
In Proceedings of the 2008 NSF Next Generation Software Program Workshop, April 14, 2008.

Abstract—Most pervasive computing technologies focus on

helping users with computer-oriented tasks. In this NSF-funded

project, we instead focus on using computers to support user-

centered “activities” that normally do not involve the use of com-

puters. Examples may include everyday tasks around such as

answering the doorbell or doing laundry. A focus on activity-

based computing brings to the foreground a number of unique

challenges. These include activity definition and representation,

system design, interfaces for managing activities, and ensuring

robust operation. Our project focuses on the first two challenges.

Index Terms—Pervasive computing, activities, home security,

home automation.

I. INTRODUCTION

 VER the past few years there has been considerable

progress in development of pervasive computing tech-

nologies. For example, research groups have developed

toolkits for capturing and using context information

[1,2,3,4,5] mobile platforms [6], and a variety of context-

aware applications that target specific users and application

domains, such as management of computer tasks [7,8], tour

guides [9,10], lab experiments [11], and smart homes

[12,13,14]. Most of these efforts share a common theme: they

are computer-oriented in the sense that users use computers to

solve their problems. Specifically, they center on computing

platforms (handhelds, laptops, wearables, cell phones, etc.)

that help users with specific tasks, or they help people use

computers and manage computer tasks more effectively in

diverse environments.

While a computer-centric focus is not surprising (after all,

the research is done by computer scientists), it tends to limit

the scope of pervasive computing technology to situations in

which the computing platform is the primary object of user

attention - be it accessing information, communicating with

email or video conferencing, preparing a document, etc. This

in turn limits the ability to create systems that address the ac-

tivities that most people do most of the time with little regard

to the underlying computer support.

In this project we take a radically different view of perva-

sive computing. Rather than focusing on the computer itself,

we instead focus on support for user-centered “activities”

where computing capabilities are used to enhance a user's

ability to carry out every-day, non-computer tasks. While we

use computing technology to support such activities, the com-

puting infrastructure is largely transparent to the user, com-

plementing what a user is already doing, and mapping users'

broader goals to lower-level computing services that support

those goals. For concreteness, we plan on investigating this

new approach in the context of the home environment, where

most activities are not intrinsically computer-oriented. Exam-

ples of activities range from the (seemingly) trivial (e.g., res-

ponding to a doorbell), to more complex and critical (e.g.,

maintaining the security or physical integrity of a house, or

helping to monitor and manage the health of a resident sick

elder.)

A focus on activity-based computing brings to the fore-

ground a number of unique challenges. These include activity

definition and representation, system design, interfaces for

managing activities, and ensuring robust operation. This

project focuses on the first two challenges. In this paper we

give an update on two fronts. First, building on our expe-

rience in task definition and representation in the office envi-

ronment, we describe an initial proposal for defining and

representing activities. A key consideration is that, in contrast

to computer-based tasks, users are active participants in the

activity, so when marshalling services and resources to sup-

port an activity, the user should be viewed as a resource. A

second consideration is that, in their daily lives, users move

between different domains and activities must seamlessly

move with them. This raises significant security challenges

that must be addressed at the system design level.

The research described in this paper was mostly done by

students at Carnegie Mellon University Part of the work de-

scribed was done by a PhD student, Vahe Poladian, as part of

his thesis work. The work described in Section III was in part

executed by a team of MS students as part of their studio

project the Masters of Software Engineering program. Final-

ly, several undergraduate students participated in the research.

II. ACTIVITY DEFINITION

We have been investigating an approach that allows end-

users to assemble and evolve personalized activities. This

Steps toward Activity-Oriented Computing
João Pedro Sousa†, Vahe Poladian*, David Garlan*, Bradley Schmerl*, Peter Steenkiste*

*
 Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213

{garlan,schmerl,steenkiste,poladian}@cs.cmu.edu

†
George Mason University

Fairfax, VA 22030

jpsousa@gmu.edu

O

work has been reported in more detail in [15]. The approach

must:

a) be simple enough for end-users to manipulate with little

initial training;

b) have and effective cost/benefit ratio; and,

c) be precise enough to be used to automatically assemble a

running system.

We are investigating whether an approach combining the

component and connector architecture view with activity

oriented computing is a suitable foundation to satisfy these

requirements. We believe that an approach based on code

structures and programming languages is too removed from

the experience of end-users for achieving these goals.

We use a metaphor of boxes, pipes, and wires, which is

similar to consumer electronics. In this domain, end-users may

buy a number of devices and cables and try different assembly

configurations. They need only to have a basic knowledge of

what travels on each cable, without having to understand the

corresponding electrical specifications.

We call our approach uDesign. uDesign represents run-time

structure only, in contrast to code structures, and is at a higher

level of abstraction than code structures. Furthermore, as is

frequent practice in design disciplines, uDesign separates

views of structure and behavior. (e.g. [16]).

The boxes in uDesign correspond to running entities (or

services) that can incorporated in a system, rather than to

classes or instance factories. Choosing the latter option would

mean that end-users would have to create programs or scripts

to control the creation, assembly, and destruction of instances

in the system. Instead, uDesign uses a discovery mechanism to

find available service instances, and offers interactive primi-

tives for end-users to integrate and interconnect those services

into a system.

We have been inspired by a recent trend in service-oriented

computing to separate the roles of service supplier and service

consumer. This helps to manage the detail that is required to

manipulate the activities, and the usablility for a broad user

base. In uDesign we take this trend one step further by advo-

cating two groups of service consumers: domain specialists,

such as doctors; and end users with a general education.

Services are required to work out of the box, with default

behavior, or possibly with a set of typical behavior templates.

A general user should be able to make use of such services

using the default behaviors or possibly recognizing abstract

parameters or modes of operation, such as normal operation

and emergency operation. Domain specialists or technical

users can tailor those generic templates; for example, a doctor

defining that the emergency mode corresponds to the heart

rate exceeding 140 beats per minute (bpm) for a given patient,

but only 120bpm for another patient.

A. An Overview of uDesign

This section introduces the concepts in uDesign, illustrating

the understanding that end-users need to create and tailor ac-

tivities such as the ones presented in Sections II.B and II.C.

As mentioned above, the three main constructs in uDesign

are boxes, pipes, and wires. Boxes are the locus of computa-

tion, while pipes stream data among boxes. Wires control

starting and stopping activities on boxes, as well as the flow of

data on pipes, based on observed conditions.

To help manage visual clutter and to separate concerns,

uDesign uses three overlays:

1) Structural: identifies the boxes, their properties, and

internal structure, and the piping of data among boxes;

2) Box Behavior: identify the start and stop conditions of

the activities in boxes; and

3) Pipe Behavior: specifies the conditions that enable or

disable the flow of data on pipes.

These views may be merged together to form one complete

view of the activity.

Boxes correspond to entities of interest or their activities,

and may be hierarchically decomposed to allow scaling or

information hiding. Boxes may be associated with the TV set

in a user‟s living room, with the living room as a whole, or

with the user‟s activity of watching a TV show. Boxes may

also be associated with software components, which like de-

vices are viewed in the perspective of a concrete operating

component that contributes to the system‟s function.

When a box is associated with a physical space or an ob-

ject, such as a couch, the box is realized as a combination of

software and hardware that monitors and maybe controls the

corresponding physical entity. We envisage that software and

hardware to integrate with the environment will be sold along

with the commodity. For example, building companies will

construct smart homes; furniture stores will sell smart couches

(or the means to make old couches smart). End-users, via

uDesign, will assemble and configure the smart objects to suit

their needs.

In addition to smart objects and spaces, users and their ac-

tivities may have associated boxes. Such boxes identify the

properties of interest and clarify the user‟s role in achieving

the system‟s intended function. In this way, users can be

represented in an activity definition as another resource that

can be used in the system to achieve the activity‟s goals. We

anticipate that smart spaces will be equipped with generic

software components for modeling activities, and which may

be associated with humans and their activities.

Boxes have inputs, which are entry points for data, and

properties. Properties are any observable aspect of a box, such

as the video output of a DVD player, whether it is powered

up, or its location.

Data may be piped between any property of a box, a pro-

ducer of data, and an input in a box, a consumer of data.

Whenever a piece of data is available on the producer side, the

pipe will transmit it towards the consumer side. uDesign tools

check for type compatibility and disallow invalid piping, such

as trying to pipe a video output to a textual input.

The box behavior and pipe behavior overlays identify the

conditions that give rise to starting and stopping activities in

boxes, and that enable or disable the flow of data on pipes,

respectively.

Conditions are expressions over the inputs and properties of

the box they are associated with, or over the properties of the

boxes contained in the latter. In addition to operators such as

equals (=), and (&), and or (|), conditions may include tem-

poral operators such as count(c, t) that counts how many times

condition c became true in the latest time interval t; or sust(c,

t) which is true if condition c sustained a true value during the

latest time interval t.

Wires transmit the result of evaluating a condition and may

trigger one of three operations on boxes: start, pause, and stop,

denoted by ►,, and ■, respectively. Start operations may

indicate the values of one or more inputs, which then should

not be connected to pipes. The pause operation preserves the

values of the properties and inputs to the box until a start is

triggered again, possibly overriding some of those input val-

ues. A stop operation resets all the values in a box, being used,

for instance, for privacy purposes.

Valves can be placed on pipes, preventing the flow of data

unless the enabling conditions are met. For example, the video

output of a medical camera will not be released unless a po-

tential emergency is declared.

B. Example 1: Susan’s heart condition

In this section we present an example where a uDesign ac-

tivity helps to manage the health of an elderly lady, Susan,

who has developed a heart condition. Susan‟s doctor wants

her condition to be constantly monitored. Being a domain spe-

cialist, the doctor ceates a box in uDesign for monitoring Su-

san‟s health, which wraps three services (see Figure 1(a), left

hand side): heart rate monitoring, stream logging (for offline

reference), and video capture (meant for checking on Susan

remotely should a problem arise). More sophisticated biome-

tric devices could be included into the service at a later date,

but for now the doctor decides that monitoring Susan‟s heart

is sufficient.

The doctor uses pipes to connect the monitored heart rate to

the log input, and also to make the video output visible at the

top level, so that it can be used by other services. After dis-

cussing Susan‟s lifestyle and physiological characteristics, the

doctor identified two conditions to be monitored: when Su-

san‟s heart rate sustains a level above 90bpm for 20 minutes,

and when it either exceeds 120bpm or is short of 50bmp

(Figure 1(b), left hand side).

To make it easy for Susan‟s family to recognize the pre-

scribed conditions, the doctor names them emergency and

concern. uDesign can show either these names or the expres-

sions (expressions are shown in the figure). The doctor also

discusses the possibility of involving Susan‟s family as first-

line responders to the conditions above, notwithstanding alert-

ing emergency services.

Later at home, Susan discusses the doctor‟s prescription

with her son John and they agree on alerting John if either

condition is observed, and on alerting the emergency services

in the event of an emergency, or if a concern condition arises

but John is not available.

To coordinate the activities on his side, John defines the

John‟sWatch box where he includes services to follow his

location and determine if he is available, and alert him over

the cell phone network. A location service also helps deter-

mine the best device to map the PlayVideo service. John

leaves the video pipe unhooked, to preserve Susan‟s privacy,

planning to establish the connection only if the need arises.

Alternatively, John could have used valves to control the flow

of video on the pipe (see the next example).

C. Example 2: Surveillance in John’s home

John has recently made arrangements for a dog-sitter to

come in during the day and walk his dog. However, John

would like to be sure that the sitter does not venture into the

Susan’sHealth

HeartMonitor
rate

StreamLog

inStream

VideoCapture
videoOut

John’sWatch

John’sTracke
r location

available
SendAlert

severity

cell

PlayVideo

videoIn

location

Susan’sHealth

HeartMonitor

rate>120 | rate <50
sust(rate>90, 0:20)

(a) Structure overlay

John’sWatch

SendAlert.alertSent & !John’sTracker.available

John’sTracke
r

available
SendAler
t alertSent
►severity=high; cell=3456…

►severity=low; cell=3456…

91
1

►

(b) Box behavior overlay

Figure 1. Monitoring Susan’s heart

heart

911

private areas of the house. After work, John buys a couple of

uDesign-enabled cameras and motion detectors. Upon power-

ing up these devices at the home, uDesign‟s wireless discov-

ery mechanisms find them, and John is able to assign them

unique names within his house.

John deploys one camera and motion detector by the kitch-

en door, where the sitter will be coming in, and another cam-

era and detector in the hallway leading up to the main part of

the house (Error! Reference source not found.). Instead of

installing a uDesign-enabled electric opener for the kitchen

door, John simply provided the sitter with a key.

To be aware of the sitter‟s movements, John uses uDesign

to pipe the output of the door camera to his cell phone, places

a valve on that pipe so that video only flows when someone is

detected in the door area. John‟s cell phone will alert him of

incoming video.

For the hallway camera, John chooses to record its output

when a presence is detected, which John may review upon

returning home. This is accomplished by placing a valve on

the output of the hallway‟s camera, saving the home‟s wire-

less network from continuously piping video when no-one is

in the hall.

We have given two examples of how uDesign could be

used to define everyday, non-computer related activities. In

[15] we describe in more detail the implementation of uDesign

on our current Aura task infrastructure. Future work will in-

volve verifying that this design is simple enough to be used by

a broad range of users.

III. SYSTEM DESIGN

In their daily lives users move between different domains

and activities must seamlessly move with them. This raises

significant security challenges that must be addressed at the

system design level, and which differ from traditional views

of security in the following ways:

Spectrum of trust. Rather than designating a particular envi-

ronment as either trusted or untrusted, users in a ubiquitous

environment may be willing to partially trust some envi-

ronments. For example, at a local coffee house, a user might

be willing to conduct activities such as lecture presentation

or entertainment, but not be willing to pay the household

bills or manage their bank accounts.

Ease of use. Users do not want to manage multiple pass-

words or accounts for different environments. Having to do

this goes against the ethos of the overall project, the aim of

which is not to distract users with continual management of

their computing access.

Flexibility. The means of authenticating people and services

in environments needs to be flexible, so that different au-

thentications services (password, face recognition, finger-

print readers, etc.) can easily be added and used as services

in environments.

We have developed an approach that adds security to the

existing protocols within the Aura activity management layer

to deal with these environments. Our approach to securing

activities is multi-pronged, and involves:

1. Having the user define personae, which are groups of

activities that can be used in environments, and assign

trust levels to personae that specify the types of envi-

ronments activities in those personae can be accessed.

2. Having protocols in place that allow suppliers of ser-

vices to find components in the environment to register

with and set up a secure session with.

3. Establishing the trust level that those components have

in the environment.

A. Personae

A persona is a group of activities that can be considered to

make up a particular role for a user. For example, a teaching

persona might include activities to prepare lectures, assign

grades, access online class notes; a meal preparation persona

might include activities to manage the pantry, plan meals, etc.

We hypothesize that the concept of persona strikes a balance

in dealing with the management of the multitude of activities

that they have, one of which is trust. We plan to verify this

through user studies.

B. Security design

As mentioned above, the consequence of having activities

in a ubiquitous environment raises some unique security as-

pects that need to be addressed to allow users to interact with

activities in multiple environments. The security objectives

that we have identified are:

 Services that are registered with an environment need

to be identified and authenticated.

 Each environment must have components that can be

located and that manage the security in that environ-

ment.

 Users must have some guarantees about the privacy of

the data associated with activities.

 It must be easy to add services and users to environ-

ments.

To deal with these objectives, we identify two components

that must be in every environment: Speakeasy, which has the

role of authentication server in an environment, and Environ-

ment Manager (EM) which has the role of application server

in the environment. These two components are part of any

environment, and listen to well known ports in that environ-

HomeSurveillance

DoorDetect

presence

Figure 2. Surveillance in John’s home

DoorCam

out

HallWCam

out VideoRec

in

►

HallWDetect

presence

!presence

John’sPhone

videoIn

ment. To authenticate with an environment, suppliers of ser-

vices engage in the Environment Management Binding Proto-

col (EMBP), that (a) identifies the EM for the supplier‟s loca-

tion, (b) establishes a secure session with that EM, and (c)

establishes the trust level that the environment has on the sup-

plier. For a supplier to be used in an environment, it must reg-

ister its services with an EM in the environment. To locate an

appropriate EM, when a supplier starts up it requests a session

with an EM through a trusted Speakeasy (which is known to it

through configuration files). This Speakeasy might be the lo-

cal speakeasy, or one in a trusted environment. It encrypts this

request using the public key of that Speakeasy, among other

things proposing a symmetric key that should be used for the

resolution protocol. The Speakeasy replies with the location of

an EM, the key to use in communication with the EM, and a

ticket to the EM. This reply is encrypted using the proposed

symmetric key that the supplier passed in the original request.

Once the location, key, and ticket for the EM are available to

the supplier, it has all that it needs to establish a secure com-

munication channel with the environment manager to engage

in the other protocols that allow it to register and be recruited

by the environment. Engaging in these protocols also results

in key generation to secure these communications, based on

the original EMBP interaction.

The use of this protocol means that users do not need to

manage multiple passwords for accessing services in the envi-

ronment, and that any data that is passed as part of the proto-

col is private to the level of trust that the user associates with

that environment.

C. Authenticating users in the environment

One missing piece to the security design that is an area of

future work is being able to authenticate users into an envi-

ronment and to gain access to personae. While we have de-

signs for this that are similar to the means of authenticating

services, these have not yet been verified or implemented.

IV. FUTURE WORK

In this paper, we described the status of our project activity-

oriented computing. We are in the process of refining the

designs that are described in the two previous sections. The

next step will be to develop a prototype system, using our

infrastructure for task-oriented computing which was devel-

oped as part of the Aura project [17] as a starting point. That

will allow us to evaluate and refine our architecture and activi-

ty definition and representation.

REFERENCES

[1] Glenn Judd and Peter Steenkiste, Providing Contextual Information to

Pervasive Computing Applications, IEEE International Conference on

Pervasive Computing (PERCOM), ACM, March 2003.

[2] Christian Becker and Frank Durr, On Location Models for Ubiquitous

Computing, Personal and Ubiquitous Computing, Volume 9, Issue 1, pp

20-31, Springer.

[3] M. Sheshagiri, N. Sadeh and F. Gandon, Using Semantic Web Services

for Context-Aware Mobile Applications, MobiSys 2004 Workshop on

Context Awareness,ACM, June 2004.

[4] D. Salber, A. Dey and G. Abowd, The Context Toolkit: Aiding the De-

velopment of Context-Enabled Applications, Proceedings of the 1999

Conference on Human Factors in Computing Systems (CHI'99), ACM,

1999.

[5] B. Schilit, N. Adams, R. and Want, Context-Aware Computing Applica-

tions. Proceedings of the Workshop on Mobile Computing Systems and

Applications, IEEE, 1994.

[6] Bradley Rhodes, Nelson Minar and Josh Weaver, Wearable Computing

Meets Ubiquitous Computing, The Proceedings of The Third Interna-

tional Symposium on Wearable Computers (ISWC '99), IEEE, October

1999.

[7] Joao Pedro Sousa, Scaling Task Management in Space and Time: Re-

ducing User Overhead in Ubiquitous Computing Environments, Ph.D.

Thesis, Department of Computer Science, Carnegie Mellon University,

2005.

[8] Joao Pedro Sousa and David Garlan, Aura: an Architectural Framework

for User Mobility in Ubiquitous Computing Environments, Proceedings

of the 3rd Working IEEE/IFIP Conference on Software Architecture

(WICSA 2002), May 2002, pp 29-43.

[9] N. Davies, K. Mitchell, K. Cheverest and G. Blair, Developing a Context

Sensitive Tourist Guide, First Workshop on Human Computer Interac-

tion with Mobile Devices, 1998.

[10] Jie Yang, Weiyi Yang, M. Denecke and A. Waibel, Smart sight: a tourist

assistant system, 3rd International Symposium on Wearable Computers,

October 1999.

[11] L. Arnstein and S. Sigurdsson and R. Franza, Ubiquitous Computing in

the Biology Laboratory, Journal of Lab Automation (JALA), Volume 6,

Number 1, March 2001.

[12] G. Abowd and A. Bobick and I. Essa and E. Mynatt and W. Rogers, The

Aware Home: Developing Technologies for Successful Aging, Proceed-

ings of AIII Workshop on Automation as a Care Giver, July 2002.

[13] S.S. Intille, Designing a home of the future, IEEE Pervasive Computing,

April-June 2002, pp 76-82.

[14] Center of Future Health, The Smart Medical Home at the University of

Rochester, http://www.futurehealth.rochester.edu/smart_home

[15] J.P Sousa, B, Schmerl, V. Poladian and A. Brodsky. uDesign: End-User

Design Applied to Monitoring and Control Applications for Smart Spac-

es. In Proceedings of the 2008 Working IFIP/IEEE Conference on Soft-

ware Architecture, Vancouver, BC, Canada, 18-22 February 2008.

[16] J.S. Gero. Categorizing Technological Knowledge From a Design Me-

thodological Perspective. Conference „Technological Knowledge: Philo-

sophical Reflections‟, Boxmeer, The Netherlands, 2002.

[17] David Garlan, Daniel Siewiorek, Asim Smailagic and Peter Steenkiste,

Project Aura: Towards Distraction-Free Pervasive Computing, IEEE

Pervasive Computing, April-June 2002, Volume 1, Number 2, pp 22-31.

http://www.futurehealth.rochester.edu/smart_home
http://acme.able.cs.cmu.edu/pubs/show.php?author=Joao-Pedro_Sousa
http://acme.able.cs.cmu.edu/pubs/show.php?author=Bradley_Schmerl
http://acme.able.cs.cmu.edu/pubs/show.php?author=Vahe_Poladian
http://acme.able.cs.cmu.edu/pubs/show.php?year=2008

