
Ævol: A tool for defining and planning architecture evolution

David Garlan and Bradley Schmerl
School of Computer Science, Carnegie Mellon University,

500 Forbes Ave, Pittsburgh, PA 15221.
{garlan,schmerl}@cs.cmu.edu

Abstract
Architecture evolution is a key feature of most software
systems. There are few tools that help architects plan
and execute these evolutionary paths. We demonstrate
a tool to enable architects to describe evolution paths,
associate properties with elements of the paths, and
perform tradeoff analysis over these paths.

1. Introduction
Architecture evolution is a central feature of virtually
all software systems. For example, many IT-based
companies have evolved their systems from thin-client,
mainframe-based, to three- or four-tiered architectures
[3]. A similar transformation is now taking place for
companies that are moving from these N-tiered sys-
tems to service-oriented architectures.

In most cases such large-scale architectural
changes cannot be made overnight, and hence the arc-
hitect must develop an evolution plan to change the
architecture (and implementation) of a system through
a series of phased releases, eventually leading to a new
target system. Unfortunately, architects have few tools
to help them plan and execute such evolutionary paths.
While considerable research has gone into software
maintenance and evolution, dating from the beginning
of software engineering, there has been relatively little
work focusing specifically on foundations and tools to
support architecture evolution. Architecture evolution
is an essential complement to software evolution be-
cause it permits planning and system restructuring at a
level of abstraction where quality and business trade-
offs can be understood and analyzed.

In particular, architects have almost no assistance
in reasoning about questions such as: How should we
stage the evolution to achieve business goals in the
presence of limited development resources? How can
we reduce risk in incorporating new technologies and
infrastructure required by the target architecture? How
can we make principled tradeoffs between time and
development effort? What kinds of changes can be
made independently, and which require coordinated

modifications? How can we represent and communi-
cate an evolution plan within an organization?

Such questions require new foundations and tools
that permit architects to plan, reason about, and docu-
ment large-scale system-wide changes at an architec-
tural level. Ideally these foundations would allow one
to represent architecture evolution paths as first-class
entities that can be expressed precisely and analyzed.
They should support the expression and checking of
correctness conditions (e.g., to guarantee that a pro-
posed path satisfies certain sequencing constraints),
that intermediate states of a system evolution do not
introduce anomalous behavior, and that the proposed
path will lead to a system with desired architectural
properties. Moreover, they should allow an architect to
reason not only about “correct” evolution, but also
make tradeoffs to maximize business goals, such as the
time to reach the target architecture and the costs in-
volved in doing so. Finally, there should be practical
tool support to automate these analyses. We are explor-
ing these issues as part of the work described in [5].

In this demonstration we introduce a tool called
Ævol that provides a platform for exploring the foun-
dations of architecture evolution and evolution styles.
This tool allows an architect to specify evolution paths,
and is integrated with a software architecture design
tool to allow the architectures in an evolution path to
be visualized and edited. A key feature of Ævol is its
support for pluggable analysis of both correctness con-
ditions for evolution, as well as cost-benefit analysis
for comparing alternative paths.

2. Related Work
There are four areas of related research. The first is the
area of software evolution. Since the early days of
software engineering there has been concern for the
maintainability of software, leading to concepts such as
criteria for code modularization, indications of main-
tainability such as coupling and cohesion, code refac-
toring, reverse engineering, regression testing, and
many others [8]. While such advances have been criti-

cal to the progress of software engineering, they gener-
ally do not treat large-scale reorganization based on
architectural abstractions. Working primarily in the
domain of code units, they do not capture the essential
high-level run-time structures necessary to reason
about architectures of a complex software system. We
focus on the reuse of specifications and analyses for
domain-specific evolution at an architectural level.

The second closely-related area is tool support for
project management and planning. For example, ver-
sion control systems allow different versions of arti-
facts to be compared and reviewed. In most of these
tools, the primary managed artifact is source code, ra-
ther than architectural structures. Consequently they do
not support comparison or reasoning about different
versions of the architecture. More recent research has
investigated architectural versioning, focusing largely
on tools to support differencing and including variants
in the architectural model [1][9][10][13]. In particular,
such tools are silent with respect to what might consti-
tute a correct evolution path or a path that optimizes
business goals. As such they are complementary in that
we could use their approach for storing versions and
integrating those with software development.

Traditional project management and software de-
velopment planning approaches such as COCOMO [2]
provide ways to plan and analyze software develop-
ment. Focusing primarily on the end state of a main-
tenance or development effort, they do not provide
ways to directly plan and reason about sequences of
developments. General practical guidelines on organiz-
ing evolution is described in [4].

The third related area is formal approaches to ar-
chitecture transformation. A number of researchers
have proposed formal models to capture structural and
behavioral transformation, for example category theory
to describe how transformations can occur in software
architecture [19]. Architecture in this sense is defined
by the space of all possible configurations that can
result from a certain starting configuration. Grunske
[7] shows how to map architectural specifications to
hypergraphs and uses these to define architectural re-
factorings that can be applied automatically and also
preserve architectural behavior. Spitznagel in [16] fo-
cuses on architectural connector transformation to
augment communication paths between components.

Recently Tamzalit and others have begun to inves-
tigate recurring patterns of architecture evolution, pri-
marily with respect to component-based architectures
[17]. They characterize patterns for updating a compo-
nent-based architecture. They provide a formal ap-
proach based on a three tiered conceptual framework.
Like our work, they attempt to capture recurring and
reusable patterns of architecture evolution. However,
unlike our work, they do not explicitly characterize or

reason about the space of architecture paths, or reason
about how to select appropriate paths.

The fourth related area is tradeoff analysis for arc-
hitectural evolution. The work of Kazman et al. [11]
applies existing architectural analysis and trade-off
techniques to improve architectures. The improve-
ments are incremental, taking into consideration only
known attributes. The approach has not been consi-
dered for architecture evolution. The work in [14] pro-
poses to use option-based techniques from economic
option theory to characterize uncertainty and options
available in evolution, and identifies several techniques
that can then be used to calculate the points in time
where introducing changes would be cost-effective in a
business sense, but there is currently no tool support
for it.

One important subset of work does focus on archi-
tectural evolution for specific classes of systems. Typi-
cally this work addresses architecture evolution in the
context of a specific style, such as Darwin [12] and C2
[18]. Like the work proposed here, these approaches
can take advantage of domain-specific classes of sys-
tems, and thereby achieve analytic leverage, as well as
tool support for evolution. However, these approaches
are limited to systems constructed in the particular arc-
hitectural style that they support.

3. Ævol
What is required is a tool and approach that allows
architects to plan and compare potential paths of archi-
tectural evolution. Key to the success of this approach
is that it should allow the exploitation of common evo-
lution constraints and analyses. In developing such a
tool, we need to consider the following key degrees of
variability in the tool:
• Permit different analytical methods on the evolu-

tion. There are a variety of analytic methods that
can be used, from simple cost-benefit analyses to
more sophisticated economics-based analyses.
Different methods will require different kinds of
information about the evolution to compute overall
utility.

• Exploit the domain. It must be possible to tailor
the tool to different domains and types of evolu-
tion. For example, the tool should be tailorable for
evolutions that involve moving software from one
datacenter to another, or for rearchitecting the sys-
tem from a N-tiered style to a SOA style, etc.
We have developed a tool that functions as a plat-

form for exploring architecture evolution. The tool,
called Ævol, is a plug-in framework that supports the
use of different forms of analysis and planning to be
implemented and tested within the environment. Archi-

tects define
to architect
tudio [15],
then define
in planning
take. Speci

Defini
tures. Evo
node in th
stance, and
form the a
the archite
can have m
rated from

Defini
of instance
beginning
endpoints.

Assign
paths that e
different p
architectur
straints on
(b) analyse
(c) propert
nodes to fa

Compa
their prop
into the di
ture betwe

e the evolution
tural instances
, an editor for
e paths and run
g and choosing
ifically, Ævol p
ing evolution g
lution graphs a

he graph corre
d each transitio
architecture at
ecture at the en
multiple termin

the beginning
ing evolution p
es and transitio
at the start no

ning properties
enable analysis
paths. Ævol h
re evolution s

n evolution pat
es that can be p
ties that must
acilitate the ana
aring differen
erties. This al
fferences of no
en steps in the

n graph in Ævo
s that are devel

the Acme AD
n analyses on t
g the optimal e
provides the fo
graphs and link
are directed an
sponds to an

on to an evoluti
the start of th

nd of the trans
nation points, an
, the ends, or fr
paths as conn
ons within an e
ode and finishin

s to instances,
s, comparison,

has a rudimen
style, which d
ths to check w
performed over
be defined for

alysis.
t architectura
llows architect
ot only the arc
e evolution, bu

Figu
ol and link nod
loped in Acme
DL[6]. They ca
this graph to a

evolution path
ollowing:
king to archite
nd acyclic. Eac
architectural i
ion step to tran

he transition in
ition. The grap
nd can be elab

from the middle
ected sequenc
evolution grap
ng at one of th

transitions, an
 and planning

ntary concept
defines (a) co
well-formednes
r the graphs; an
r transitions an

al instances an
ts to drill dow
chitectural stru
ut the differenc

ure 1. The Æ
des
S-
an

aid
to

ec-
ch
n-

ns-
nto
ph
o-
e.
es

ph,
he

nd
of
of
n-
ss;
nd
nd

nd
wn
uc-
es

in the
the evo

In
above,
definit
es, and

Fi
an evo
instanc
ciated
selecte
in the
view d
in add
examp
semi-tr
evoluti
are fill
pute ov
ties of

Fi
cost/be
tions f
listed f
be exp
compa
extrem
costs
tions.T
sophis

Ævol workben
properties of b
olution path no

n addition to
, Ævol define
tion of evolutio
d different arch
igure 1 shows
olution graph.
ces, which can
with each ins

ed node in the
Properties view

displays the in
dition to prope
ple in the figu
ransparent thic
ion path. Once
led in, it is po
verall utility o

f different paths
igure 2 shows
enefit analysis
for each path d
for easy compa
ported to an E
arison. Note th
mely simple – t

and benefits
The plug-in a
ticated analyse

nch.
both the archite
odes.

the base fu
es plug-in inte
on styles, diffe
hitecture compa

the Ævol wo
Nodes are lin

n be opened in
stance is a set
graph has the
w at the bottom

nstances that th
erties required
ure, simply cos
ck line in the di
e the properties
ossible to run t
f a path and th
s.
s the results o
defined by a p

defined in the
arison. Furtherm

Excel spreadshe
hat the examp
the analysis in

of nodes, an
approach, how
es to be applie

ectural instanc

unctionality ou
erfaces to allo
rent kinds of a
arison engines

orkbench, illust
nked to archite
n AcmeStudio.
t of properties
properties disp

m of the figure
he node is link

for analysis (
st and benefit)
iagram represe
s on each of th
the analysis to
hen to compare

of running a s
plug-in. The ca
evolution grap

more, the resul
eet, enabling f
ple provided h
this case is bas
nd costs of t

wever, allows
ed (for examp

es and

utlined
ow the
analys-
.
trating
ectural
Asso-

s. The
played
e. This
ked to,
(in the
). The
ents an
he path
o com-
e utili-

simple
alcula-
ph are
lts can
further
here is
sed on
transi-
more-

ple, di-

viding costs and benefits into finer-grained elements of
concern for the particular domain or business environ-
ment, accessing the results of architectural analysis to
compare improvements in performance and security,
defining uncertainty with each property to reflect the
increased uncertainty as an architect projects the evolu-
tion further out in time, etc.)

4. Implementation
Ævol is written in Java as a plugin to the Eclipse
framework using Eclipse’s Graphical Modeling
Framework. It it also a plugin to AcmeStudio architec-
ture development environment (itself an Eclipse plug-
in) to link evolution path nodes with architectural in-
stances for each step in the evolution. Analyses are
written as Java plugins using APIs provided by Ævol.

5. Conclusion
We demonstrate a tool for architecture evolution plan-
ning and analysis that allows architects to plan evolu-
tionary changes to a software system from an architec-
tural perspective. Architects can define changes to be
made in each step of an evolution, and can explore
multiple such evolution paths. The tool provides a
plug-in framework allowing analyses so that an archi-
tect can compare and tradeoff multiple possible evolu-
tion paths. These analyses can be tailored to particular
evolution domains (such as transitioning from a N-
tiered architecture style to a service oriented architec-
tural style) and to particular business environments of
concern to the architect.

The plug-in approach to Ævol provides a platform
on which to explore bigger evolution questions, such
as how to deal with uncertainty about the future, how
to better capture evolution domain knowledge, and
how to guide the user to the right evolution paths.
These are areas of future research.

Acknowledgements

This work has been funded by NSF grants CNS-
0615305 and IIS0534656. We gratefully acknowledge
the assistance of Snehal Fulzele, Smita Ramteke, Ken

Tamagawa, and Sahawut Wesaractchakit in developing
Ævol as part of their Masters in Software Engineering
Studio Project.

References

[1] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, D.
Garlan. Differencing and Merging Architectural Views. Au-
tomated Software Engineering Journal, 15(1), 2008.
[2] B. Boehm. Software Engineering Economics. Engle-
wood Cliffs, NJ. Prentice-Hall, 1981.
[3] B. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal. Pattern-Oriented Software Architecture – A System
of Patterns, Volume I. Wiley, 1996.
[4] M. Erder, P. Pureur. Transitional Architectures for En-
terprise Evolution. IT Professional, 8(3):10-17, 2006.
[5] Garlan, D. Evolution Styles: Formal foundations and
tool support for software architecture evolution. School of
Computer Science, Carnegie Mellon TR CMU-CS-08-142, 2008.
[6] D. Garlan, R. Monroe, D. Wile. Acme: Architectural
Description of Component-Based Systems. In Foundations of
Component-Based Systems, Cambridge Univ. Press, 2000.
[7] L. Grunske. Formalizing Architectural Refactorings as
Graph Transformation Systems. Proc. the 6th International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing and 1st
ACIS International Conference on Self-Assembling Wireless
Networks (SNPD/SAWN’05). Towson, MD, 2005.
[8] C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of
Software Engineering. Prentice Hall 1991.
[9] A. van der Hoek, D.M. Heimbigner, A.L. Wolf. Ver-
sioned Software Architecture. In Proc. the Third International
Software Architecture Workshop, pp. 73-76, Nov. 1998.
[10] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, N.
Medvidovic. Taming Architectural Evolution. Proc. 6th
ESEC/9th ACM SIGSOFT FSE, 2001.
[11] R. Kazman, L. Bass, M. Klein. The essential compo-
nents of software architecture design and analysis. The Jour-
nal of Systems and Software 79, pp. 1207-1216, 2006.
[12] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specify-
ing distributed soft-ware architectures. Proc. the 5th European
Software Engineering Confe-rence (ESEC’95) 1995.
[13] E.C. Nistor, J.R. Erenkrentz, S.A. Hendrickson, A. van
der Hoek. ArchEvol: Versioning Architectural-
Implementation Relationships. In Proc. 12th International
Workshop on Software Configuration Management, pp. 99-
111, Lisbon, Portugal, 2005.
[14] I. Ozkaya, R. Kazman, M. Klein. Quality-Attribute-
Based Economic Valuation of Architectural Patterns. Soft-
ware Engineering Institute TR CMU/SEI-2007-TR-003, 2007.
[15] B. Schmerl, D. Garlan. AcmeStudio: Supporting Style-
centered Architecture Development. ICSE 2004.
[16] B. Spitznagel. Compositional Transformation of Soft-
ware Connectors. PhD Thesis, School of Computer Science,
Carnegie Mellon University TR CMU-CS-04-128, 2004.
[17] D. Tamzalit, N. Sadou, M. Oussalah. Evolution problem
within Compo-nent-Based Software Architecture. Proceed-
ings of the 2006 International Conference on Software Engi-
neering and Knowledge Engineering (SEKE'06). July 2006.
[18] R. Taylor, N. Medvidovic, K. Anderson, E. Whitehead,
E. Robbins, K. Nies, P. Oriezy, D. Dubrow. A component-
and message-based architectural style for GUI software.
IEEE Transactions on Software Engineering 22(6), 1996.
[19] M. Wermelinger, J.L. Fiaderob. A graph transformation
approach to soft-ware architecture reconfiguration. Science
of Computer Programming 44:133-155, 2002.

Figure 2. Results of running a simple
cost/benefit analysis plugin.

