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Current desktop environments provide weak support for carrying out complex user-oriented tasks. 
Although individual applications are becoming increasingly sophisticated and feature-rich, users 
must map their high-level goals to the low-level operational vocabulary of applications, and deal 
with a myriad of routine tasks (such as keeping up with email, keeping calendars and web sites up-
to-date, etc.). An alternative vision is that of a personal cognitive assistant. Like a good secretary, 
such an assistant would help users accomplish their high-level goals, coordinating the use of multi-
ple applications, automatically handling routine tasks, and, most importantly, adapting to the indi-
vidual needs of a user over time. In this paper we describe the architecture and its implementation 
for a personal cognitive assistant called RADAR. Key features include (a) extensibility through the 
use of a plug-in agent architecture (b) transparent integration with legacy applications and data of 
today’s desktop environments, and (c) extensive use of learning so that the environment adapts to the 
individual user over time. 
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1.   Introduction 

Computers are playing an increasingly indispensable role in complex day-to-day activi-
ties of many people. Email, calendaring systems, daily planners, web sites, and the like 
are now an essential component of most people’s lives. 

Unfortunately today’s desktop environments provide weak support for carrying out 
complex user-oriented tasks, or even dealing with the myriad details of handling every-
day computer-assisted information, communication, and planning tasks. Although indi-
vidual applications are becoming increasingly sophisticated, users must map their high-
level goals to the vocabulary of specific applications and services, and deal with a bar-
rage of routine tasks, such as keeping up with their email, and keeping their calendars and 
web sites up-to-date.  
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An alternative vision is that of a personal cognitive assistant (PCA). Like a good sec-
retary, a PCA would help users accomplish their high-level goals, coordinating the use of 
multiple applications, automatically handling routine tasks, and, most importantly, adapt-
ing to the individual needs of a user over time. A PCA would also be able to work coop-
eratively with the user, automating tasks where appropriate, and staying out of the way 
where not. 

However, realizing such a vision raises a number of hard software engineering chal-
lenges. First, to be useful and economical, a PCA should dovetail with existing (and fu-
ture) applications, file systems, and user processes. Even if one could afford to reengineer 
all existing desktop applications (which we can’t), most users would not be inclined to 
learn to use an entirely new set of applications, regardless of the benefits provided. Sec-
ond, a PCA should be extensible. That is, it should be possible to incrementally add new 
capabilities for personal assistance over time, possibly taking advantage of third-party 
components to increase the range of support. Third, it should be adaptive. Over time the 
capabilities of the environment should automatically adapt to the needs and preferences 
of a user, without a lot of specific user guidance and oversight. 

In this paper we describe an architecture and its implementation for a PCA, called 
RADAR (Reflective Agents with Distributed Adaptive Reasoing), that tackles these chal-
lenges head-on. Building on top of existing agent-oriented and distributed systems archi-
tectures, RADAR provides a pluggable framework for integrating “specialists” that col-
lectively augment a user’s ability to handle complex tasks. Such specialists complement 
the capabilities of existing desktop environments, applications, and file systems, automat-
ing routine (but often complex) tasks programmatically. New specialists can be added or 
removed at any time. Moreover, learning is a core capability: specialists adapt to the 
needs and preferences of users over time. 

While RADAR is the product of a large number of cooperating researchers, devel-
oped over the past three years at Carnegie Mellon University, in this paper we focus spe-
cifically on the design of its architecture and the ways in which that architecture supports 
key engineering properties of compositionality, extensibility, and integration with exist-
ing applications and services. We also describe the current implementation and briefly 
summarize recent empirical results of RADAR’s effectiveness in supporting a class of 
crisis management tasks. 

2.   Related Work 

An important branch of related research is traditional approaches to artificial intelligence, 
which attempt to automate human-oriented activities such as medical diagnosis, hardware 
configuration, chess, and robotics. In most of these systems the goal is to have the AI 
system replace the human, and many of these systems have focused on very specific task 
domains (like chess or medicine). In contrast our work on a personal cognitive assistant 
attempts to augment human capability, and to do this for rather mundane (although often 
voluminous and complex) tasks like prioritizing email, or helping to manage one’s calen-
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dar. Additionally, most AI systems have not investigated the engineering issues of devel-
oping a component-based approach, or integrating AI capability with legacy systems. 

More closely related are other approaches to assisting users with tasks in familiar 
desktop environments. The Calo project, for example, has been investigating similar ap-
proaches.1 Like RADAR, Calo provides an integration framework for learning-based 
task-specific components. RADAR differs from Calo in two respects. First, RADAR at-
tempts to co-exist with off-the-shelf applications and data, such as Microsoft Outlook®, 
while Calo has taken the approach of reengineering standard desktop applications to work 
smoothly with its task support. The advantage of RADAR is the ability to plug its capa-
bility into any desktop environment; the advantage of Calo is that reimplementation of 
standard applications provides better opportunities for close collaboration between them 
and the cognitive assistant.  

Other work that attempts to help users with ordinary tasks comes out of the ubiqui-
tous computing field.2, ,3 4 While these efforts attempt to dovetail with existing infrastruc-
ture and applications, their primary focus is on the use of heterogeneous and pervasive 
devices to help users accomplish tasks more effectively. Work in this area concentrates 
on configuring and reconfiguring services as users move through an environment. In con-
trast, RADAR focuses on learning to assist users to do their tasks in a more traditional 
workplace environment. 

Another closely related area is that of agent-oriented architectures.5, , , , ,6 7 8 9 10 Over the 
past decade there has been considerable interest in multi-agent systems and middleware 
to support them. In particular, a number of architectural frameworks have been proposed, 
including AAS,11 Zeus,12 and FIPA..13 As described later, we build on top of agent-
oriented architectures (and, in particular, FIPA), specializing the general notions of 
agents and agent coordination with the specific architectural structures that characterize 
the RADAR architecture. 

There are many applications that help users manage their daily tasks; most are limited 
to managing todo lists, and reminders; some of them have intelligence built in. The Per-
sonal Information Management workshop,14 for example, contains examples of systems 
that integrate with email and help manage other personal information. The vision of Ra-
dar is broader than these systems in that it encompasses personalized learning and col-
laboration between people to help automate tasks. Another example is the integration 
between Google Mail and Google Calendar; if Google Calendar recognizes some text in 
an email message as a calendar event, it will provide a button to automatically add the 
event to the Google calendar. While this task entails some intelligence, it does not help 
with scheduling the meeting, coordinating with other people or the other issues associated 
end-to-end with meeting assistance. Nor does it learn the idiosyncrasies and preferences 
of when someone would like to meet. 

3.   Architectural Requirements for a PCA 
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The vision of a PCA is that of a smart assistant, that in some sense “understands” the 
user, helping out where needed and effective, but staying out of the way otherwise. In-
herent in this view is the idea that a PCA should complement what a user normally does, 
and how a user normally does it. Although over time a user might adapt her behavior to 
rely more heavily on the PCA as she gains trust in it, she should not be forced to do this. 
In particular, there should be a level of user-machine coordination and collaboration. 

Consider the following scenario: A busy user has loaded a PCA onto his desktop. At 
first the user notices little change to his normal way of working. However, exploring the 
PCA console, he discovers that he can activate a calendar assistant. After activating it, the 
user is prompted to identify some general preferences for things like what calendaring 
application he wants to use, what times to keep free on the schedule, cancellation poli-
cies, and the like. Since the user is wary of turning over control to any automated calen-
daring assistant, he decides to be conservative, requesting that the assistant should sched-
ule meetings only during the hours of 10-12 on weekdays, always confirming schedule 
changes before committing them, and never canceling or rescheduling an existing meet-
ing. As time progresses he notices that the calendaring assistant has been able to correctly 
identify email messages that relate to scheduling requests, and to suggest reasonable 
scheduling actions. Based on positive experience, he decides to let the assistant do it 
automatically. Over time, he discovers that the assistant can do more and more: it learns 
his desires for canceling meetings (e.g., preferring to move subordinates’ meetings before 
those with his boss); it learns that when the user goes on vacation or business travel, 
email should be sent to people with whom he has regular meetings to let them know, etc. 
Quite happy with this capability he continues to let it do more, confident that it is learn-
ing how he would like it to be done, and asking for permission before attempting any-
thing radically new. 

From an engineering perspective this vision implies three essential requirements for a 
PCA: 
(i) Compatibility: The services and assistance provided by a PCA should co-exist with 

the capabilities of current legacy applications and services.  The user should not have 
to abandon old ways of doing business, or learn to use new applications with differ-
ent interfaces. While additional capability provided by a PCA will necessarily re-
quire some additional forms of user interaction, these should supplement, not re-
place, existing forms of interaction. This implies compatibility not only with applica-
tions, but also with information sources as well. For example, email messages are of-
ten an important stimulus and information source for an assistant (for example, signi-
fying the need to start a new task). Understanding email messages, written in a natu-
ral language, and stored in standard email repositories (e.g., Imap), is essential.  

(ii) Extensibility: It should be possible to incrementally augment the capabilities of the 
PCA. For example, if some new form of task assistance becomes available, it should 
be easily pluggable into the existing system, adding new capability without disrupt-
ing the old, and dovetailing with existing assistance provided by the PCA. One can 
even imagine a marketplace for personal task assistance in which different forms of 
the same kind of assistance might be purchased at different price-quality points. 
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(iii) Adaptability: The system should conform to the user, learning new opportunities for 
assisting the user, and inferring appropriate behavior based on how users carry out 
their tasks. Learning should apply to a wide variety things, including prioritization of 
tasks (e.g., helping a user focus on the important things), policies for interaction with 
others (e.g., deciding who should have access to certain kinds of information), clus-
terings of related activities (e.g., noticing that if action A is performed, action B is 
usually also performed), interpretation of natural language (e.g., recognizing idioms 
that relate to task achievement), and many others.  

In addition to these requirements, there are a number of other more-standard systems-
oriented engineering qualities, such as robustness, availability, security, and performance. 
Indeed, the services provided by the PCA should have comparable quality attributes to 
today’s mail systems, which tend to be available in a global setting, highly robust, secure, 
and reasonably efficient. 

4.   The RADAR Architecture 

To achieve these goals, RADAR has adopted the run-time architecture pictured in Fig. 1. 
In this figure, the architecture is depicted from the point of view of a single individual 
working in a personal RADAR space. We first give a high-level overview, and then look 
in more detail at specific technical issues. 

4.1.   Overview 

At the bottom layer are legacy applications, services, and data stores. Applications in-
clude things like email readers, web browsers, calendar managers, and the like. Data 
stores include documents stored in local and remote file systems, repositories of email, 
calendar information, contact lists, etc. Users interact with these in normal ways. The 
challenge is how to integrate with existing applications. To achieve this, application APIs 
are used or written. For example, Monitor (M) interfaces inform RADAR of events that 
happen in an application (e.g., the user moves an appointment), that might trigger new 
tasks or learning by RADAR; Control (C) interfaces allow RADAR to make changes to 
the desktop space (e.g., to schedule a new appointment); User Interface embellishments 
(UI) allow RADAR to present information to the user in a manner the user is familiar with 
(for example, to display RADAR-proposed alternatives for a meeting on a user’s calen-
dar). In addition we add a RADAR Console, which provides a user with direct access to 
RADAR and its capabilities. In many modern applications, these kinds of interfaces are 
possible through standard APIs, such as .NET. When these aren’t available, the informa-
tion is usually accessible indirectly through manipulating the data that the applications 
use.  

On top of this layer, RADAR adds a layer of task assistance. This layer is composed 
of five types of components: 
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Fig. 1. The Architecture of an Individual’s Radar. 
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Task specialists: A task specialist (or just specialist) is a component that attempts to 
provide assistance for a particular kind of task, such as schedule management, web site 
updating, and routine email handling. The number and kind of specialists can vary from 
user to user, and over time for a single user as new specialists are added or removed from 
that user’s RADAR space. Each specialist contains knowledge about how to conduct a 
particular task, and each contains a learning component that allows the specialist to adapt 
to the user with respect to preferences, preferred methods of doing the task, etc. Special-
ists may store their learned knowledge in the shared knowledge base (see below), which 
is accessible to other components. In this way, knowledge can be shared and transferred 
to other specialists. For example, if I consistently defer a meeting with Victor when there 
is a conflict, the scheduling specialist will learn that dealing with Victor is not high on 
my list of preferences. The specialist involved in organizing my email may also use this 
information to sort my email appropriately.  

Task management: To coordinate the work of the specialists and to provide overall 
tracking and control of tasks is a Task Manager. The Task Manager comprises a number 
of logical services, including task dispatch (interacting with specialists to assign new 
tasks), task tracking (keeping track of high-level state of tasks – see below), task query 
(retrieving all tasks that match certain selection criteria), and task prioritization (keeping 
track of the relative priority of tasks). In addition to this, the Task Management compo-
nent is responsible for data security and privacy.  
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Shared information and knowledge: To be effective, specialists and task manage-
ment services must manipulate data in richer forms than is conventionally stored in to-
day’s desktop environments. For example, intelligent email assistance requires that key 
features of email messages are identified and classified. Similarly, calendaring informa-
tion may need to be structured in higher-level ways than is natively stored by a calendar 
system. In addition, there is the need to represent knowledge between high-level entities 
and relationships in the user’s world. For example, social nets that contain knowledge of 
the relationships that a user has to other people, are stored in a knowledge base; social 
nets can be used by specialists and task management to determine security procedures 
(e.g., who are my friends), policies for actions (e.g. don’t cancel a meeting scheduled by 
my boss), and general knowledge about the environment (e.g., what rooms are physically 
close to my office). 

Bridging elements: To get information from the desktop level into RADAR space, 
requires certain bridging elements. There are several kinds of these. One kind transfers 
information from desktop space into RADAR space. These include categorizers and ex-
tractors that understand natural language to label and categorize the information from the 
desktop space. A second kind of bridging element takes information directly from legacy 
applications, through the M interface in Fig. 1. These allow RADAR specialists to moni-
tor activities performed directly by legacy applications, and to control those applications 
programmatically. The difference between such bridging elements and specialists is that, 
although they may both have knowledge specific to particular tasks, bridging elements 
are responsible for transforming native representations of data (such as textual email) into 
task-oriented information (such as the existence of a new task), while specialists have 
knowledge of how to assist the user in carrying out the tasks. 

Connectors: In order for components within an individual’s RADAR to interact, we 
have defined specific protocols to make explicit the roles and nature of interaction be-
tween different components. There are three types of connectors in RADAR:  

(i) Explicit Invocation connectors are used when synchronous requests are made be-
tween components, and the target component is known to the component issuing the 
request. Furthermore, information may be returned along these channels. Such con-
nectors are used when components issue commands directly to other components, 
and need to know that the commands have been met before they can continue. For 
example, a specialist may request that the Task Manager update the state of a par-
ticular task; it should not continue interacting with the task until it has received a re-
ply about the success of that interaction. 

(ii) An Event Bus connector is be used to facilitate learning by informing subscribers 
about events that occur in the system. At a minimum, whenever a command is is-
sued, a concomitant event is announced. In addition, components can freely an-
nounce their own events. For example, a component that learns social net informa-
tion would be expected to announce an event when it has learned that Melinda is 
John’s boss. Every component in RADAR is allowed to publish and subscribe to 
events. 
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(iii) Data flow connectors show the passage of data through RADAR. For example, the 
bridging elements take data from the Data Stores, apply natural language extraction, 
and produce Data in the annotated database that contains markers to interesting fea-
tures in the Data Stores (for example, where names occur in email messages). 

User Interaction: One important requirement of the flow of information through 
RADAR is the need to manage interaction with a user of RADAR. If a part of RADAR 
wishes to communicate with the user, it should only do so at appropriate times. For ex-
ample, a specialist may want the user to confirm some information. If it immediately in-
terrupts the user to request this, it might distract the user from working on another task, 
causing him to lose context. For real world use, this will most likely make the user less 
efficient because he is constantly being interrupted. Thus, all Radar-initiated interaction 
with the user is mediated through the UI Dialog Management component, which manages 
when and how a user should be interrupted. The UI Dialog Manager learns when and 
whether to interrupt the user,15 based on knowledge of the user’s focus and interruption 
policies. The UI Dialog Manager might present this information via the RADAR console, 
by RADAR-specific UI embellishments in legacy applications (using the UI interface in 
Fig. 1), or other interfaces using techniques similar to those described by Faulring and 
Myers.16

Fig. 1 shows only the architecture of an individual’s RADAR. However, an individ-
ual’s RADAR must communicate with others, both those that use RADAR and those that 
do not. To ensure privacy and access control, the Task Manager mediates RADAR’s 
communication with other users. This gives RADAR the opportunity to also determine 
how best to communicate with a particular person. For example, if that person has their 
own instance of RADAR, then this component can communicate with their RADAR us-
ing message passing; if the person does not use RADAR, it will choose alternative ways 
to communicate (e.g., email, IM, cell-phone text message).  

4.2.   Information Flow 

To illustrate how information from the desktop space flows through RADAR, consider 
the arrival at John’s desktop of an email from fred@a.com containing the text “I would 
like to organize a meeting with you and Melinda next Tuesday.” Furthermore, the email 
contains details of Freds’ free times on Tuesday. 
(i) Categorizers and extractors take this information and annotate it with structural in-

formation such as the existence and location of names (“Melinda”), dates (“next 
Tuesday”), and that the message is concerned with organizing a meeting. A new task 
for organizing a meeting is also constructed by the extractor and sent to the Task 
Manager for dispatch. The task is stored in a traditional database (as annotated data 
in Fig. 1) and contains a reference to the original message. 

(ii) Abstractors take the structured information and further annotate it with knowledge. 
For example, an abstractor notes that Melinda is John’s boss, and that John prefers 
meetings on Tuesday to be in the morning. This knowledge has been learned previ-
ously based on John’s previous interactions. The knowledge is stored in a knowledge 
base, which can be queried by other components. 
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(iii) The Task Management component notices that a new task to organize a meeting has 
been proposed, via triggers in the task database. Based on John’s policies and previ-
ous behavior, RADAR determines that it is permitted to automatically schedule the 
meeting. It identifies a task specialist that is responsible for managing John’s calen-
dar, and assigns the task to it. Meanwhile, the console is informed through event no-
tification that this task is being handled by RADAR, and adds the task to its list of 
tasks so that, if interested, John can find out what RADAR is currently doing. 

(iv) The Task Specialist attempts to find suitable slots on John’s calendar for the meeting 
to take place. This might involve confirmation with John, which will be done 
through UI dialog management. 

(v) The specialist will need to collaborate with Melinda to determine a final meeting 
time. The specialist submits a request to find Melinda’s free time on Tuesday to the 
Task Manager. The Task Manager determines that Melinda uses RADAR, and com-
municates with her RADAR to get her free times. (Melinda’s RADAR receives the 
request as a task and processes it in a similar manner.) When the specialist receives 
Melinda’s free times on Tuesday, it chooses a shared free time and schedules the 
meeting on John’s and Melinda’s calendars.  

(vi) RADAR sends mail to Fred indicating the time when the meeting has been sched-
uled. 

4.3.   Task Management 

A central notion of RADAR is the idea of a task. A task is a unit of work that can be 
automated (or partially automated) by RADAR. The unit of work could be assigned to a 
single task specialist, or it may involve the coordination (through a task planner) of mul-
tiple task specialists. Such a planner would itself be implemented as a specialist.a  

A key component in managing tasks in RADAR is the Task Management facility, 
which is responsible for the following task-related duties. 

4.3.1.   Task Dispatch and Specialist Registry.  

The Task Manager acts as a directory facility for matching particular types of tasks to 
specialists that can be used to automate them. The Task Manager is then responsible for 
assigning tasks to specialists, and also indicates to specialists when to suspend or stop 
particular tasks (for example, at the user’s behest, because the task is no longer valid, or 
another task is more important). In addition to dispatching tasks, this component is also 
responsible for detecting the liveness and availability of particular specialists.   

4.3.2.   Task Data Management.  

The Task Data Manager manages changes to a task. Once a task is assigned to a special-
ist, a specialist can only make changes to the task through the task data manager. In addi-

a The current implementation contains only a rudimentary planner. See also Section 7 on future 
work. 
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tion to ensuring that the changes to the task are legal, the task data manager is responsible 
for (1) persisting the changes to the task; (2) announcing changes to a task; and (3) keep-
ing a history of the changes to a task. These facilities enable learning about tasks and help 
with later user behavior studies and offline learning.  

Table 1 describes the fields associated with a task at the RADAR level. The Task 
Manager deals with information about tasks at a level that is common to all tasks, and 
that aid in task management and informing the user about what RADAR is doing.  Task-
specific information is stored by other components in the contents field a task, and this 
information is treated as a black-box to the Task Manager. 

Table 1. The fields associated with a RADAR Task. 

Field Type Description 

id UUID A universally unique identifier to identify the task. This is 
generated by RADAR. 

state enum An indication of the state that RADAR is in. The states and 
state transitions for a task are described in Table 2.  

type string Used by RADAR to choose which specialist to assign the 
task to. 

relatedTasks Map 

Allows access to related tasks. The key to the map is the 
type of relationship, and a collection of task identifiers is 
returned. For example, using the key SUBTASKS, all sub-
tasks of a task may be retrieved. 

created, due, 
started 
ended, updated 

date 
Information about various important times associated with a 
task. For example, the updated field reflects the most recent 
time that any update occurred to the task. 

contents object 
The specialist-specific contents of the task. This object 
stores internal state and information about the task, that is 
treated as opaque to the Task Manager. 

description string A human-readable short description of the task that can be 
displayed to the user to indicate what the task is about. 

progress string 

A human-readable short description of the progress of the 
task, as set by specialists. For example, the progress for the 
task in Section 4.2 might indicate that RADAR has sent 
available times to Fred. 

originator person The person who caused this task to come into being. For 
example, in Section 4.2, Fred will be the originator. 

sources collection 
A link to the annotated data that contains the source of this 
task. For example, the email message requesting that a 
meeting be arranged. 
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Tasks also have a high level state machine that defines the legal transitions that a task 
may go through. The transitions and their descriptions are described in Table 2. As the 
tasks are taken through their paces, the states provide a quick way of letting the user 
know what is happening. Specialists may have their own internal states when they are 
running the tasks, and these should be presented to the user in human readable form as 
progress associated with the task.  

When a task is first extracted from email, it is placed in the CREATED state. The 
contents of the task contain the form that was extracted from the contents of the email, 
with some of the fields filled out based on natural language understanding. The user must 
then be satisfied that the form has been filled out correctly. The policy for this can be set 
by the user; the user can examine the form and make corrections, or trust the extractors to 
have done a good job, or by specifying the extraction confidence level for which the user 
is happy. The task is then progressed to the READY state. In this state, it is assumed that 
all the information necessary for a specialist to start working on the task is correctly in 
the contents of the task. RADAR can then assign the task to a specialist; again, this can 
be done automatically by RADAR or manually by the user, depending on policies. When 
the specialist starts working on a task, it sets its state to RUNNING. From this state, the 
task can either complete, fail, the user may suspend the task, or the specialist can report 
an error. The ERROR state indicates that the specialist could not understand the content 
of the task, and so the user is prompted through the UI Dialog Manager to correct the 
contents. 

It is also possible that RADAR could be stopped (e.g., for maintenance) and restarted. 
In this case, the Task Manager has support for putting tasks in a HIBERNATED state; it 
communicates with specialists to ensure that the contents of tasks are in state where the 
specialists can continue working on them later. When RADAR is restarted, any tasks that 
are HIBERNATED are reactivated and reassigned to specialists. 

Table 2. The state transitions allowed for Tasks. 

State 

CREATED 

READY 

ASSIGNED 

RUNNING 

SUSPENDED 

CANCELLED 

COMPLETED 

FAILED 

DELETED 

ERROR Description 
CREATED  X       X  The task has been extracted from a data source. 

READY   X      X  
All information about the task is correct and can be 
processed by RADAR. 

ASSIGNED    X      X 
The task has been assigned to a specialist, but the 
specialist is not yet doing the task. 

RUNNING     X X X X X X The specialist is in the process of executing the task. 
SUSPENDED    X       The task has been suspended by RADAR. 
CANCELLED           The task has been cancelled. 
COMPLETED           The task completed successfully. 
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FAILED           The task was unable to complete successfully. 
DELETED           The task has been deleted. 

ERROR  X         
There is an error associated with the task that the 
specialist cannot understand. It requires input from 
the user. 

HIBERNATED   X X       
The task is in hibernation, when RADAR was 
stopped. 

4.3.3.   Information privacy and access control.  

In many instances, users of RADAR will want to restrict information that is made avail-
able to others. For example, a user may not want to make calendar details available to 
others, and may not want RADAR to automatically schedule meetings if they are re-
quested from certain people. While the knowledge particular to this lives in the shared 
knowledge base, a part of the Task Management facility is responsible for ensuring that 
the user’s preferences are met.  

A Security Manager is the part of the Task Manager that maintains privacy and secu-
rity protection in RADAR. At startup, the Security Manager provides authentication for 
both users and RADAR components. The Security Manager provides a basis for applying 
message encryption-decryption within RADAR. By performing mutual authentication 
between two entities in RADAR, both entities obtain each other’s credentials (e.g., public 
keys) used to encrypt and decrypt communications between the pair of entities based on a 
supported encryption mechanism (e.g., public-private keys encryption). 

When a user or specialists belonging to the user tries to access some information or 
resource, the Security Manager consults a Policy Manager to determine whether the user 
is authorized to access the information/resources or not. Once the access rights have been 
established, the Security Manager acknowledges and publishes the access rights status so 
that status can be shown to the user. 

When policies are changed on the fly, either due to users or due to changes in system 
environment, the Policy Manager will inform the Security Manager of the changes and 
the Security Manager will broadcast the policy changes. Specialists running tasks that 
rely on the policy should then acknowledge the change and modify their behavior to re-
flect the new policy.  

Because the Security Manager is part of the task management infrastructure, the Task 
Manager becomes the arbiter for all actions relating to a task. It is intended that, in the 
future, the Task Manager will also filter information to maintain required privacy.  

The main responsibilities of the Policy Manager are to handle access control policies, 
both current and revoked, that are stored in the knowledge base. When the Policy Man-
ager receives a query from the Security Manager, it checks whether the queried task vio-
lates any current access control policies or not, and sends the results back to the Security 
Manager. 
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Fig. 2. RADAR Layered Implementation Architecture. 

The Policy Manager also provides a front-end interface for defining access control 
policies via the RADAR Console. It tells the user the kinds of policies that can be defined 
(using information about social networks in the knowledge base) and notifies the user 
about policy changes when applicable.  

When the user make changes to existing policies or when there is a change in the 
knowledge base that alters the existing policies, the Policy Manager will be triggered and 
a list of affected policies will then be sent to the Security Manager. 

5.   Implementation 

RADAR is designed to run as a server-oriented system in which the main capabilities are 
provided in stable environments that communicate with a user’s personal desktop or mo-
bile platform. As such, RADAR task management and assistance operates much like 
email servers, communicating with mail clients, but accessing mail stored in a stable way 
on externally-maintained and robust servers. This design helps provide the needed avail-
ability required to support a continuous, globally accessible service.b

The implementation of RADAR is based on a layered use of existing technology, il-
lustrated in Fig. 2. At the lowest implementation layer are standard middleware services 
for distributed systems. Specifically, we use Java Messaging Services (JMS), which pro-
vide a network-wide service for sending messages between components. The interface to 
this layer provides an API that hides details of the middleware, supporting basic commu-
nication mechanisms for remote method invocation and publish-subscribe. 

At the next higher level is an agent-oriented architecture, which provides a virtual 
agent layer. The agent layer provides a FIPA-compliant API that defines the types of 
messages that can be used to exchange information between components, and specifies 
the building blocks on which more sophisticated communication protocols are built.  

The RADAR Communication and Services layer specializes more general agent-
oriented paradigms, defining specific protocols for communication between specialists 

b Although targeted for server-oriented deployment, RADAR also permits client-oriented configurations in 
which more of the functions run on the client side.  
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and the task management services, interaction with the knowledge base, registration and 
invocation of the bridging elements. This layer defines the rights and responsibilities for 
specialists, bridging elements, shared data and knowledge through a set of interface 
specifications. In addition, common RADAR Services are provided; these include the 
console, Task Manager, UI Dialog Management, and communication services that pro-
vide interaction between RADARs. 

Building on top of this architectural infrastructure, RADAR V1.0 includes the follow-
ing components and capabilities:  
• Extractors and categorizers that understand general language terms such as places 

and names, as well as task-specific information such as scheduling constraint re-
quests. 

• Specialists that assist the user with: 
o Managing a company website, by correcting errors in people’s information 

based on emails, and publishing the updates to a website; 17 
o Managing a schedule, which includes scheduling appointments and finding 

spaces where meetings can take place; 
o Preparing work summaries, or briefings, that can be sent to superiors, by learn-

ing which emails and tasks are more important and helping the user to summa-
rize this information;18 

• The Scone knowledge base,19 which stores and infers knowledge learned by various 
components of RADAR. In this RADAR V1.0, Scone was used primarily for storing 
and inferring information learned about email messages. 

• Integration with Microsoft Outlook®, for organizing users’ email and as a user inter-
face for controlling some aspects of Radar. For this, Outlook’s COM interface was 
used to support the UI, C, and M interfaces (of Fig. 1), providing natural extension 
points from which to integrate Outlook with RADAR. Error! Reference source not 
found. provides a screenshot of this integration. The window in the background 
shows the Outlook inbox list. RADAR has added a column that indicates the type of 
task that a particular email corresponds to. When an email is opened, RADAR inserts 
requests (tasks) that it has understood to the right of the email message, and allows 
the user to add additional requests that might be associated with the email.  

6.   Evaluation of RADAR in Use 

While designed to promote the requirements outlined in Section 3, a critical question is 
how well RADAR performs in a live setting, and how effective is learning in automating 
everyday tasks. To investigate these questions, the RADAR team carried out extensive 
experimental evaluation. This evaluation was developed and conducted by other mem-
bers of the RADAR project, who have published the details of the results.21 We summa-
rize the results here so that readers will have a frame of reference for our efforts. 
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Fig. 3. The RADAR Console UI, integrated with Microsoft Outlook®. 

A controlled crisis scenario was constructed: a week before a conference is due to 
start, a building that was to be used to host the conference becomes partially unavailable. 
Subjects in the experiment were asked to reschedule the conference sessions in alterna-
tive rooms, manage the constraints on speakers who have already booked travel assuming 
the previous scheduled, brief the program committee on progress, and stay current with 
arriving email. The crisis is exacerbated by the fact that the primary conference organizer 
is unavailable to help, although he used RADAR to help organize the conference ini-
tially.c  

c This test will be conducted annually for the duration of our current funding, so that improvements and addi-
tions to the RADAR technologies can be tracked, including the work reported in this paper. We report here on 
the results of the test conducted in May 2006, which used a version of the architecture that was significantly 
tailored to the specific components used in the crisis. 
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Two instantiations of RADAR were used in the experiment:  
(i) Without any information learned about the conference. This tested the effect of RA-

DAR without it having prior specialization to crisis situation. It does not know, for 
example, whether a particular message concerns a conference event. There were 31 
subjects in this group. 

(ii) With preloaded knowledge learned as if RADAR had been used by the conference 
organizer to organize the conference initially. The various learning components had 
been trained using the RADAR user interface under regular task activity. This group 
contained 32 subjects.  

In addition to these configurations of RADAR, a control situation was also run in 
which participants used only off-the-shelf tools. 

In all cases, test subjects were given two hours to work the conference planning crisis 
scenario. In this test, learning was shown to have statistically significant positive influ-
ences on several machine learning system performance metrics, and that both uses of 
RADAR were statistically better than the control situation. This means that on average, 
users of RADAR were more adept at handling the crisis in the test, and that RADAR, 
when trained, allows users to perform statistically better than when RADAR has not been 
trained. 

7.   Discussion 

The architectural design of RADAR addresses the three critical requirements for a 
PCA outlined in Section 3. First, compatibility is supported through the layered architec-
ture, which augments existing applications and data without replacing them. While appli-
cations must be modified in small ways to provide monitoring and control capabilities 
from the RADAR layer, and have certain user interface enhancements, by and large they 
remain unchanged. While the interface to each legacy application will differ, our experi-
ence in another project20 suggests that wrapping applications to provide the necessary 
interfaces is possible, and is becoming increasingly easy with modern applications. We 
are, however, limited to facilities provided by the interfaces of applications. 

Second, extensibility is supported through a component-oriented architecture in which 
task assistance is provided by modules (specialists) that can be incrementally added to or 
removed from the RADAR ensemble, simply by registering or deregistering them. 

Third, adaptability is supported in several ways. The RADAR console allows a user 
to specify policies directly. In addition each specialist and the Task Manager provides its 
own learning capabilities, as outlined above, which coupled with a shared knowledge 
base, and common mechanisms for learning (e.g., extractors and abstractors) allow RA-
DAR to adapt over time to a user’s needs.   

However, our experience with Radar in the test has indicated several areas of im-
provement that are needed in the architecture, to increase its flexibility. The first is the 
way in which extractors and categorizers hoist information in the RADAR system. In the 
original architecture, this was done in a coordinated fashion, relying on a designated 
component to coordinate which extractors were called based on information from the 
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categorizers. In reality, there are several general-purpose extractors (for example, to ex-
tract names, addresses, etc.) that can be used on any message. In the next iteration of the 
architecture, we believe that a blackboard style of interaction between categorizers and 
extractors is required. 

The second area of improvement relates to the need to support different modes of user 
interaction. Our original architecture assumed that categorizers and extractors would per-
form well enough to understand a task from an input to RADAR, and that the user would 
only need to be involved once a task had been defined. Other teams in RADAR were less 
optimistic about this, and so required a step in RADAR that required the user to confirm 
the extraction process, and make any necessary adjustments to the understanding of the 
task before it comes under the purview of task management. In fact, this is essentially a 
trust issue that we had not considered in the architectural design – over time, RADAR 
should learn to extract information more accurately, and the user should be able to trust 
that RADAR can elicit tasks from the message more accurately; users should therefore 
have control over how much interaction they have with RADAR. To achieve this, we 
have required that the extractors provide information about the confidence that extraction 
is accurate, and that this information is passed to the Task Manager when a task enters 
RADAR. Users can specify a threshold below which they require RADAR to ask them to 
confirm. This part of the architecture will evolve into a more sophisticated element that 
implements trust management. 

Third, the decision to separate extractors from specialists has met resistance from 
some implementers of specialists. We believe that this is mainly due to the fact that the 
teams responsible for writing the knowledge in the specialist for performing a particular 
task are in many cases the same team writing extractors that can understand the informa-
tion about their tasks from, for example, email. In this case, the teams have been tempted 
to circumvent the architecture and have the specialists and extractors directly communi-
cate and share information. We believe, however, that the separation of concerns at the 
architectural level is still the right design, but we are investigating the best interaction 
models that will allow sharing of information between specialists and extractors in a 
more principled way. 

Finally, our initial implementation of the RADAR architecture provided a FIPA com-
pliant agent communication layer. We provided an additional specialization of this layer 
to provide RADAR communication protocols that were designed for RADAR, and take 
into account the requirements outlined in this paper. We plan to evaluate whether other 
interaction models (e.g., service oriented architectures) would be a better model for im-
plementing the agent communication layer between services in RADAR, given our ex-
perience with providing existing RADAR services. One of the strengths of the layered 
approach is experiments using different underlying implementations should have minimal 
impact on the existing RADAR services. 

8.   Conclusions and Future Work 
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Realizing the vision of a fully-featured PCA is a formidable task that will take significant 
advances in research and engineering to achieve and demonstrate. In this paper we de-
scribe first steps toward realizing that vision. The key to this is the design of a pluggable 
architecture that permits extensibility and adaptability, while remaining compatible with 
existing desktop services and applications. The implementation of RADAR v1.0 and its 
performance on tests are encouraging: it demonstrates that an integrated task manage-
ment system can be implemented and be effective even in handling highly-stressful situa-
tions and with complex tasks. 

However, considerable work remains to be done to fully realize the potential of a 
PCA. First, are the architectural changes that we have mentioned in the previous section. 
Second, is the discovery of new forms of learning that can help the user. With respect to 
the crucial capability for learning to provide better task management, for example, we are 
now exploring the possibility of learning such things as how to order tasks according to 
their importance. In particular, we think it should be possible to take into consideration 
such things as the type of task, the history about how quickly similar tasks have been 
completed, and who originated the task, to predict the importance of task when it enters 
the system. 

Third, is representation and assistance with complex tasks, for example those that 
contain workflow involving multiple specialists  In many cases such tasks will require 
planning as well as learning. This requires research on combining learning and planning 
in complex tasks, as well as implementation mechanisms to make such capabilities avail-
able as common services to RADAR specialists. 

Fourth, is the need to provide a user with greater transparency into the workings of 
RADAR. While RADAR can provide demonstrable value-added to users, at present it is 
unable to explain its actions in a way that allows the user to understand exactly what 
RADAR has learned and why it believes what it does. Partly this is due to the nature of 
statistical machine learning, but it also related to the enhancement of specialists so that as 
a part of their normal functionality they can explain their task understanding and actions 
in user-oriented terms. 

Finally, we expect that with the incorporation of more learning components, the 
knowledge base will be more fully utilized. Currently, the knowledge base is used by 
extractors to aid in understanding natural language, and also in defining access policies. 
We anticipate that the knowledge base will participate in task planning and strategy, and 
in filling out forms by better inferring the identity and roles of people are that send mes-
sages to a user’s RADAR. 
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