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Abstract

Rainbow is a framework for engineering a system
with run-time, self-adaptive capabilities to monitor,
detect, decide, and act on opportunities for system im-
provement. We applied Rainbow to a system, Znn.com,
and evaluated its effectiveness to self-adapt on three
levels: its effectiveness to maintain quality attribute in
the face of changing conditions, run-time overheads of
adaptation, and the engineering effort to use it to add
self-adaptive capabilities to Znn.com. We make
Znn.com and the associated evaluation tools available
to the community so that other researchers can use it
to evaluate their own systems and the community can
compare different systems. In this paper, we report on
our evaluation experience, reflect on some principles
for benchmarking self-adaptive systems, and discuss
the suitability of our evaluation tools for this purpose.

1. Introduction

Increasingly, systems have the requirement to self-
adapt with minimal human oversight. They must cope
with system errors, variable resources, and chgngin
user priorities, while maintaining as best as tbey the
goals and properties envisioned by engineers and e
pected from users. However, self-adaptation inysda
systems is costly to build, often taking many man-
months to develop or retrofit systems with the tépa
ties. Moreover, once added, the capabilities affe di
cult to modify and usually provide only localize

treatment of system errors.

We are investigating an approach that makes it pos-
sible for engineers to easily define adaptatioricped
that are global in nature and take into considemnati
business goals and quality attributes. In particulse
require that engineers be able to augment existysg
tems to be self-adaptive without needing to rewrite
them from scratch, that self-adaptation policies be
reused across similar systems, that multiple ssuote
adaptation expertise can be synergistically conthine

and that all of this can be done in ways that stippo
maintainability, evolution, and analysis.

Our approach to self-adaptation uses architecture-
based techniques combined with control and utility
theories. Monitored properties of an executing eyst
are reflected in an architecture model. The archite
model enables automatic reasoning about appropriate
changes to improve quality-of-service in the targest-
tem. Utility theory is used to analyze tradeoffsoas
quality dimensions and select an appropriate atiapta
strategy. Changes are then effected in the system,
which is reobserved in a closed-loop form of cantro

We evaluated Rainbow’'s effectiveness in adding
self-adaptation to an existing system in two wa{3:
How effective was Rainbow at adapting a system to
meet stated quality and business goals? (2) Howhmuc
effort was required to engineer adaptation usintn-Ra
bow? To conduct the evaluation we designed and de-
veloped a web-based information system, Znn.com, to
mimic real world systems, and an experimental envi-
ronment to facilitate evaluation. In building Znone
and making it amenable for evaluation, we developed
tools to (1) monitor and effect changes on the &wm.
system, (2) provide interfaces for Rainbow to ghig;

(3) produce an environment in which we could inject

Xproblems that need repairing; and (4) record thebe

ior of Znn.com both when self-adaptation is applied
and when not. We were able to show that Rainbow was
effective in adapting the system to meet statedsgoa
and that we could do so with considerably lessreffo

d than engineering a system to do the same fromcécrat

Although numerous example and case-study systems
have been proposed, researchers in the self-adaptiv
systems community generally lack a common bench-
mark to evaluate the effectiveness of their tealesq
and to compare their work to others’. Our evaluatio
experience yields a system and a suite of toolscta
be used for such a purpose. We make the Znn.com sys
tem and associated tools available to the commuasity
a benchmark tool suite.

In this paper, we describe how we evaluated Rain-
bow using the Znn.com experimental platform and re-



port our evaluation results. We then consider te r

3. The Rainbow Approach

quirements needed for a good benchmark environment

that will allow comparison with other self-adaptive
systems, and reflect on how our experimental platfo
meets those requirements.

2. Related work

IBM's Autonomic Computing initiative tackles

Rainbow [4],[7] focuses on two means of achieving
cost-effective self-adaptation: an approach andhaec
nism to reduce engineering effort and an expligre-
sentation of adaptation knowledge. It provides a
framework of mechanisms tmonitor a target system
and its executing environment and reflect obseouati
into an architecture modetjetect opportunities for

challenges of emergent autonomic behavior with the improvementsdecide on a course of adaptation, and

MAPE control loop — to_mnitor, analyze, fan, and
execute changes for self-management [16]. Their-tool
kit provides tools to diagnose problems and enginee

effect changesaft). Leveraging the notion @frchitec-
tural style [1] to exploit commonality between systems,
Rainbow provides general, reusable infrastructures

autonomic systems [14]. Rainbow can be viewed as anwith explicit customization points to apply it tovade
instance of MAPE in which the shared Knowledge baserange of systems. It also provides useful abstastto

consists of an explicit architecture model, a raper
of adaptation strategies, and utility preferences.

focus engineers on adaptation concerns, facilgaits
systematic customization to particular systems. To

To date, several dynamic software architectures andautomate system adaptation, it provides a language,
architecture-based adaptation frameworks have beerdtitch, to represent routine human adaptation knowl
proposed and developed [3],[22]. Related approachesedge using high-level adaptation conceptstiafiegies,

focus on formalism and modeling, mechanisms of ad-

aptation, or distribution and decentralization ofitcol.
These include Darwin withrecalculus semantics to
specify distributed systems [17], ArchWare withtarc
tectural reflection and dynamic co-evolution [20],
Weaves for construction and analysis of data-flge+ s
tems [9], Willow for survivable systems [27], ArcfaS
dio for self-adaptation of C2 hierarchical publish-
subscribe systems [5], Plastik targeting performeanc
properties [2], CASA for resource availability cengs

in mobile network environments [21], and CR-RIO for
architectural reconfiguration usingontracts [25].

These approaches share a few common characteristics
They generally apply closed-loop control and use an

architecture model to reason about the target rsyste

However, whereas most approaches assume certain

structures in the target system and adapt forexdfset
of quality attributes, Rainbow is generic to arebitiral
styles and handles multiple objectives. Surveysof
isting self-adaptive systems, not limited to arh#ec-
ture-based approach, can be found in [6] and [12].

Various autonomic systems have been evaluated in

specific domains, e.g., database optimization [h8};
work server provisioning [23], and workload opti@aniz
tion in web servers [24]. Many of these evaluations
focus on performance and overhead, but some als

these in [19]. Our evaluation of Rainbow focuses on
quantifying success in meeting quality-of-servioalg
and the overhead of running the infrastructure,ctvhi
are two of the criteria discussed by McCann. Ini-add
tion, we consider the engineering cost of applytimg
framework to an existing system.

0
evaluate other criteria. McCann summarizes nine of &

tactics, andoperators.

3.1 Customizable Self-Adaptation Framework
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Figure 1. The Rainbow framework

The Rainbow framework (Figure 1) uses a compo-
nent-and-connector architecture model of the target
system to monitor the system and reason about appro
priate strategies. The monitoring mechanisms in the
Translation Infrastructure — probes and gauges — ob
serve the running target system and update pregerti
of an architecture model managed by thedel Man-
ger. The Architecture Evaluator evaluates the model
upon update to ensure that the system is operating
within an acceptable range, as determined by ttig-ar
tectural constraints. If the Evaluator determiries the
system is not operating within the accepted raiitge,
triggers theAdaptation Manager to initiate the adapta-
tion process. The Adaptation Manager chooses a suit



able strategy based on current states of the syatem illustrated in Figure 2. Znn.com uses a load balano
reflected in the model. Therategy Executor executes  balance requests across a pool of replicated semer
that strategy on the running system via systemtleve size of which can be manually adjusted to balance
effectors. Rainbow is customizable to different do- server utilization against service response timesetof
mains: The architecture model of the target systesa client processes makes stateless content requests f
tomizes the Model Manager. Architectural constsgint one of the servers, the servers deliver statis fieg.,
related to business objectives to adapt for, cugemm images and videos), as well as dynamic content, (e.g
the Architecture Evaluator. Style operators andrthe news populated from periodically-updated sources).
mappings to target-system effectors customize the
Strategy Executor. Finally, utility preferences aad
repertoire of strategies with their associated -cost
benefit impacts customize the Adaptation Manager.

This customizable self-adaptation framework has a
number of advantages. Providing a substantial base
reusable infrastructure greatly reduces the costesf
velopment. Customization mechanisms allow engineers
to tailor the framework to different systems wittar-
tively small increments of effort. In particulahet tai-
lorable model management and adaptation mechanisms
give engineers the ability to customize adaptation
address different properties and quality conceans
to add and evolve adaptation capabilities. Furtioeem
a modular adaptation policy language allows enggee
to consider adaptation concerns separately and the
compose them in the context of a specific system.

Rainbow makes adaptation decisions using two
kinds of models. The architecture model reflects ab
stract, run-time states of the target system itSetie
environment model provides contextual information
about the system, including its executing enviromme
and computational resources. o

The core Rainbow framework is implemented in (C) content fidelity. . .

Java. Elements below the translation layer mayne i Performance analysis suggests we monitor the re-

; : . uest-response time, server load, and connection
plemented in a language or script of choice, bustmu q : ! p :
conform to the framework's probe and effector com- bandwidth of the system. Cost analysis identifies t

munication protocols. At run time, Rainbow Master number of active servers as the primary contribtdor

instantiates the Architectural-Layer elements shawn C_OSt_; hence we mon|t_o ' the_ server count. For conten

Figure 1. ARainbow Delegate is deployed on each fldell_ty, we characten_ze c_ilfferent I_evels of c_c_mte

computing node of the target system to manage probe ranging from f%*” m“'“”?ed'a to static text, assng

gauges, and effectors on that node. An event bais co three levels (h|g_h, m?‘d'“m’ and Iow)_. The major- ele

dinates communication between Master and Delegates.ments of the N-tier-client-server architecturallestior
We now describe our benchmarking system, ZM-COm include:

Figure 2. The Znn.com system architecture

Typical of news provider concerns, our quality ob-
jective for Znn.com is to serve news content tccits-
tomers within a reasonable response time, whilg-kee
ing the cost of the server pool within a certairerg-

|%ng budget. From time to time, due to highly popula
events, Znn.com experiences spikes in news requests
that it cannot serve adequately, even at maximuah po
size. To prevent losing customers, we opt to serve
minimal textual contents during such peak timebein

of providing zero service to the customers. In shoe
identify three quality objectives for the self-atitpn

of the Znn.com system: (A) performance, (B) cost a

Znn.com, that we used to evaluate Rainbow. * Types: ClientT, ServerT, ProxyT, HitpConnT
* Properties: ClientT.experRespTime, ServerT.cost /
3.2 TheZnn.com System load / fidelity, HttpConnT.bandwidth
e Operators: ServerT.activate() / .deactivate() /
The typical infrastructure for a news website like .setFidelity(level : int)

cnn.com and rockymountainnews.com has a three-tier The ServerT.activate() operator activates a ServerT
architecture consisting of a set of applicatiorvess  instance, while the deactivate() operator deactivitt
that serve contents from backend databases totlien The ServerT.setFidelity(level : int) operator séis
via frontend presentation logic. The Znn.com system server content fidelity to the level identified the in-
imitates such a setup. Architecturally, it is a vibatsed put parameter. Using these operators, we Spe(ﬂﬁed
client-server system that satisfies an N-tier stge pairs of tactics with opposing effects. One pailisés



(1) or discharges (2) servers while the other pEgses
(3) or lowers (4) the server content fidelity. Ifieet,
these tactics allow the service level of the Znmco
system to be stratified into gradients that traffethe
various objectives. The following example illusest
how these tactics might interact:

When response time is high, objective A (above)
suggests that Znn.com should increment its servet p
size (using tactic 1 above) if it is within budgether-
wise, Znn.com should switch the servers to textual
model (using 4). When the response time is lonweobj
tive C suggests that Znn.com should decrement its
server pool size (using 2) if it is near budgetitirab-
jective B suggests that Znn.com should switch the
servers to multimedia mode (using 3) if they aré no
already in that mode. When the response time ihén
normal range, objective B suggests that Znn.com
should switch the servers to multimedia mode ifythe
are currently textual, while the server pool sizaym
either be incremented to decrease response timecsr
remented to reduce cost.

We have further defined four adaptation strategies
from these tactics, with juxtapositions that alleys-
tem adaptation to balance the overall objectives:

SimpleReduceResponseTime: When any client

directly upon how costly it is to use and how wek
resulting system self-adapts. Consequently, evialyat
the effectiveness of Rainbow requires showing that:

1. The Rainbow-customized target system self-adapts
to provide improved overall utility
Self-adaptation incurs low run-time resource over-
head, and

3. The effort required to tailor Rainbow to the target

system is significantly lower than developing the
self-adaptive capabilities from scratch

We evaluated Rainbow on five example systems, the
details of which are found in Cheng’s dissertafiéh
In this section, we present the Znn.com evaluatiata
to show how it satisfies the three criteria.

4.1 Show that Znn.com |Is Self-Adaptive

To evaluate the effectiveness of Rainbow's self-
adaptation on a news website, we built the Znn.com
system using open-source, commercial software. We
“Slashdot-effect” experiment on Znn.com.

The setup consisted of a pool of four typical Intel
(~1 GHz) machines, each running a Debian-flavor
Linux operating system, configured with an instante
the Apache webserver. A fifth machine ran a load ba

experiences a response time above thresholdgncer 1o forward incoming requests in a round-robin

lower content fidelity one step, then lower fidglit
again if response time is still above threshold.
SmarterReduceResponseTime: hebe the count

of clients experiencing above-normal request-
response time; if exceeds a tolerable percentage
of total, enlist a server, then enlist another serv
then lower the fidelity one step, then repeat &st |
sequence twice until successful.
ReduceOverallCost: When the total server cost

exceeds a threshold value, discharge up to four -

servers, one at a time, until the cost is redueed b

low threshold.

ImproveOverallFidelity: When the average content

fidelity of the servers drops below a threshold

value, raise the fidelity level for all servers, tp

twice, until average fidelity rises above threshold
To summarize, the quality dimensions, architectural
element types and properties, and adaptation apsrat
tactics, and strategies together comprise theaattifto
customize Rainbow to Znn.com. We now turn to the
evaluation of Rainbow using Znn.com.

4. Evaluation with Znn.com

The objective of the Rainbow research is to enable
software engineers to build self-adaptive systeost-c

effectively. Hence, the success of Rainbow depends

fashion to any active server among the four. Twdi-ad
tional machines were set up to act as the cliersisg
Apache JMeter, a Java application for testing web a
plications and measuring their performance, to kiteu
request loads from multiple clients.

Slashdotting of ~mjuric/universe on Jan 1 2th 2004
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Figure 3. Graph of actual, peak-day traffic of a
site experiencing Slashdot effect



To perform the experiment, we designed a workload
that is characteristic of 8ashdot effect visitor traffic
profile, based on a sample collected by ~mjuric and
shown in Figure 3 [15]. Due to the resource-dentamdi
nature of the Slashdot effect, an adaptation tlasd
not quickly offset the sudden rise in demand for re
sources would not be effective. Therefore, theiahit
sharp rise in traffic entails the critical duratiohinter-
est for our experiment purposes. For measurement pu
poses, we choose to observe a sustained duratiem af
the initial rise to make sure that any effectiveatd-
tions remain effective for a reasonable amountroét
In lieu of 12 to 18 hours of actual traffic, we feabed
our traffic profile after the ~mjuric profile, sea down
to one hour (12:1) but kept at a similarly highitviate:
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We constructed this workload in JMeter, using a

Gaussian random timer between requests. We then de °*

ployed this workload on two JMeter instances toegen
ate the news reader traffic for our Znn.com example
Finally, we devised the following trial types tosass
Rainbow’s effectiveness at adapting Znn.com. Fehea
trial type, we performed five runs to smooth statita
anomalies and to yield consistent outcomes:

1. Control runs without Rainbow adaptation — to es-
tablish baseline and comparison envelopes
2. Experimental runs with Rainbow adaptation
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Figure 4. Znn.com experiment data
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Figure 5. Instantaneous and accrued utility

For every run, we collected statistics on the total
number of samples, response latencies, request
throughput, and any errors. We also tracked theseor
sponding cost and content fidelity values to comput
accrued utility and provide a complete picture tod t
tradeoff space as defined by the overall objectives

Figure 4 shows a graph for two experiment runs,
control (red) versus adaptation using one simpigt-st
egy (green). For each run, the JMeter data taldesh
the total count of request samples, the statistfas-
guest-response time, and the net throughput. Téyehgr
plots the latency per request, and the small tabifa-
marizes how many requests yielded latencies abfve 1
seconds and 1 second. The data indicated that@mn.c
with Rainbow adaptation, in contrast to Znn.comhwit
out, yielded far lower latencies (902 of 1200, 64,
requests served within 1 second vs. 80 of 1200%6y
and better throughput (3¢<h Therefore, Rainbow was
effective at keeping user latencies low and marmggin
the Slashdot effect.



Figure 5 shows graphs of instantaneous utility (IU) gauges are reusable artifacts, so less effort wbald
and accrued utility (AU) for the two runs, whichdin required as more are developed. Furthermore, tier or
cate how well the system satisfied overall useeobj of magnitude of effort has greater significancenttize
tives. Each IU value is computed as the weighted su actual durations: most activities required on théeo

of utilities over the response time (0.50), contiéfel- of minutes to a couple hours, not days, while incre
ity (0.25), and cost (0.25) dimensions. At abouds86  mental changes required on the order of tens of min
after an initial period of chaos, the IUs in Znmtwith utes, not hours.

adaptation remain high compared to Znn.com without To compare this effort with building in adaptation
adaptation. The final AU values show a 33% improve- capabilities from scratch, we decomposed the self-

ment (1034 vs. 778) in Znn.com with adaptation. adaptation engineering process into four coarsiega
tasks — three development tasks and one evolution
4.2 Show that Resource Overhead IsLow tasks — and estimated the time to complete eadh tas

domain analysis, model capture, design and implemen-

Znn.com allows us to estimate overheads of adapta-ation, andupdates and modifications. As evidence, we
tion mechanisms by providing a baseline with which ~ gathered development-activity data from our case ex
compare the system before and after adding adaptati amples and performed exploratory analysis of hypo-
To get a baseline measurement, we measured CPU anfhetical custom-solution scenarios. To prevent shgw
memory usages solely with Znn.com components. Wethe comparison in favor of Rainbow, we made esti-
then compared them with the same measurements takgates that favored custom-solution wherever possibl
with the Rainbow Delegates deployed. For the custom-solution efforts, we assumed that

Resource overhead incurred by the Delegate wasdomain analysis done by a domain expert required th
minimal, consuming less than 2% of CPU (but occa- Same amount of time as with Rainbow, that modet cap
sionally sustained at ~5-10%) with ~2MB of memory ture generally required zero time (i.e., no modap-c
footprint. This overhead would be further reducible ture), that design and implementation by an expert
with optimization in implementation. Nevertheless, software developer team required a minimum of one
a computing node with highly constrained memory and man-month on top of the Rainbow-based time for de-
CPU resources, the adaptation engineer might choos¢eloping the monitoring and effecting capabilitiesd
to deploy only probes on the node and configure thethat each update and modification required onetquar

probes to report via neighboring Delegate nodes. the time required for design and implementation be-
cause of buried and dispersed adaptation logic.
4.3 Show L ow Customization Effort We can reasonably assume that, Rainbow or not,

similar probing and effecting mechanisms would have

While obtaining empirical metrics for any human- to be implemented into the target system, though pe
based engineering activity is often a complex pssce haps with a simpler reactive mechanism created in
(inv0|ving many test SUbjeCtS, deve|opment Cond'ﬂio place of Rainbow’s architecture model and Adaptﬁtlo
etc.), it is often possible to obtain “order of magde” Manager. Also, we can reasonably expect that simila
comparisons with less effort. Znn.com allows thisdk ~ deployment and roundtrip debug efforts would be re-
of evaluation by facilitating a task-based estioratof ~ quired. Additional effort would be necessary foe th
efforts to engineer or retrofit adaptations. basic adaptation plumbing. Based on the Rainbow

To evaluate how long it took to customize Rainbow framework development experience, it took one exper
for Znn.com, we tracked our customization actigiie =~ Java developer over 2.5 man-months to design and
detail [4], summarized here. The customizationreffo implement the communication infrastructure and
including architecture modeling (using Acme), adapt Plumbing for the probes, gauges, and effectorsniive
tion scripting (in Stitch), and development andtites we assume simpler requirements in the case ofihgild
of probES, gauges, and effectors (m Per|’ Shelb]sc from SCTatCh, inCUrring 0n|y half the time of dmhg
and Java), accounted for a total of 93 hourS, er ap RainbOW, it would still y|e|d a total effort of merthan
proximately 2 1/3 work weeks. Of this, 13 hrs (14%) One man-month to add adaptation capabilities iheo t
were used to describe the model, 49 hrs (53%) to de target system. (In doing so, one would also lose-Ra
velop probes and gauges, 7 hrs (8%) to develog-effe bow's engineering advantages of architecture-level
tors, 21 hrs (23%) to compose adaptation scripis,3a modeling and analysis, separation of adaptation con
hrs (3%) to put together the customization filestN ~ cerns from system functionality, and flexibility to
that while the majority of the effort was spent elep- ~ €volve self-adaptation capabilities.)
ing monitoring capabilities, the resulting probexda



We treat the Znn.com system as an average-case tion in seconds over input size, and databases have
scenario due to its correspondence with typicali®-T throughput transactions per second
IT systems; for the Rainbow-based data, we estiinate « Ease ofextracting performance data from the sys-
about two weeks of domain analysis. While we do not tem and environment for conducting evaluation
have concrete data for a worst-case scenario, tire es
mated worst-case Rainbow-based development time to Specific to the area of self-adaptive systems, eee s
be an order-of-magnitude longer than the average.ca a number of additional requirements on the benckmar

In the worst-case scenario, a Rainbow instantiation system to facilitate comparison and contrast o el
has no reusable style, gauges, probes, and eBectorfeatures of self-adaptation:
from prior efforts. The adaptation engineer must-co
struct many elements from scratch, so the primdry a
vantage of Rainbow comes from the reusable frame-,
work. Thus, Rainbow-based initial development does ,
no better in the worst case than a custom solufian.
cording to our coarse-grained task estimation fofr &,
excluding the worst case, Rainbow yielded effokt-sa
ings of 2 to 5 times over custom solution for it
development of self-adaptation capabilities. Thiteea
Rainbow achieves additional savings of 6 to 1928m
or up to two orders-of-magnitude, over custom sofut
when evolving self-adaptation capabilities. Theropf
effort of engineering the generic Rainbow framework
accounts for the time savings over custom solution.

In summary, Rainbow makes Znn.com self-adaptive, *
incurs less than 5% resource overhead on averade, a
requires low customization effort on the order afsl
to weeks. We now make the case for using Znn.com as
a common benchmark system.

* Versatility to apply to a wide range of self-
adaptive approaches and application domains
Allow changing the systemlynamically

Support multiple qualitydimensions (trade-off),
e.g., availability, performance, reliability, seityr
Allow multiple adaptiveoperations, e.g., enabling

or disabling servers, altering connections, tuning
component parameters, quiescing processes
Provide multiplealternatives to achieve a single
operation, e.g., disabling a server by kiling a
process or powering down the machine, changing
content fidelity by swapping configuration files or
via an Apache plug-in

Provide multiple paths of systeoconfiguration to
achieve the same goal, e.g., increasing overall
throughput by adding servers followed by lowering
fidelity, or in the reverse order, or by some com-
pletely different sequence of operations.

Therefore, a useful benchmark system is relevant,
accessible, dynamically observable and changeable,
and versatile; supports alternative adaptive ofmerat
and multiple configurations; facilitates qualityade-
offs; and can be compared via a common metric.

5. What M akes a Good Benchmark?

While evaluating Rainbow, we realized that the
Znn.com system has the potential to serve as allusef
example for researchers in the community to compare
techmques. In this section, we enumerate a sgenf 5.2 Znn.com a Candidate Benchmark System?
eral requirements for a benchmark system, present
Znn.com as a candidate, and pose a number of bench-

) . . While any system that meets the requirements laid
mark issues for discussion.

out above may be a candidate benchmark system,
Znn.com is especially fitting because it is constied
from openly accessible software components, ahdst
potentially many controlled variations.

Znn.com has relevance. Assessed abstractly, the
Znn.com system contains important features of & rea
world problem: It mimics the infrastructure of aaku
news-provider services. Th8ashdot effect is a re-

5.1 Benchmark Requirements

When we consider computing benchmarks in areas
such as CPU [26], databases [10], and algorithril [1
we observe that a benchmark system, in generaljého
satisfy the following requirements:

* Relevance to real-world problems source allocation problem that occurs in real syste
» Accessibility of system components and codebase that lacks a perfect solution and also has impact o
that can be tested instandalone environment multiple quality dimensions, making it amenable to

» Capability to observe and change the system, by  self-adaptive techniques, especially those managing
mechanisms that range from changing componentmultiple objectives.
parameters to altering overall system configuration ~ Znn.com is built from open-source software that is
» Metrics for comparison, for example, CPUs have available for the major platforms, including Linux,
transistor count and MIPs, algorithms have dura- Mac, and Windows: the Apache Webserver, PHP, and



the MySQL database server. The supporting tooésuit across quality dimensions, for example, sacrifigumg

are also widely accessible, including Perl and &xlet the cost to reduce client-experienced response time
Out of the box, the software components do not di- just the content fidelity, or both cost and fidglit

rectly enable dynamic observation and change. For

those purposes, we constructed a suit@robes and Table 1. Quality dimensions and the corre-

effectors. We chose to probe some common system sponding probes and effectors

properties — CPU load, disk 1/O rate, and available

bandwidth between nodes — and a few domain-specific Dimension Probe Effector
properties — Apache status and server contentitfidel Client-experienced bcpg "?é"?{ htumsle:%’elr;
The probes to detect CPldad, bandwidth, and con- response time anawicth, |- changeFidelity,
S . . disklO'! | setRandomRejet
tent fidelity were implemented as Perl scripts. The Provisi " heT ums
Apache status probe was derived from the C program rovision cos apache’op urmn-erver
Content fidelity fidelity changeFidelity

apacheTop. Disk I/O was a portembstat program.

To effect changes in Znn.com, we developed a set
of Perl scripts to start or stop a server processi{ As our example demonstrated, the Znn.com example

Server), to alter the webserver content fidelity IS fich enough to provide for variety at three leve
(changeFidelity), and one to randomly reject client multiple adaptlve operations, multiple alternatlxies
requests (setRandomReject). To alter content figeli ©ach operation, and multiple paths of configuration
we defined three sets of webpages with high, megdium short, Znn.com meets eight of the ten requiremetts;

and low fidelity content, and wrote corresponditgpth ~~ d0€S not meet the versatility and metric requiremen
configuration files. Altering the fidelity consisteof Regarding the latter, while no single basis of mezs

swapping out httpd files and gracefully restartthg ment seems appropriate for all self-adaptive system

active Apache processes. Another, more involved ap-We believe that we can apply utility theory to eeab
proach would be to develop a plug-in module that al Comparison across seemingly different and incompati

lows setting differentevels of Apache service. ble dimensiops of self-adaptation._ln this way, may
Note that while these probes and effectors were ap-P€ able to arrive at a common basis for comparison.
propriate for our quality goals, not only were theys- The key idea to using utility theory is to expligit

able artifacts in Rainbow, they could also be rdige ~ €numerate the quality dimensions for which one is
a variety of contexts where Apache is used or where€valuating the self-adaptation technique of choice;
CPU load, disk I/0, and bandwidth information is re then, indicate the weight given to each dimensidre
quired. Following a similar scheme, it should beyem Welghted sum of. scores across the dimensions yaellds
develop other probes and effectors depending on thedingle value, which we shall term the Self-Adajati
specific domains of adaptive systems and the demlit Fitness Unit (SAFU). In benchmarking an approach,
being demonstrated. one may therefore opt to account for dlmensmns- rel
The ability to extract performance data from the ta  V@nt to the approach. In the case of Rainbow, fer e
get system and environment for conducting evalnatio @mPple, three important evaluation criteria aren(ipet-
depends partly on the specific self-adaptation éam NG quality of service goals, (2) resource overheaui
work and partly on the testing tool. For Rainbove w (3)_adaptat|on engineering effort. Wg factor irfefiént
developed gauges such as the ApacheTop Gauge, Laveights for these criteria, as shown in Table 2.
tency Gauge, and End-to-End Response-Time Gauge to

read probe data and update the architecture model. Table 2. SAFU for Rainbow on Znn.com
Adaptation Manager then dumps relevant data (e.g., Criteria Value Weight
adaptation duration or memory used) to a log fil&e Quality dimensiond 86 (1034/1200 AU) 20%
also relied on the testing tool, JMeter, to obttia ~Response time| 994 50%
necessary measurements, including response time an — S
throughput. JMeter also provides features to vizaal g?on\:;?;:ii!tty i(l)z; EZ;’

- 0

and export data to facilitate analysis.
We targeted three quality dimensions for evaluating | Résource overheal 90-95 (5-10% overh¢ad)30%

Znn.com, as shown in Table 1. However, Znn.com is | Engineering effort 30-45 (days-weeks) 30%

capable of catering to a variety of quality dimensi, Self-Adaptation Fitness Unit (SAFU): | 70-76

including different performance concerns, avaiigpil

reliability, security, and even data privacy. Irddibn,

Znn.com allows interesting trade-off considerations * Probe and effector that were developed but, in the

end, we did not need in our evaluation.




An interesting issue is how to quantify each crite- a different class, such as resource-constrainedlenob
rion. We scored the resource overhead as a pegeenta computing self-adaptive systems, might have com-
of usable resources, or 100 minus an average aagrhe pletely different dimensions, e.g., mobility, comeat
of 5-10%, or 90-95. We scored engineering effort by robustness, sensor heterogeneity. But what cotestitu
mapping time orders-of-magnitude (minute, hour,,day sufficient set of evaluation points? Are there othe
week, month, year) in seconds (60, 3600, 86400fa..) measurements that can be used generally for fair co
a logarithmic scale, normalized to 100 (100, 69,3th parison? For example, should one count resource ove
19, 0); an effort of days-weeks scores 30-45. Theseheads during no-adaptation periods?
component scores yield a SAFU in the range of 70-76 Versatility: While Znn.com is mainly useful for

_ evaluating web-based information-system adaptation,
;g ~ ggjg:ﬁ’ : ggzgng : igiggjf there are many other domains to which self-adaptati
- 0 0 0 has been applied — for example, mobile and embedded

A SAFU of 100 indicates the perfect achievement of systems. In fact, these domains may already hage ex
all adaptation goals, which should be unreachafite. ~ ing benchmarks. McCann suggested adding autonomic
comparison between any two self-adaptation tech-benchmarking to existing benchmarks in other do-
niques comprises: (a) their relative SAFU and @yvh mains, rather than developing one for autonomous

they contrast in dimensions and weights. computing [19]. We agree that this might be a way t
address the versatility requirement:. one wouldtstar
5.3 Discussion with an existing benchmark for the target doméient

add relevantautonomic benchmarks, and apply SAFU

We introduced the Znn.com system as a candidatet0 derive a quantitative score for comparison. iHtre
benchmarking example for self-adaptive systems. interesting issues to discuss regard what autonomic
While its broad utility as such is yet to be showar benchmarks would look like for specific domains and
intent in offering it here is partly to spur comrityn ~ how to quantify them for comparison. For example,
discussion on what would make good benchmarks inthere might be specific benchmarks for mobility,ltu
this domain. In particular, the following issuessar Ple environmental contexts (ubicomp), dynamic com-
worth discussing: ponents (genetic programming), and different self-*

Engineering cost: In [19] McCann discussed nine Properties (self-organizing systems). Again, SAFU
evaluation metrics for self-adaptive systems. Whitke ~ Profiles might help in elucidating these.
evaluate Rainbow here with respect to two of these,
believe that many of the others could be capturigd w 6. Conclusion and future work
this example. For example, stabilization and adépti
would be relatively trivial to measure. Furthermone In this paper, we reported on our evaluation of the
believe another important metric is the cost toireeey Rainbow self-adaptation approach using Znn.com. We
adaptation, especially when being applied to legacypresented a list of requirements for a benchmavk- en
systems. We measured effort by tracking the amofuint ronment to facilitate meaningful comparison withet
time spent engineering each of the components ofself-adaptive techniques, and reflected upon hoW we
Rainbow for Znn.com, and used estimates and inter-Znn.com meets those benchmark requirements.

views to compare this to engineering self-adaptatio In addition to reporting on the evaluation of Rain-
without Rainbow. However, this raises the issubay bow and being instructive on how to apply an aeghit
engineering effort can be compared. ture-based self-adaptive system to Znn.com, we hope

SAFU as a common quantitative metric: While it that this paper will generate discussion in the mom
remains to be seen whether the SAFU will proveulsef nity about what is needed for comparing differesif-s
as a common metric for comparing different self- adaptation approaches. Finally, we make the bench-
adaptation techniques, one might argue that widie va mark tool suite available for general community ase
ance in dimensions and weights renders comparisorthis URL: http://rainbow.self-adapt.org/benchmark .
meaningless. However, at the very least, it pravide In future work, we would generalize the instance
conceptual (utility-based) framework for deriving into a benchmark “framework” that facilitates plug-
sharedprofiles of SAFU in the future. Each profile of any components catering to specific self-adagptat
would define a common set of dimensions and weightsagenda. We would also create web resources toctolle
that is applicable to a particular class of sebyadtion and disseminate experience with its use.
techniques. Ours represents a profile instancehén t
class of architecture-based self-adaptation. Ailerai
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