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Abstract 

 
Rainbow is a framework for engineering a system 

with run-time, self-adaptive capabilities to monitor, 
detect, decide, and act on opportunities for system im-
provement. We applied Rainbow to a system, Znn.com, 
and evaluated its effectiveness to self-adapt on three 
levels: its effectiveness to maintain quality attribute in 
the face of changing conditions, run-time overheads of 
adaptation, and  the engineering effort to use it to add 
self-adaptive capabilities to Znn.com. We make 
Znn.com and the associated evaluation tools available 
to the community so that other researchers can use it 
to evaluate their own systems and the community can 
compare different systems. In this paper, we report on 
our evaluation experience, reflect on some principles 
for benchmarking self-adaptive systems, and discuss 
the suitability of our evaluation tools for this purpose. 
 

1. Introduction 
 

Increasingly, systems have the requirement to self-
adapt with minimal human oversight. They must cope 
with system errors, variable resources, and changing 
user priorities, while maintaining as best as they can the 
goals and properties envisioned by engineers and ex-
pected from users. However, self-adaptation in today’s 
systems is costly to build, often taking many man-
months to develop or retrofit systems with the capabili-
ties. Moreover, once added, the capabilities are diffi-
cult to modify and usually provide only localized 
treatment of system errors. 

We are investigating an approach that makes it pos-
sible for engineers to easily define adaptation policies 
that are global in nature and take into consideration 
business goals and quality attributes. In particular, we 
require that engineers be able to augment existing sys-
tems to be self-adaptive without needing to rewrite 
them from scratch, that self-adaptation policies can be 
reused across similar systems, that multiple sources of 
adaptation expertise can be synergistically combined, 

and that all of this can be done in ways that support 
maintainability, evolution, and analysis. 

Our approach to self-adaptation uses architecture-
based techniques combined with control and utility 
theories. Monitored properties of an executing system 
are reflected in an architecture model. The architecture 
model enables automatic reasoning about appropriate 
changes to improve quality-of-service in the target sys-
tem. Utility theory is used to analyze tradeoffs across 
quality dimensions and select an appropriate adaptation 
strategy. Changes are then effected in the system, 
which is reobserved in a closed-loop form of control. 

We evaluated Rainbow’s effectiveness in adding 
self-adaptation to an existing system in two ways: (1) 
How effective was Rainbow at adapting a system to 
meet stated quality and business goals? (2) How much 
effort was required to engineer adaptation using Rain-
bow? To conduct the evaluation we designed and de-
veloped a web-based information system, Znn.com, to 
mimic real world systems, and an experimental envi-
ronment to facilitate evaluation. In building Znn.com 
and making it amenable for evaluation, we developed 
tools to (1) monitor and effect changes on the Znn.com 
system, (2) provide interfaces for Rainbow to plug into; 
(3) produce an environment in which we could inject 
problems that need repairing; and (4) record the behav-
ior of Znn.com both when self-adaptation is applied 
and when not. We were able to show that Rainbow was 
effective in adapting the system to meet stated goals, 
and that we could do so with considerably less effort 
than engineering a system to do the same from scratch. 

Although numerous example and case-study systems 
have been proposed, researchers in the self-adaptive 
systems community generally lack a common bench-
mark to evaluate the effectiveness of their techniques 
and to compare their work to others’. Our evaluation 
experience yields a system and a suite of tools that can 
be used for such a purpose. We make the Znn.com sys-
tem and associated tools available to the community as 
a benchmark tool suite. 

In this paper, we describe how we evaluated Rain-
bow using the Znn.com experimental platform and re-



port our evaluation results. We then consider the re-
quirements needed for a good benchmark environment 
that will allow comparison with other self-adaptive 
systems, and reflect on how our experimental platform 
meets those requirements. 

 
2. Related work 
 

IBM’s Autonomic Computing initiative tackles 
challenges of emergent autonomic behavior with the 
MAPE control loop – to monitor, analyze, plan, and 
execute changes for self-management [16]. Their tool-
kit provides tools to diagnose problems and engineer 
autonomic systems [14]. Rainbow can be viewed as an 
instance of MAPE in which the shared Knowledge base 
consists of an explicit architecture model, a repertoire 
of adaptation strategies, and utility preferences. 

To date, several dynamic software architectures and 
architecture-based adaptation frameworks have been 
proposed and developed [3],[22]. Related approaches 
focus on formalism and modeling, mechanisms of ad-
aptation, or distribution and decentralization of control. 
These include Darwin with π-calculus semantics to 
specify distributed systems [17], ArchWare with archi-
tectural reflection and dynamic co-evolution [20], 
Weaves for construction and analysis of data-flow sys-
tems [9], Willow for survivable systems [27], ArchStu-
dio for self-adaptation of C2 hierarchical publish-
subscribe systems [5], Plastik targeting performance 
properties [2], CASA for resource availability concerns 
in mobile network environments [21], and CR-RIO for 
architectural reconfiguration using contracts [25]. 
These approaches share a few common characteristics: 
They generally apply closed-loop control and use an 
architecture model to reason about the target system. 
However, whereas most approaches assume certain 
structures in the target system and adapt for a fixed set 
of quality attributes, Rainbow is generic to architectural 
styles and handles multiple objectives. Surveys of ex-
isting self-adaptive systems, not limited to an architec-
ture-based approach, can be found in [6] and [12]. 

Various autonomic systems have been evaluated in 
specific domains, e.g., database optimization [18], net-
work server provisioning [23], and workload optimiza-
tion in web servers [24]. Many of these evaluations 
focus on performance and overhead, but some also 
evaluate other criteria. McCann summarizes nine of 
these in [19]. Our evaluation of Rainbow focuses on 
quantifying success in meeting quality-of-service goals 
and the overhead of running the infrastructure, which 
are two of the criteria discussed by McCann. In addi-
tion, we consider the engineering cost of applying the 
framework to an existing system. 

3. The Rainbow Approach 
 

Rainbow [4],[7] focuses on two means of achieving 
cost-effective self-adaptation: an approach and mecha-
nism to reduce engineering effort and an explicit repre-
sentation of adaptation knowledge. It provides a 
framework of mechanisms to monitor a target system 
and its executing environment and reflect observations 
into an architecture model, detect opportunities for 
improvements, decide on a course of adaptation, and 
effect changes (act). Leveraging the notion of architec-
tural style [1] to exploit commonality between systems, 
Rainbow provides general, reusable infrastructures 
with explicit customization points to apply it to a wide 
range of systems. It also provides useful abstractions to 
focus engineers on adaptation concerns, facilitating its 
systematic customization to particular systems. To 
automate system adaptation, it provides a language, 
Stitch, to represent routine human adaptation knowl-
edge using high-level adaptation concepts of strategies, 
tactics, and operators. 
 
3.1 Customizable Self-Adaptation Framework 
 

 

Figure 1. The Rainbow framework 
 

The Rainbow framework (Figure 1) uses a compo-
nent-and-connector architecture model of the target 
system to monitor the system and reason about appro-
priate strategies. The monitoring mechanisms in the 
Translation Infrastructure – probes and gauges – ob-
serve the running target system and update properties 
of an architecture model managed by the Model Man-
ager. The Architecture Evaluator evaluates the model 
upon update to ensure that the system is operating 
within an acceptable range, as determined by the archi-
tectural constraints. If the Evaluator determines that the 
system is not operating within the accepted range, it 
triggers the Adaptation Manager to initiate the adapta-
tion process. The Adaptation Manager chooses a suit-



able strategy based on current states of the system as 
reflected in the model. The Strategy Executor executes 
that strategy on the running system via system-level 
effectors. Rainbow is customizable to different do-
mains: The architecture model of the target system cus-
tomizes the Model Manager. Architectural constraints, 
related to business objectives to adapt for, customize 
the Architecture Evaluator. Style operators and their 
mappings to target-system effectors customize the 
Strategy Executor. Finally, utility preferences and a 
repertoire of strategies with their associated cost-
benefit impacts customize the Adaptation Manager.  

This customizable self-adaptation framework has a 
number of advantages. Providing a substantial base of 
reusable infrastructure greatly reduces the cost of de-
velopment. Customization mechanisms allow engineers 
to tailor the framework to different systems with rela-
tively small increments of effort. In particular, the tai-
lorable model management and adaptation mechanisms 
give engineers the ability to customize adaptation to 
address different properties and quality concerns, and 
to add and evolve adaptation capabilities. Furthermore, 
a modular adaptation policy language allows engineers 
to consider adaptation concerns separately and then 
compose them in the context of a specific system. 

Rainbow makes adaptation decisions using two 
kinds of models. The architecture model reflects ab-
stract, run-time states of the target system itself. The 
environment model provides contextual information 
about the system, including its executing environment 
and computational resources. 

The core Rainbow framework is implemented in 
Java. Elements below the translation layer may be im-
plemented in a language or script of choice, but must 
conform to the framework’s probe and effector com-
munication protocols. At run time, a Rainbow Master 
instantiates the Architectural-Layer elements shown in 
Figure 1. A Rainbow Delegate is deployed on each 
computing node of the target system to manage probes, 
gauges, and effectors on that node. An event bus coor-
dinates communication between Master and Delegates. 

We now describe our benchmarking system, 
Znn.com, that we used to evaluate Rainbow. 
 
3.2 The Znn.com System 
 

The typical infrastructure for a news website like 
cnn.com and rockymountainnews.com has a three-tier 
architecture consisting of a set of application servers 
that serve contents from backend databases to clients 
via frontend presentation logic. The Znn.com system 
imitates such a setup. Architecturally, it is a web-based 
client-server system that satisfies an N-tier style, as 

illustrated in Figure 2. Znn.com uses a load balancer to 
balance requests across a pool of replicated servers, the 
size of which can be manually adjusted to balance 
server utilization against service response time. A set of 
client processes makes stateless content requests from 
one of the servers, the servers deliver static files (e.g., 
images and videos), as well as dynamic content (e.g., 
news populated from periodically-updated sources). 
 

 

Figure 2. The Znn.com system architecture 
 

Typical of news provider concerns, our quality ob-
jective for Znn.com is to serve news content to its cus-
tomers within a reasonable response time, while keep-
ing the cost of the server pool within a certain operat-
ing budget. From time to time, due to highly popular 
events, Znn.com experiences spikes in news requests 
that it cannot serve adequately, even at maximum pool 
size. To prevent losing customers, we opt to serve 
minimal textual contents during such peak times in lieu 
of providing zero service to the customers. In short, we 
identify three quality objectives for the self-adaptation 
of the Znn.com system: (A) performance, (B) cost, and 
(C) content fidelity. 

Performance analysis suggests we monitor the re-
quest-response time, server load, and connection 
bandwidth of the system. Cost analysis identifies the 
number of active servers as the primary contributor to 
cost; hence we monitor the server count. For content 
fidelity, we characterize different levels of content 
ranging from full multimedia to static text, assigning 
three levels (high, medium, and low). The major ele-
ments of the N-tier-client-server architectural style for 
Znn.com include: 

• Types: ClientT, ServerT, ProxyT, HttpConnT 
• Properties: ClientT.experRespTime, ServerT.cost / 

load / fidelity, HttpConnT.bandwidth 
• Operators: ServerT.activate() / .deactivate() / 

.setFidelity(level : int) 

The ServerT.activate() operator activates a ServerT 
instance, while the deactivate() operator deactivates it. 
The ServerT.setFidelity(level : int) operator sets the 
server content fidelity to the level identified by the in-
put parameter. Using these operators, we specified two 
pairs of tactics with opposing effects. One pair enlists 



(1) or discharges (2) servers while the other pair raises 
(3) or lowers (4) the server content fidelity. In effect, 
these tactics allow the service level of the Znn.com 
system to be stratified into gradients that trade off the 
various objectives. The following example illustrates 
how these tactics might interact: 

When response time is high, objective A (above) 
suggests that Znn.com should increment its server pool 
size (using tactic 1 above) if it is within budget; other-
wise, Znn.com should switch the servers to textual 
model (using 4). When the response time is low, objec-
tive C suggests that Znn.com should decrement its 
server pool size (using 2) if it is near budget limit; ob-
jective B suggests that Znn.com should switch the 
servers to multimedia mode (using 3) if they are not 
already in that mode. When the response time is in the 
normal range, objective B suggests that Znn.com 
should switch the servers to multimedia mode if they 
are currently textual, while the server pool size may 
either be incremented to decrease response time or dec-
remented to reduce cost. 

We have further defined four adaptation strategies 
from these tactics, with juxtapositions that allow sys-
tem adaptation to balance the overall objectives: 

• SimpleReduceResponseTime: When any client 
experiences a response time above threshold, 
lower content fidelity one step, then lower fidelity 
again if response time is still above threshold. 

• SmarterReduceResponseTime: Let n be the count 
of clients experiencing above-normal request-
response time; if n exceeds a tolerable percentage 
of total, enlist a server, then enlist another server, 
then lower the fidelity one step, then repeat the last 
sequence twice until successful. 

• ReduceOverallCost: When the total server cost 
exceeds a threshold value, discharge up to four 
servers, one at a time, until the cost is reduced be-
low threshold. 

• ImproveOverallFidelity: When the average content 
fidelity of the servers drops below a threshold 
value, raise the fidelity level for all servers, up to 
twice, until average fidelity rises above threshold. 

To summarize, the quality dimensions, architectural 
element types and properties, and adaptation operators, 
tactics, and strategies together comprise the artifacts to 
customize Rainbow to Znn.com. We now turn to the 
evaluation of Rainbow using Znn.com. 
 

4. Evaluation with Znn.com 
 

The objective of the Rainbow research is to enable 
software engineers to build self-adaptive systems cost-
effectively. Hence, the success of Rainbow depends 

directly upon how costly it is to use and how well the 
resulting system self-adapts. Consequently, evaluating 
the effectiveness of Rainbow requires showing that: 

1. The Rainbow-customized target system self-adapts 
to provide improved overall utility 

2. Self-adaptation incurs low run-time resource over-
head, and 

3. The effort required to tailor Rainbow to the target 
system is significantly lower than developing the 
self-adaptive capabilities from scratch 

We evaluated Rainbow on five example systems, the 
details of which are found in Cheng’s dissertation [4]. 
In this section, we present the Znn.com evaluation data 
to show how it satisfies the three criteria. 
 
4.1 Show that Znn.com Is Self-Adaptive 
 

To evaluate the effectiveness of Rainbow’s self-
adaptation on a news website, we built the Znn.com 
system using open-source, commercial software. We 
“Slashdot-effect” experiment on Znn.com. 

The setup consisted of a pool of four typical Intel 
(~1 GHz) machines, each running a Debian-flavor 
Linux operating system, configured with an instance of 
the Apache webserver. A fifth machine ran a load bal-
ancer to forward incoming requests in a round-robin 
fashion to any active server among the four. Two addi-
tional machines were set up to act as the clients, using 
Apache JMeter, a Java application for testing web ap-
plications and measuring their performance, to simulate 
request loads from multiple clients. 
 

 

Figure 3. Graph of actual, peak-day traffic of a 
site experiencing Slashdot effect 



 
To perform the experiment, we designed a workload 

that is characteristic of a Slashdot effect visitor traffic 
profile, based on a sample collected by ~mjuric and 
shown in Figure 3 [15]. Due to the resource-demanding 
nature of the Slashdot effect, an adaptation that does 
not quickly offset the sudden rise in demand for re-
sources would not be effective. Therefore, the initial 
sharp rise in traffic entails the critical duration of inter-
est for our experiment purposes. For measurement pur-
poses, we choose to observe a sustained duration after 
the initial rise to make sure that any effective adapta-
tions remain effective for a reasonable amount of time. 
In lieu of 12 to 18 hours of actual traffic, we patterned 
our traffic profile after the ~mjuric profile, scaled down 
to one hour (12:1) but kept at a similarly high visit rate: 

1. 1 minute of low activity, 6 unique visits/min 
2. 5 minutes of sharp rise in requests, ramping up to 

600 visits/min (+120 visits/min/min) 
3. 18 minutes of peak in requests, sustained at 600 

visits/min 
4. 36 minutes of linear decrease, ramp down to 60 

visits/min (-15 visits/min/min) 

We constructed this workload in JMeter, using a 
Gaussian random timer between requests. We then de-
ployed this workload on two JMeter instances to gener-
ate the news reader traffic for our Znn.com example. 
Finally, we devised the following trial types to assess 
Rainbow’s effectiveness at adapting Znn.com. For each 
trial type, we performed five runs to smooth stochastic 
anomalies and to yield consistent outcomes: 

1. Control runs without Rainbow adaptation – to es-
tablish baseline and comparison envelopes 

2. Experimental runs with Rainbow adaptation 
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Figure 4. Znn.com experiment data 
 

 

 

Figure 5. Instantaneous and accrued utility 
 

For every run, we collected statistics on the total 
number of samples, response latencies, request 
throughput, and any errors. We also tracked the corre-
sponding cost and content fidelity values to compute 
accrued utility and provide a complete picture of the 
tradeoff space as defined by the overall objectives. 

Figure 4 shows a graph for two experiment runs, 
control (red) versus adaptation using one simple strat-
egy (green). For each run, the JMeter data table shows 
the total count of request samples, the statistics of re-
quest-response time, and the net throughput. The graph 
plots the latency per request, and the small table sum-
marizes how many requests yielded latencies above 10 
seconds and 1 second. The data indicated that Znn.com 
with Rainbow adaptation, in contrast to Znn.com with-
out, yielded far lower latencies (902 of 1200, or 75%, 
requests served within 1 second vs. 80 of 1200, or 7%) 
and better throughput (3.5×). Therefore, Rainbow was 
effective at keeping user latencies low and managing 
the Slashdot effect. 



Figure 5 shows graphs of instantaneous utility (IU) 
and accrued utility (AU) for the two runs, which indi-
cate how well the system satisfied overall user objec-
tives. Each IU value is computed as the weighted sum 
of utilities over the response time (0.50), content fidel-
ity (0.25), and cost (0.25) dimensions. At about 360s, 
after an initial period of chaos, the IUs in Znn.com with 
adaptation remain high compared to Znn.com without 
adaptation. The final AU values show a 33% improve-
ment (1034 vs. 778) in Znn.com with adaptation. 
 
4.2 Show that Resource Overhead Is Low 
 

Znn.com allows us to estimate overheads of adapta-
tion mechanisms by providing a baseline with which to 
compare the system before and after adding adaptation. 
To get a baseline measurement, we measured CPU and 
memory usages solely with Znn.com components. We 
then compared them with the same measurements take 
with the Rainbow Delegates deployed. 

Resource overhead incurred by the Delegate was 
minimal, consuming less than 2% of CPU (but occa-
sionally sustained at ~5-10%) with ~2MB of memory 
footprint. This overhead would be further reducible 
with optimization in implementation. Nevertheless, on 
a computing node with highly constrained memory and 
CPU resources, the adaptation engineer might choose 
to deploy only probes on the node and configure the 
probes to report via neighboring Delegate nodes. 
 
4.3 Show Low Customization Effort 
 

While obtaining empirical metrics for any human-
based engineering activity is often a complex process 
(involving many test subjects, development conditions, 
etc.), it is often possible to obtain “order of magnitude” 
comparisons with less effort. Znn.com allows this kind 
of evaluation by facilitating a task-based estimation of 
efforts to engineer or retrofit adaptations. 

To evaluate how long it took to customize Rainbow 
for Znn.com, we tracked our customization activities in 
detail [4], summarized here. The customization effort, 
including architecture modeling (using Acme), adapta-
tion scripting (in Stitch), and development and testing 
of probes, gauges, and effectors (in Perl, shell script, 
and Java), accounted for a total of 93 hours, or ap-
proximately 2 1/3 work weeks. Of this, 13 hrs (14%) 
were used to describe the model, 49 hrs (53%) to de-
velop probes and gauges, 7 hrs (8%) to develop effec-
tors, 21 hrs (23%) to compose adaptation scripts, and 3 
hrs (3%) to put together the customization files. Note 
that while the majority of the effort was spent develop-
ing monitoring capabilities, the resulting probes and 

gauges are reusable artifacts, so less effort would be 
required as more are developed. Furthermore, the order 
of magnitude of effort has greater significance than the 
actual durations: most activities required on the order 
of minutes to a couple hours, not days, while incre-
mental changes required on the order of tens of min-
utes, not hours. 

To compare this effort with building in adaptation 
capabilities from scratch, we decomposed the self-
adaptation engineering process into four coarse-grained 
tasks – three development tasks and one evolution 
tasks – and estimated the time to complete each task: 
domain analysis, model capture, design and implemen-
tation, and updates and modifications. As evidence, we 
gathered development-activity data from our case ex-
amples and performed exploratory analysis of hypo-
thetical custom-solution scenarios. To prevent skewing 
the comparison in favor of Rainbow, we made esti-
mates that favored custom-solution wherever possible. 

For the custom-solution efforts, we assumed that 
domain analysis done by a domain expert required the 
same amount of time as with Rainbow, that model cap-
ture generally required zero time (i.e., no model cap-
ture), that design and implementation by an expert 
software developer team required a minimum of one 
man-month on top of the Rainbow-based time for de-
veloping the monitoring and effecting capabilities, and 
that each update and modification required one-quarter 
the time required for design and implementation be-
cause of buried and dispersed adaptation logic. 

We can reasonably assume that, Rainbow or not, 
similar probing and effecting mechanisms would have 
to be implemented into the target system, though per-
haps with a simpler reactive mechanism created in 
place of Rainbow’s architecture model and Adaptation 
Manager. Also, we can reasonably expect that similar 
deployment and roundtrip debug efforts would be re-
quired. Additional effort would be necessary for the 
basic adaptation plumbing. Based on the Rainbow 
framework development experience, it took one expert 
Java developer over 2.5 man-months to design and 
implement the communication infrastructure and 
plumbing for the probes, gauges, and effectors. Even if 
we assume simpler requirements in the case of building 
from scratch, incurring only half the time of developing 
Rainbow, it would still yield a total effort of more than 
one man-month to add adaptation capabilities into the 
target system. (In doing so, one would also lose Rain-
bow’s engineering advantages of architecture-level 
modeling and analysis, separation of adaptation con-
cerns from system functionality, and flexibility to 
evolve self-adaptation capabilities.) 



We treat the Znn.com system as an average-case 
scenario due to its correspondence with typical N-Tier 
IT systems; for the Rainbow-based data, we estimated 
about two weeks of domain analysis. While we do not 
have concrete data for a worst-case scenario, we esti-
mated worst-case Rainbow-based development time to 
be an order-of-magnitude longer than the average case. 

In the worst-case scenario, a Rainbow instantiation 
has no reusable style, gauges, probes, and effectors 
from prior efforts. The adaptation engineer must con-
struct many elements from scratch, so the primary ad-
vantage of Rainbow comes from the reusable frame-
work. Thus, Rainbow-based initial development does 
no better in the worst case than a custom solution. Ac-
cording to our coarse-grained task estimation of efforts, 
excluding the worst case, Rainbow yielded effort sav-
ings of 2 to 5 times over custom solution for initial 
development of self-adaptation capabilities. Thereafter, 
Rainbow achieves additional savings of 6 to 192 times, 
or up to two orders-of-magnitude, over custom solution 
when evolving self-adaptation capabilities. The upfront 
effort of engineering the generic Rainbow framework 
accounts for the time savings over custom solution. 

In summary, Rainbow makes Znn.com self-adaptive, 
incurs less than 5% resource overhead on average, and 
requires low customization effort on the order of days 
to weeks. We now make the case for using Znn.com as 
a common benchmark system. 
 

5. What Makes a Good Benchmark? 
 

While evaluating Rainbow, we realized that the 
Znn.com system has the potential to serve as a useful 
example for researchers in the community to compare 
techniques. In this section, we enumerate a set of gen-
eral requirements for a benchmark system, present 
Znn.com as a candidate, and pose a number of bench-
mark issues for discussion. 
 
5.1 Benchmark Requirements 
 

When we consider computing benchmarks in areas 
such as CPU [26], databases [10], and algorithms [11], 
we observe that a benchmark system, in general, should 
satisfy the following requirements: 

• Relevance to real-world problems 
• Accessibility of system components and codebase 

that can be tested in a standalone environment 
• Capability to observe and change the system, by 

mechanisms that range from changing component 
parameters to altering overall system configuration 

• Metrics for comparison, for example, CPUs have 
transistor count and MIPs, algorithms have dura-

tion in seconds over input size, and databases have 
throughput transactions per second 

• Ease of extracting performance data from the sys-
tem and environment for conducting evaluation 

 
Specific to the area of self-adaptive systems, we see 

a number of additional requirements on the benchmark 
system to facilitate comparison and contrast of essential 
features of self-adaptation: 

• Versatility to apply to a wide range of self-
adaptive approaches and application domains 

• Allow changing the system dynamically 
• Support multiple quality dimensions (trade-off), 

e.g., availability, performance, reliability, security 
• Allow multiple adaptive operations, e.g., enabling 

or disabling servers, altering connections, tuning 
component parameters, quiescing processes 

• Provide multiple alternatives to achieve a single 
operation, e.g., disabling a server by killing a 
process or powering down the machine, changing 
content fidelity by swapping configuration files or 
via an Apache plug-in 

• Provide multiple paths of system configuration to 
achieve the same goal, e.g., increasing overall 
throughput by adding servers followed by lowering 
fidelity, or in the reverse order, or by some com-
pletely different sequence of operations. 

 
Therefore, a useful benchmark system is relevant, 

accessible, dynamically observable and changeable, 
and versatile; supports alternative adaptive operations 
and multiple configurations; facilitates quality trade-
offs; and can be compared via a common metric. 
 
5.2 Znn.com a Candidate Benchmark System? 
 

While any system that meets the requirements laid 
out above may be a candidate benchmark system, 
Znn.com is especially fitting because it is constructed 
from openly accessible software components, and it has 
potentially many controlled variations. 

Znn.com has relevance. Assessed abstractly, the 
Znn.com system contains important features of a real-
world problem: It mimics the infrastructure of actual 
news-provider services. The Slashdot effect is a re-
source allocation problem that occurs in real systems, 
that lacks a perfect solution and also has impact on 
multiple quality dimensions, making it amenable to 
self-adaptive techniques, especially those managing 
multiple objectives. 

Znn.com is built from open-source software that is 
available for the major platforms, including Linux, 
Mac, and Windows: the Apache Webserver, PHP, and 



the MySQL database server. The supporting tool suites 
are also widely accessible, including Perl and JMeter. 

Out of the box, the software components do not di-
rectly enable dynamic observation and change. For 
those purposes, we constructed a suite of probes and 
effectors. We chose to probe some common system 
properties – CPU load, disk I/O rate, and available 
bandwidth between nodes – and a few domain-specific 
properties – Apache status and server content fidelity. 
The probes to detect CPU load, bandwidth, and con-
tent fidelity were implemented as Perl scripts. The 
Apache status probe was derived from the C program 
apacheTop. Disk I/O was a ported iostat program. 

To effect changes in Znn.com, we developed a set 
of Perl scripts to start or stop a server process (turn-
Server), to alter the webserver content fidelity 
(changeFidelity), and one to randomly reject client 
requests (setRandomReject). To alter content fidelity, 
we defined three sets of webpages with high, medium, 
and low fidelity content, and wrote corresponding httpd 
configuration files. Altering the fidelity consisted of 
swapping out httpd files and gracefully restarting the 
active Apache processes. Another, more involved ap-
proach would be to develop a plug-in module that al-
lows setting different levels of Apache service. 

Note that while these probes and effectors were ap-
propriate for our quality goals, not only were they reus-
able artifacts in Rainbow, they could also be reused in 
a variety of contexts where Apache is used or where 
CPU load, disk I/O, and bandwidth information is re-
quired. Following a similar scheme, it should be easy to 
develop other probes and effectors depending on the 
specific domains of adaptive systems and the qualities 
being demonstrated. 

The ability to extract performance data from the tar-
get system and environment for conducting evaluation 
depends partly on the specific self-adaptation frame-
work and partly on the testing tool. For Rainbow, we 
developed gauges such as the ApacheTop Gauge, La-
tency Gauge, and End-to-End Response-Time Gauge to 
read probe data and update the architecture model. The 
Adaptation Manager then dumps relevant data (e.g., 
adaptation duration or memory used) to a log file. We 
also relied on the testing tool, JMeter, to obtain the 
necessary measurements, including response time and 
throughput. JMeter also provides features to visualize 
and export data to facilitate analysis. 

We targeted three quality dimensions for evaluating 
Znn.com, as shown in Table 1. However, Znn.com is 
capable of catering to a variety of quality dimensions, 
including different performance concerns, availability, 
reliability, security, and even data privacy. In addition, 
Znn.com allows interesting trade-off considerations 

across quality dimensions, for example, sacrificing just 
the cost to reduce client-experienced response time, or 
just the content fidelity, or both cost and fidelity. 
 

Table 1. Quality dimensions and the corre-
sponding probes and effectors 

Dimension Probe Effector 

Client-experienced 
response time 

CPU load, 
bandwidth, 

diskIO1 

turnServer, 
changeFidelity, 

setRandomReject1 
Provision cost apacheTop turnServer 

Content fidelity fidelity changeFidelity 

 
As our example demonstrated, the Znn.com example 

is rich enough to provide for variety at three levels: 
multiple adaptive operations, multiple alternatives for 
each operation, and multiple paths of configuration. In 
short, Znn.com meets eight of the ten requirements; it 
does not meet the versatility and metric requirements. 
Regarding the latter, while no single basis of measure-
ment seems appropriate for all self-adaptive systems, 
we believe that we can apply utility theory to enable 
comparison across seemingly different and incompati-
ble dimensions of self-adaptation. In this way, we may 
be able to arrive at a common basis for comparison. 

The key idea to using utility theory is to explicitly 
enumerate the quality dimensions for which one is 
evaluating the self-adaptation technique of choice; 
then, indicate the weight given to each dimension. The 
weighted sum of scores across the dimensions yields a 
single value, which we shall term the Self-Adaptation 
Fitness Unit (SAFU). In benchmarking an approach, 
one may therefore opt to account for dimensions rele-
vant to the approach. In the case of Rainbow, for ex-
ample, three important evaluation criteria are (1) meet-
ing quality of service goals, (2) resource overhead, and 
(3) adaptation engineering effort. We factor in different 
weights for these criteria, as shown in Table 2. 
 

Table 2. SAFU for Rainbow on Znn.com 

Criteria Value Weight 

Quality dimensions 86 (1034/1200 AU) 40% 
- Response time 994  50%  

- Content fidelity 1021  25%  
- Provision cost 1128  25%  

Resource overhead 90-95 (5-10% overhead) 30% 
Engineering effort 30-45 (days-weeks) 30% 

Self-Adaptation Fitness Unit (SAFU): 70-76 
 
                                                           
1 Probe and effector that were developed but, in the 
end, we did not need in our evaluation. 



An interesting issue is how to quantify each crite-
rion. We scored the resource overhead as a percentage 
of usable resources, or 100 minus an average overhead 
of 5-10%, or 90-95. We scored engineering effort by 
mapping time orders-of-magnitude (minute, hour, day, 
week, month, year) in seconds (60, 3600, 86400, …) to 
a logarithmic scale, normalized to 100 (100, 69, 45, 30, 
19, 0); an effort of days-weeks scores 30-45. These 
component scores yield a SAFU in the range of 70-76: 

70 = 86×40% + 90×30% + 30×30% 

76 = 86×40% + 95×30% + 45×30% 

A SAFU of 100 indicates the perfect achievement of 
all adaptation goals, which should be unreachable. The 
comparison between any two self-adaptation tech-
niques comprises: (a) their relative SAFU and (b) how 
they contrast in dimensions and weights. 
 
5.3 Discussion 
 

We introduced the Znn.com system as a candidate 
benchmarking example for self-adaptive systems. 
While its broad utility as such is yet to be shown, our 
intent in offering it here is partly to spur community 
discussion on what would make good benchmarks in 
this domain. In particular, the following issues are 
worth discussing:  

Engineering cost: In [19] McCann discussed nine 
evaluation metrics for self-adaptive systems. While we 
evaluate Rainbow here with respect to two of these, we 
believe that many of the others could be captured with 
this example. For example, stabilization and adaptivity 
would be relatively trivial to measure. Furthermore, we 
believe another important metric is the cost to engineer 
adaptation, especially when being applied to legacy 
systems. We measured effort by tracking the amount of 
time spent engineering each of the components of 
Rainbow for Znn.com, and used estimates and inter-
views to compare this to engineering self-adaptation 
without Rainbow. However, this raises the issue of how 
engineering effort can be compared. 

SAFU as a common quantitative metric: While it 
remains to be seen whether the SAFU will prove useful 
as a common metric for comparing different self-
adaptation techniques, one might argue that wide vari-
ance in dimensions and weights renders comparison 
meaningless. However, at the very least, it provides a 
conceptual (utility-based) framework for deriving 
shared profiles of SAFU in the future. Each profile 
would define a common set of dimensions and weights 
that is applicable to a particular class of self-adaptation 
techniques. Ours represents a profile instance in the 
class of architecture-based self-adaptation. A profile in 

a different class, such as resource-constrained mobile-
computing self-adaptive systems, might have com-
pletely different dimensions, e.g., mobility, component 
robustness, sensor heterogeneity. But what constitutes a 
sufficient set of evaluation points? Are there other 
measurements that can be used generally for fair com-
parison? For example, should one count resource over-
heads during no-adaptation periods? 

Versatility: While Znn.com is mainly useful for 
evaluating web-based information-system adaptation, 
there are many other domains to which self-adaptation 
has been applied – for example, mobile and embedded 
systems. In fact, these domains may already have exist-
ing benchmarks. McCann suggested adding autonomic 
benchmarking to existing benchmarks in other do-
mains, rather than developing one for autonomous 
computing [19]. We agree that this might be a way to 
address the versatility requirement: one would start 
with an existing benchmark for the target domain, then 
add relevant autonomic benchmarks, and apply SAFU 
to derive a quantitative score for comparison. Here, the 
interesting issues to discuss regard what autonomic 
benchmarks would look like for specific domains and 
how to quantify them for comparison. For example, 
there might be specific benchmarks for mobility, multi-
ple environmental contexts (ubicomp), dynamic com-
ponents (genetic programming), and different self-* 
properties (self-organizing systems). Again, SAFU 
profiles might help in elucidating these. 
 

6. Conclusion and future work 
 

In this paper, we reported on our evaluation of the 
Rainbow self-adaptation approach using Znn.com. We 
presented a list of requirements for a benchmark envi-
ronment to facilitate meaningful comparison with other 
self-adaptive techniques, and reflected upon how well 
Znn.com meets those benchmark requirements.  

In addition to reporting on the evaluation of Rain-
bow and being instructive on how to apply an architec-
ture-based self-adaptive system to Znn.com, we hope 
that this paper will generate discussion in the commu-
nity about what is needed for comparing different self-
adaptation approaches. Finally, we make the bench-
mark tool suite available for general community use at 
this URL: http://rainbow.self-adapt.org/benchmark . 

In future work, we would generalize the instance 
into a benchmark “framework” that facilitates plug-in 
of any components catering to specific self-adaptation 
agenda. We would also create web resources to collect 
and disseminate experience with its use. 
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