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Abstract—Building and operating software-intensive systems often involves exploring decision
spaces made up of large numbers of variables and complex relations among them.
Understanding such spaces is often overwhelming to human decision makers, who have limited
capacity to digest large amounts of information, making it difficult to distinguish the forest
through the trees. In this article, we report on our experience in which we used dimensionality
reduction techniques to enable decision makers in different domains (software architecture,
smart manufacturing, automated planning for service robots) to focus on the elements of the
decision space that explain most of the quality variation, filtering out noise, and thus reducing
cognitive complexity.

DEVELOPING and operating complex
software-intensive systems involves making a
large number of decisions. The most important
ones are often focused on quality attributes
such as performance, security, energy efficiency,
or reliability, and typically require answering
questions such as: What response time is
acceptable? What level of security is needed?
How reliable does the system need to be? How
much may the computing resources cost?

Many decisions involve tradeoffs among qual-
ity attributes because it is often not possible to
satisfy conflicting qualities, e.g., to have a high-
performing system with high security at low cost.

In practice, many of those tradeoffs are often
poorly understood by stakeholders (e.g., decision
makers such as software architects) because deci-
sion spaces involve a large number of variables,
and information about their relations and overall
influence on qualities (i.e., to what extent a given
variable or choice can influence the different
quality attributes) is difficult to tease out [6], [7].

Decision makers need tools and techniques
to help them understand the tradeoffs of com-
plex decision spaces and guide them to good
choices, enabling them to answer questions such
as: Why are these tradeoffs being made, and not
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others? What are the most important variables
and qualities that are driving the key decisions?
How sensitive is the satisfaction of constraints or
the achievement of optimality to a particular set
of decisions? Which choices are correlated with
others, either positively or negatively?

To help decision makers understand quality
tradeoffs and make better informed decisions, we
built approaches to explaining decision spaces
from the perspective of quality tradeoffs in dif-
ferent kinds of software-intensive systems. We
relied on standard techniques that involve dimen-
sionality reduction, such as Principal Component
Analysis (PCA) [8] and Multiple Correspondence
Analysis (MCA) [13], [10], which can identify
the variables that are the chief contributors to
variability along quality dimensions, and tease out
their relations (e.g., cost is negatively correlated
with the selection of a given software compo-
nent, while performance is positively correlated
with it). Using these techniques enables decision
makers to focus on the relevant pieces of informa-
tion, thus reducing cognitive complexity [12]. Di-
mensionality reduction techniques on their own,
however, are not enough to understand the impact
of specific decisions on qualities. Hence, we also
complemented our approaches with techniques
such as Decision Tree Learning (DTL) which
enables identifying the impact of key decisions
on quality attributes (e.g., those described in
standards such as [ISO 25010]).

In this article, we describe our experi-
ence applying the tradeoff-focused explainabil-
ity techniques that we developed to three areas
within development and operation of software-
intensive systems, namely design of component-
and-connector software architectures [6], [7],
automated planning for autonomous service
robots [14], and smart manufacturing. Drawing
upon that experience, we distill a set of lessons
learned, propose some general guidelines for re-
searchers and practitioners to apply analogous
techniques in the context of their work, and
discuss use cases for this class of approach that
remain to be explored.

Decision Spaces in Software-Intensive
Systems

Complex decision spaces can emerge across
many aspects of the development and operation

of software-intensive systems. Here, we explore
three domains.

Software Architecture
During development, architects have to face

design decisions that often involve selecting and
composing loosely coupled, pre-existing compo-
nents or services that have different attributes
(e.g., performance, reliability, cost).

There are multiple approaches that help to
automate the search for good architecture designs
and rely on a variety of techniques such as
stochastic search, Pareto analysis, and quantita-
tive verification [1]. Despite being informative,
these approaches do not always clarify why and
how architectural configurations were selected be-
cause they do not explicitly link design decisions
to the satisfaction of requirements and they yield
vast amounts of data that are not easy to interpret.

Consider for instance Figure 1a, which shows
the analysis results of a service-based system
obtained by applying one such technique using
our tools as described in [4], [5]. In this system,
design decisions involve selecting among multi-
ple functionally equivalent service implementa-
tions with different qualities (cost, reliability, and
performance), setting thresholds for parameters
(timeouts, service invocation retries), and deter-
mining the topological arrangement of the service
composition (e.g., should multiple services of
the same type be invoked, or just one? if the
former, should they be invoked sequentially, or
in parallel?). The plot shows the minimized cost
of configurations for different levels of constraints
on response time and reliability.

This plot conveys the intuition that higher
response times and lower reliability correspond
to lower costs, whereas peaks in cost are reached
with the lowest failure rates and response times.

Although these approaches are informative
and can help architects to understand what spe-
cific configurations might work well in a given
situation, they do not facilitate understanding
what design decisions influenced these trade-
offs. Determining to what extent improvements
on qualities are a function of the choice of a
specific service implementation, the topological
arrangement of the composition, or the value of
configuration parameters is something that cannot
be addressed with such existing approaches.
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Figure 8: Network virus infection results

6.1.2 Tele-Assistance System (TAS). The goal of the TAS exemplar
system [52] is tracking a patient’s vital parameters to adapt drug
type or dose when needed, and taking actions in case of emergency.
TAS combines three service types in a work�ow. When TAS receives
a request that includes the vital parameters of a patient, its Medical
Service analyzes the data and replies with instructions to: (i) change
the patient’s drug type, (ii) change the drug dose, or (iii) trigger an
alarm for� rst responders in case of emergency. When changing
the drug type or dose, TAS noti�es a local pharmacy using a Drug
Service, whereas� rst responders are noti�ed via an Alarm Service.

The following excerpt shows the TAS work�ow modeled as a
signature in which static� elds correspond to service bindings, and
its behavior speci�cation de�nes a set of local variables that keep
track of the work�ow status:
one sig TASWorkflow {MSBindings: some MedicalAnalysisService, ...}
</ enum tasks:{notSelected, getVitalParams, buttonMsg};

enum analysisResultTypes:{none, patientOK, ..., sendAlarm};
var task:[tasks] init notSelected; ...
var MSInvoked, ..., workflowOK, workflowDone : bool init false;
[pickTask] (task=notSelected) -> //PickTask

0.5: (task�=getVitalParams) + 0.5: (task�=buttonMsg);
[] (task=buttonMsg) & (!MSInvoked) ->

(MSInvoked�=true) & (analysisResult�=sendAlarm);
[MSBindings:analyzeData] (task=getVitalParams) & (!MSInvoked) ->

(MSInvoked�=true); //PickTask selected getVitalParams
[MSBindings:analysisResultPatientOK] (MSInvoked) ->

(analysisResult�=patientOK) & (workflowOK�=true)
& (workflowDone�=true); ...
[MSBindings:analysisResultSendAlarm] (MSInvoked) ->

(analysisResult�=sendAlarm); ...
[MSBindings:timeout] (timeouts=0) & (MSInvoked) ->

(workflowDone�=true); ... />

Calls to service operations are pre�xed by the service binding
relation (e.g., analyzeData is pre�xed by MSBinding), so that the
actual binding between the work�ow and the services will be auto-
matically created by the tool when con�gurations are generated.

The functionality of each service type in TAS is provided by third
parties with di�erent levels of performance, reliability, and cost.
The metrics employed for the quality attributes are the percentage
of service failures for reliability, and service response time for
performance. Service providers can be created as abstract signatures
that encode these attributes as formulas, and include a constraint
to include a binding on the service side to the work�ow:
abstract sig ServiceProvider {WorkflowBinding: one TASWorkflow}
fact {all sp:ServiceProvider, w:TASWorkflow |

sp in w.ServiceBindings <=> w=sp.WorkflowBinding}
</ formula failure_rate, response_time, cost; />
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Figure 9: TAS analysis results

Service providers are subtyped by the types of service involved
in the composition. Service invocation includes two probabilistic
outcomes that model the possibility of service failure:
abstract sig MedicalAnalysisService extends ServiceProvider {}
</ var serviceOK: bool init false;

var ready : bool init true;
[WorkflowBinding:analyzeData] (ready) ->

failure_rate: (serviceOK�=false) & (ready�=false)
+ 1-failure_rate: (serviceOK�=true) & (ready�=false);

[WorkflowBinding:analysisResultPatientOK](!ready) & (serviceOK) ->
(serviceOK�=false) & (ready�=true); ...

reward costRew [WorkflowBinding:analyzeData] true : cost;
reward timeRew [WorkflowBinding:analysisResultPatientOK]

true : response_time; />

Every concrete service extends a service type encoded with a set
of attribute values. The use of the quanti�er lone indicates that the
use of every instance is optional, giving� exibility to use alternative
services of the same type in the composition:
lone sig MS1 extends MedicalAnalysisService{}
</ formula failure_rate=0.06, response_time=22, cost=9.8; />

Finding an adequate design for the system entails understanding
the tradeo� space by� nding the set of system con�gurations that
satisfy: (i) structural constraints, e.g., the Drug Service must not be
connected to an Alarm Service, (ii) behavioral correctness proper-
ties (e.g., the system is eventually going to provide a response –
either by dispatching an ambulance or notifying a change to the
pharmacy), and (iii) quality requirements, which can be formulated
as a combination of quantitative constraints and optimizations, e.g.:
(R1) The average failure rate must not exceed fr %, (R2) The aver-
age response time must not exceed rt ms, and (R3) Subject to R1
and R2, the cost should be minimized.

We can automatically search the design space to� nd the best
legal con�gurations with respect to these requirements by checking
the composite M-PCTL property constrained_mincost:

reliable ⌘ SallPfr[F some TASWorkflow.workFlowOK]
performant ⌘ SallRtimeRew

rt [F some TASWorkflow.workFlowDone]
mincost ⌘ minRcostRew[F some TASWorkflow.workFlowDone]

constrained_mincost ⌘ hreliable \ performanti mincost

The formulas labeled as reliable and performant obtain the set of
con�gurations that satisfy the reliability and performance require-
ments R1 and R2, respectively. Then, we can quantify the minimum
cost entailed by these joint requirements by scoping the quanti�-
cation of the third property mincost to the subset of designs that
satisfy the� rst two properties. For obtaining the con�guration(s)
that minimize cost for the speci�ed performance and reliability
levels, we substitute the quanti�er in mincost by SminR.

Figure 9 shows analysis results. The plot on the left shows the
minimized cost of con�gurations for di�erent levels of constraints
on response time and reliability. It was computed by checking
property constrained_mincost in the region of the state space in
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Figure 1. Quality tradeoff spaces: (a) software architecture, (b) smart manufacturing.

Robot Mission Planning

Robotic systems often rely on mission plan-
ning components that plan an optimal high-level
mission such as the navigation route for a mobile
robot. Different plans may result in different
tradeoffs between properties such as travel time,
safety, and privacy.

There exists a variety of mission planning
algorithms and solutions. A problem for human

end users is that for realistic maps, it is not always
trivial to see why a certain plan was chosen and
is optimal with respect to a given set of quality
attributes. Human end users might be asked to
indicate the priorities of quality attributes, but
cannot always see how the prioritization affects
the generated plans.

Although some existing approaches for mis-
sion planning support an investigation of the
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tradeoffs among quality attributes (e.g.,[11]), they
do not streamline the process to let the decision
maker focus on key decisions and systematically
investigate how quality attributes impact each
other in detail.

Company and Open Source Contexts

We collected data from several open source
and industrial projects. For the software
architecture example, we used the open-
source Tele Assistance System (TAS)a. The
open-source system is based on a real-
world service-based system. It has been de-
veloped by members of the research com-
munity on self-adaptive systems and used
for various example purposes.
For robot mission planning, we have used
examples in which robotic systems opti-
mize their travel plans for multiple quality
attributes such as a robot in a building on
campus. We also draw on our experience
in projects such as the DARPA Build-
ing Resource Adaptive Software System’s
(BRASS) program.b

For the example of smart manufacturing,
we have been collaborating with the com-
pany Lockheed Martinc over the course of
several years through the Manufacturing
Futures initiative at Carnegie Mellon Uni-
versity.

ahttps://www.hpi.uni-potsdam.de/giese/public/
selfadapt/exemplars/tas/

bhttp://www.cs.cmu.edu/∼brassmars/
chttps://www.lockheedmartin.com/en-us/capabilities/

advanced-manufacturing.html

Smart Manufacturing
When manufacturing three-dimensional ob-

jects (e.g., a bracket for a bicycle), it is common
that multiple manufacturing techniques can be
used to produce parts that satisfy a set of phys-
ical requirements. For example, it is possible to
use additive manufacturing (a technique similar
to a 3D printer), and subtractive manufacturing
(in which parts are removed from a block of
material) to arrive at the final product. The two
techniques require different materials in powder
form or in a block, and they come with different
tradeoffs. In Figure 1b, the analysis of process

plans generated by a CAD prototype tool for
smart manufacturing is shown. The one at the top
is a 2-axis machining process plan that relies on
subtractive manufacturing, whereas the process
plan at the bottom is a process plan for metal
additive manufacturing. These two plans are two
examples in the manufacturing design space that
is shown at the center. The process plan at the top
comes with a lower cost, lead time, and maximum
displacement than the additive process plan at the
bottom.

Also, in practice, large production companies
often collaborate with multiple suppliers who can
manufacture customized parts. For example, some
techniques lead to a more robust product than oth-
ers. Different suppliers can take more or less time,
have different cost models, and different sets
of machines. Manufacturers now struggle with
understanding how different production options
affect tradeoffs among qualities such robustness,
time and cost.

Our Approach: Quality Tradeoff
Explanation via Dimensionality
Reduction

When making decisions about which architec-
ture or plan to choose that trade-off different qual-
ities in a given domain, a decision-maker must
understand the consequences of those decisions,
but they must focus on the qualities that are most
important. To do this, we propose quality tradeoff
explanation via dimensionality reduction (Fig-
ure 2), an approach in which problem descriptions
jointly specified by domain experts and decision
makers are employed to produce explanations
of quality tradeoffs (solution classes, decision
and quality variable relations and influence on
solution variability, identification and impact of
key decisions on quality attributes) that contribute
to a better understanding of the decision space.

Domain experts (persons who possess knowl-
edge in a particular area not necessarily available
to decision makers) produce problem specifica-
tions that capture the main concepts of the do-
main and their relations (input I1) such as soft-
ware components and connectors in a software
architecture, or robot/world states and actions
in mission planning. Problem specifications are
complemented by a set of quantifiable quality
attributes (I2) that capture different dimensions
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Figure 2. A diagram illustrating the quality tradeoff explanation approach.

of concern in the quality space, such as cost,
performance, and safety. An additional, optional
input to the process (I3) is provided by decision
makers and consists of a set of quality objectives
and constraints that result from the formalization
of quantitative requirements on quality attributes
(e.g., “maximum response time must be under
1000ms”, or “the energy consumed during the
robot’s mission should be minimized”). In some
cases, e.g., when objectives are defined in terms
of utility maximization, these can be accompanied
by a specification of the priorities of decision
makers, which capture the relative importance of
the satisfaction of constraints and objectives. Our
approach, however, is agnostic to the decision-
making strategy, which can make use of alterna-
tives such as utility theory (applied in our work
on software architecture and automated plan-
ning), and satisficing, i.e., choosing solutions that
achieve at least a minimum level of acceptability
(applied in our work on smart manufacturing).

Problem Space Exploration
All the inputs (I1-I3) are employed by prob-

lem space exploration (S1), the first stage of
our approach in which a set of solutions is
automatically generated from problem specifica-
tions. The strategies and techniques employed to
explore the problem space can vary depending
on the situation, but two key requirements for
them are that they: (i) must be able to produce a

significant number of solutions to enable building
a large enough dataset (e.g., to comply with the
ten times rule [2]), and (ii) must be able to
quantify the quality of solutions along the dif-
ferent dimensions of concern. Although multiple
techniques can satisfy these requirements, auto-
mated approaches to solution generation based on
quantitative formal verification have worked well
when applying our approach to several areas. In
our work on architectural space exploration [7],
we employed techniques that combine structural
synthesis and quantitative verification to analyze
quantitative formal guarantees across the archi-
tectural design space [4], [5], whereas in our
work on automated planning [14] we employed
the probabilistic model checker PRISM [9] to
synthesize plans for service robot missions as
policies for Markov decision processes. For smart
manufacturing we use automated computer-aided
design (CAD) and computer-aided manufacturing
(CAM) tools, coupled with automated schedulers.

Data Extraction and Filtering
Our approach requires data filtering and ex-

traction at different stages of the process (S2,
S4). In S2, filtering is required to select a relevant
subset of variables and leave out characteristics
of solutions and quality metrics that are not
of concern to the problem at hand, whereas
data extraction is related to how information
from solutions and their qualities can be repre-
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sented as data points in data frames suitable for
use with clustering and dimensionality reduction
techniques (S3), as well as with DTL (S5). In
architecture design, for instance, solutions (which
correspond to architectural configurations) have
to be encoded in dataframe rows as a set of
variables that capture, e.g., the presence of spe-
cific components in the configuration and their
properties, the existence of attachments between
specific component ports, or the value of con-
figuration parameters. In contrast, in automated
planning, plans for service robot missions have
to be encoded e.g., in terms of which actions
(or sequences thereof) are employed by plans,
reachable world states, and so forth. Filtering and
extraction require awareness about the semantics
of the data being manipulated, and hence require
input both from domain experts and decision
makers. Filtering is also used later in the process
(S4) to identify relevant variable correlations for
DTL, as discussed below.

Clustering and Dimensionality Reduction
In high-dimensional spaces, dimensionality

reduction techniques like PCA [8] can be lever-
aged to identify correlations between variables
in large datasets and indicate how variables
contribute to the differences in solutions. The
technique involves computing so-called principal
components (PC), which are linear combinations
of the original variables that explain the variance
in the data in decreasing order (i.e., the first PC or
PC1 carries the most information regarding dif-
ferences between samples, PC2 explains the most
variance not covered by PC1, and so on). The
output of PCA includes: (i) the percentage of total
variance of the dataset explained by each PC, (ii)
correlation loadings, which describe how much
variables contribute to explained variance, as well
as their correlations, and (iii) scores, describing
properties of the samples. In our approach, we are
mainly concerned with variances and loadings,
focusing on how much information is explained
by the principal components (O2.2) and how
variables are related to each other (O2.1). In
some cases, Multiple Correspondence Analysis
(MCA) can complement or be used as an alter-
native to PCA when most of the variables are of
a categorical nature, although numerical variables
are also supported. Figure 3a shows a PCA cor-

relation loadings plot for the system in Figure 1a,
where points in the same quadrant represent pos-
itively correlated variables (e.g., cost, reliability,
and the selection of service implementation AS3),
whereas points that form an angle greater than 90
degrees are negatively correlated (e.g., selecting
AS3 with response time).

Clustering is concerned with making sense of
data by categorizing data points (i.e., solutions)
into collections that share similarities (O1). Our
approach employs a widely used clustering tech-
nique (k-means clustering) that involves discern-
ing k clusters, and in which each data point is
allocated to the cluster with the nearest mean.
We apply k-means clustering in combination with
PCA and MCA [13], [10] for retaining as much
variance as possible in as few dimensions as pos-
sible, while calculating and describing clusters of
solutions in the data. Reasoning about solutions
in terms of clusters is helpful for humans to
understand patterns and characteristics of differ-
ent categories of solution. Figure 3b shows an
example plot depicting different clusters of robot
mission plans [14], where C1 prioritizes privacy,
C2 prioritizes safety and collision avoidance, and
C3 prioritizes travel time at the expense of other
quality attributes.

Decision Tree Learning
Decision tree learning [3] (S5) is a supervised

learning technique used in statistics, data mining,
and machine learning that allows predicting the
value of a target variable selected by the user,
based on other variables’ values. DTL can be
used to grow both classification trees (to predict
categorical values) and regression trees (to predict
numerical values), and is particularly useful in
contexts that involve complex datasets with high
dimensionality and heterogeneous data types. In
our approach, we leverage the insights provided
by PCA/MCA to inform the target variable se-
lection (S4) because variables that are of rel-
evance to explain the variance in the data are
good candidates as target variables to explain the
impact on qualities of choices associated with key
decisions. DTL receives as input both the data
frame produced in S2 and the set of relevant
variables identified in S4, and produces a set of
decision trees that link concrete threshold values
of design variables with impacts on qualities (O3)
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that decision makers can use to inform their
decisions.

Figure 3c shows a decision tree for the smart
manufacturing example that predicts the cost of
the manufactured part. It shows that if the nom-
inal time is high and the used machine is not
a 3-axis or printer, the cost is at its highest
level. On the contrary, cost is at its lowest if the
manufacturing process is fast and the generated
mass is high. These insights indicate that the most
important variable for cost is the time that the
production process takes: the faster the process,
the cheaper the part.

Closing the Loop: Iterative Use of the Approach
The explanation artifacts produced as outputs

of the approach are to be consumed by decision
makers, who can then employ newly acquired
insights about quality tradeoffs to refine their
inputs (i.e., objectives, constraints, priorities) in
subsequent iterations of the process. For example,
if we look at Figure 3c, we can observe that cost
is lowest if the manufacturing process is fast and
the generated mass is high. If the decision maker
wants to minimize cost, they can look at these
plots and change the input parameters to focus
on low-cost solutions in further iterations.

Lessons Learned when Applying
Explainability Techniques

Our lessons learned focus on (i) solution
generation, (ii) information needs that can be
met using our approach, and (iii) concerns when
applying the approach in a real-world setting with
changing needs.

Solution Generation
The use of our explainability approach is

largely facilitated by the improving mechanisms
for automatic space exploration (step S1 in Fig-
ure 2) such as automated planners and design
generators. We observed that the more complete
the space exploration is, the better the results are.
Consequently the chief performance cost is in the
generation of points in the design space, and not
running the explainability techniques.

When generating solutions for different appli-
cations, we might have different variables and
datasets depending on the aspects we want to
investigate. They could be connected to priorities
of different quality attributes or to the general
properties of the solution domain. In our ex-
amples, we focused on quantifiable quality at-
tributes, which implied that PCA was an adequate
technique. When dealing with mostly qualitative

7



quality attributes, such as usability, it might be
necessary to rethink how data can be represented
with categorical variables and focus on MCA.

Depending on the decision makers’ interests
and design processes, the approach can be used to
start with a narrow space that can be expanded if
needed or on a large space that can be iteratively
restricted. Those two approaches require different
methodologies. For example, when working in the
domain of manufacturing, we found that require-
ments may initially be unclear and stakeholders
need to hypothesize what are important variables.
In this case our approach becomes a useful tool
to explore and refine requirements.

Information Needs
Information needs at different points in time

might change. In initial phases, decision mak-
ers can use our approach to understand what
properties of solutions make a difference to the
outcomes. Decision makers might wonder: What
decisions do (not) matter? How does a variable
impact others?

In later phases, as designers explore a design
space, they might have thresholds or constraints
in mind. Decision tree learning is particularly use-
ful for exploring those thresholds and analyzing
the feasibility of constraints. For practitioners,
it can be difficult to tell which constraints are
crucial and which ones can be relaxed. Depending
on what properties of the problem space a stake-
holder cares about, their solution space might
be different. It is often desirable to explore the
design space and problem space at the same time.

Real-world Applications and Changing Needs
In most real-world settings there is a cost of

change. Our approach accounts for change by
supporting the interactive exploration of solution
spaces. When selecting solutions, it can be useful
to keep changing needs in mind and explore
alternatives to a given solution. For example, if
we consider a given manufacturing process plan,
it can be desirable for operators not to change
the machine settings too much, but operate similar
machine types and processes. This concern should
be taken into account when exploring solution
spaces and thresholds using decision tree learn-
ing. Choosing a solution that is close to a thresh-
old may imply a radical change to the design will

be needed if requirements or information (e.g.,
the cost of materials for manufacturing) changes.

Changing constraints or requirements comes
at a cost. To generate solutions, we ran algorithms
that employ, among other things, the priorities
of quality attributes. Depending on what qual-
ity attributes are considered important, different
solutions are obtained. It would be necessary to
rerun the space exploration if a constraint or
quality attribute were removed. As an alternative
strategy, one could sample different combinations
of parameters and not encode the priorities of
quality attributes. That strategy would lead to
potentially suboptimal solutions but a broader
exploration of possible solutions. The selection
of how broadly one wants to sample depends
on the questions that the stakeholders want to
get answers to. If we sample only optimal plans,
we can understand how the priorities of quality
attributes impact those plans. If we sample also
suboptimal plans, we can understand the general
tradeoffs within the solution space.

Focusing on What Matters
Decision making during the construction and

operation of software-intensive systems is a com-
plex task that involves exploring large quality
tradeoff spaces made up of large numbers of
variables and complex relations among them.
Understanding such decision spaces is often over-
whelming to human decision makers, who have
limited capacity to digest large amounts of in-
formation, making it difficult to distinguish the
forest through the trees. In this article, we have
reported on our experience in which we used
dimensionality reduction techniques to enable de-
cision makers to focus on what matters, i.e., on
the elements of the decision space that explain
most of the variation, filtering out noise, and thus
reducing cognitive complexity. This represents
a meaningful step forward because existing ap-
proaches to analyze quality tradeoffs in decision
spaces (e.g., in software architecture) were able
to yield large sets of (potentially optimal) point
solutions, but they could not provide the kind
of insights that decision makers can obtain when
the main variables, relations, classes of solution,
and impact of decisions on qualities are clarified
and dissected for them. There is still a long
road ahead in which, beyond further evaluation
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to validate the performance and user experience
of our proposal, we envisage the extension of
this class of approach to include more intuitive
domain-specific visualizations, to be able to study
evolving phenomena (with application to e.g.,
autonomous systems), and to deal with highly
non-linear systems. We believe that pursuing
approaches that share the same philosophy can
provide a significant contribution to many profes-
sionals in future software development endeavors.
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