
Instance-based Learning for Hybrid Planning
Ashutosh Pandey, Bradley Schmerl, and David Garlan

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA

ashutosp@cs.cmu.edu · schmerl@cs.cmu.edu · garlan@cs.cmu.edu

Abstract—Due to the fundamental trade-off between quality
and timeliness of planning, designers of self-adaptive systems
often have to compromise between an approach that is quick
to find an adaptation plan and an approach that is slow but
finds a quality adaptation plan. To deal with this trade-off, in
our previous work, we proposed a hybrid planning approach
that combines a deliberative and a reactive planning approach
to find a balance between quality and timeliness of planning.
However, when reactive and deliberative planning is combined to
instantiate a hybrid planner, the key challenge is to decide which
approach(es) should be invoked to solve a planning problem. To
this end, this paper proposes to use a data-driven instance-based
learning to find an appropriate combination of the two planning
approaches when solving a planning problem. As an initial proof
of concept, the paper presents results of a small experiment that
indicate the potential of the proposed approach to identify a
combination of the two planning approaches to solve a planning
problem.

I. INTRODUCTION

Self-adaptive software systems make decisions at run time
that seek to change their behavior in response to faults, chang-
ing environments, and attacks. Having an appropriate planning
approach to find adaptation plans is critical to successful self-
adaptation. To determine adaptation plans, researchers in the
self-adaptive community have suggested various approaches,
such as model-checking [9], fuzzy-logic [18], reinforcement
learning [19], stochastic search [15], automated planning [27]
and case-based reasoning [28].

For any planning approach, there is a fundamental trade-
off between quality and timeliness of planning: quality of
planning refers to the likelihood of a (determined) plan meeting
adaptation goals and timeliness of planning indicates the ability
to find a plan in a timely fashion. Planning could be considered
as a search/optimization process to determine a plan in a
state space; a more complete search provides better quality
guarantees about a plan, but requires more time to complete.
In fact, the NoFreeLunchTheorem formally proves that for
any search/optimization algorithm, any elevated performance
over one class of problems is paid for in performance over
another class [5].

However, modern systems such as Amazon Web Services
[1] and Netflix [2], not only need to find the adaptation plans
quickly but also require the plans to be optimal. Ideally, for
such systems, a planning approach is needed that can find
optimal adaptation plans in a timely manner.

To find a balance between quality and timeliness, in our
previous work, we proposed the idea of hybrid planning that
combines a reactive and a deliberative approach [16]. In
the hybrid planning approach, a self-adaptive system uses
reactive planning to provide a quick (but potentially sub-
optimal) response to a planning problem, but simultaneously
uses deliberative planning to find a higher quality plan. Once

the deliberative plan is ready, it takes over execution from the
reactive plan.

Specifically, in our previous work, we combine a reactive
approach with a deliberative planning approach. Reactive
planning is invoked only in case of an emergency situation
i.e., a constraint violation. For a constraint violation, reactive
planning is able to provide a quick response since planning
time is reduced by ignoring parts of the operating domain state
space (e.g., states that arise as a result of uncertainty); however,
this reduced state space is likely to result in low quality plans.
Our approach simultaneously invoked deliberative planning to
consider more of the state space while beginning the execution
of the reactive plan. Once a deliberative plan is ready, it takes
over from the reactive plan. Our experiments in the context
of a cloud-based application demonstrated the effectiveness of
this hybrid planning approach [16].

Invoking reactive planning only on constraint violations, as
in our original work, suffers from two limitations. First, it
limits the applicability of hybrid planning to cases involving
constraint violations: so, the approach is effective for self-
healing, but it is not clear how it would apply to other self-*
properties that are not triggered conditionally. For example,
self-optimization attempts to improve utility continuously [21].
Second, for complex systems, it can be difficult to determine
a fixed set of predefined conditions at design time that capture
all possible constraint violations.

In this paper, we propose to address these limitations by
applying hybrid planning to non-conditional self-* properties
using a data-driven instance-based learning (IBL) approach
that, broadly speaking, helps to solve a new problem based
on similar problems seen in the past [29]. It is called instance-
based since it maps a problem space to the solution space
using training instances; this mapping is eventually used to
solve a new problem instance. The application of IBL is based
on the assumption that, for a self-adaptive system the decision
to invoke reactive planning for two similar planning problems
would also be similar; in other words, an effective combination
of reactive and deliberative planning for one problem should
also work for another “closely related” problem.

IBL has benefits over condition-based invocation of reactive
planning. First, using IBL a system could apply reactive
planning to a broader range of situations compared to specific
(predefined) conditions. Second, system designers do not need
to (explicitly) identify conditions that trigger reactive planning.

As a preliminary validation of IBL, we performed exper-
iments for a simulated cloud-based application. Specifically,
we manually identified pairs of similar planning problems and
investigated if the decision to invoke reactive planning for one
problem in a pair also applies to the other problem in the
pair. The experiments indicated the potential of IBL to decide

whether reactive planning should be invoked (or not) for a
planning problem.

The idea of applying instance-based learning (in the context
of hybrid planning) is inspired by the work done in the field of
hyper-heuristics. A hyper-heuristic can be considered as a high-
level heuristic that, given a particular search problem instance
and a number of low-level heuristics to solve the problem,
can select and apply an appropriate low-level heuristic at each
decision point. Broadly speaking, hybrid planning falls into the
category of hyper-heuristics since a planning problem (i.e., a
search problem) is solved by selecting appropriate planners and
applying them. To solve search problems (e.g., SAT solving),
IBL is one of the approaches commonly proposed by the
hyper-heuristics community [25].

The rest of the paper is organized as follows: in Section II,
we introduce a motivating example that will be used throughout
the paper to explain our IBL approach; Section III describes the
IBL approach; in Section IV, we present preliminary evaluation
results; Finally, we conclude in Section V.

II. MOTIVATING EXAMPLE

This section presents the motivating example, which was also
used in our previous work [16]. Suppose we have a cloud-based
web application, which has a typical three layered architecture:
a presentation layer, an application layer, and a database layer.
When the application layer receives a client request from the
presentation layer, it processes the request and exchanges data
with the database layer if required. We will assume that the
system has servers of different capacity;1 however, the cost of
a server increases with an increase in capacity. The workload
on the system depends on the request arrival rate, which is
uncertain as it depends on external demand.

The system needs to optimize profitability by maximizing
revenue and minimizing operating cost; the system has various
adaptation tactics to achieve these objectives. To maximize
revenue, it is desirable to maintain the response time for user
requests below some threshold (say T), since higher perceived
user response time results in revenue loss [4][6]. Typically, an
increase in request arrival rate would cause a higher response
time perceived by clients. In such situations, the system can add
more servers (using the addServer<type> tactic) to handle the
workload; however, adding servers would increase operating
cost. To manage cost, the system has an adaptation tactic
removeServer<type> to deactivate an extra server.

In addition to adding servers, system response time can be
controlled through brownout, which reduces the amount of
optional content (e.g., advertisements or product recommenda-
tions) [8]. Such optional content generates revenue, but requires
more computation power and network bandwidth, increasing
response time [7]. The system provides a way to control this by
providing tactics increaseDimmer and decreaseDimmer which
raise or lower the probability that a request will contain optional
content – if the value of the dimmer setting is high, a majority
of requests will be served optional content; if it is low, fewer
requests will have that content.

Since the system has servers of different capacity, a round-
robin strategy for assigning client requests to active servers

1As measured by average number of requests handled per second.

would not be efficient. The number of client requests delegated
to a server depends on its capacity. The load-balancer uses
queueing theory [14] to decide on the optimal load-distribution
among the active servers. To distribute the load efficiently, there
is a tactic, divert_traffic, which helps the load-balancer manage
the percentage of client requests assigned to each server.

We assume there is a penalty, say P , for each request having
a response time above the threshold. Therefore, in case of a high
average response time, the system needs to react quickly either
by adding servers or decreasing the dimmer value. However,
once response time is under control, the system should execute
adaptation tactics to bring down the operating cost in order to
maximize overall long term utility.

The goal of the system is to maximize the utility, which
depends on revenue generated, the penalty for response time
above the threshold, and the cost of active servers. If the system
runs for duration L, utility can be defined as:

U = ROxO +RMxM − PxT −
n

∑
i=1
Ci ∫

L

0
si(t)dt (1)

where RO and RM is revenue generated by a response
with optional and mandatory content respectively; xO, xM ,
and xT are the number of requests with optional content,
only mandatory content, and having response time above the
threshold; Ci is cost of server type i and si is number of active
servers of type i; n is number of different types of servers.

III. APPROACH

There are two key challenges to realize hybrid planning
for decision-making in self-adaptive systems. First, ensuring
a seamless transition from a reactive plan to a (possibly)
higher quality deliberative plan. Second, finding an effective
arrangement of reactive and deliberative planning to solve a
planning problem.

To find a balance between quality and timeliness, hybrid
planning relies on transitioning from a low-quality reactive
plan to a higher quality deliberative plan. To ensure such a
transition, we rely on two features of the formal model defining
the problem of hybrid planning [17]. These features are: (a)
deliberative planners generate a universal plan i.e., a plan
contains state-action pairs corresponding to all the reachable
states from the initial state, where a mapping from a state (say
s) to an action (say a) suggests a be executed in s; and (b) the
operating domain is Markovian i.e., the state after a transition
only depends on the current state – not on the sequence of
states that preceded it [20]. The combination of these two
features ensures that if reactive and deliberative planning have
the same initial state, once the deliberative plan is ready, it can
take over the plan execution from the reactive plan because
any state in the reactive plan will be in the deliberative plan.

When reactive and deliberative planning is combined to
instantiate a hybrid planner, the other key challenge is to decide
whether reactive planning should be invoked for a planning
problem. Assuming that deliberative planning provides better
plans compared to reactive planning, when an adaptation is
required a self-adaptive system has one of the two choices: (a)
use reactive planning to provide a quick response, but switch
to a deliberative plan once it is ready, or (b) invoke deliberative
planning and wait until a plan is ready (i.e., do not use reactive

planning). Both choices have contexts in which they might be
appropriate. In the context of cloud-based system (introduced
in Section II), the first choice could be useful in dealing with
emergency situations such as response time constraint violation.
However, for some situations (e.g., sudden short-term drop in
the request arrival rate), reactive planning might suggest a low-
quality plan (e.g., remove a server), which would negatively
impact the system’s utility; therefore, the second choice might
be preferred over the first one. For hybrid planning to be
broadly applicable, an effective approach is needed to select
between the two choices.

One approach is to invoke reactive planning only when a
constraint is violated [13]. In the context of a cloud system,
on a response time violation the system would invoke reactive
planning to provide a quick response (say addServer) to
the violation. However, while a new server becomes active,
deliberative planning would determine a higher quality plan
that would take over execution to improve long term utility.

As demonstrated by our previous work, invocation of reactive
planning based on predefined conditions (e.g., constraint
violations) can be useful. However, it limits the scope of
hybrid planning to self-* properties such as self-healing. In
contrast to self-healing systems, for instance, self-optimizing
systems continuously improve utility (i.e., adaptation not
limited to constraint violations) [21]. For self-optimizing
systems, identifying a fixed set of conditions at design time
could be difficult. Moreover, for such systems, invoking reactive
planning only on constraint violations would limit the use of
reactive planning, and thus the potential of hybrid planning
would not be fully realized.

To support a broad application of hybrid planning, this paper
proposes an instance-based learning (IBL) approach to decide
whether reactive planning should be invoked for a planning
problem. In this approach, for a planning problem, the decision
to invoke reactive planning depends on the performance of
reactive planning on a similar planning problem seen earlier.s

The proposed IBL approach has an offline and an online
phase. During the offline phase, we evaluate the hybrid planner
against a set of planning problems similar to the ones expected
at run time. The offline phase helps to determine when it
is effective to invoke reactive planning in combination with
deliberative planning compared to just invoking deliberative
planning. When a system faces a planning problem at run time
(i.e., the online phase), it invokes deliberative planning since
it is likely to provide a high-quality plan when the planning
is complete. Meanwhile, to decide whether reactive planning
needs to be invoked, a problem similar to the current problem
is found from the offline phase. For this similar problem, if
reactive planning improved the utility (compared to waiting for
deliberative planning to complete), reactive planning is invoked
for the current problem too, otherwise the system waits until a
deliberative plan is ready.

A. The offline phase
The offline phase helps to build the performance model

of a hybrid planner by profiling it against a set of planning
problems that the system expects to observe at run time;
here, for a planning problem, profiling refers to evaluating the
hybrid planner for two cases i.e., whether reactive planning is

invoked (in combination with deliberative planning) or not. For
a planning problem realized at run time (i.e., the online phase),
this performance model helps the system to decide whether to
invoke the reactive planner or wait until a deliberate plan is
ready. More formally, the goal of the offline phase is to approx-
imate the function Y ∶ Ξ→ {useReactive, notUseReactive}
suggesting whether reactive planning should be invoked for
a planning problem ξ ∈ Ξ. Here Ξ is the set of all planning
problems for the system.

The offline phase has two steps: (a) identify sample planning
problems to profile the hybrid planner; and (b) profile the hybrid
planner against these sample problems.

1) Identifying Sample Problems: For a self-adaptive system,
comprehensive coverage of a planning problem space is critical
to get a better estimation of the performance model of a hybrid
planner; however, identifying a good set of representative
problems is challenging due to a potentially infinite problem
space. Unfortunately, there is no ideal solution to this problem
as it requires an appropriate abstraction of the problems space;
this abstraction depends on system specific requirements.

For our preliminary investigation for IBL approach in the
context of the cloud-based system in Section II, we classified
the problem space based on the current response time and the
future workload pattern. Since the cloud system has a penalty
for the response time constraint violation (i.e., maintaining
response time is a primary concern than reducing operating
cost), we divide the problem space along the dimensions of
current response time and future workload pattern.

2) Profiling the Hybrid Planner: After determining a set of
planning problems that reasonably cover the planning problem
space, the next step is to evaluate the hybrid planner against
these problems. For evaluation, first we solve a sample planning
problem (say ξs) using the deliberative planner; suppose a
plan πd is determined in time td. Second, we solve the same
problem with the reactive planner, which determines a plan πr
in a negligible time.

To evaluate the hybrid planner against the sample problems,
we use a probabilistic model-checker – in this case Prism
[26]. For each sample problem, there are two evaluations
corresponding to the two possible choices (i.e., use or not use
reactive planning) for the hybrid planner. In the first evaluation,
for a sample problem we model-check the combination of the
reactive plan and the deliberative plan. In the second evaluation,
for the same problem we model-check the case when the system
waits until the deliberative plan is ready. Then we compare
the two results to decide if reactive planning should have been
applied to the problem.

The first evaluation has two steps: (a) until time td, reactive
plan πr is executed, and (b) from time td onwards, deliberative
plan πd is executed. Suppose on simulating this combination
of the reactive and the deliberative plan, we get utility Uc. This
evaluation represents the case when, initially, reactive planning
is invoked to solve ξ until the deliberative plan (i.e., πd) is
ready to take over the execution.

The second evaluation represents the case when a system
does not invoke reactive planning to solve ξs, but rather waits
for the deliberative plan to be ready. This evaluation has two
steps: (a) no action until time td, and (b) from td onwards,
execute the deliberative plan πd.

Finally, we compare the utilities Uc and Ud to decide if
reactive planning should be invoked (or not) to solve ξs; if
Uc > Us then invoke the reacting planning (i.e., Y (ξs) =

useReactive) otherwise wait for the deliberative plan to be
ready (i.e., Y (ξs) = notUseReactive).

B. The online phase

When a system senses an adaptation opportunity (i.e., a
planning problem, say ξr) at run time, it needs to decide
if invoking reactive planning would improve utility. In the
context of IBL, this decision-making problem consists of two
sub-problems: (a) find planning problems from the profiling
stage that are similar to ξr, and (b) decide whether to invoke
reactive planning based on its performance on the matching
problems.

Often the system will not encounter precisely the problems
that were covered in the offline phase. Therefore, we need a
way to determine if the current state of the system is similar
to a state we observed in the offline phase. Formally, we need
to define a function S ∶ Ξ × Ξ → R that takes two planning
problems as an input and returns a real number indicating
the similarity between the planning problems. To calculate
similarity between two planning problems, one can develop
a metric that considers various aspects (e.g., the similarity
between current states of the system). We can then use this
metric to find training instances that are similar to the current
problem and use some heuristic to decide whether to invoke
reactive planning. For example, in the simplest case, we could
choose based on the instance closest to the current instance, or
we could choose based on whether the majority of the N-closest
instances invoked reactive planning, or something else.

Defining a good similarity metric is itself a challenging
problem, and depends on the operating domain. In our
experiments using the cloud-based system, we use current
response time (i.e., above or below the threshold) and the
predicted trend of request arrival.

IV. PROOF OF CONCEPT

The purpose of our experiments is to demonstrate that if
two planning problems are similar, then the decision to invoke
reactive planning for one should also apply to the other. Here
is an overview of our methodology to evaluate the proposed
IBL approach: First, in the context of the cloud-based system
in Section II, we synthesize a pair of planning problems (i.e.,
adaptation opportunities) that are similar (but not exactly same)
in terms of current response time (e.g., above or below the
threshold) and future workload pattern. We choose one problem
from the pair to conduct profiling of hybrid planner as discussed
in Section III-A2. Suppose, profiling of the problem shows that
a combination of reactive and deliberative planning provides a
higher utility compared to the case when the system waited
until a deliberative plan is ready. Then, for the second problem
in the pair, we simulate both the cases (i.e., reactive planning
invoked and not invoked) on the actual system. If simulation
results are consistent (i.e., invoking reactive planning provides
higher utility) with the profiling result for the first problem,
then it is an indication that IBL could be effective in deciding
whether reactive planning should be invoked.

A. Experimental Setup
To bring self-adaptive capability to our cloud-based system,

we implemented a MAPE-K loop [12] using a discrete event
simulator, OMNeT++ [3]. In the simulator, we implemented
various architectural components such as a load-balancer,
and different types of servers. Besides the fundamental func-
tionality, these components also have logic to support the
tactics described earlier. For instance, servers allow incre-
ments/decrements of dimmer values and the load-balancer
allows addition/removal of servers.

Similar to our previous work, we instantiated hybrid planning
using deterministic (i.e., reactive) and MDP (i.e., deliberative)
planning [16]. To model environmental uncertainty for MDP
planning, we use a time-series predictor to anticipate future
workload on the system [10].

The system has three types of servers: A, B and C. Server
type-C is the costliest, but has the highest capacity in terms
of its ability to handle requests: server type-A is the cheapest,
but has the least capacity. We assign a cost per minute to
be $0.5, $0.7, and $1 for server type-A, type-B, and type-C,
respectively. The capacity of server type-A is 50 when serving
the optional content and 150 without serving the optional
content; the capacity of server type-B is 130 when serving the
optional content and 200 without serving the optional content;
and the capacity of server type-C is 150 when serving the
optional content and 300 without serving the optional content.
Table I summarizes the simulation parameters for the three
types of server.

Capacity (requests per second)

Server-type Cost
($ per minute)

With Optional
Content

Without Optional
Content

A 0.5 50 150
B 0.7 130 200
C 1.0 150 300

TABLE I. Simulation parameters for the three servers

Suppose the cost of a server can be covered by the revenue of
handling 1/10 of its maximum capacity with optional content
and the revenue of handling 2/3 of its maximum capacity
without optional content. If the server cost per minute is C,
capacity with optional content is cO and without optional
content is cM , then the revenue for a server with optional
content is RO = 10

cO
C and without optional content would be

RM =
3/2
cM
C. For each request having response time above the

threshold of 1 second, there is a penalty of -3 units.
For the experiments, we have 3 dimmer levels and 1 server

of each type i.e. the total number of servers is 3. We assume
a fixed boot-up time of 2 minutes for each server type. Since
at any point in time, we can have a maximum of 2 inactive
servers, and each server requires 2 minutes of boot up time,
our look-ahead horizon for MDP planning is chosen to be 5
minutes. This heuristic gives a long enough horizon to go from
1 active server to 3 active servers plus 1 additional evaluation
cycle to observe the resulting utility.

To formulate pairs of similar planning problems, as discussed
later we use two sections (highlighted as Region-1 and Region-
2 in Fig. 1) of the request arrival trace from the World Cup ’98

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	 4	 7	 10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	70	73	

N
um

be
r	o

f	r
eq

ue
st
s	

Timeline	in	minutes	

Region-1 Region-2

Fig. 1: Request arrival rate for a trace used as an input.

website [11]. This trace is scaled down so the request arrival
rate does not exceed the capacity of the simulation. Notice
that the workload pattern for these sections is similar, where
load increases from about 80 requests per second to about 120
requests per second over 5 minutes.

The cloud-based system operates in a self-optimization mode.
To explain further, suppose the system takes the trace shown by
Region-2 as an input. The goal of the system is to maximize
the aggregate utility (for Region-2), which is the sum of utility
accumulated at the end of each minute; since the trace duration
is 5 minutes, the utility of the system is calculated 5 times for
the trace and finally these utilities are summed up to get the
aggregate utility. To find an adaptation plan, the system can
either use the combination of reactive and deliberative planning
or use only deliberative planning.

We conducted the experiments on a Ubuntu 14.04 virtual
machine having 8GB RAM and 3 processors at 2.5 GHz. The
state space for the MDP planning varies approximately between
1.6 million and 2.2 million and the MDP planning time varies
between 35-45 seconds. The state space for the deterministic
planning is less than 100K states with planning time less than
a second, which is considered negligible in the experiments.

B. Results
To show the usefulness of IBL, we experimented with two

scenarios. Each scenario has a source planning problem that we
profile and a similar planning problem (i.e., the target problem)
that we apply the results to. If IBL is useful, it should help
to decide whether reactive planning should be applied to the
target problem.

1) Scenario-1: In this scenario, the source planning problem
(Pb1) plans for a situation where the response time is above the
constraint threshold, and the workload is predicted to continue
increasing. This problem corresponds to Region-1 in Fig. 1. In
this planning problem, the current state of the system has an
active server of type A and dimmer level of 0 (i.e., optional
content is being served).

We profile the planner in the cases of doing reactive planning
and not doing it. For this situation, the reactive planner suggests
that increasing the dimmer and adding a server of type-C will
sufficiently bring down the response time. The deliberative
plan (which takes time to compute) suggests decreasing the
dimmer since the newly added type-C server (as suggested by

the reactive plan) is sufficient to handle the expected increase in
workload. When we model check the profile for this situation,
we find that combining reactive and deliberative planning results
in better aggregate utility than waiting for the deliberative plan
and doing that alone.

For the target planning problem (Pb2), we use the second
region of Fig.1 which also has high response time and a
predicted increase in workload, but has different a number
of requests. We simulate this, and in Fig. 2 it can be seen that
if we were to use deliberative planning only in this case, we
get worse aggregate utility (normalized, it is -1) than if we did
what IBL suggests and use reactive planning in combination
with deliberative planning, with a normalized utility of -0.5.

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

Scenario-1	 Scenario-2	

N
or
m
al
iz
ed

	U
-i
ty
	

Only	Delibera5ve	 Reac5ve	+	Delibera5ve	

Fig. 2: Normalized aggregate utility for different approaches
when handling the second problem in the two scenarios.

2) Scenario-2: In this scenario, the source planning problem
(Pb3) plans for a situation where the response time is below the
constraint threshold, but the workload is predicted to continue
increasing. This problem corresponds to Region-1 in Fig. 1.
Although the same region (i.e., Region-1) is used for both Pb1
and Pb3, in contrast to Pb1, problem Pb3 has response time
under the threshold since more resources are initially deployed
by the system. For Pb3, the current state of the system has 2
active servers (one each of type-A and type-B) and the dimmer
level is at 3 (i.e., no users get optional content).

Similar to Scenario-1, we profile the planner in the cases of
doing reactive planning and not doing it. For Pb3, the reactive
planner suggests removing the server of type-B, which is the
wrong decision considering the predicted increase in workload
going forward. When we model check the two situations, we
find that combining reactive and deliberative planning results
in worse aggregate utility than waiting for the deliberative plan
and doing that alone.

For the target planning problem (Pb4), we use Region-2 of
Fig.1. Like Pb3, problem Pb4 has response time below the
constraint threshold and a predicted increase in workload. For
problem Pb4 the system has 2 active servers (one each of
type-A and type-C) and the dimmer level is at 3. We simulate
this, and in Fig. 2 it can be seen that if we were to use reactive
planning in combination with deliberative planning in this case,
we get worse aggregate utility (normalized, it is about 0.4)
than if we did what IBL suggests i.e., use only deliberative
planning, with a normalized utility of 1.20.

V. CONCLUSION

As a proof of concept, we provide two specific instances
that indicate that IBL could be useful in the context of hybrid
planning. Although our experiments indicate the potential of
IBL approach, further investigation is required to determine the
effectiveness of the approach. To this purpose, first we need to
find a reasonable set of profiling problems that broadly cover
the problem space. For this, we plan to use the traces used
by Gandhi et al. [22] that are claimed to cover major types of
load patterns for cloud-based systems; different load patterns
could help to cover (a large part of) the problem space.

The next challenge is to develop a similarity metric that
helps in identifying similar planning problems. This metric
would be used to automate the process of finding similar
problems during the online phase. Specifically, we plan to
explore techniques to calculate similarity between time-series
(i.e., workload) patterns in order to identify similar planning
problems [23]. However, a major challenge for the online phase
is to keep it efficient both in terms of correctness and time
consumed to find similar problems. Although, going forward,
we plan an extensive validation for IBL approach, this paper
lays a foundation for a meaningful discussion among the self-
adaptive community.

ACKNOWLEDGMENTS

This work is supported by award FA87501620042 from the Air
Force Research Laboratory (AFRL). Government is authorized
to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
AFRL or the U.S. Government.

REFERENCES

[1] https://aws.amazon.com/ec2/sla/
[2] http://techblog.netflix.com/2010/12/5-lessons-weve-learned-

using- aws.html
[3] https://omnetpp.org/
[4] G. Linden. Make Data Useful. Amazon, 2009
[5] D. H. Wolpert and W. G. Macready. Coevolutionary free lunches.

IEEE Transactions on Evolutionary Computation„ vol. 9, pp. 721-
735, 2005

[6] W. Lloyd et al. Stronger semantics for low-latency geo-replicated
storage. In 10th USENIX Symposium on Networked Systems De-
sign and Implementation, pages 313-328. USENIX Association,
Apr. 2013

[7] M. B. Dias et al., The value of personalised recommender systems
to e-business. In Proceedings of the 2008 ACM Conference on
Recommender Systems - RecSys ’08, page 291, New York, New
York, USA

[8] C. Klein et al., Brownout: building more robust cloud applications.
In Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014, pages 700-711, New York, New York,
USA

[9] D. Sykes et al., Plan-Directed Architectural Change For Au-
tonomous Systems. Sixth International Workshop on Specification
and Verification of Component-Based Systems (SAVCBS 2007),
September 3-4, 2007, Cavtat near Dubrovnik, Croatia, 2007

[10] G. Moreno et al., Proactive Self-Adaptation under Uncertainty: A
Probabilistic Model Checking Approach. ESEC/FSE-15, August
30 - September 4, 2015, Italy

[11] M. Arlitt and T. Jin. A workload characterization study of the 1998
world cup web site. IEEE Network, 14(3):30-37, 2000

[12] J. O. Kephart and D. M. Chess, "The vision of auto-
nomic computing", Computer, vol 36, issue 1, Jan 2003.
doi:[10.1109/MC.2003.1160055]

[13] O. Cheng et al., Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure. 1st International Conference on
Autonomic Computing (ICAC 2004)

[14] Mor Harchol-Balter, Performance Modeling and Design of Com-
puter Systems: Queueing Theory in Action. Cambridge University
Press

[15] Z. Coker et al. SASS: Self-Adaptation Using Stochastic Search.
Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems Florence,
Italy 2015, pp. 168-174

[16] A. Pandey et al., Hybrid Planning for Decision Making in Self-
adaptive Systems. In International Conference on Self-Adaptive
and Self-Organizing Systems, ser. SASO 2016, 2016, pp. 12-16

[17] A. Pandey et al., Towards a Formal Framework for Hybrid Plan-
ning in Self-Adaptation. In 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems,
SEAMS-17

[18] P. Jamshidi et al., Autonomic resource provisioning for cloud-
based software. In 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS-
14

[19] Barry Porter and Roberto Rodrigues Filho, Losing Control: The
Case for Emergent Software Systems using Autonomous Assem-
bly, Perception and Learning. In International Conference on Self-
Adaptive and Self-Organizing Systems, SASO 2016

[20] Mausam and Andrey Kolobov, Planning with Markov Decision
Processes: An AI Perspective. Synthesis Lectures On Artificial In-
telligence and Machine Learning, Morgan & Claypool Publishers,
June 2012

[21] Andrew Berns and Sukumar Ghosh, Dissecting Self-* Properties.
Proceedings of the 2009 Third IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO ’09), Pages
10-19

[22] Gandhi et al., Autoscale: Dynamic, robust capacity management
for multi-tier data centers. TOCS, 2012

[23] Pablo Montero and Jośe A. Vilar, TSclust: An R Package for Time
Series Clustering. Journal of Statistical Software, November 2014,
Volume 62

[24] E. Burke et al., Hyper-Heuristics: An Emerging Direction in
Modern Search Technology. Handbook of Metaheuristics, Vol. 57,
July 2003

[25] Lars Kotthof, Algorithm Selection for Combinatorial Search Prob-
lems: A Survey. AI Magazine. Fall 2014, Vol. 35 Issue 3, p48-60.
13p

[26] M Kwiatkowska et. al., PRISM 4.0: Verification of Probabilistic
Real-time Systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS,
pages 585-591, Springer, 2011

[27] Arshad et al., Deployment and Dynamic Reconfiguration Planning
For Distributed Software Systems. Proceedings of the 15th IEEE
International Conference on Tools with Artificial Intelligence
(ICTAI’03)

[28] Sima Soltani et al., QuARAMRecommender: Case-Based Reason-
ing for IaaS Service Selection. 2014 IEEE International Confer-
ence on Cloud and Autonomic Computing 978-1-4799-5841-2/14
315.00 DOI 10.1109/ICCAC.2014.26220

[29] D. Aha et al., Instance-Based Learning Algorithms. Machine
Learning, 6, 37-66 (1991)

