
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

THE RADAR ARCHITECTURE FOR PERSONAL COGNITIVE ASSISTANCE

DAVID GARLAN

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave
Pittsburgh, Pennsylvania, 15213, United States of America

garlan@cs.cmu.edu
http://www.cs.cmu.edu/~garlan

BRADLEY SCHMERL

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave
Pittsburgh, Pennsylvania, 15213, United States of America

schmerl@cs.cmu.edu

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Current desktop environments provide weak support for carrying out complex user-oriented tasks.
Although individual applications are becoming increasingly sophisticated and feature-rich, users
must map their high-level goals to the low-level operational vocabulary of applications, and deal
with a myriad of routine tasks (such as keeping up with email, keeping calendars and web sites up-
to-date, etc.). An alternative vision is that of a personal cognitive assistant. Like a good secretary,
such an assistant would help users accomplish their high-level goals, coordinating the use of multi-
ple applications, automatically handling routine tasks, and, most importantly, adapting to the indi-
vidual needs of a user over time. In this paper we describe the architecture and its implementation
for a personal cognitive assistant called RADAR. Key features include (a) extensibility through the
use of a plug-in agent architecture (b) transparent integration with legacy applications and data of
today’s desktop environments, and (c) extensive use of learning so that the environment adapts to the
individual user over time.

Keywords: Personal Cognitive Assistant; Agent; Software Architecture

1. Introduction

Computers are playing an increasingly indispensable role in complex day-to-day activi-
ties of many people. Email, calendaring systems, daily planners, web sites, and the like
are now an essential component of most people’s lives.

Unfortunately today’s desktop environments provide weak support for carrying out
complex user-oriented tasks, or even dealing with the myriad details of handling every-
day computer-assisted information, communication, and planning tasks. Although indi-
vidual applications are becoming increasingly sophisticated, users must map their high-
level goals to the vocabulary of specific applications and services, and deal with a bar-
rage of routine tasks, such as keeping up with their email, and keeping their calendars and
web sites up-to-date.

mailto:garlan@cs.cmu.edu

David Garlan and Bradley Schmerl

2

An alternative vision is that of a personal cognitive assistant (PCA). Like a good sec-
retary, a PCA would help users accomplish their high-level goals, coordinating the use of
multiple applications, automatically handling routine tasks, and, most importantly, adapt-
ing to the individual needs of a user over time. A PCA would also be able to work coop-
eratively with the user, automating tasks where appropriate, and staying out of the way
where not.

However, realizing such a vision raises a number of hard software engineering chal-
lenges. First, to be useful and economical, a PCA should dovetail with existing (and fu-
ture) applications, file systems, and user processes. Even if one could afford to reengineer
all existing desktop applications (which we can’t), most users would not be inclined to
learn to use an entirely new set of applications, regardless of the benefits provided. Sec-
ond, a PCA should be extensible. That is, it should be possible to incrementally add new
capabilities for personal assistance over time, possibly taking advantage of third-party
components to increase the range of support. Third, it should be adaptive. Over time the
capabilities of the environment should automatically adapt to the needs and preferences
of a user, without a lot of specific user guidance and oversight.

In this paper we describe an architecture and its implementation for a PCA, called
RADAR (Reflective Agents with Distributed Adaptive Reasoing), that tackles these chal-
lenges head-on. Building on top of existing agent-oriented and distributed systems archi-
tectures, RADAR provides a pluggable framework for integrating “specialists” that col-
lectively augment a user’s ability to handle complex tasks. Such specialists complement
the capabilities of existing desktop environments, applications, and file systems, automat-
ing routine (but often complex) tasks programmatically. New specialists can be added or
removed at any time. Moreover, learning is a core capability: specialists adapt to the
needs and preferences of users over time.

While RADAR is the product of a large number of cooperating researchers, devel-
oped over the past three years at Carnegie Mellon University, in this paper we focus spe-
cifically on the design of its architecture and the ways in which that architecture supports
key engineering properties of compositionality, extensibility, and integration with exist-
ing applications and services. We also describe the current implementation and briefly
summarize recent empirical results of RADAR’s effectiveness in supporting a class of
crisis management tasks.

2. Related Work

An important branch of related research is traditional approaches to artificial intelligence,
which attempt to automate human-oriented activities such as medical diagnosis, hardware
configuration, chess, and robotics. In most of these systems the goal is to have the AI
system replace the human, and many of these systems have focused on very specific task
domains (like chess or medicine). In contrast our work on a personal cognitive assistant
attempts to augment human capability, and to do this for rather mundane (although often
voluminous and complex) tasks like prioritizing email, or helping to manage one’s calen-

 The RADAR Architecture for Personal Cognitive Assistance

3

dar. Additionally, most AI systems have not investigated the engineering issues of devel-
oping a component-based approach, or integrating AI capability with legacy systems.

More closely related are other approaches to assisting users with tasks in familiar
desktop environments. The Calo project, for example, has been investigating similar ap-
proaches.1 Like RADAR, Calo provides an integration framework for learning-based
task-specific components. RADAR differs from Calo in two respects. First, RADAR at-
tempts to co-exist with off-the-shelf applications and data, such as Microsoft Outlook®,
while Calo has taken the approach of reengineering standard desktop applications to work
smoothly with its task support. The advantage of RADAR is the ability to plug its capa-
bility into any desktop environment; the advantage of Calo is that reimplementation of
standard applications provides better opportunities for close collaboration between them
and the cognitive assistant.

Other work that attempts to help users with ordinary tasks comes out of the ubiqui-
tous computing field.2, ,3 4 While these efforts attempt to dovetail with existing infrastruc-
ture and applications, their primary focus is on the use of heterogeneous and pervasive
devices to help users accomplish tasks more effectively. Work in this area concentrates
on configuring and reconfiguring services as users move through an environment. In con-
trast, RADAR focuses on learning to assist users to do their tasks in a more traditional
workplace environment.

Another closely related area is that of agent-oriented architectures.5, , , , ,6 7 8 9 10 Over the
past decade there has been considerable interest in multi-agent systems and middleware
to support them. In particular, a number of architectural frameworks have been proposed,
including AAS,11 Zeus,12 and FIPA..13 As described later, we build on top of agent-
oriented architectures (and, in particular, FIPA), specializing the general notions of
agents and agent coordination with the specific architectural structures that characterize
the RADAR architecture.

There are many applications that help users manage their daily tasks; most are limited
to managing todo lists, and reminders; some of them have intelligence built in. The Per-
sonal Information Management workshop,14 for example, contains examples of systems
that integrate with email and help manage other personal information. The vision of Ra-
dar is broader than these systems in that it encompasses personalized learning and col-
laboration between people to help automate tasks. Another example is the integration
between Google Mail and Google Calendar; if Google Calendar recognizes some text in
an email message as a calendar event, it will provide a button to automatically add the
event to the Google calendar. While this task entails some intelligence, it does not help
with scheduling the meeting, coordinating with other people or the other issues associated
end-to-end with meeting assistance. Nor does it learn the idiosyncrasies and preferences
of when someone would like to meet.

3. Architectural Requirements for a PCA

David Garlan and Bradley Schmerl

4

The vision of a PCA is that of a smart assistant, that in some sense “understands” the
user, helping out where needed and effective, but staying out of the way otherwise. In-
herent in this view is the idea that a PCA should complement what a user normally does,
and how a user normally does it. Although over time a user might adapt her behavior to
rely more heavily on the PCA as she gains trust in it, she should not be forced to do this.
In particular, there should be a level of user-machine coordination and collaboration.

Consider the following scenario: A busy user has loaded a PCA onto his desktop. At
first the user notices little change to his normal way of working. However, exploring the
PCA console, he discovers that he can activate a calendar assistant. After activating it, the
user is prompted to identify some general preferences for things like what calendaring
application he wants to use, what times to keep free on the schedule, cancellation poli-
cies, and the like. Since the user is wary of turning over control to any automated calen-
daring assistant, he decides to be conservative, requesting that the assistant should sched-
ule meetings only during the hours of 10-12 on weekdays, always confirming schedule
changes before committing them, and never canceling or rescheduling an existing meet-
ing. As time progresses he notices that the calendaring assistant has been able to correctly
identify email messages that relate to scheduling requests, and to suggest reasonable
scheduling actions. Based on positive experience, he decides to let the assistant do it
automatically. Over time, he discovers that the assistant can do more and more: it learns
his desires for canceling meetings (e.g., preferring to move subordinates’ meetings before
those with his boss); it learns that when the user goes on vacation or business travel,
email should be sent to people with whom he has regular meetings to let them know, etc.
Quite happy with this capability he continues to let it do more, confident that it is learn-
ing how he would like it to be done, and asking for permission before attempting any-
thing radically new.

From an engineering perspective this vision implies three essential requirements for a
PCA:
(i) Compatibility: The services and assistance provided by a PCA should co-exist with

the capabilities of current legacy applications and services. The user should not have
to abandon old ways of doing business, or learn to use new applications with differ-
ent interfaces. While additional capability provided by a PCA will necessarily re-
quire some additional forms of user interaction, these should supplement, not re-
place, existing forms of interaction. This implies compatibility not only with applica-
tions, but also with information sources as well. For example, email messages are of-
ten an important stimulus and information source for an assistant (for example, signi-
fying the need to start a new task). Understanding email messages, written in a natu-
ral language, and stored in standard email repositories (e.g., Imap), is essential.

(ii) Extensibility: It should be possible to incrementally augment the capabilities of the
PCA. For example, if some new form of task assistance becomes available, it should
be easily pluggable into the existing system, adding new capability without disrupt-
ing the old, and dovetailing with existing assistance provided by the PCA. One can
even imagine a marketplace for personal task assistance in which different forms of
the same kind of assistance might be purchased at different price-quality points.

 The RADAR Architecture for Personal Cognitive Assistance

5

(iii) Adaptability: The system should conform to the user, learning new opportunities for
assisting the user, and inferring appropriate behavior based on how users carry out
their tasks. Learning should apply to a wide variety things, including prioritization of
tasks (e.g., helping a user focus on the important things), policies for interaction with
others (e.g., deciding who should have access to certain kinds of information), clus-
terings of related activities (e.g., noticing that if action A is performed, action B is
usually also performed), interpretation of natural language (e.g., recognizing idioms
that relate to task achievement), and many others.

In addition to these requirements, there are a number of other more-standard systems-
oriented engineering qualities, such as robustness, availability, security, and performance.
Indeed, the services provided by the PCA should have comparable quality attributes to
today’s mail systems, which tend to be available in a global setting, highly robust, secure,
and reasonably efficient.

4. The RADAR Architecture

To achieve these goals, RADAR has adopted the run-time architecture pictured in Fig. 1.
In this figure, the architecture is depicted from the point of view of a single individual
working in a personal RADAR space. We first give a high-level overview, and then look
in more detail at specific technical issues.

4.1. Overview

At the bottom layer are legacy applications, services, and data stores. Applications in-
clude things like email readers, web browsers, calendar managers, and the like. Data
stores include documents stored in local and remote file systems, repositories of email,
calendar information, contact lists, etc. Users interact with these in normal ways. The
challenge is how to integrate with existing applications. To achieve this, application APIs
are used or written. For example, Monitor (M) interfaces inform RADAR of events that
happen in an application (e.g., the user moves an appointment), that might trigger new
tasks or learning by RADAR; Control (C) interfaces allow RADAR to make changes to
the desktop space (e.g., to schedule a new appointment); User Interface embellishments
(UI) allow RADAR to present information to the user in a manner the user is familiar with
(for example, to display RADAR-proposed alternatives for a meeting on a user’s calen-
dar). In addition we add a RADAR Console, which provides a user with direct access to
RADAR and its capabilities. In many modern applications, these kinds of interfaces are
possible through standard APIs, such as .NET. When these aren’t available, the informa-
tion is usually accessible indirectly through manipulating the data that the applications
use.

On top of this layer, RADAR adds a layer of task assistance. This layer is composed
of five types of components:

David Garlan and Bradley Schmerl

6

Fig. 1. The Architecture of an Individual’s Radar.

Knowledge
Shared Inform

ation
 & Knowledge

RADAR
Console --- Data Stores

Bridging Elements

C
Applica-

U

MC
Applica-

U

MC

Application
UI

M

Task Spe-Task Spe-Task Specialist

UI Dialog
Management

Abstractors

Annotated Data
Task

Manager

Connection Legend
Event Bus
Explicit Invocation
Data Flow

Task specialists: A task specialist (or just specialist) is a component that attempts to
provide assistance for a particular kind of task, such as schedule management, web site
updating, and routine email handling. The number and kind of specialists can vary from
user to user, and over time for a single user as new specialists are added or removed from
that user’s RADAR space. Each specialist contains knowledge about how to conduct a
particular task, and each contains a learning component that allows the specialist to adapt
to the user with respect to preferences, preferred methods of doing the task, etc. Special-
ists may store their learned knowledge in the shared knowledge base (see below), which
is accessible to other components. In this way, knowledge can be shared and transferred
to other specialists. For example, if I consistently defer a meeting with Victor when there
is a conflict, the scheduling specialist will learn that dealing with Victor is not high on
my list of preferences. The specialist involved in organizing my email may also use this
information to sort my email appropriately.

Task management: To coordinate the work of the specialists and to provide overall
tracking and control of tasks is a Task Manager. The Task Manager comprises a number
of logical services, including task dispatch (interacting with specialists to assign new
tasks), task tracking (keeping track of high-level state of tasks – see below), task query
(retrieving all tasks that match certain selection criteria), and task prioritization (keeping
track of the relative priority of tasks). In addition to this, the Task Management compo-
nent is responsible for data security and privacy.

 The RADAR Architecture for Personal Cognitive Assistance

7

Shared information and knowledge: To be effective, specialists and task manage-
ment services must manipulate data in richer forms than is conventionally stored in to-
day’s desktop environments. For example, intelligent email assistance requires that key
features of email messages are identified and classified. Similarly, calendaring informa-
tion may need to be structured in higher-level ways than is natively stored by a calendar
system. In addition, there is the need to represent knowledge between high-level entities
and relationships in the user’s world. For example, social nets that contain knowledge of
the relationships that a user has to other people, are stored in a knowledge base; social
nets can be used by specialists and task management to determine security procedures
(e.g., who are my friends), policies for actions (e.g. don’t cancel a meeting scheduled by
my boss), and general knowledge about the environment (e.g., what rooms are physically
close to my office).

Bridging elements: To get information from the desktop level into RADAR space,
requires certain bridging elements. There are several kinds of these. One kind transfers
information from desktop space into RADAR space. These include categorizers and ex-
tractors that understand natural language to label and categorize the information from the
desktop space. A second kind of bridging element takes information directly from legacy
applications, through the M interface in Fig. 1. These allow RADAR specialists to moni-
tor activities performed directly by legacy applications, and to control those applications
programmatically. The difference between such bridging elements and specialists is that,
although they may both have knowledge specific to particular tasks, bridging elements
are responsible for transforming native representations of data (such as textual email) into
task-oriented information (such as the existence of a new task), while specialists have
knowledge of how to assist the user in carrying out the tasks.

Connectors: In order for components within an individual’s RADAR to interact, we
have defined specific protocols to make explicit the roles and nature of interaction be-
tween different components. There are three types of connectors in RADAR:

(i) Explicit Invocation connectors are used when synchronous requests are made be-
tween components, and the target component is known to the component issuing the
request. Furthermore, information may be returned along these channels. Such con-
nectors are used when components issue commands directly to other components,
and need to know that the commands have been met before they can continue. For
example, a specialist may request that the Task Manager update the state of a par-
ticular task; it should not continue interacting with the task until it has received a re-
ply about the success of that interaction.

(ii) An Event Bus connector is be used to facilitate learning by informing subscribers
about events that occur in the system. At a minimum, whenever a command is is-
sued, a concomitant event is announced. In addition, components can freely an-
nounce their own events. For example, a component that learns social net informa-
tion would be expected to announce an event when it has learned that Melinda is
John’s boss. Every component in RADAR is allowed to publish and subscribe to
events.

David Garlan and Bradley Schmerl

8

(iii) Data flow connectors show the passage of data through RADAR. For example, the
bridging elements take data from the Data Stores, apply natural language extraction,
and produce Data in the annotated database that contains markers to interesting fea-
tures in the Data Stores (for example, where names occur in email messages).

User Interaction: One important requirement of the flow of information through
RADAR is the need to manage interaction with a user of RADAR. If a part of RADAR
wishes to communicate with the user, it should only do so at appropriate times. For ex-
ample, a specialist may want the user to confirm some information. If it immediately in-
terrupts the user to request this, it might distract the user from working on another task,
causing him to lose context. For real world use, this will most likely make the user less
efficient because he is constantly being interrupted. Thus, all Radar-initiated interaction
with the user is mediated through the UI Dialog Management component, which manages
when and how a user should be interrupted. The UI Dialog Manager learns when and
whether to interrupt the user,15 based on knowledge of the user’s focus and interruption
policies. The UI Dialog Manager might present this information via the RADAR console,
by RADAR-specific UI embellishments in legacy applications (using the UI interface in
Fig. 1), or other interfaces using techniques similar to those described by Faulring and
Myers.16

Fig. 1 shows only the architecture of an individual’s RADAR. However, an individ-
ual’s RADAR must communicate with others, both those that use RADAR and those that
do not. To ensure privacy and access control, the Task Manager mediates RADAR’s
communication with other users. This gives RADAR the opportunity to also determine
how best to communicate with a particular person. For example, if that person has their
own instance of RADAR, then this component can communicate with their RADAR us-
ing message passing; if the person does not use RADAR, it will choose alternative ways
to communicate (e.g., email, IM, cell-phone text message).

4.2. Information Flow

To illustrate how information from the desktop space flows through RADAR, consider
the arrival at John’s desktop of an email from fred@a.com containing the text “I would
like to organize a meeting with you and Melinda next Tuesday.” Furthermore, the email
contains details of Freds’ free times on Tuesday.
(i) Categorizers and extractors take this information and annotate it with structural in-

formation such as the existence and location of names (“Melinda”), dates (“next
Tuesday”), and that the message is concerned with organizing a meeting. A new task
for organizing a meeting is also constructed by the extractor and sent to the Task
Manager for dispatch. The task is stored in a traditional database (as annotated data
in Fig. 1) and contains a reference to the original message.

(ii) Abstractors take the structured information and further annotate it with knowledge.
For example, an abstractor notes that Melinda is John’s boss, and that John prefers
meetings on Tuesday to be in the morning. This knowledge has been learned previ-
ously based on John’s previous interactions. The knowledge is stored in a knowledge
base, which can be queried by other components.

 The RADAR Architecture for Personal Cognitive Assistance

9

(iii) The Task Management component notices that a new task to organize a meeting has
been proposed, via triggers in the task database. Based on John’s policies and previ-
ous behavior, RADAR determines that it is permitted to automatically schedule the
meeting. It identifies a task specialist that is responsible for managing John’s calen-
dar, and assigns the task to it. Meanwhile, the console is informed through event no-
tification that this task is being handled by RADAR, and adds the task to its list of
tasks so that, if interested, John can find out what RADAR is currently doing.

(iv) The Task Specialist attempts to find suitable slots on John’s calendar for the meeting
to take place. This might involve confirmation with John, which will be done
through UI dialog management.

(v) The specialist will need to collaborate with Melinda to determine a final meeting
time. The specialist submits a request to find Melinda’s free time on Tuesday to the
Task Manager. The Task Manager determines that Melinda uses RADAR, and com-
municates with her RADAR to get her free times. (Melinda’s RADAR receives the
request as a task and processes it in a similar manner.) When the specialist receives
Melinda’s free times on Tuesday, it chooses a shared free time and schedules the
meeting on John’s and Melinda’s calendars.

(vi) RADAR sends mail to Fred indicating the time when the meeting has been sched-
uled.

4.3. Task Management

A central notion of RADAR is the idea of a task. A task is a unit of work that can be
automated (or partially automated) by RADAR. The unit of work could be assigned to a
single task specialist, or it may involve the coordination (through a task planner) of mul-
tiple task specialists. Such a planner would itself be implemented as a specialist.a

A key component in managing tasks in RADAR is the Task Management facility,
which is responsible for the following task-related duties.

4.3.1. Task Dispatch and Specialist Registry.

The Task Manager acts as a directory facility for matching particular types of tasks to
specialists that can be used to automate them. The Task Manager is then responsible for
assigning tasks to specialists, and also indicates to specialists when to suspend or stop
particular tasks (for example, at the user’s behest, because the task is no longer valid, or
another task is more important). In addition to dispatching tasks, this component is also
responsible for detecting the liveness and availability of particular specialists.

4.3.2. Task Data Management.

The Task Data Manager manages changes to a task. Once a task is assigned to a special-
ist, a specialist can only make changes to the task through the task data manager. In addi-

a The current implementation contains only a rudimentary planner. See also Section 7 on future
work.

David Garlan and Bradley Schmerl

10

tion to ensuring that the changes to the task are legal, the task data manager is responsible
for (1) persisting the changes to the task; (2) announcing changes to a task; and (3) keep-
ing a history of the changes to a task. These facilities enable learning about tasks and help
with later user behavior studies and offline learning.

Table 1 describes the fields associated with a task at the RADAR level. The Task
Manager deals with information about tasks at a level that is common to all tasks, and
that aid in task management and informing the user about what RADAR is doing. Task-
specific information is stored by other components in the contents field a task, and this
information is treated as a black-box to the Task Manager.

Table 1. The fields associated with a RADAR Task.

Field Type Description

id UUID A universally unique identifier to identify the task. This is
generated by RADAR.

state enum An indication of the state that RADAR is in. The states and
state transitions for a task are described in Table 2.

type string Used by RADAR to choose which specialist to assign the
task to.

relatedTasks Map

Allows access to related tasks. The key to the map is the
type of relationship, and a collection of task identifiers is
returned. For example, using the key SUBTASKS, all sub-
tasks of a task may be retrieved.

created, due,
started
ended, updated

date
Information about various important times associated with a
task. For example, the updated field reflects the most recent
time that any update occurred to the task.

contents object
The specialist-specific contents of the task. This object
stores internal state and information about the task, that is
treated as opaque to the Task Manager.

description string A human-readable short description of the task that can be
displayed to the user to indicate what the task is about.

progress string

A human-readable short description of the progress of the
task, as set by specialists. For example, the progress for the
task in Section 4.2 might indicate that RADAR has sent
available times to Fred.

originator person The person who caused this task to come into being. For
example, in Section 4.2, Fred will be the originator.

sources collection
A link to the annotated data that contains the source of this
task. For example, the email message requesting that a
meeting be arranged.

 The RADAR Architecture for Personal Cognitive Assistance

11

Tasks also have a high level state machine that defines the legal transitions that a task
may go through. The transitions and their descriptions are described in Table 2. As the
tasks are taken through their paces, the states provide a quick way of letting the user
know what is happening. Specialists may have their own internal states when they are
running the tasks, and these should be presented to the user in human readable form as
progress associated with the task.

When a task is first extracted from email, it is placed in the CREATED state. The
contents of the task contain the form that was extracted from the contents of the email,
with some of the fields filled out based on natural language understanding. The user must
then be satisfied that the form has been filled out correctly. The policy for this can be set
by the user; the user can examine the form and make corrections, or trust the extractors to
have done a good job, or by specifying the extraction confidence level for which the user
is happy. The task is then progressed to the READY state. In this state, it is assumed that
all the information necessary for a specialist to start working on the task is correctly in
the contents of the task. RADAR can then assign the task to a specialist; again, this can
be done automatically by RADAR or manually by the user, depending on policies. When
the specialist starts working on a task, it sets its state to RUNNING. From this state, the
task can either complete, fail, the user may suspend the task, or the specialist can report
an error. The ERROR state indicates that the specialist could not understand the content
of the task, and so the user is prompted through the UI Dialog Manager to correct the
contents.

It is also possible that RADAR could be stopped (e.g., for maintenance) and restarted.
In this case, the Task Manager has support for putting tasks in a HIBERNATED state; it
communicates with specialists to ensure that the contents of tasks are in state where the
specialists can continue working on them later. When RADAR is restarted, any tasks that
are HIBERNATED are reactivated and reassigned to specialists.

Table 2. The state transitions allowed for Tasks.

State

CREATED

READY

ASSIGNED

RUNNING

SUSPENDED

CANCELLED

COMPLETED

FAILED

DELETED

ERROR Description
CREATED X X The task has been extracted from a data source.

READY X X
All information about the task is correct and can be
processed by RADAR.

ASSIGNED X X
The task has been assigned to a specialist, but the
specialist is not yet doing the task.

RUNNING X X X X X X The specialist is in the process of executing the task.
SUSPENDED X The task has been suspended by RADAR.
CANCELLED The task has been cancelled.
COMPLETED The task completed successfully.

David Garlan and Bradley Schmerl

12

FAILED The task was unable to complete successfully.
DELETED The task has been deleted.

ERROR X
There is an error associated with the task that the
specialist cannot understand. It requires input from
the user.

HIBERNATED X X
The task is in hibernation, when RADAR was
stopped.

4.3.3. Information privacy and access control.

In many instances, users of RADAR will want to restrict information that is made avail-
able to others. For example, a user may not want to make calendar details available to
others, and may not want RADAR to automatically schedule meetings if they are re-
quested from certain people. While the knowledge particular to this lives in the shared
knowledge base, a part of the Task Management facility is responsible for ensuring that
the user’s preferences are met.

A Security Manager is the part of the Task Manager that maintains privacy and secu-
rity protection in RADAR. At startup, the Security Manager provides authentication for
both users and RADAR components. The Security Manager provides a basis for applying
message encryption-decryption within RADAR. By performing mutual authentication
between two entities in RADAR, both entities obtain each other’s credentials (e.g., public
keys) used to encrypt and decrypt communications between the pair of entities based on a
supported encryption mechanism (e.g., public-private keys encryption).

When a user or specialists belonging to the user tries to access some information or
resource, the Security Manager consults a Policy Manager to determine whether the user
is authorized to access the information/resources or not. Once the access rights have been
established, the Security Manager acknowledges and publishes the access rights status so
that status can be shown to the user.

When policies are changed on the fly, either due to users or due to changes in system
environment, the Policy Manager will inform the Security Manager of the changes and
the Security Manager will broadcast the policy changes. Specialists running tasks that
rely on the policy should then acknowledge the change and modify their behavior to re-
flect the new policy.

Because the Security Manager is part of the task management infrastructure, the Task
Manager becomes the arbiter for all actions relating to a task. It is intended that, in the
future, the Task Manager will also filter information to maintain required privacy.

The main responsibilities of the Policy Manager are to handle access control policies,
both current and revoked, that are stored in the knowledge base. When the Policy Man-
ager receives a query from the Security Manager, it checks whether the queried task vio-
lates any current access control policies or not, and sends the results back to the Security
Manager.

 The RADAR Architecture for Personal Cognitive Assistance

13

Communication (JMS)

Agent (FIPA compliant)

Radar Communication & Services

Radar Components

Fig. 2. RADAR Layered Implementation Architecture.

The Policy Manager also provides a front-end interface for defining access control
policies via the RADAR Console. It tells the user the kinds of policies that can be defined
(using information about social networks in the knowledge base) and notifies the user
about policy changes when applicable.

When the user make changes to existing policies or when there is a change in the
knowledge base that alters the existing policies, the Policy Manager will be triggered and
a list of affected policies will then be sent to the Security Manager.

5. Implementation

RADAR is designed to run as a server-oriented system in which the main capabilities are
provided in stable environments that communicate with a user’s personal desktop or mo-
bile platform. As such, RADAR task management and assistance operates much like
email servers, communicating with mail clients, but accessing mail stored in a stable way
on externally-maintained and robust servers. This design helps provide the needed avail-
ability required to support a continuous, globally accessible service.b

The implementation of RADAR is based on a layered use of existing technology, il-
lustrated in Fig. 2. At the lowest implementation layer are standard middleware services
for distributed systems. Specifically, we use Java Messaging Services (JMS), which pro-
vide a network-wide service for sending messages between components. The interface to
this layer provides an API that hides details of the middleware, supporting basic commu-
nication mechanisms for remote method invocation and publish-subscribe.

At the next higher level is an agent-oriented architecture, which provides a virtual
agent layer. The agent layer provides a FIPA-compliant API that defines the types of
messages that can be used to exchange information between components, and specifies
the building blocks on which more sophisticated communication protocols are built.

The RADAR Communication and Services layer specializes more general agent-
oriented paradigms, defining specific protocols for communication between specialists

b Although targeted for server-oriented deployment, RADAR also permits client-oriented configurations in
which more of the functions run on the client side.

David Garlan and Bradley Schmerl

14

and the task management services, interaction with the knowledge base, registration and
invocation of the bridging elements. This layer defines the rights and responsibilities for
specialists, bridging elements, shared data and knowledge through a set of interface
specifications. In addition, common RADAR Services are provided; these include the
console, Task Manager, UI Dialog Management, and communication services that pro-
vide interaction between RADARs.

Building on top of this architectural infrastructure, RADAR V1.0 includes the follow-
ing components and capabilities:
• Extractors and categorizers that understand general language terms such as places

and names, as well as task-specific information such as scheduling constraint re-
quests.

• Specialists that assist the user with:
o Managing a company website, by correcting errors in people’s information

based on emails, and publishing the updates to a website; 17
o Managing a schedule, which includes scheduling appointments and finding

spaces where meetings can take place;
o Preparing work summaries, or briefings, that can be sent to superiors, by learn-

ing which emails and tasks are more important and helping the user to summa-
rize this information;18

• The Scone knowledge base,19 which stores and infers knowledge learned by various
components of RADAR. In this RADAR V1.0, Scone was used primarily for storing
and inferring information learned about email messages.

• Integration with Microsoft Outlook®, for organizing users’ email and as a user inter-
face for controlling some aspects of Radar. For this, Outlook’s COM interface was
used to support the UI, C, and M interfaces (of Fig. 1), providing natural extension
points from which to integrate Outlook with RADAR. Error! Reference source not
found. provides a screenshot of this integration. The window in the background
shows the Outlook inbox list. RADAR has added a column that indicates the type of
task that a particular email corresponds to. When an email is opened, RADAR inserts
requests (tasks) that it has understood to the right of the email message, and allows
the user to add additional requests that might be associated with the email.

6. Evaluation of RADAR in Use

While designed to promote the requirements outlined in Section 3, a critical question is
how well RADAR performs in a live setting, and how effective is learning in automating
everyday tasks. To investigate these questions, the RADAR team carried out extensive
experimental evaluation. This evaluation was developed and conducted by other mem-
bers of the RADAR project, who have published the details of the results.21 We summa-
rize the results here so that readers will have a frame of reference for our efforts.

 The RADAR Architecture for Personal Cognitive Assistance

15

Fig. 3. The RADAR Console UI, integrated with Microsoft Outlook®.

A controlled crisis scenario was constructed: a week before a conference is due to
start, a building that was to be used to host the conference becomes partially unavailable.
Subjects in the experiment were asked to reschedule the conference sessions in alterna-
tive rooms, manage the constraints on speakers who have already booked travel assuming
the previous scheduled, brief the program committee on progress, and stay current with
arriving email. The crisis is exacerbated by the fact that the primary conference organizer
is unavailable to help, although he used RADAR to help organize the conference ini-
tially.c

c This test will be conducted annually for the duration of our current funding, so that improvements and addi-
tions to the RADAR technologies can be tracked, including the work reported in this paper. We report here on
the results of the test conducted in May 2006, which used a version of the architecture that was significantly
tailored to the specific components used in the crisis.

David Garlan and Bradley Schmerl

16

Two instantiations of RADAR were used in the experiment:
(i) Without any information learned about the conference. This tested the effect of RA-

DAR without it having prior specialization to crisis situation. It does not know, for
example, whether a particular message concerns a conference event. There were 31
subjects in this group.

(ii) With preloaded knowledge learned as if RADAR had been used by the conference
organizer to organize the conference initially. The various learning components had
been trained using the RADAR user interface under regular task activity. This group
contained 32 subjects.

In addition to these configurations of RADAR, a control situation was also run in
which participants used only off-the-shelf tools.

In all cases, test subjects were given two hours to work the conference planning crisis
scenario. In this test, learning was shown to have statistically significant positive influ-
ences on several machine learning system performance metrics, and that both uses of
RADAR were statistically better than the control situation. This means that on average,
users of RADAR were more adept at handling the crisis in the test, and that RADAR,
when trained, allows users to perform statistically better than when RADAR has not been
trained.

7. Discussion

The architectural design of RADAR addresses the three critical requirements for a
PCA outlined in Section 3. First, compatibility is supported through the layered architec-
ture, which augments existing applications and data without replacing them. While appli-
cations must be modified in small ways to provide monitoring and control capabilities
from the RADAR layer, and have certain user interface enhancements, by and large they
remain unchanged. While the interface to each legacy application will differ, our experi-
ence in another project20 suggests that wrapping applications to provide the necessary
interfaces is possible, and is becoming increasingly easy with modern applications. We
are, however, limited to facilities provided by the interfaces of applications.

Second, extensibility is supported through a component-oriented architecture in which
task assistance is provided by modules (specialists) that can be incrementally added to or
removed from the RADAR ensemble, simply by registering or deregistering them.

Third, adaptability is supported in several ways. The RADAR console allows a user
to specify policies directly. In addition each specialist and the Task Manager provides its
own learning capabilities, as outlined above, which coupled with a shared knowledge
base, and common mechanisms for learning (e.g., extractors and abstractors) allow RA-
DAR to adapt over time to a user’s needs.

However, our experience with Radar in the test has indicated several areas of im-
provement that are needed in the architecture, to increase its flexibility. The first is the
way in which extractors and categorizers hoist information in the RADAR system. In the
original architecture, this was done in a coordinated fashion, relying on a designated
component to coordinate which extractors were called based on information from the

 The RADAR Architecture for Personal Cognitive Assistance

17

categorizers. In reality, there are several general-purpose extractors (for example, to ex-
tract names, addresses, etc.) that can be used on any message. In the next iteration of the
architecture, we believe that a blackboard style of interaction between categorizers and
extractors is required.

The second area of improvement relates to the need to support different modes of user
interaction. Our original architecture assumed that categorizers and extractors would per-
form well enough to understand a task from an input to RADAR, and that the user would
only need to be involved once a task had been defined. Other teams in RADAR were less
optimistic about this, and so required a step in RADAR that required the user to confirm
the extraction process, and make any necessary adjustments to the understanding of the
task before it comes under the purview of task management. In fact, this is essentially a
trust issue that we had not considered in the architectural design – over time, RADAR
should learn to extract information more accurately, and the user should be able to trust
that RADAR can elicit tasks from the message more accurately; users should therefore
have control over how much interaction they have with RADAR. To achieve this, we
have required that the extractors provide information about the confidence that extraction
is accurate, and that this information is passed to the Task Manager when a task enters
RADAR. Users can specify a threshold below which they require RADAR to ask them to
confirm. This part of the architecture will evolve into a more sophisticated element that
implements trust management.

Third, the decision to separate extractors from specialists has met resistance from
some implementers of specialists. We believe that this is mainly due to the fact that the
teams responsible for writing the knowledge in the specialist for performing a particular
task are in many cases the same team writing extractors that can understand the informa-
tion about their tasks from, for example, email. In this case, the teams have been tempted
to circumvent the architecture and have the specialists and extractors directly communi-
cate and share information. We believe, however, that the separation of concerns at the
architectural level is still the right design, but we are investigating the best interaction
models that will allow sharing of information between specialists and extractors in a
more principled way.

Finally, our initial implementation of the RADAR architecture provided a FIPA com-
pliant agent communication layer. We provided an additional specialization of this layer
to provide RADAR communication protocols that were designed for RADAR, and take
into account the requirements outlined in this paper. We plan to evaluate whether other
interaction models (e.g., service oriented architectures) would be a better model for im-
plementing the agent communication layer between services in RADAR, given our ex-
perience with providing existing RADAR services. One of the strengths of the layered
approach is experiments using different underlying implementations should have minimal
impact on the existing RADAR services.

8. Conclusions and Future Work

David Garlan and Bradley Schmerl

18

Realizing the vision of a fully-featured PCA is a formidable task that will take significant
advances in research and engineering to achieve and demonstrate. In this paper we de-
scribe first steps toward realizing that vision. The key to this is the design of a pluggable
architecture that permits extensibility and adaptability, while remaining compatible with
existing desktop services and applications. The implementation of RADAR v1.0 and its
performance on tests are encouraging: it demonstrates that an integrated task manage-
ment system can be implemented and be effective even in handling highly-stressful situa-
tions and with complex tasks.

However, considerable work remains to be done to fully realize the potential of a
PCA. First, are the architectural changes that we have mentioned in the previous section.
Second, is the discovery of new forms of learning that can help the user. With respect to
the crucial capability for learning to provide better task management, for example, we are
now exploring the possibility of learning such things as how to order tasks according to
their importance. In particular, we think it should be possible to take into consideration
such things as the type of task, the history about how quickly similar tasks have been
completed, and who originated the task, to predict the importance of task when it enters
the system.

Third, is representation and assistance with complex tasks, for example those that
contain workflow involving multiple specialists In many cases such tasks will require
planning as well as learning. This requires research on combining learning and planning
in complex tasks, as well as implementation mechanisms to make such capabilities avail-
able as common services to RADAR specialists.

Fourth, is the need to provide a user with greater transparency into the workings of
RADAR. While RADAR can provide demonstrable value-added to users, at present it is
unable to explain its actions in a way that allows the user to understand exactly what
RADAR has learned and why it believes what it does. Partly this is due to the nature of
statistical machine learning, but it also related to the enhancement of specialists so that as
a part of their normal functionality they can explain their task understanding and actions
in user-oriented terms.

Finally, we expect that with the incorporation of more learning components, the
knowledge base will be more fully utilized. Currently, the knowledge base is used by
extractors to aid in understanding natural language, and also in defining access policies.
We anticipate that the knowledge base will participate in task planning and strategy, and
in filling out forms by better inferring the identity and roles of people are that send mes-
sages to a user’s RADAR.

Acknowledgements

Many people at CMU have participated in building RADAR and running the tests, and
we would like to acknowledge them for their hard work. In particular, we would like to
thank Aaron Steinfeld, who helped to make our evaluation section accurate, and the de-

 The RADAR Architecture for Personal Cognitive Assistance

19

velopment team for the RADAR architecture (Jaime Oviedo, Gabriel Zenarosa, Nicholas
Sherman, and Pongsin Poosankam).

This material is based upon work funded by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the DARPA or the Department of Interior-National
Business Center (DOI-NBC).

References

1. Berry, P., Myers, K., Uribe, T., and Yorke-Smith, N. Task Management under Change and
Uncertainty. Constraint Solving Experience with the CALO Project. Proc. CP’05 Workshop
on Constraint Solving under Change and Uncertainty. Spain, 2005.

2. D. Avrahami and S. Hudson, QnA: Augmenting an instant messaging client to balance user
responsiveness and performance. Proceeings of the ACM Conference on Computer Supported
Cooperative Work (CSCW), pp. 515-518, Jan. 2004.

3. J.P. Sousa, Scaling Task Management in Space and Time: Reducing User Overhead in Ubiqui-
tous-Computing Environments. Ph.D. Thesis, Carnegie Mellon University School of Com-
puter Science Technical Report CMU-CS-05-123, 2005.

4. Want, R.; Pering, T.; Danneels, G.; Kumar, M; Sundar, M.; and Light, J., "The Personal
Server: changing the way we think about ubiquitous computing", Proc. of Ubicomp 2002: 4th
International Conference on Ubiquitous Computing, Springer LNCS 2498, Goteborg, Sweden,
2002.

5. S. Cranefield, M. Purvis, An agent-based architecture for software tool coordination, in the
proceedings of the workshop on theoretical and practical foundations of intelligent agents,
Springer, 1996.

6. T. Finin, J. Weber, G. Wiederhold, et al., Specification of the KQML Agent-Communication
Language, 1993.

7. S. Franklin, A. Graesser, Is it an Agent or just a Program? A Taxonomy for Autonomous
Agents, in: Proceedings of the Third International Workshop on Agents Theories, Architec-
tures, and Languages, Springer-Verlag, 1996.

8. M. R. Genesereth, S. P. Ketchpel, Software Agents, Communications of the ACM, Vol. 37,
No. 7, July 1994.

9. B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, M. Balabanovic, A domain-specific
Software Architecture for adaptive intelligent systems, IEEE Transactions on Software Engi-
neering, April 1995.

10. T. Khedro, M. Genesereth, The federation architecture for interoperable agent-based concur-
rent engineering systems. In International Journal on Concurrent Engineering, Research and
Applications, Vol. 2, pages 125-131, 1994.

11. P. R. Cohen, A. Cheyer, M. Wang, S. C. Baeg, OAA: An Open Agent Architecture, AAAI
Spring Symposium, 1994.

12. Y. Shoham, Agent-oriented programming, Artificial Intelligence, Vol. 60, No. 1, pages 51-92,
1993.

13. The Foundations for Intelligent Physical Agents (FIPA). http://www.fipa.org.
14. The SIGIR2006 Workshop on Personal Information Management, Seattle, WA, August 10-11,

2006. (http://pim.ischool.washington.edu/pim06)

http://www.fipa.org/

David Garlan and Bradley Schmerl

20

15. D. Avrahami and S. Hudson, QnA: Augmenting an instant messaging client to balance user
responsiveness and performance. Proceeings of the ACM Conference on Computer Supported
Cooperative Work (CSCW), pp. 515-518, Jan. 2004.

16. A. Faulring and B. Myers, Enabling rich human-agent interactions for a calendar scheduling
agent. Proceedings of the Conference on Human Factors in Computing Systems Extended Ab-
stracts (CHI), Portland, Oregon, May 2005.

17. A. Tomasic, J. Zimmerman, and I. Simmons. Linking Messages and Form Requests. Proc.
The 2006 International Conference on Intelligent User Interfaces, Sydney, Australia, Jan.
2006.

18. N. Garera, A. Rudnicky. Briefing Assistant: Learning human summarization behavior over
time. Proc. 2005 AAAI Spring Symposium, Jan. 2005.

19. S. Fahlman, Scone Knowledge Base. Available at: http://www.cs.cmu.edu/~sef/scone/.
20. J.P. Sousa, V. Poladian, D. Garlan, and B. Schmerl. Capitalizing on Awareness of User Tasks

for Guiding Self-Adaptation. Proc. the 1st International Workshop on Adaptive and Self-
managing Enterprise Applications at CAISE’05. Portugal, 2005.

21. Steinfeld, A., Bennett, R., Cunningham, K., Lahut, M., Quinones, P.-A., Wexler, D., Siewio-
rek, D., Cohen, P., Fitzgerald, J., Hansson, O., Hayes, J., Pool. M, and Drummond, M. The
RADAR Test Methodology: Evaluating a Multi-Task ML System with Humans in the Loop.
Carnegie Mellon University School of Computer Science Technical Report CMU-CS-06-124,
CMU-HCII-06-102, May, 2006.

	1. Introduction
	2. Related Work
	3. Architectural Requirements for a PCA
	4. The RADAR Architecture
	4.1. Overview
	4.2. Information Flow
	4.3. Task Management
	4.3.1. Task Dispatch and Specialist Registry.
	4.3.2. Task Data Management.
	4.3.3. Information privacy and access control.

	5. Implementation
	6. Evaluation of RADAR in Use
	7. Discussion
	8. Conclusions and Future Work
	Acknowledgements
	References

