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ABSTRACT

Use of multi-objective probabilistic planning to synthesize
behavior of CPSs can play an important role in engineering
systems that must self-optimize for multiple quality objec-
tives and operate under uncertainty. However, the reason-
ing behind automated planning is opaque to end-users. They
may not understand why a particular behavior is generated,
and therefore not be able to calibrate their confidence in the
systems working properly. To address this problem, we pro-
pose a method to automatically generate verbal explanation
of multi-objective probabilistic planning, that explains why a
particular behavior is generated on the basis of the optimiza-
tion objectives. Our explanation method involves describ-
ing objective values of a generated behavior and explaining
any tradeoff made to reconcile competing objectives. We con-
tribute: (i) an explainable planning representation that facili-
tates explanation generation, and (ii) an algorithm for gener-
ating contrastive justification as explanation for why a gener-
ated behavior is best with respect to the planning objectives.
We demonstrate our approach on a mobile robot case study.
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1 INTRODUCTION

CPSs in many domains must perform tasks (i.e., take se-
quences of actions to achieve some goals) while optimizing for
multiple quality objectives and operating under uncertainty.
Use of automated planning, particularly, multi-objective prob-
abilistic planning, to synthesize behavior of such systems can
play an important role in engineering smart CPSs. However,
the reasoning behind automated planning is typically opaque
to the end-users. They may not understand why a particular
behavior is generated, and therefore they may not be able to
calibrate their confidence in the systems working properly.

One approach to solve this problem is to improve trans-
parency and understandability of automated planning via ver-
bal explanation. In this work, we focus on Stochastic Shortest
Path Problem (SSP) as a probabilistic planning framework,
and we employ multi-attribute utility theory to handle mul-
tiple optimization objectives of the planning. Our research
aims to enable autonomous systems to explain their decision
actions yielded from multi-objective SSP planning. This is
to justify why they made certain decisions, in a formally-
grounded, but human-understandable, way.

There are several challenges for human observers to under-
stand solution policies from such a planning paradigm. The
key underlying challenge from which others stem is that the
choice of an optimal action at each state depends not only on
the immediate consequence of that action, but also on the con-
sequences of all possible future states and actions. From this,
other difficulties follow. As a first step towards understanding
a particular solution policy, human observers must know what
the policy achieves in terms of the optimization objectives.
However, that is non-trivial to determine manually. Moreover,
since some optimization objectives may conflict, the observers
also need to understand the preference structure on the opti-
mized attributes and how conflicting objectives are reconciled
under uncertainty. This is again non-trivial to determine man-
ually, since it involves inspecting and interpreting the multi-
attribute utility model underlying the cost function in SSP.
Such model may not even be readily available to the observers.
Furthermore, to understand what factors influence a particu-
lar optimized attribute, and how, is challenging. That such
factors are stochastic makes the matter more complicated.

To address these challenges, we propose an approach to
automatically justify decision actions yielded from a multi-
objective probabilistic planning problem, in terms of the
underlying domain semantics of the optimization objectives,
and how specifically the competing objectives are reconciled
if any. More concretely, our contributions are:
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Explainable planning representation. A planning problem
definition language that preserves the domain semantics of
the quality optimization objectives of a planning problem,
by explicitly representing the analytic models for evaluating
the quality attributes, and the multi-attribute utility model
on them. A planning problem specified in this language can
be translated to an equivalent problem in another represen-
tation with SSP semantics. Thus, it can be solved by any
SSP solver. We use an explainable planning problem defini-
tion, together with its solution policy, as input to our policy
justification algorithm.

Contrastive quality-attribute-based justification. A method
for generating a verbal argument of how a solution policy is
preferred to other rational alternatives. Such argument con-
trasts the solution policy to some Pareto optimal alternative
policies based on their objective values, and explains quan-
titatively the necessary value tradeoffs made to balance the
competing objectives.

We demonstrate our approach on a mobile robot example.

2 PLANNING FRAMEWORK AND
ASSUMPTIONS

We give an overview of the framework for multi-objective
probabilistic planning, for which we propose our explainable
planning approach. We also discuss the preference assump-
tions on the multiple quality objectives of planning, on which
our current explanation approach relies.

Stochastic Shortest Path Problems. We formulate a
multi-objective probabilistic planning problem as a Stochastic
Shortest Path (SSP) problem [1]. We focus on a solution
to an SSP ⟨𝒮, 𝑠0,𝒢,𝒜,𝒫𝑟, 𝒞⟩ that is an optimal policy 𝜋* :
𝒮 → 𝒜, which is a proper policy that minimizes the expected
cumulative cost of reaching a goal state from 𝑠0, over all
closed policies. The optimal value function 𝑉 * represents the
minimal of such cost to reach a goal state from each state 𝑠.

To handle multiple optimization objectives, we use a non-
negative cost value 𝒞(𝑠, 𝑎, 𝑠′) to characterize all quality at-
tributes (QAs) of concern of each 1-step decision. In this pa-
per, we focus on SSP planning problems that aim to mini-
mize each expected cumulative value characterizing each in-
dividual QA to reach a goal – potentially with tradeoffs. To
this end, we need to make certain assumptions about the
preference structure on the multiple QAs.

Preference Assumptions. We employ multi-attribute util-
ity theory [7] as a basis for decision making to reconcile con-
flicting QA optimization objectives under uncertainty. We
first consider the problem of minimizing all individual ex-
pected sums of the values characterizing the individual QAs
at each step (𝑠, 𝑎, 𝑠′) throughout a policy. In other words,
this problem assumes risk-neutral attitude towards the cu-
mulative QA values of a policy. To ensure that SSP frame-
work is appropriate for this type of problem, we must make
the following assumptions about QA preferences.

In SSP framework, the utility of a policy is negatively pro-
portional to the expected sum of (un-discounted) costs. The

utility function of taking action 𝑎 in state 𝑠, and thereafter
acting optimally, is in the form:

𝑢(𝑠, 𝑎) = −𝛽 ·
[︁
min
𝑎′

∑︁
𝑠′

𝒫𝑟(𝑠′|𝑠, 𝑎)
[︀
𝒞(𝑠, 𝑎, 𝑠′) + 𝑢(𝑠′, 𝑎′)

]︀]︁
, (1)

where 𝛽 > 0.
We characterize a policy, starting in state 𝑠 and taking

action 𝑎, and acting optimally thereafter, using 𝑛 attributes:
𝑋𝑠,𝑎

1 , ..., 𝑋𝑠,𝑎
𝑛 , where 𝑋𝑠,𝑎

𝑖 is the expected sum of the values

𝑞𝑠,𝑎,𝑠
′

𝑖 characterizing each QA 𝑖 at each step (𝑠, 𝑎, 𝑠′) along
the policy. Let 𝑥𝑠,𝑎

𝑖 designate a specific value of 𝑋𝑠,𝑎
𝑖 . That

is, we have an 𝑛-attribute utility function 𝑢(𝑥𝑠,𝑎
1 , ..., 𝑥𝑠,𝑎

𝑛 ) for
a policy starting in state 𝑠 and taking action 𝑎, and acting
optimally thereafter. To appropriately solve Bellman equation
to find a policy that minimizes the values 𝑥𝑠,𝑎

1 , ..., 𝑥𝑠,𝑎
𝑛 , we

make the following assumptions:

(1) Attributes 𝑋𝑠,𝑎
1 , ..., 𝑋𝑠,𝑎

𝑛 have additive independence
property. This means the utility function 𝑢(𝑥𝑠,𝑎

1 , ..., 𝑥𝑠,𝑎
𝑛 )

has an additive form.
(2) Each single-attribute utility function 𝑢𝑖(𝑥

𝑠,𝑎
𝑖 ) is mono-

tonically decreasing.
(3) Risk-neutral attitude towards the cumulative value of

𝑞𝑠,𝑎,𝑠
′

𝑖 ’s characterizing each quality attribute. It follows
that the risk attitude towards each attribute 𝑋𝑠,𝑎

𝑖 is
also neutral. This means each single-attribute utility
function on 𝑋𝑠,𝑎

𝑖 has a linear form.

Given these assumptions, we can write an equation of an
𝑛-attribute utility function equivalent to Equation 1 as:

𝑢(𝑥𝑠,𝑎
1 , ..., 𝑥𝑠,𝑎

𝑛 ) =
∑︁
𝑠′

𝒫𝑟(𝑠′|𝑠, 𝑎)
[︀
𝑘1 · 𝑓1(𝑞𝑠,𝑎,𝑠

′

1 ) + ...+

+ 𝑘𝑛 · 𝑓𝑛(𝑞𝑠,𝑎,𝑠
′

𝑛 ) + min
𝑎′

𝑢(𝑥𝑠′,𝑎′

1 , ..., 𝑥𝑠′,𝑎′
𝑛 )

]︀
,

(2)

where 𝑓𝑖(𝑞
𝑠,𝑎,𝑠′

𝑖 ) = 𝑎𝑖−𝑏𝑖·𝑞𝑠,𝑎,𝑠
′

𝑖 and 𝑎𝑖, 𝑏𝑖 < 0 are constants of
the single-attribute utility function on𝑋𝑠,𝑎

𝑖 , and 𝑘𝑖 is a scaling
constant of the 𝑛-attribute utility function 𝑢(𝑥𝑠,𝑎

1 , ..., 𝑥𝑠,𝑎
𝑛 ).

From this, we can see that if the cost function in SSP can
be written in the form:

𝒞(𝑠, 𝑎, 𝑠′) = 𝑘1 · 𝑓1(𝑞𝑠,𝑎,𝑠
′

1 ) + ...+ 𝑘𝑛 · 𝑓𝑛(𝑞𝑠,𝑎,𝑠
′

𝑛 ), (3)

then SSP planning framework is appropriate for minimizing
the expected cumulative values of the individual QAs.

3 EXPLAINABILITY CHALLENGES

We discuss some of the challenges of understanding solution
policies of multi-objective probabilistic planning.

3.1 Motivating Example

Figure 1 shows a mobile robot whose task is to drive from its
current location to a goal in a building. The robot has to arrive
at the goal as soon as possible, while trying to avoid collisions
for its own safety and to avoid driving intrusively through
human-occupied areas. The robot has access to the building’s
map (locations, and connections and distances between them),
placement of obstacles (tables and chairs along a corridor),
and the kinds of areas in the environment (public, private,
and semi-public areas). The robot can determine its current
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Figure 1: The robot must navigate from its current
location (L1) to the goal (L9).

location, knows its current driving-speed setting, and can
detect when it bumps into obstacles. The robot can also
navigate between two adjacent locations, and change its
driving speed between two settings. The travel time of the
robot to get to a destination is determined by the distance,
the robot’s speed, and whether the path is partially occluded
with obstacles. Driving through a partially occluded path
takes longer time than an equal-length non-occluded path,
and has some probability of bumping obstacles. The safety
of the robot is determined by the number of collisions, which
occur when the robot bumps into obstacles at full speed.
Lastly, the intrusiveness of the robot is based on the kinds of
areas the robot travels through. The robot is non-intrusive,
somewhat intrusive, and very intrusive when it is in a public,
semi-public, and private area, respectively.

The robot’s problem can be formulated as a multi-objective
SSP, where the objectives are to minimize the travel time to
destination, the expected number of collisions along the way,
and the cumulative penalty value for intrusiveness. Note that
the travel time and intrusiveness of the robot are determinis-
tic, unlike collisions.

3.2 Challenges

3.2.1 Value Function. Choice of an optimal action 𝜋*(𝑠)
at each state depends on 𝑉 *(𝑠), which depends not only on
the immediate consequence of that action but also on the
consequences of all possible future states and future actions.
Manually inspecting them to gain insights (as discussed in the
next challenges) into a particular value of 𝑉 *(𝑠) is intractable.

3.2.2 Quality-Attribute Properties. Relation from 𝑉 *(𝑠) to
underlying QA properties of an optimal policy is unclear.
A value 𝑉 *(𝑠) is an expected sum of values that aggregate

𝑞𝑠,𝑎,𝑠
′

𝑖 ’s of all QAs at each step in the policy. It is not straight-
forward to determine, from a value 𝑉 *(𝑠), the expected sum

of 𝑞𝑠,𝑎,𝑠
′

𝑖 for each 𝑖, which characterizes the QA 𝑖 of the cor-
responding optimal policy.

Moreover, for some QAs, an expected sum of 𝑞𝑠,𝑎,𝑠
′
may

not have a domain semantics associated with it. For instance,
the intrusiveness levels of the mobile robot are defined by
three numerical values: 0 for “not intrusive”, 1 for “somewhat
intrusive”, and 2 for “very intrusive”. An expected sum of
intrusiveness values of 10.5 throughout a policy does not have
a well-defined meaning.

3.2.3 Preferences and Tradeoffs. How conflicting QA opti-
mization objectives are reconciled in an optimal policy is un-
clear. The preference structure over the QAs is encoded in the
cost function in Equation 3. However, the functional form of a
cost function cannot explain, in a quantitative way, the neces-
sary tradeoffs among QA values to arrive at a single optimal
policy, because they depend on problem instances. Such nec-
essary tradeoffs are difficult to determine manually due to the
sequential and probabilistic nature of the decision making.

Consider the possible routes to get to the goal. The robot
must make tradeoff between timeliness and intrusiveness (e.g.,
going through route L4-L5-L6 (least time, but most intrusive)
vs. route L4-L7-L8-L9-L6 (least intrusive, but more time)). It
must also consider the interplay between safety and other
objectives (e.g., driving at a higher speed through route
segment L1-L2-L3 takes less time than driving at a lower speed;
however, bumping obstacles at a higher speed has higher
penalty). This matter is more complicated because bumps
occur stochastically. Given the robot’s generated optimal
policy, it is not obvious for human observers to see what
specific, quantified tradeoffs the robot’s planning had to make
to balance timeliness, intrusiveness, and safety.

3.2.4 Quality-Attribute Evaluation. What factors deter-
mine a particular QA value, and how, may be unclear. For
instance, assuming that the expected travel time of a policy
is known. That amount of time may be due to only the dis-
tance and speed at which the robot is traveling, or also to
that the robot takes longer time because it needs to avoid
obstacles along the way. To determine this manually, human
observers must inspect the robot’s policy, and must have ac-
cess to and be able to interpret models for assessing QAs.
For instance, they must figure that the robot’s policy is to
go through segment L1-L2-L3 at HalfSpeed, and the partially
occluded corridor delays the robot by certain amount of time.
This is a non-trivial task, especially if the models for assess-
ing QAs are not readily available or not easily interpretable.

This matter is more complicated when the QA-determining
factors are stochastic. Bumping into obstacles at a higher
speed results in a safety penalty. However, bumping is a sto-
chastic outcome of the robot’s move action, whose probabil-
ity depends on whether the pathway is partially occluded.

To address these explainability challenges, we propose:
(i) an explainable planning representation that enables au-
tomatic explanation of the planning rationale as discussed
above, and (ii) a method for generating policy justification
based on its QA properties. However, to automatically ex-
plain how a particular QA property is determined remains
our future work.

4 EXPLAINABLE PLANNING
REPRESENTATION

Our approach is to use an explainable planning representation,
which preserves the underlying semantics of QAs of a prob-
lem domain and the corresponding preference structure, to
formulate a planning problem. This representation subsumes
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the SSP semantics. A planning problem specified in this rep-
resentation can be translated to an equivalent problem in an-
other representation with SSP semantics. Therefore, it can be
solved by any SSP solver. An explainable planning problem
definition, together with its solution policy, can then be used
as input to explanation generation. To this end, we extend
the constructs of the regular SSP representation to be able to
represent QA evaluation models and the corresponding multi-
attribute utility model. These constructs are the following:

4.1 Compact Representation of
Determining Factors of QAs

To formulate the problem using the regular SSP represen-
tation, the determining factors of QAs of a policy can be
modeled as state variables (e.g., location, speed), actions
(e.g., move to adjacent location), or constants associated with
states and/or actions – but are not actually represented as
state variables nor actions (e.g., distance between locations).
Additionally, probabilistic transitions can be used to model
stochastic factors of QAs (e.g., probability of the robot bump-
ing obstacles depends on whether its path is partially oc-
cluded).

Since the determining factors of QAs can be represented
in different constructs, it is not trivial to automatically parse
those factors from a planning problem definition – to explain
how different parts of the planning context influence the QAs,
as discussed in Section 3.2.4. In this work, we use a compact
representation of QA determining factors to ease the parsing.

Types for State Variables and Actions. In our pro-
posed explainable planning representation, state variables
and actions are typed. A state-variable type can have a set
of attributes characterizing a particular state variable. Those
attributes can be numerical, boolean, or finite-domain values,
or other state-variable types. For instance, a state-variable
type Location has two attributes: ID and Area, representing
the unique ID of a particular location and the type of area
that location is in (e.g., public, semi-public, private).

An action type can be parameterized by state variables,
which correspond to states in which a particular action is ap-
plicable, or successor states of that action. Similar to state-
variable types, action types can have attributes. However,
some attributes of an action type may be derived attributes,
which are action characteristics that depend on the state
to which the action is applied. For instance, an action type
MoveTo is parameterized by a Location state variable. It has
two derived attributes: Distance and Occlusion, representing
the distance and occlusion (e.g., clear, partially occluded,
blocked) of the path between the source and the target lo-
cations of the action.

This is a more compact and coherent representation of the
determining factors of travel time, collisions, and intrusive-
ness of the robot compared to the regular SSP representa-
tion. Types of state variables and actions are the building
blocks for quality-attribute analytic models in our explain-
able planning representation.

Domain-Specific Vocabulary. We map types of state
variables and actions to domain-specific vocabulary of con-
cepts relating to states and actions of a particular domain.
This vocabulary will be used to generate verbal explanation.

4.2 Quality-Attribute Analytic Models

As discussed in Sections 3.2.1 and 3.2.2, manually examining
a value 𝑉 *(𝑠) to explain an optimal action 𝜋*(𝑠) in terms of
the underlying quality-attribute properties of the policy 𝜋* is
difficult. Therefore, we introduce a construct for representing
QA analytic models in a planning problem definition. The
construct is a function 𝒬𝑖 : 𝒮 ×𝒜×𝒮 → R≥0, referred to as
quality-attribute function for each attribute 𝑖. A function 𝒬𝑖

characterizes the QA 𝑖 at a single step (𝑠, 𝑎, 𝑠′), based on the
characteristics of the states and action (i.e., their types and
attribute values). The expected sum of the values 𝒬𝑖(𝑠, 𝑎, 𝑠

′)
at all steps throughout a policy then characterizes the QA 𝑖
of the entire policy:

𝑉 𝜋
𝑖 (𝑠) =

∑︁
𝑠′

𝒫𝑟(𝑠′|𝑠, 𝜋(𝑠))
[︀
𝒬𝑖(𝑠, 𝜋(𝑠), 𝑠

′) + 𝑉 𝜋
𝑖 (𝑠′)

]︀
(4)

There are different kinds of QAs based on how they are
quantified. Thus, they shall be explained differently. In this
paper, we discuss three kinds of QAs.

Counts of Events. QAs of this kind are quantified as
expected numbers of occurrences of events of interest, where
the objectives are to minimize occurrences of “bad” events.
The robot bumping into obstacles at a higher speed is an
example of such event, where the safety objective of planning
is to minimize the expected number of such collisions.

An event 𝑒 representing a transition (𝑠, 𝑎, 𝑠′) is a predicate
over the characteristics of the states and action involved. For
instance, a collision event 𝑒𝑐𝑜𝑙𝑙𝑖𝑑𝑒 is a predicate 𝑠.𝑟𝑆𝑝𝑒𝑒𝑑 >
𝜃𝑠𝑎𝑓𝑒𝑆𝑝𝑒𝑒𝑑 ∧ 𝑠′.𝑟𝐵𝑢𝑚𝑝𝑒𝑑 = 𝑇𝑟𝑢𝑒. Currently, we exclude
events that have durations (i.e., span across multiple transi-
tions) from the definition. A QA function 𝒬𝑒 characterizing
event 𝑒 is an indicator function of the set of transitions satisfy-
ing 𝑒. Thus, a value 𝑉 𝜋

𝑒 (𝑠) in Equation 4 is an expected num-
ber of occurrences of event 𝑒 of policy 𝜋 starting at state 𝑠.

Standard Measurements. QAs of this kind can be mea-
sured in a standard, scientific way, either directly or by de-
riving from other measurements. Such QAs are quantified by
their magnitudes (e.g., duration, length, rate of change, uti-
lization, etc.), typically measured in real values. A QA func-
tion 𝒬𝑖 of this kind is a measurement model of the magnitude
of 𝑖 at a single step (𝑠, 𝑎, 𝑠′), which uses the characteristics of
the states and action as parameters. Recall that these mag-
nitudes must be additive to be appropriate for the SSP plan-
ning framework. The travel time of the robot is an example
of this kind, where the travel time of a move transition 𝒬𝑡𝑖𝑚𝑒

depends on the robot’s speed and the traveling distance, with
an additional delay if the path is partially occluded by obsta-
cles. The expected travel time of the robot following policy
𝜋, starting from state 𝑠, is 𝑉 𝜋

𝑡𝑖𝑚𝑒(𝑠) in Equation 4.

Non-Standard Measurements. Some properties do not
have associated standard measurements, or their exact stan-
dard measurements may not be available to the modelers.
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Nonetheless, given the domain knowledge, a carefully-defined
arbitrary measurement can be used to characterize policies
with respect to a particular property of concern. One such
non-standard measurement approach is to map characteristics
of states and actions to numerical values representing levels
or degrees of the property at each step (𝑠, 𝑎, 𝑠′), and then the
expected sum of these values throughout a policy character-
izes the property of that policy. The intrusiveness of the robot
is an example of a non-standard QA, where the intrusiveness
of the robot is given the values 0, 1, and 3 for then it moves
into the public, semi-public, and private areas, respectively.

An expected sum of values representing an abstract prop-
erty, such as intrusiveness, does not have a well-defined mean-
ing. Unlike for standard measurements, it is not intelligible
to communicate a value such as 𝑉 𝜋

𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑣𝑒(𝑠) in an explana-
tion. Instead, we propose to communicate the distribution of
different measurement values throughout a policy in an expla-
nation. To this end, we calculate the expected count of events
characterizing each measurement value. Moreover, instead of
communicating numerical measurement values, we use quali-
tative terms (e.g., “not intrusive”, “somewhat intrusive”, and
“very intrusive”) to describe them in an explanation.

Vocabulary for Quality Attributes. We map QA ana-
lytic models to domain-specific vocabulary to be used to gen-
erate verbal explanation. The vocabulary includes QA names,
measurement units for standard QAs, and qualitative terms
for describing non-standard QAs.

4.3 Multi-Attribute Utility Model

As discussed in Section 3.2.3, manually determining the spe-
cific and quantified value tradeoffs taken by the planning to
reconcile conflicting QA objectives is challenging. To enable
our explanation algorithm to address this challenge, we in-
troduce a construct for representing multi-attribute utility
model on the QAs in a planning problem definition.

Recall from Section 2 that the functional form of a cost
function 𝒞(𝑠, 𝑎, 𝑠′) is determined from all single-attribute util-
ity functions on 𝑋𝑠,𝑎

𝑖 and an 𝑛-attribute utility function on
all 𝑋𝑠,𝑎

𝑖 ’s (Equation 2). Our explainable planning represen-
tation has a construct for specifying these utility functions
explicitly. This allows us to explain the preference structure
on the multiple QAs quantitatively.

5 POLICY JUSTIFICATION

A policy justification argues why a particular solution policy
is best with respect to the quality optimization objectives.
This section describes our policy justification approach, which
explains the QA properties of a solution policy and any
necessary tradeoffs made to reconcile competing objectives.

5.1 Describing Objectives and
Quality-Attribute Properties

The first part of a policy justification describes what QA ob-
jectives are considered, and what QA properties a solution

policy has. Essentially, we explain the value 𝑉 *(𝑠) that de-
termines each optimal action 𝜋*(𝑠) in terms of the underly-
ing QA values of 𝜋*. This step utilizes the QA analytic mod-
els and the corresponding domain-specific vocabulary repre-
sented in an explainable planning problem definition.

Numerical Query. To determine the counts of events, or
the QA values with standard measurements, of a solution
policy, we use the corresponding 𝒬𝑖 functions and calculate
the expected sums of 𝒬𝑖(𝑠, 𝑎, 𝑠

′) values throughout the pol-
icy, as shown in Equation 4. Similarly, to determine the QA
properties with non-standard measurements, we query the
distributions of the non-standard measurement values occur-
ring in the policy, as discussed in Section 4.2.

Quality-Attribute Language Templates. To generate
verbal explanation of the objectives and the QA properties
of a solution policy 𝜋*, we use predefined natural-language
templates. Recall that different kinds of QAs should be ex-
plained differently. Table 1 shows examples of verbal expla-
nation of QA objectives and properties. The italicized terms
are originally placeholders in the templates. These placehold-
ers are then filled with either terms from the domain-specific
vocabulary provided in a planning problem definition, or val-

ues 𝑉 𝜋*
𝑖 (𝑠) for each QA 𝑖.

Kind of QA Optimization Objective QA Property

Count of events “minimize the expected number of colli-
sions”

“the expected number of collisions is
0.8”

Standard measurement “minimize the expected travel time” “the expected travel time is 10 minutes”

Non-standard measurement “minimize the expected intrusiveness” “the policy is expected to be non intru-
sive for 5 steps and somewhat intrusive
for 2 steps”

Table 1: Examples of verbal explanation of quality-
attribute objectives and properties.

5.2 Contrastive Quality-Attributed-Based
Justification

The second part of a policy justification argues why a partic-
ular solution policy is generated. There are different aspects
and kinds of explanation. But in this work, we focus on argu-
ing why a solution policy is superior to other feasible alter-
natives, or at least not inferior to other alternatives – as dif-
ferent policies may have the same overall utility value. This
kind of explanation is appropriate for optimization problems.

Since optimization problems in question are multi-objective,
arguing why a particular solution is superior must address
how competing objectives are reconciled, i.e., how tradeoffs
are made, if any. To this end, we explain the tradeoffs by
contrasting the solution policy to some Pareto optimal alter-
natives based on their QA properties. We then justify the
tradeoffs according to the utility models underlying the cost
function of the planning problem. We call this contrastive
quality-attribute-based justification.

If there are no competing QA objectives, a justification
indicates absolute optimality of a solution policy.

Determining Alternative Policies. Algorithm 1 outlines
an approach for sampling Pareto-optimal alternative policies
nearby the solution policy. The key idea of the approach is the



SEsCPS’18, May 27-June 3, 2018, Gothenburg, Sweden R. Sukkerd, R. Simmons, and D. Garlan

following. Starting from the QA values of the solution policy 𝜋:

𝑥
𝑠,𝜋(𝑠)
1 , . . . , 𝑥

𝑠,𝜋(𝑠)
𝑛 . For each QA 𝑖, we determine a new value

𝑥′
𝑖 that is more preferable than 𝑥

𝑠,𝜋(𝑠)
𝑖 . Then, we construct a

new planning problem with one less optimization objective
(excluding that of the QA 𝑖 – resulting in a new cost function
of the SSP problem), and with the constraint that the QA
𝑖 must be at least as good as 𝑥′

𝑖. Next, we find an optimal,
constraint-satisfying solution policy 𝜋′ for the new planning
problem. This policy is an alternative to the selected solution
policy 𝜋 for the original planning problem. We perform this
step iteratively until we obtain up to𝑀𝑖 number of alternative
policies for each 𝑖. Using this method, we can obtain up to
approximately 𝑛·𝑀𝑎𝑣𝑔 alternative policies; each one improves
at least one QA but compromises at least one other QA.

There are ways to fine-tune this algorithm, which might
lead to a more effective explanation of the tradeoff rationale
of planning. Algorithm 1 searches for each alternative by
improving one QA at a time. However, we may also improve
multiple QAs at once, but appropriate heuristics to guide
such selection and search may be needed. Furthermore, the
parameters of Algorithm 1 (e.g., ∆𝑢𝑖, 𝜃𝑖, 𝑀𝑖) may impact the
relevance of the generated alternatives (e.g., alternatives that
have too-undesirable values in some QAs, even though Pareto
optimal, may be considered unnecessary to an explanation).
Investigating these issues remains our future work.

Algorithm 1: Find Pareto-optimal alternative policies

input : 𝜋: solution policy
𝑠: initial state
𝑢1, . . . , 𝑢𝑛: 1-attribute utility functions on 𝑥

𝑠,𝜋(𝑠)
𝑖

𝑢: 𝑛-attribute utility function on all 𝑥
𝑠,𝜋(𝑠)
𝑖 ’s

𝑢∖1, . . . , 𝑢∖𝑛: all (𝑛− 1)-attribute utility functions
Δ𝑢1, . . . ,Δ𝑢𝑛: increment sizes of utilities
𝜃1, . . . , 𝜃𝑛: maximum utilities
𝑀1, . . . ,𝑀𝑛: max. # of alternatives / attribute

output : A set of alternative policies Π′

1 Π′ ← ∅;
2 𝐷 ← attributes to be explored, e.g., {1, . . . , 𝑛};
3 while 𝐷 ̸= ∅ do
4 𝑖← remove an attribute from 𝐷;

5 𝑐𝑜𝑢𝑛𝑡𝑖 ← 0;

6 𝑣𝑖 ← 𝑢𝑖(𝑥
𝑠,𝜋(𝑠)
𝑖 );

7 𝑢∖𝑖 ← (𝑛− 1)-attribute utility function on all 𝑥
𝑠,𝜋(𝑠)
𝑗 ’s, 𝑗 ̸= 𝑖;

8 while 𝑣𝑖 < (𝜃𝑖 −Δ𝑢𝑖) ∧ 𝑐𝑜𝑢𝑛𝑡𝑖 < 𝑀𝑖 do
9 // Improve utility of attribute 𝑖

𝑣𝑖 ← 𝑣𝑖 + Δ𝑢𝑖;

10 �̄�
𝑠,𝜋(𝑠)
𝑖 ← all 𝑥

𝑠,𝜋(𝑠)
𝑗 , where 𝑗 ̸= 𝑖;

11 𝜋′ ← argmax
𝜋

𝑢∖𝑖(�̄�
𝑠,𝜋(𝑠)
𝑖 ), subject to 𝑢𝑖(𝑥

𝑠,𝜋(𝑠)
𝑖 ) ≥ 𝑣𝑖;

12 if 𝜋′ exists then
13 Π′ ← Π′ ∪ {𝜋′};
14 𝑐𝑜𝑢𝑛𝑡𝑖 ← 𝑐𝑜𝑢𝑛𝑡𝑖 + 1;

15 for 𝑗 ̸= 𝑖 do

16 if 𝑢𝑗(𝑥
𝑠,𝜋′(𝑠)
𝑗 ) ≥ 𝑢𝑗(𝑥

𝑠,𝜋(𝑠)
𝑗 ) + Δ𝑢𝑗 then

17 // Disregard attributes that were sufficiently
improved in this iteration in future exploration
𝐷 ← 𝐷 − {𝑗}

Explaining the Value Tradeoffs. Comparing the solu-
tion policy to each Pareto-optimal alternative policy demon-
strates quantitatively the necessary value tradeoffs in plan-
ning. Our policy justification indicates the amount of gain-
loss in the QAs if one were to choose each alternative over
the original solution policy. It then indicates preference to-
wards the solution policy by arguing that such gain is not
worth the loss, reflecting the QA utility models underlying
the cost function of planning. We use a predefined natural-
language template for generating verbal justification:

“I could [(1) vp. improve these QAs to these values], by [(2)
vp. carrying out this alternative policy] instead. However, this
would [(3) vp. worsen these other QAs to these values]. I decided
not to do that because [(4) np. the improvement in these QAs]
is not worth [(5) np. the deterioration in these other QAs].

The statement fragments (1) and (3) contrast the QA val-
ues of the original solution policy with those of an alterna-
tive policy, by describing the gains and the losses quantita-
tively. (2) describes the alternative policy. (4) and (5) restate
the gains and the losses qualitatively, as part of rejecting the
alternative policy.

6 DEMONSTRATION

We demonstrate a policy justification that our approach gen-
erates for a solution policy1,2 from the mobile robot example.

“I aim to minimize the expected travel time, the expected
number of collisions, and the expected intrusiveness. I plan to
move from L4 to L1 at FullSpeed, from L1 to L3 at HalfSpeed,
and from L3 to L6 at FullSpeed. The travel time is 10 min-
utes, the expected number of collisions is 0, and the policy is
somewhat intrusive for 3 steps and very intrusive for 1 step.

I could decrease the travel time to 5 minutes, by moving
through L4-L5-L6 at FullSpeed instead. However, this would
increase the intrusiveness to be very intrusive for 2 steps. I
decided not to do that because the decrease in travel time is
not worth the increase in intrusiveness.

I could also decrease the intrusiveness to being non-intrusive
for 3 steps and very intrusive for 1 step, by moving from L4
to L7 at FullSpeed, from L7 to L9 at HalfSpeed, and from L9
to L6 at FullSpeed instead. However, this would increase the
travel time to 15 minutes. I decided not to do that because the
decrease in intrusiveness is not worth the increase in travel
time.” 3

This is because the algorithm: (i) searched to reduce time
on the Pareto curve and found a policy that goes via the
shortest, obstacle-free route at full speed, but through a
private area, and (ii) searched to reduce intrusiveness and
found a policy that goes through a public area, but has the
longest route with obstacles. Since the expected collision is 0

1To explain why a solution policy is selected, we have to describe
what the policy is first. However, we do not discuss an approach for
policy description in this paper.

2Here we omit the term “expected” from the verbal explanation
when a QA of the policy has deterministic value.

3Note that there are other Pareto optimal alternative policies that
the justification algorithm did not pick that might clarify the tradeoff
rationale further. This is a challenge of tuning the parameters of
Algorithm 1, as discussed in Section 5.2.
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in the original solution policy, the algorithm did not attempt
to find a policy to reduce it.

7 RELATED WORK

There are several existing works that aim to explain why in-
telligent agents or systems produce particular behavior. Some
existing works have investigated policy explanation for MDP-
based planning systems. Elizalde et al. [4, 5] contributed an
approach that identifies factors that are most influential to
the decisions. Khan et al. [8] also contributed an approach
for explaining an optimal action in a policy by computing the
frequency of reaching a goal by taking the action. Hayes and
Shah [6] contributed algorithms for generating descriptions
of a robot’s control policies and to respond to queries from
humans, including questions about environmental conditions
under which certain behavior will occur and vice versa, and
why certain behavior did not occur.

While these works enable policy explanation for MDP-
based planning, they focus on explaining optimal actions in
a policy solely based on either: (i) impact of action choices
on the total reward or goal reachability, or (ii) conditions
of the state variables under which certain actions are taken.
The works by [4, 5, 8] fall into the first category. They do not
address the underlying semantics of rewards, which we argue
that it is important for promoting human understanding of
the decision rationale. The work by [6] falls into the second
category. Their generated explanations contrast conditions
under which different actions are taken, but not justify why
the actions should be taken. Moreover, unlike our work, they
do not address the problem of multiple optimization functions
and justifying optimal actions on the basis of these objectives.

Plan explanation for other planning paradigms has also
been studied. Seegebarth et al. [14] proposed an approach
for explaining hybrid planning, by proving the necessity of
plan steps and orderings on plan steps. Bidot et al. [2] pre-
sented an approach for generating verbal explanations of hy-
brid planning, which justify the ordering of two tasks and
for the temporal position of a single task. Unlike these prior
works, our approach does not aim to explain the causality
of plan or policy steps. Instead, we focus on explaining the
relative desirability of a policy, with respect to the quality
optimization objectives.

Apart from plan and policy explanation, there are several
other works on explaining behavior of rule-based or machine-
learning-based systems. Lim and Dey et al. [3, 11, 13] con-
tributed automatic explanation approach for the different ex-
planation types and decision model types, including rules,
decision trees, naive Bayes, and hidden Markov models [12].
Kulesza et al. [9, 10] investigated how explanations can af-
fect end users’ mental models of intelligent agents’ person-
alized behavior, focusing on explaining decision-tree bagging
ensemble classifier.

8 CONCLUSION AND FUTURE WORK

We contribute an approach for automatic explanation of
the rationale behind decision actions (policies), yielded from

multi-objective probabilistic planning. Such explanation ar-
gues for why a particular solution policy is superior to other
feasible alternatives with respect to the optimization objec-
tives. This includes explaining the objective values of the so-
lution policy, and how competing objectives are reconciled,
grounded on the preference structure on the QAs.

Currently, our explanation approach relies on strong as-
sumptions about the preference structure on quality at-
tributes. We plan to investigate approaches that are appli-
cable to a broader class of multi-attribute utility models.
We also have yet to solve the challenge of explaining the de-
termining factors of QAs. Furthermore, we aim to address
the problems of finding alternative solution policies that are
deemed relevant to a contrastive justification for a particular
policy – constituting a more effective explanation.
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