of considerable
interest to JPL MDS personnel, who had been
experimenting individually with their capabilities. The
complementarity of their defect identification and
avoidance capabilities, the relatively low level of effort in
developing and analyzing the specifications, and the
prospect of combining the two toolsets opened up new
prospects for using ADLs to supplement MDS's current
state-oriented architectural approach. Potential benefits
include stronger defect avoidance, detection, and
diagnosis; stronger compositional modeling of MDS
components and connectors; and an overall strong return-
on-investment (ROI) potential of software architecture
modeling and analysis compared to that of traditional but
expensive engineering review processes. The modeling
effort required of software and system engineers has been
convincingly low, in comparison to the added effort
required for later manual defect detection and resolution.

JPL MDS personnel and CMU and USC researchers
are now exploring collaborative approaches to combine
their ADL-based capabilities and apply them to MDS in
ways that could push the ROI even further. For example,
with a priori data about component-level criticality and
susceptibility to failures, extensions of static analysis that
propagate static constraints to the topology of the
software architecture along component/connector paths
could form the basis for evaluating the vulnerability of
the system due to coupled interactions among threads.

Even more promising is the possibility of performing
this analysis continuously at runtime to maintain a level
of self-awareness about criticality (because the goals on
the system imply a number of state analysis elements) and
vulnerability (because of past experience with failures),
and use the resulting information to make better repair
strategies. This would include leveraging available
execution mechanisms and operating system features to
partition and isolate critical components from couplings
and interdependencies with potentially harmful
components.

Some further open issues remain about scalability
and applicability of the technologies to more complex
robot configurations and mission scenarios. These are
being addressed in the definition and development of the
Increment 3 of SCRover testbed capability. Based on

discussions on architectural analysis priorities with the
JPL Mars Science Laboratory project users of MDS, the
Increment 3 capabilities will include obstacle avoidance,
compensation for actuator drift, target encounter, payload
capabilities, and multi-goal conflict resolution.

6. Conclusions, lessons learned, and future
plans

1. Cost-effectiveness of Mae and AcmeStudio tools.

Even in initial exploratory evaluations across
somewhat different SCRover testbed configurations
and limited mission scenarios, both Mae and Acme
studio were cost-effective with respect to UML and
peer-reviews in avoiding, detecting, and diagnosing
mission-critical specification defects. Explorations
are underway to extend the comparative evaluation to
other specification technologies such a MIT’s Alloy
[12], USC's dynamic analysis tools [10], Stanford
University’s Maude high-performance reflective
language and system [15], and University of
Oregon's iSIM simulation tool [11]. Also, since the
results were obtained on a relatively simple rover
configuration and mission, efforts are underway to
develop a significantly more extensive Increment 3
SCRover testbed.

2. Cost-Effectiveness of MDS and Player-Stage
Frameworks. There is a non-trivial investment
required in learning the frameworks and getting them
to compile, run, and interoperate, but a significant
acceleration in productivity thereafter. For example,
it took two person-months to get the very simple
Increment 1 MRE4 capability to work with SCRover,
and only one person-month to develop the
considerably more complex Increment 2 wall-
following capability. Having the Player/Stage
framework enabled us to implement the SCRover
MRE4 capability in only 800 lines of code (LOC).
This is a reduction of more than 80% over the 5000
LOC implemented by JPL for their version of the
MRE4. The MDS Event Logging Function was also
a significant timesaver in developing and applying
the SCRover testbed instrumentation package.

3. Capabilities and limitations of seeded defect
techniques. The seeded defect approach was effective
in identifying the degree to which Mae could identify
defects of various classes. However, after estimating
9 likely remaining defects, we found that
AcmeStudio alone discovered 8 remaining defects, 5
of which were in categories (style usage,
completeness) not in our defect categorization
scheme. Thus it appears that the seeded defect
technique’s maximum likelihood estimate is better
considered as a lower-bound estimate of the defects

remaining in the categories constituting the current
universe of defect sources. As an analogy, since the
seeded defect technique derives from the use of fish
tagging to estimate the total number of fish in a body
of water, the technique can only estimate the number
of fish catchable by the type of net used in catching
tagged and untagged fish. There may be a number of
smaller but significant fish (i.e., defects) swimming
around undetected.

4. Testbed technology coverage: The SCRover testbed
also includes requirements, code and test cases, but
our initial experiments have focused on evaluation of
architecture description language analysis tools, with
some use of the ADL specifications for runtime
assertion checking. Future plans for Increment 3 and
beyond include testbed support for evaluating
dependability technologies focused on requirements,
code, or testing, and for evaluating combinations of
technologies.

5. Testbed support scalability: The current SCRover
testbed was able to provide a fairly low entry barrier
for the Mae and AcmeStudio researchers, but only
with a nontrivial amount of support by SCRover
developers. Plans for Increment 3 include
considerably more support by automated aids for
researcher tailoring of mission scenarios,
instrumentation, and experimentation. Examples are
a command language and GUI for configuring and
executing scenarios with various combinations of
seeded defects, instrumentation, and data analysis.

6. Broad Participation and Teambuilding. Both for
testbed technology and HDC technology adoption,
user-supplier teambuilding is at least as important as
technology excellence. This is particularly true when
multiple stakeholders need to rapidly adapt to
unforeseeable changes, which happened frequently
during the SCRover testbed development and
experimental use. The number and diversity of
contributing authors of this paper is a good example
of this teambuilding strategy in action.

7. Testbed ability to accelerate technology maturity and
transition: The ability to evaluate alternative ADL-
based specification technologies on the common
SCRover testbed enabled both technology
researchers and project personnel to identify
previously unrecognized technology
complementarities and opportunities to combine the
technologies to achieve significant project
dependability benefits. As discussed in section 5, JPL
project personnel and USC and CMU researchers
have come together to explore and expedite these
technology opportunities. This provides encouraging
evidence that the testbed approach can cost-
effectively accelerate software engineering
technology maturity and transition.

7. Acknowledgements

This work was supported by NASA-HDCP contracts

to CMU, JPL, and USC. It also benefited from significant
support by USC’s A. Winsor Brown, Scott Chen, Keun
Lee, Shauna Madrigal, Gaurav Sukhatme, and Denis
Wolf; by JPL’s Dan Dvorak, Alex Moncada, Bob
Rasmussen, George Rinker, Al Sacks, Marcel Schoppers,
Brian Vickers, David Wagner, and Chengxing Zhai; and
by CMU’s Michael Evangelist, Bradley Schmerl, and
Dehua Zhang. We also wish to acknowledge the
cooperation and continuous help with xADL tools
provided by the developers of xADL: Eric Dashofy,
Andre van der Hoek, and Richard Taylor.

8. References

[1] B. Boehm, "Anchoring the Software Process", IEEE
Software, July 1996, pp. 73-82.
[2] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark, E.
Horowitz, R. Madachy, D. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II, Prentice Hall, 2000.
[3] B. Boehm and D. Port, "Balancing Discipline and
Flexibility with The Spiral Model and MBASE", Crosstalk,
December 2001, pp. 23-28 (http://www.stsc.hill.at.mil/crosstalk)
[4] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison Wesley, 1999.
[5] R.Chillarege, I.S.Bhandari, J.K.Chaar, M.J.Halliday,
D.S.Moebus, B.K.Ray, and M-Y.Wong, “Orthogonal Defect
Classification- A Concept for In-Process Measurements”, IEEE
Transactions on Software Engineering, 18(11), 1992.
[6] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, "An
Infrastructure for the Rapid Development of XML-based
Architecture Description Languages", In Proceedings of the
24th International Conference on Software Engineering
(ICSE2002), Orlando, FL, May 2002, pp 266-276.
[7] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks,
"Software Architecture Themes In JPL's Mission Data System"
In Proceedings of the AIAA Space Technology Conference and
Exposition, Albuquerque, NM, September, 1999.
[8] D. Garlan, R. Monroe, and D. Wile, " Acme: Architectural
Description of Component-Based Systems ", , Foundations of
Component-Based Systems, Gary T. Leavens and Murali
Sitaraman (eds), Cambridge University Press, 2000, pp. 47-68.
[9] B. Gerkey, R. Vaughan, and A. Howard, "The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor
Systems", In Proceedings of the 11th International Conference
on Advanced Robotics, Portugal, June 2003.
[10] A. Helmy, D. Estrin, "Simulation-based `STRESS' Testing
Case Study: A Multicast Routing Protocol", IEEE Sixth
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, Canada, 1998.
[11] iSIM Context Simulator, URL:
http://www.cs.uoregon.edu/~jprideau/iSIM/isim.html
[12] D. Jackson, “Alloy: A Lightweight Object Model
Notation”, Technical Report 797, MIT Laboratory for Computer
Science, Cambridge, MA, February 2000.
[13] P. Johnson, Project Hackystat: "Accelerating adoption of
empirically guided software development through non-

disruptive, developer-centric, in-process data collection and
analysis", Department of Information and Computer Sciences,
University of Hawaii, 2001.
[14] P. Kruchten, The Rational Unified Process (2nd ed.),
Addison Wesley, 2001.
[15] P. Lincoln, M. Clavel, F. Durán, S. Eker, et. al, “Towards
Maude 2.0”, In the 3rd International Workshop on Rewriting
Logic and its Applications (WRLA'00) - Electronic Notes in
Theoretical Computer Science, 2000.
[16] J. Mankins, "Technology Readiness Levels", NASA Office
of Space Access and Technology, April 1995.
[17] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, “A
Language and Environment for Architecture- Based Software
Development and Evolution”, In Proceedings of the 1999
International Conference on Software Engineering, Los
Angeles, CA, May 1999, pp.44-53.
[18] H. Mills, "On The Statistical Validation of Computer
Programs", IBM Federal Systems Division Report 72-6015,
1972.
[19] Rational Rose Tool, URL:
http://www.rational.com/products/rose/index.jsp
[20] S. Redwine and W. Riddle, "Software Technology
Maturation", In Proceedings of the 8th International Conference
on Software Engineering (ICSE1985), August 1985.
[21] R. Roshandel, A. van der Hoek, M. Mikic-Rakic, and N.
Medvidovic, "Mae - A System Model and Environment for
Managing Architectural Evolution", ACM Transactions on
Software Engineering and Methodology (In review) 2002.
[22] USC Center for Software Engineering, "Guidelines for
Model-Based (System) Architecting and Software Engineering",
2003 (http://sunset.usc.edu/research/MBASE).
[23] J. Voas and G. McGraw, Software Fault Injection, Wiley,
1998.
[24] T. George and R. Powers, “Closing the TRL Gap”,
Aerospace America, August 2003, pp. 24-26.
[25] T. McCabe, “A Complexity Measure” IEEE Trans. Sw.
Engr., SE-2(4), pp-308-320
[26] M. Halstead, Elements of Software Science, Elesvier, 1997
[27] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and
D. Zhang, “Using Multiple Views to Model and Analyze
Software Architecture: An Experiment Report”, USC Technical
Report Number USC-CSE-2003-508, 2003.
[28] B. Schmerl and D. Garlan, “Exploiting Architectural
Design Knowledge to Support Self-repairing Systems”, The 14th
International Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

