
Evaluating the Effectiveness of the Rainbow Self-Adaptive System

Shang-Wen Cheng, David Garlan, Bradley Schmerl
Carnegie Mellon University

{zensoul,garlan,schmerl}@cs.cmu.edu

Abstract

Rainbow is a framework for engineering a system

with run-time, self-adaptive capabilities to monitor,
detect, decide, and act on opportunities for system im-
provement. We applied Rainbow to a system, Znn.com,
and evaluated its effectiveness to self-adapt on three
levels: its effectiveness to maintain quality attribute in
the face of changing conditions, run-time overheads of
adaptation, and the engineering effort to use it to add
self-adaptive capabilities to Znn.com. We make
Znn.com and the associated evaluation tools available
to the community so that other researchers can use it
to evaluate their own systems and the community can
compare different systems. In this paper, we report on
our evaluation experience, reflect on some principles
for benchmarking self-adaptive systems, and discuss
the suitability of our evaluation tools for this purpose.

1. Introduction

Increasingly, systems have the requirement to self-
adapt with minimal human oversight. They must cope
with system errors, variable resources, and changing
user priorities, while maintaining as best as they can the
goals and properties envisioned by engineers and ex-
pected from users. However, self-adaptation in today’s
systems is costly to build, often taking many man-
months to develop or retrofit systems with the capabili-
ties. Moreover, once added, the capabilities are diffi-
cult to modify and usually provide only localized
treatment of system errors.

We are investigating an approach that makes it pos-
sible for engineers to easily define adaptation policies
that are global in nature and take into consideration
business goals and quality attributes. In particular, we
require that engineers be able to augment existing sys-
tems to be self-adaptive without needing to rewrite
them from scratch, that self-adaptation policies can be
reused across similar systems, that multiple sources of
adaptation expertise can be synergistically combined,

and that all of this can be done in ways that support
maintainability, evolution, and analysis.

Our approach to self-adaptation uses architecture-
based techniques combined with control and utility
theories. Monitored properties of an executing system
are reflected in an architecture model. The architecture
model enables automatic reasoning about appropriate
changes to improve quality-of-service in the target sys-
tem. Utility theory is used to analyze tradeoffs across
quality dimensions and select an appropriate adaptation
strategy. Changes are then effected in the system,
which is reobserved in a closed-loop form of control.

We evaluated Rainbow’s effectiveness in adding
self-adaptation to an existing system in two ways: (1)
How effective was Rainbow at adapting a system to
meet stated quality and business goals? (2) How much
effort was required to engineer adaptation using Rain-
bow? To conduct the evaluation we designed and de-
veloped a web-based information system, Znn.com, to
mimic real world systems, and an experimental envi-
ronment to facilitate evaluation. In building Znn.com
and making it amenable for evaluation, we developed
tools to (1) monitor and effect changes on the Znn.com
system, (2) provide interfaces for Rainbow to plug into;
(3) produce an environment in which we could inject
problems that need repairing; and (4) record the behav-
ior of Znn.com both when self-adaptation is applied
and when not. We were able to show that Rainbow was
effective in adapting the system to meet stated goals,
and that we could do so with considerably less effort
than engineering a system to do the same from scratch.

Although numerous example and case-study systems
have been proposed, researchers in the self-adaptive
systems community generally lack a common bench-
mark to evaluate the effectiveness of their techniques
and to compare their work to others’. Our evaluation
experience yields a system and a suite of tools that can
be used for such a purpose. We make the Znn.com sys-
tem and associated tools available to the community as
a benchmark tool suite.

In this paper, we describe how we evaluated Rain-
bow using the Znn.com experimental platform and re-

port our evaluation results. We then consider the re-
quirements needed for a good benchmark environment
that will allow comparison with other self-adaptive
systems, and reflect on how our experimental platform
meets those requirements.

2. Related work

IBM’s Autonomic Computing initiative tackles
challenges of emergent autonomic behavior with the
MAPE control loop – to monitor, analyze, plan, and
execute changes for self-management [16]. Their tool-
kit provides tools to diagnose problems and engineer
autonomic systems [14]. Rainbow can be viewed as an
instance of MAPE in which the shared Knowledge base
consists of an explicit architecture model, a repertoire
of adaptation strategies, and utility preferences.

To date, several dynamic software architectures and
architecture-based adaptation frameworks have been
proposed and developed [3],[22]. Related approaches
focus on formalism and modeling, mechanisms of ad-
aptation, or distribution and decentralization of control.
These include Darwin with π-calculus semantics to
specify distributed systems [17], ArchWare with archi-
tectural reflection and dynamic co-evolution [20],
Weaves for construction and analysis of data-flow sys-
tems [9], Willow for survivable systems [27], ArchStu-
dio for self-adaptation of C2 hierarchical publish-
subscribe systems [5], Plastik targeting performance
properties [2], CASA for resource availability concerns
in mobile network environments [21], and CR-RIO for
architectural reconfiguration using contracts [25].
These approaches share a few common characteristics:
They generally apply closed-loop control and use an
architecture model to reason about the target system.
However, whereas most approaches assume certain
structures in the target system and adapt for a fixed set
of quality attributes, Rainbow is generic to architectural
styles and handles multiple objectives. Surveys of ex-
isting self-adaptive systems, not limited to an architec-
ture-based approach, can be found in [6] and [12].

Various autonomic systems have been evaluated in
specific domains, e.g., database optimization [18], net-
work server provisioning [23], and workload optimiza-
tion in web servers [24]. Many of these evaluations
focus on performance and overhead, but some also
evaluate other criteria. McCann summarizes nine of
these in [19]. Our evaluation of Rainbow focuses on
quantifying success in meeting quality-of-service goals
and the overhead of running the infrastructure, which
are two of the criteria discussed by McCann. In addi-
tion, we consider the engineering cost of applying the
framework to an existing system.

3. The Rainbow Approach

Rainbow [4],[7] focuses on two means of achieving
cost-effective self-adaptation: an approach and mecha-
nism to reduce engineering effort and an explicit repre-
sentation of adaptation knowledge. It provides a
framework of mechanisms to monitor a target system
and its executing environment and reflect observations
into an architecture model, detect opportunities for
improvements, decide on a course of adaptation, and
effect changes (act). Leveraging the notion of architec-
tural style [1] to exploit commonality between systems,
Rainbow provides general, reusable infrastructures
with explicit customization points to apply it to a wide
range of systems. It also provides useful abstractions to
focus engineers on adaptation concerns, facilitating its
systematic customization to particular systems. To
automate system adaptation, it provides a language,
Stitch, to represent routine human adaptation knowl-
edge using high-level adaptation concepts of strategies,
tactics, and operators.

3.1 Customizable Self-Adaptation Framework

Figure 1. The Rainbow framework

The Rainbow framework (Figure 1) uses a compo-
nent-and-connector architecture model of the target
system to monitor the system and reason about appro-
priate strategies. The monitoring mechanisms in the
Translation Infrastructure – probes and gauges – ob-
serve the running target system and update properties
of an architecture model managed by the Model Man-
ager. The Architecture Evaluator evaluates the model
upon update to ensure that the system is operating
within an acceptable range, as determined by the archi-
tectural constraints. If the Evaluator determines that the
system is not operating within the accepted range, it
triggers the Adaptation Manager to initiate the adapta-
tion process. The Adaptation Manager chooses a suit-

able strategy based on current states of the system as
reflected in the model. The Strategy Executor executes
that strategy on the running system via system-level
effectors. Rainbow is customizable to different do-
mains: The architecture model of the target system cus-
tomizes the Model Manager. Architectural constraints,
related to business objectives to adapt for, customize
the Architecture Evaluator. Style operators and their
mappings to target-system effectors customize the
Strategy Executor. Finally, utility preferences and a
repertoire of strategies with their associated cost-
benefit impacts customize the Adaptation Manager.

This customizable self-adaptation framework has a
number of advantages. Providing a substantial base of
reusable infrastructure greatly reduces the cost of de-
velopment. Customization mechanisms allow engineers
to tailor the framework to different systems with rela-
tively small increments of effort. In particular, the tai-
lorable model management and adaptation mechanisms
give engineers the ability to customize adaptation to
address different properties and quality concerns, and
to add and evolve adaptation capabilities. Furthermore,
a modular adaptation policy language allows engineers
to consider adaptation concerns separately and then
compose them in the context of a specific system.

Rainbow makes adaptation decisions using two
kinds of models. The architecture model reflects ab-
stract, run-time states of the target system itself. The
environment model provides contextual information
about the system, including its executing environment
and computational resources.

The core Rainbow framework is implemented in
Java. Elements below the translation layer may be im-
plemented in a language or script of choice, but must
conform to the framework’s probe and effector com-
munication protocols. At run time, a Rainbow Master
instantiates the Architectural-Layer elements shown in
Figure 1. A Rainbow Delegate is deployed on each
computing node of the target system to manage probes,
gauges, and effectors on that node. An event bus coor-
dinates communication between Master and Delegates.

We now describe our benchmarking system,
Znn.com, that we used to evaluate Rainbow.

3.2 The Znn.com System

The typical infrastructure for a news website like
cnn.com and rockymountainnews.com has a three-tier
architecture consisting of a set of application servers
that serve contents from backend databases to clients
via frontend presentation logic. The Znn.com system
imitates such a setup. Architecturally, it is a web-based
client-server system that satisfies an N-tier style, as

illustrated in Figure 2. Znn.com uses a load balancer to
balance requests across a pool of replicated servers, the
size of which can be manually adjusted to balance
server utilization against service response time. A set of
client processes makes stateless content requests from
one of the servers, the servers deliver static files (e.g.,
images and videos), as well as dynamic content (e.g.,
news populated from periodically-updated sources).

Figure 2. The Znn.com system architecture

Typical of news provider concerns, our quality ob-
jective for Znn.com is to serve news content to its cus-
tomers within a reasonable response time, while keep-
ing the cost of the server pool within a certain operat-
ing budget. From time to time, due to highly popular
events, Znn.com experiences spikes in news requests
that it cannot serve adequately, even at maximum pool
size. To prevent losing customers, we opt to serve
minimal textual contents during such peak times in lieu
of providing zero service to the customers. In short, we
identify three quality objectives for the self-adaptation
of the Znn.com system: (A) performance, (B) cost, and
(C) content fidelity.

Performance analysis suggests we monitor the re-
quest-response time, server load, and connection
bandwidth of the system. Cost analysis identifies the
number of active servers as the primary contributor to
cost; hence we monitor the server count. For content
fidelity, we characterize different levels of content
ranging from full multimedia to static text, assigning
three levels (high, medium, and low). The major ele-
ments of the N-tier-client-server architectural style for
Znn.com include:

• Types: ClientT, ServerT, ProxyT, HttpConnT
• Properties: ClientT.experRespTime, ServerT.cost /

load / fidelity, HttpConnT.bandwidth
• Operators: ServerT.activate() / .deactivate() /

.setFidelity(level : int)

The ServerT.activate() operator activates a ServerT
instance, while the deactivate() operator deactivates it.
The ServerT.setFidelity(level : int) operator sets the
server content fidelity to the level identified by the in-
put parameter. Using these operators, we specified two
pairs of tactics with opposing effects. One pair enlists

(1) or discharges (2) servers while the other pair raises
(3) or lowers (4) the server content fidelity. In effect,
these tactics allow the service level of the Znn.com
system to be stratified into gradients that trade off the
various objectives. The following example illustrates
how these tactics might interact:

When response time is high, objective A (above)
suggests that Znn.com should increment its server pool
size (using tactic 1 above) if it is within budget; other-
wise, Znn.com should switch the servers to textual
model (using 4). When the response time is low, objec-
tive C suggests that Znn.com should decrement its
server pool size (using 2) if it is near budget limit; ob-
jective B suggests that Znn.com should switch the
servers to multimedia mode (using 3) if they are not
already in that mode. When the response time is in the
normal range, objective B suggests that Znn.com
should switch the servers to multimedia mode if they
are currently textual, while the server pool size may
either be incremented to decrease response time or dec-
remented to reduce cost.

We have further defined four adaptation strategies
from these tactics, with juxtapositions that allow sys-
tem adaptation to balance the overall objectives:

• SimpleReduceResponseTime: When any client
experiences a response time above threshold,
lower content fidelity one step, then lower fidelity
again if response time is still above threshold.

• SmarterReduceResponseTime: Let n be the count
of clients experiencing above-normal request-
response time; if n exceeds a tolerable percentage
of total, enlist a server, then enlist another server,
then lower the fidelity one step, then repeat the last
sequence twice until successful.

• ReduceOverallCost: When the total server cost
exceeds a threshold value, discharge up to four
servers, one at a time, until the cost is reduced be-
low threshold.

• ImproveOverallFidelity: When the average content
fidelity of the servers drops below a threshold
value, raise the fidelity level for all servers, up to
twice, until average fidelity rises above threshold.

To summarize, the quality dimensions, architectural
element types and properties, and adaptation operators,
tactics, and strategies together comprise the artifacts to
customize Rainbow to Znn.com. We now turn to the
evaluation of Rainbow using Znn.com.

4. Evaluation with Znn.com

The objective of the Rainbow research is to enable
software engineers to build self-adaptive systems cost-
effectively. Hence, the success of Rainbow depends

directly upon how costly it is to use and how well the
resulting system self-adapts. Consequently, evaluating
the effectiveness of Rainbow requires showing that:

1. The Rainbow-customized target system self-adapts
to provide improved overall utility

2. Self-adaptation incurs low run-time resource over-
head, and

3. The effort required to tailor Rainbow to the target
system is significantly lower than developing the
self-adaptive capabilities from scratch

We evaluated Rainbow on five example systems, the
details of which are found in Cheng’s dissertation [4].
In this section, we present the Znn.com evaluation data
to show how it satisfies the three criteria.

4.1 Show that Znn.com Is Self-Adaptive

To evaluate the effectiveness of Rainbow’s self-
adaptation on a news website, we built the Znn.com
system using open-source, commercial software. We
“Slashdot-effect” experiment on Znn.com.

The setup consisted of a pool of four typical Intel
(~1 GHz) machines, each running a Debian-flavor
Linux operating system, configured with an instance of
the Apache webserver. A fifth machine ran a load bal-
ancer to forward incoming requests in a round-robin
fashion to any active server among the four. Two addi-
tional machines were set up to act as the clients, using
Apache JMeter, a Java application for testing web ap-
plications and measuring their performance, to simulate
request loads from multiple clients.

Figure 3. Graph of actual, peak-day traffic of a
site experiencing Slashdot effect

To perform the experiment, we designed a workload

that is characteristic of a Slashdot effect visitor traffic
profile, based on a sample collected by ~mjuric and
shown in Figure 3 [15]. Due to the resource-demanding
nature of the Slashdot effect, an adaptation that does
not quickly offset the sudden rise in demand for re-
sources would not be effective. Therefore, the initial
sharp rise in traffic entails the critical duration of inter-
est for our experiment purposes. For measurement pur-
poses, we choose to observe a sustained duration after
the initial rise to make sure that any effective adapta-
tions remain effective for a reasonable amount of time.
In lieu of 12 to 18 hours of actual traffic, we patterned
our traffic profile after the ~mjuric profile, scaled down
to one hour (12:1) but kept at a similarly high visit rate:

1. 1 minute of low activity, 6 unique visits/min
2. 5 minutes of sharp rise in requests, ramping up to

600 visits/min (+120 visits/min/min)
3. 18 minutes of peak in requests, sustained at 600

visits/min
4. 36 minutes of linear decrease, ramp down to 60

visits/min (-15 visits/min/min)

We constructed this workload in JMeter, using a
Gaussian random timer between requests. We then de-
ployed this workload on two JMeter instances to gener-
ate the news reader traffic for our Znn.com example.
Finally, we devised the following trial types to assess
Rainbow’s effectiveness at adapting Znn.com. For each
trial type, we performed five runs to smooth stochastic
anomalies and to yield consistent outcomes:

1. Control runs without Rainbow adaptation – to es-
tablish baseline and comparison envelopes

2. Experimental runs with Rainbow adaptation

Z.com Webpage Latency

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Timepoint of Request (sec)

L
a
te
n
c
y
 (
s
e
c
)

0415K-NoRainbow

0415L-SimpleReduce1

Aggregate JMeter Data
ms response

URL #Samples Average Median 90% Line Min Max Error% Throughput KB/sec
0415K No Rainbow 1200 7981 1953 37514 93 52201 0.00% 8.4/sec 6.92
0415L SimpleReduce1 1200 1502 16 2187 0 22202 0.17% 29.5/sec 78.26

% of K
#K > 10sec 217
#L > 10sec 80 36.9%
#K > 1 sec 1120
#L > 1 sec 298 26.6%

Figure 4. Znn.com experiment data

Figure 5. Instantaneous and accrued utility

For every run, we collected statistics on the total
number of samples, response latencies, request
throughput, and any errors. We also tracked the corre-
sponding cost and content fidelity values to compute
accrued utility and provide a complete picture of the
tradeoff space as defined by the overall objectives.

Figure 4 shows a graph for two experiment runs,
control (red) versus adaptation using one simple strat-
egy (green). For each run, the JMeter data table shows
the total count of request samples, the statistics of re-
quest-response time, and the net throughput. The graph
plots the latency per request, and the small table sum-
marizes how many requests yielded latencies above 10
seconds and 1 second. The data indicated that Znn.com
with Rainbow adaptation, in contrast to Znn.com with-
out, yielded far lower latencies (902 of 1200, or 75%,
requests served within 1 second vs. 80 of 1200, or 7%)
and better throughput (3.5×). Therefore, Rainbow was
effective at keeping user latencies low and managing
the Slashdot effect.

Figure 5 shows graphs of instantaneous utility (IU)
and accrued utility (AU) for the two runs, which indi-
cate how well the system satisfied overall user objec-
tives. Each IU value is computed as the weighted sum
of utilities over the response time (0.50), content fidel-
ity (0.25), and cost (0.25) dimensions. At about 360s,
after an initial period of chaos, the IUs in Znn.com with
adaptation remain high compared to Znn.com without
adaptation. The final AU values show a 33% improve-
ment (1034 vs. 778) in Znn.com with adaptation.

4.2 Show that Resource Overhead Is Low

Znn.com allows us to estimate overheads of adapta-
tion mechanisms by providing a baseline with which to
compare the system before and after adding adaptation.
To get a baseline measurement, we measured CPU and
memory usages solely with Znn.com components. We
then compared them with the same measurements take
with the Rainbow Delegates deployed.

Resource overhead incurred by the Delegate was
minimal, consuming less than 2% of CPU (but occa-
sionally sustained at ~5-10%) with ~2MB of memory
footprint. This overhead would be further reducible
with optimization in implementation. Nevertheless, on
a computing node with highly constrained memory and
CPU resources, the adaptation engineer might choose
to deploy only probes on the node and configure the
probes to report via neighboring Delegate nodes.

4.3 Show Low Customization Effort

While obtaining empirical metrics for any human-
based engineering activity is often a complex process
(involving many test subjects, development conditions,
etc.), it is often possible to obtain “order of magnitude”
comparisons with less effort. Znn.com allows this kind
of evaluation by facilitating a task-based estimation of
efforts to engineer or retrofit adaptations.

To evaluate how long it took to customize Rainbow
for Znn.com, we tracked our customization activities in
detail [4], summarized here. The customization effort,
including architecture modeling (using Acme), adapta-
tion scripting (in Stitch), and development and testing
of probes, gauges, and effectors (in Perl, shell script,
and Java), accounted for a total of 93 hours, or ap-
proximately 2 1/3 work weeks. Of this, 13 hrs (14%)
were used to describe the model, 49 hrs (53%) to de-
velop probes and gauges, 7 hrs (8%) to develop effec-
tors, 21 hrs (23%) to compose adaptation scripts, and 3
hrs (3%) to put together the customization files. Note
that while the majority of the effort was spent develop-
ing monitoring capabilities, the resulting probes and

gauges are reusable artifacts, so less effort would be
required as more are developed. Furthermore, the order
of magnitude of effort has greater significance than the
actual durations: most activities required on the order
of minutes to a couple hours, not days, while incre-
mental changes required on the order of tens of min-
utes, not hours.

To compare this effort with building in adaptation
capabilities from scratch, we decomposed the self-
adaptation engineering process into four coarse-grained
tasks – three development tasks and one evolution
tasks – and estimated the time to complete each task:
domain analysis, model capture, design and implemen-
tation, and updates and modifications. As evidence, we
gathered development-activity data from our case ex-
amples and performed exploratory analysis of hypo-
thetical custom-solution scenarios. To prevent skewing
the comparison in favor of Rainbow, we made esti-
mates that favored custom-solution wherever possible.

For the custom-solution efforts, we assumed that
domain analysis done by a domain expert required the
same amount of time as with Rainbow, that model cap-
ture generally required zero time (i.e., no model cap-
ture), that design and implementation by an expert
software developer team required a minimum of one
man-month on top of the Rainbow-based time for de-
veloping the monitoring and effecting capabilities, and
that each update and modification required one-quarter
the time required for design and implementation be-
cause of buried and dispersed adaptation logic.

We can reasonably assume that, Rainbow or not,
similar probing and effecting mechanisms would have
to be implemented into the target system, though per-
haps with a simpler reactive mechanism created in
place of Rainbow’s architecture model and Adaptation
Manager. Also, we can reasonably expect that similar
deployment and roundtrip debug efforts would be re-
quired. Additional effort would be necessary for the
basic adaptation plumbing. Based on the Rainbow
framework development experience, it took one expert
Java developer over 2.5 man-months to design and
implement the communication infrastructure and
plumbing for the probes, gauges, and effectors. Even if
we assume simpler requirements in the case of building
from scratch, incurring only half the time of developing
Rainbow, it would still yield a total effort of more than
one man-month to add adaptation capabilities into the
target system. (In doing so, one would also lose Rain-
bow’s engineering advantages of architecture-level
modeling and analysis, separation of adaptation con-
cerns from system functionality, and flexibility to
evolve self-adaptation capabilities.)

We treat the Znn.com system as an average-case
scenario due to its correspondence with typical N-Tier
IT systems; for the Rainbow-based data, we estimated
about two weeks of domain analysis. While we do not
have concrete data for a worst-case scenario, we esti-
mated worst-case Rainbow-based development time to
be an order-of-magnitude longer than the average case.

In the worst-case scenario, a Rainbow instantiation
has no reusable style, gauges, probes, and effectors
from prior efforts. The adaptation engineer must con-
struct many elements from scratch, so the primary ad-
vantage of Rainbow comes from the reusable frame-
work. Thus, Rainbow-based initial development does
no better in the worst case than a custom solution. Ac-
cording to our coarse-grained task estimation of efforts,
excluding the worst case, Rainbow yielded effort sav-
ings of 2 to 5 times over custom solution for initial
development of self-adaptation capabilities. Thereafter,
Rainbow achieves additional savings of 6 to 192 times,
or up to two orders-of-magnitude, over custom solution
when evolving self-adaptation capabilities. The upfront
effort of engineering the generic Rainbow framework
accounts for the time savings over custom solution.

In summary, Rainbow makes Znn.com self-adaptive,
incurs less than 5% resource overhead on average, and
requires low customization effort on the order of days
to weeks. We now make the case for using Znn.com as
a common benchmark system.

5. What Makes a Good Benchmark?

While evaluating Rainbow, we realized that the
Znn.com system has the potential to serve as a useful
example for researchers in the community to compare
techniques. In this section, we enumerate a set of gen-
eral requirements for a benchmark system, present
Znn.com as a candidate, and pose a number of bench-
mark issues for discussion.

5.1 Benchmark Requirements

When we consider computing benchmarks in areas
such as CPU [26], databases [10], and algorithms [11],
we observe that a benchmark system, in general, should
satisfy the following requirements:

• Relevance to real-world problems
• Accessibility of system components and codebase

that can be tested in a standalone environment
• Capability to observe and change the system, by

mechanisms that range from changing component
parameters to altering overall system configuration

• Metrics for comparison, for example, CPUs have
transistor count and MIPs, algorithms have dura-

tion in seconds over input size, and databases have
throughput transactions per second

• Ease of extracting performance data from the sys-
tem and environment for conducting evaluation

Specific to the area of self-adaptive systems, we see

a number of additional requirements on the benchmark
system to facilitate comparison and contrast of essential
features of self-adaptation:

• Versatility to apply to a wide range of self-
adaptive approaches and application domains

• Allow changing the system dynamically
• Support multiple quality dimensions (trade-off),

e.g., availability, performance, reliability, security
• Allow multiple adaptive operations, e.g., enabling

or disabling servers, altering connections, tuning
component parameters, quiescing processes

• Provide multiple alternatives to achieve a single
operation, e.g., disabling a server by killing a
process or powering down the machine, changing
content fidelity by swapping configuration files or
via an Apache plug-in

• Provide multiple paths of system configuration to
achieve the same goal, e.g., increasing overall
throughput by adding servers followed by lowering
fidelity, or in the reverse order, or by some com-
pletely different sequence of operations.

Therefore, a useful benchmark system is relevant,

accessible, dynamically observable and changeable,
and versatile; supports alternative adaptive operations
and multiple configurations; facilitates quality trade-
offs; and can be compared via a common metric.

5.2 Znn.com a Candidate Benchmark System?

While any system that meets the requirements laid
out above may be a candidate benchmark system,
Znn.com is especially fitting because it is constructed
from openly accessible software components, and it has
potentially many controlled variations.

Znn.com has relevance. Assessed abstractly, the
Znn.com system contains important features of a real-
world problem: It mimics the infrastructure of actual
news-provider services. The Slashdot effect is a re-
source allocation problem that occurs in real systems,
that lacks a perfect solution and also has impact on
multiple quality dimensions, making it amenable to
self-adaptive techniques, especially those managing
multiple objectives.

Znn.com is built from open-source software that is
available for the major platforms, including Linux,
Mac, and Windows: the Apache Webserver, PHP, and

the MySQL database server. The supporting tool suites
are also widely accessible, including Perl and JMeter.

Out of the box, the software components do not di-
rectly enable dynamic observation and change. For
those purposes, we constructed a suite of probes and
effectors. We chose to probe some common system
properties – CPU load, disk I/O rate, and available
bandwidth between nodes – and a few domain-specific
properties – Apache status and server content fidelity.
The probes to detect CPU load, bandwidth, and con-
tent fidelity were implemented as Perl scripts. The
Apache status probe was derived from the C program
apacheTop. Disk I/O was a ported iostat program.

To effect changes in Znn.com, we developed a set
of Perl scripts to start or stop a server process (turn-
Server), to alter the webserver content fidelity
(changeFidelity), and one to randomly reject client
requests (setRandomReject). To alter content fidelity,
we defined three sets of webpages with high, medium,
and low fidelity content, and wrote corresponding httpd
configuration files. Altering the fidelity consisted of
swapping out httpd files and gracefully restarting the
active Apache processes. Another, more involved ap-
proach would be to develop a plug-in module that al-
lows setting different levels of Apache service.

Note that while these probes and effectors were ap-
propriate for our quality goals, not only were they reus-
able artifacts in Rainbow, they could also be reused in
a variety of contexts where Apache is used or where
CPU load, disk I/O, and bandwidth information is re-
quired. Following a similar scheme, it should be easy to
develop other probes and effectors depending on the
specific domains of adaptive systems and the qualities
being demonstrated.

The ability to extract performance data from the tar-
get system and environment for conducting evaluation
depends partly on the specific self-adaptation frame-
work and partly on the testing tool. For Rainbow, we
developed gauges such as the ApacheTop Gauge, La-
tency Gauge, and End-to-End Response-Time Gauge to
read probe data and update the architecture model. The
Adaptation Manager then dumps relevant data (e.g.,
adaptation duration or memory used) to a log file. We
also relied on the testing tool, JMeter, to obtain the
necessary measurements, including response time and
throughput. JMeter also provides features to visualize
and export data to facilitate analysis.

We targeted three quality dimensions for evaluating
Znn.com, as shown in Table 1. However, Znn.com is
capable of catering to a variety of quality dimensions,
including different performance concerns, availability,
reliability, security, and even data privacy. In addition,
Znn.com allows interesting trade-off considerations

across quality dimensions, for example, sacrificing just
the cost to reduce client-experienced response time, or
just the content fidelity, or both cost and fidelity.

Table 1. Quality dimensions and the corre-
sponding probes and effectors

Dimension Probe Effector

Client-experienced
response time

CPU load,
bandwidth,

diskIO1

turnServer,
changeFidelity,

setRandomReject1
Provision cost apacheTop turnServer

Content fidelity fidelity changeFidelity

As our example demonstrated, the Znn.com example

is rich enough to provide for variety at three levels:
multiple adaptive operations, multiple alternatives for
each operation, and multiple paths of configuration. In
short, Znn.com meets eight of the ten requirements; it
does not meet the versatility and metric requirements.
Regarding the latter, while no single basis of measure-
ment seems appropriate for all self-adaptive systems,
we believe that we can apply utility theory to enable
comparison across seemingly different and incompati-
ble dimensions of self-adaptation. In this way, we may
be able to arrive at a common basis for comparison.

The key idea to using utility theory is to explicitly
enumerate the quality dimensions for which one is
evaluating the self-adaptation technique of choice;
then, indicate the weight given to each dimension. The
weighted sum of scores across the dimensions yields a
single value, which we shall term the Self-Adaptation
Fitness Unit (SAFU). In benchmarking an approach,
one may therefore opt to account for dimensions rele-
vant to the approach. In the case of Rainbow, for ex-
ample, three important evaluation criteria are (1) meet-
ing quality of service goals, (2) resource overhead, and
(3) adaptation engineering effort. We factor in different
weights for these criteria, as shown in Table 2.

Table 2. SAFU for Rainbow on Znn.com

Criteria Value Weight

Quality dimensions 86 (1034/1200 AU) 40%
- Response time 994 50%

- Content fidelity 1021 25%
- Provision cost 1128 25%

Resource overhead 90-95 (5-10% overhead) 30%
Engineering effort 30-45 (days-weeks) 30%

Self-Adaptation Fitness Unit (SAFU): 70-76

1 Probe and effector that were developed but, in the
end, we did not need in our evaluation.

An interesting issue is how to quantify each crite-
rion. We scored the resource overhead as a percentage
of usable resources, or 100 minus an average overhead
of 5-10%, or 90-95. We scored engineering effort by
mapping time orders-of-magnitude (minute, hour, day,
week, month, year) in seconds (60, 3600, 86400, …) to
a logarithmic scale, normalized to 100 (100, 69, 45, 30,
19, 0); an effort of days-weeks scores 30-45. These
component scores yield a SAFU in the range of 70-76:

70 = 86×40% + 90×30% + 30×30%

76 = 86×40% + 95×30% + 45×30%

A SAFU of 100 indicates the perfect achievement of
all adaptation goals, which should be unreachable. The
comparison between any two self-adaptation tech-
niques comprises: (a) their relative SAFU and (b) how
they contrast in dimensions and weights.

5.3 Discussion

We introduced the Znn.com system as a candidate
benchmarking example for self-adaptive systems.
While its broad utility as such is yet to be shown, our
intent in offering it here is partly to spur community
discussion on what would make good benchmarks in
this domain. In particular, the following issues are
worth discussing:

Engineering cost: In [19] McCann discussed nine
evaluation metrics for self-adaptive systems. While we
evaluate Rainbow here with respect to two of these, we
believe that many of the others could be captured with
this example. For example, stabilization and adaptivity
would be relatively trivial to measure. Furthermore, we
believe another important metric is the cost to engineer
adaptation, especially when being applied to legacy
systems. We measured effort by tracking the amount of
time spent engineering each of the components of
Rainbow for Znn.com, and used estimates and inter-
views to compare this to engineering self-adaptation
without Rainbow. However, this raises the issue of how
engineering effort can be compared.

SAFU as a common quantitative metric: While it
remains to be seen whether the SAFU will prove useful
as a common metric for comparing different self-
adaptation techniques, one might argue that wide vari-
ance in dimensions and weights renders comparison
meaningless. However, at the very least, it provides a
conceptual (utility-based) framework for deriving
shared profiles of SAFU in the future. Each profile
would define a common set of dimensions and weights
that is applicable to a particular class of self-adaptation
techniques. Ours represents a profile instance in the
class of architecture-based self-adaptation. A profile in

a different class, such as resource-constrained mobile-
computing self-adaptive systems, might have com-
pletely different dimensions, e.g., mobility, component
robustness, sensor heterogeneity. But what constitutes a
sufficient set of evaluation points? Are there other
measurements that can be used generally for fair com-
parison? For example, should one count resource over-
heads during no-adaptation periods?

Versatility: While Znn.com is mainly useful for
evaluating web-based information-system adaptation,
there are many other domains to which self-adaptation
has been applied – for example, mobile and embedded
systems. In fact, these domains may already have exist-
ing benchmarks. McCann suggested adding autonomic
benchmarking to existing benchmarks in other do-
mains, rather than developing one for autonomous
computing [19]. We agree that this might be a way to
address the versatility requirement: one would start
with an existing benchmark for the target domain, then
add relevant autonomic benchmarks, and apply SAFU
to derive a quantitative score for comparison. Here, the
interesting issues to discuss regard what autonomic
benchmarks would look like for specific domains and
how to quantify them for comparison. For example,
there might be specific benchmarks for mobility, multi-
ple environmental contexts (ubicomp), dynamic com-
ponents (genetic programming), and different self-*
properties (self-organizing systems). Again, SAFU
profiles might help in elucidating these.

6. Conclusion and future work

In this paper, we reported on our evaluation of the
Rainbow self-adaptation approach using Znn.com. We
presented a list of requirements for a benchmark envi-
ronment to facilitate meaningful comparison with other
self-adaptive techniques, and reflected upon how well
Znn.com meets those benchmark requirements.

In addition to reporting on the evaluation of Rain-
bow and being instructive on how to apply an architec-
ture-based self-adaptive system to Znn.com, we hope
that this paper will generate discussion in the commu-
nity about what is needed for comparing different self-
adaptation approaches. Finally, we make the bench-
mark tool suite available for general community use at
this URL: http://rainbow.self-adapt.org/benchmark .

In future work, we would generalize the instance
into a benchmark “framework” that facilitates plug-in
of any components catering to specific self-adaptation
agenda. We would also create web resources to collect
and disseminate experience with its use.

Acknowledgments

This research was supported by DARPA under grants
N66001-99-2-8918 and F30602-00-2-0616, by the US
Army Research Office (ARO) under grants DAAD19-
02-1-0389 to Carnegie Mellon University's CyLab and
DAAD19-01-1-0485, and the NSF under grants CNS-
0205266, 0615305, 0834701, and IIS-0534656. The
views and conclusions described here are those of the
authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
funders, the US government, or any other entity.

References

[1] G.D. Abowd, R. Allen, and D. Garlan. Using style to
understand descriptions of software architectures. ACM
Software Engineering Notes, 18(5):9-20, 1993.
[2] T.V. Batista, A. Joolia, and G. Coulson. Managing dy-
namic reconfiguration in component-based systems. In
EWSA, LNCS 3527:1-17, Springer, June 13-14, 2005.
[3] J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelin-
ger. A survey of self-management in dynamic software archi-
tecture specifications. In WOSS ’04: Proc. of the 1st ACM
SIGSOFT Workshop on Self-managed Systems, pp. 28-33,
ACM, New York, NY, 2004.
[4] S.-W. Cheng. Rainbow: Cost-Effective Software Archi-
tecture-Based Self-Adaptation. Ph.D. Dissertation, TR CMU-
ISR-08-113, Carnegie Mellon University School of Com-
puter Science, May 2008.
[5] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. To-
wards architecture-based self-healing systems. In Garlan et
al. (eds.) Proc. of the 1st ACM SIGSOFT Workshop on Self-
Healing Systems (WOSS ’02), pp. 21-26, New York, NY,
USA, ACM Press, November 18-19, 2002.
[6] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Ge-
lenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, F. Zam-
bonelli. A Survey of Autonomic Communications. ACM
Transactions on Autonomous and Adaptive Systems (TAAS)
1(2), 223-259,2006.
[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P.
Steenkiste. Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure. IEEE Computer 37(10), 2004.
[8] I. Georgiadis, J. Magee, and J. Kramer. Self-organizing
software architectures for distributed systems. In Proc. 1st
ACM SIGSOFT Workshop on Self-Healing Systems (WOSS
’02), pp. 33-38, ACM Press, New York, NY, USA, 2002.
[9] M.M. Gorlick and R.R. Razouk. Using Weaves for
software construction and analysis. In Proc. of the 13th In-
ternational Conf. of Software Engineering, pp. 23-34, Los
Alamitos, CA, USA, IEEE Comp. Society Press, May 1991.
[10] J. Gray, A. Reuter. Transaction Processing: Concepts
and Techniques, Morgan Kaufmann, 1993.

[11] G.T. Heineman, G. Pollice, and S. Selkow. Algorithms
in a Nutshell, O’Reilly, 2009.
[12] M.C. Huebscher, J.A. McCann. A Survey of Autonomic
Computing – Degrees, Models, and Applications. ACM
Computing Surveys 40(3), 7, 1-28, 2008.
[13] IBM. An architectural blueprint for autonomic comput-
ing, 2004.
[14] IBM developerWorks. Autonomic computing toolkit.
ibm.com/developerworks/autonomic/overview.html, 2008.
[15] M. Juric. Slashdotting of mjuric/universe.
www.astro.princeton.edu/~mjuric/universe/slashdotting/,
January 13–15, 2004.
[16] J.O. Kephart and D.M. Chess. The vision of autonomic
computing. IEEE Computer, 36, 1, Jan 2003.
[17] J. Magee and J. Kramer. Dynamic structure in software
architectures. In SIGSOFT ’96: Proc. of the 4th ACM
SIGSOFT Symposium on Foundations of Software Engineer-
ing, pp. 3-14, New York, NY, USA, 1996. ACM.
[18] V. Markl, G.M. Lohman, and V. Raman. LEO: An
autonomic query optimizer for DB2. IBM Systems Journal,
42(1):98–106, 2003.
[19] J.A. McCann and M.C. Huebscher. Evaluation Issues in
Autonomic Computing. In Proc. International Workshop on
Agents and Autonomic Computing and Grid Enabled Virtual
Organizations (AAC-GEVO'2004), LNCS 3252, 2004.
[20] R. Morrison, D. Balasubramaniam, F. Oquendo, B.
Warboys, and R.M. Greenwood. An active architecture ap-
proach to dynamic systems co-evolution. In ECSA, LNCS
4758:2-10. Springer, September 24-26, 2007.
[21] A. Mukhija and M. Glinz. A framework for dynamically
adaptive applications in a self-organized mobile network
environment. In ICDCSW ’04: Proceedings of the 24th In-
ternational Conference on Distributed Computing Systems
Workshops – W7: EC (ICDCSW’04), pp. 368-374, IEEE
Computer Society, Washington, DC, 2004.
[22] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D.S. Rosenblum, and
A.L. Wolf. An architecture-based approach to self-adaptive
software. IEEE Intelligent Syst., 14(3):54-62, May-June ’99.
[23] L.W. Russell, S.P. Morgan, and E.G. Chron. Clock-
work: A new movement in autonomic systems. IBM Systems
Journal, 42(1):77–84, 2003.
[24] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu.
A Real-Time Adaptive Control of Autonomic Computing
Environments. In Proc. 4th Int’l Information and Telecom-
munication Technologies Symposium (U2TS’2006), 2006.
[25] A. Sztajnberg and O. Loques. Describing and deploying
self-adaptive applications. In Proc. 1st Latin American Auto-
nomic Computing Symposium, July 14-20, 2006.
[26] R.P. Weicker, An Overview of Common Benchmarks,
Computer, 23(12): 65-75, December, 1990.
[27] A.L. Wolf, D. Heimbigner, A. Carzaniga, K.M. Ander-
son, and N. Ryan. Achieving survivability of complex and
dynamic systems with the Willow framework. In Proc. of the
Working Conf. on Complex and Dynamic Systems Architec-
ture, December 12-14, 2001.

