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Abstract—Run-time generation of adaptation plans is a power-
ful mechanism that helps a self-adaptive system to meet its goals
in a dynamically changing environment. In the past, researchers
have demonstrated successful use of various automated planning
techniques to generate adaptation plans at run time. However, for
a planning technique, there is often a trade-off between timeliness
and optimality of the solution. For some self-adaptive systems,
ideally, one would like to have a planning approach that is both
quick and finds an optimal adaptation plan. To find the right
balance between these conflicting requirements, this paper intro-
duces a hybrid planning approach that combines more than one
planner to obtain the benefits of each. In this paper, to instantiate
a hybrid planner we combine deterministic planning with Markov
Decision Process (MDP) planning to obtain the best of both worlds:
deterministic planning provides plans quickly when timeliness is
critical, while allowing MDP planning to generate optimal plans
when the system has sufficient time to do so. We validate the
hybrid planning approach using a realistic workload pattern in
a simulated cloud-based self-adaptive system.

I. INTRODUCTION

Often self-adaptive software systems operate in uncertain
environments. To meet their requirements under dynamically
changing environments, self-adaptive systems seek to change
their behavior by determining adaptation strategies at run time.

Researchers have proposed various approaches to accomplish
this. Systems such as Rainbow have a repertoire of predefined
adaptation strategies created at design time by domain experts
based on their past troubleshooting experience [5]. When an
adaptation is triggered at run time, the repair strategy that
maximizes the expected utility is selected from the set of
predefined strategies. In the artificial intelligence community,
this approach fits in the category of case-based reasoning (CBR),
which solves new problems based on the solutions to similar
problems [12]. Since strategies are not generated at run time
and the calculation of expected utility is fast (by virtue of the
design of the repair strategy language), the process of selecting
an adaptation strategy is quick. However, optimality of repair (in
a utility-theoretic sense) cannot be guaranteed, since the set of
predefined strategies may not be sufficient to handle unforseen
problems or environments.

In contrast to having a predefined set of strategies, approaches
have been suggested to generate adaptation plans at run time.
In particular, researchers have demonstrated the potential of
various automated planning techniques for run-time plan gener-
ation in the context of self-adaptive software systems [10][27].
Moreover, various frameworks have been suggested to support
run-time plan generation using automated planning [6][4]. Since
automated planning explores a large space of possible repair

strategies that can be used in the current state of the system
and its environment, it is often able to provide nearly optimal
solutions or find repairs for unexpected situations.

Numerous automated planning techniques have been devel-
oped by the artificial intelligence community providing various
tradeoffs in planning time versus quality [21]. For example,
planners that incorporate uncertainty -- an inherent feature of
most adaptive systems -- often have exponentially larger state
spaces to explore compared with deterministic planners. But the
resulting plans are typically much better. Therefore, developers
of self-adaptive systems are typically faced with a dilemma:
whether to use fast but sub-optimal planning approaches (such
as case-based reasoning or deterministic planning) vs. slow but
nearly optimal planning approaches that deal with uncertainty
(such as Markov Decision Process [20] or Partially Observable
Markov Decision Processes [22]).

For many systems this choice is problematic: they need
both quick actions under some circumstances, but can tolerate
more deliberative planning to improve system performance
over the long term. Consider, for example, a cloud system
such as Amazon Web Services, where as per their service level
agreement (SLA), it is critical to maintain an up-time percentage
of at least 99.95% in any monthly billing cycle.1 For such
systems, in case of a failure, rapid response is needed to maintain
this availability guarantee. However, for such a system, there are
typically other quality concerns such as minimizing operating
cost. In other words, the overall utility of the system is dominated
by the key quality constraints, but other concerns remain relevant.
Netflix is another example of such a system, where managing
the overall latency of response to clients is critical to good user
experience, in spite of the desire to minimize resource usage,
and thus to bring down operating cost.2

Ideally, for such systems, a planning approach that can find
optimal adaptation strategies quickly is needed. However, it is
hard to find a single automated planning approach that satisfies
both of these conflicting requirements. To deal with that trade-
off, this paper introduces a novel hybrid planning approach that
combines multiple automated planning technologies to bring
their benefits together. The hybrid planning approach provides
a quick response in case of a time-critical problem, such as an
SLA constraint violation. However, when there is sufficient time,
it can generate a close-to-optimal plan to maximize the overall
long-term utility of the system. This idea of hybrid planning is

1https://aws.amazon.com/ec2/sla/
2http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-

aws.html



akin to human decision making: depending upon factors such
as available planning time, humans apply different levels of
deliberation while making real life decisions [38].

Specifically, to instantiate a hybrid planner, we combine a
fast, deterministic planning approach with a slow, but optimal,
MDP planning approach.3 In case of a constraint violation,
deterministic planning is triggered to provide a rapid response.
This planner is able to reduce the planning time by ignoring
uncertainty in the planning domain, thereby reducing the state
space to be explored.4 However, ignoring uncertainty adversely
impacts the optimality of plans. To deal with this issue of sub-
optimal plans, while the deterministic plan is being executed,
MDP planning is performed in the background to generate an
optimal adaptation policy by taking uncertainty into account.

However, the combination of deterministic planning and MDP
planning can only be effective if the MDP policy is able to
seamlessly take over the plan execution from the deterministic
plan. Fortunately, the structure of an MDP policy increases
the chance of seamless transfer of plan execution from the
deterministic plan to the MDP policy. If the deterministic
and the MDP planning have the same initial state, once the
MDP policy is ready, it takes over the plan execution from
the deterministic plan in any of the future states, ensuring the
optimal policy execution thereafter (detailed explanation in
Section IV). However even if the MDP policy is optimal, since
it takes over execution from a (possibly) sub-optimal plan, the
combined plan might be sub-optimal.

As an initial feasibility study for the hybrid planning approach,
we conducted experiments in a simulated cloud-based self-
adaptive setting using a realistic workload pattern from the
WorldCup ’98 website [16]. This setting deals with two kinds
of uncertainties: uncertainty in the external environment (i.e.,
uncertain client request arrival rate), and the system (i.e., random
hardware failures). In this context, the experiments demonstrate
that the hybrid planning approach performs better than either
deterministic or MDP planning used in isolation.

In recent work, we explored optimal planning under uncer-
tainty by employing models able to capture probabilistic, as
well as adversarial behavior of a system’s environment [27].
Moreover, Moreno et al. [15] explicitly incorporate the notion of
tactic latency in the execution of adaptation, yielding closer-to-
optimal results, compared to latency-agnostic decision-making.
In contrast, the present proposal explores the combined use of
different planning techniques to explicitly deal with latency in
optimal decision-making in planning for adaptation, helping to
mitigate the sub-optimality that might arise from failing to make
adaptation decisions in a timely manner.

The rest of the paper is organized as follows: in Section II, we
introduce a motivating example that will be used throughout
the paper. Section III provides background on AI planning.
In Section IV, we describe the hybrid planning approach in
detail, including the planning models and how the adaptation
decisions are made. The Section V presents the evaluation of
the hybrid approach. Section VI discusses related work in the

3In general, MDP planning finds an optimal plan; however, the optimality of
a plan depends on various factors such as the algorithm used and the time spent
solving the MDP.

4Although deterministic planning can take non-negligable time for complex
state spaces, it is typically orders of magnitude faster than planning under
uncertainty.

field of automated planning and self-adaptive software systems.
Finally, Section VII concludes with a discussion of future work.

II. MOTIVATING EXAMPLE

Fig. 1. High-level view for the cloud-based system

Consider we have a cloud-based self-adaptive system, as
shown in Fig. 1, with a typical N-tiered architecture: a pre-
sentation tier, an application tier, and a database tier. Using the
presentation tier, a client sends a request to the application tier,
which interacts with the database tier to process the request. We
assume the system has different types of server with varying
capacity (i.e., ability to handle requests per second) and cost.
Not surprisingly, the operating cost of a server increases with
increase in capacity. The workload on the system depends on the
request arrival rate, which is uncertain as it depends on external
demand. Moreover, we assume that there is uncertainty in the
system itself because of the possibility of random server crashes,
which adversely impact the load bearing ability of the system.

The system needs to improve profitability by minimizing
operating cost and maximizing revenue. To achieve these
objectives, the system has various adaptation tactics. The system
has an adaptation tactic removeServer, which is used to bring
down the operating cost by deactivating an extra server.

Since higher perceived user response time results in revenue
loss [28][31], it is desirable to maintain the response time for
user requests below some threshold, say T . To accomplish this,
the system can either add more servers (using the addServer
tactic) or control optional content such as advertisements and
product recommendations.

Depending on their request, the client is presented with some
mandatory content along with some optional content, which
helps generating extra revenue [18]. Even though the optional
content generates revenue, it uses additional computation power
and network bandwidth that increase response time. A brownout
mechanism is implemented to control the optional content
through a dimmer variable [19]. The value of the variable is
in the range [0..1], which represents the probability of including
the optional content in a response. The system has tactics,
increaseDimmer and decreaseDimmer, to increase and
decrease the value of dimmer variable respectively. In case
of a high workload, the number of responses having optional
content could be reduced by decreasing the dimmer value;
however, it would also bring down the revenue generated through
advertisements.

We assume there is a penalty, say P , for each request having
a response time above the threshold. Therefore, in case of an
average response time above the threshold, the system needs
a rapid response, either by adding servers or decreasing the
dimmer value. However, once the response time is under control,



the system should execute other adaptation tactics to bring down
operating cost (i.e., maximize overall long-term utility).

Since the system has servers of different capacity, a round-
robin strategy for assigning client requests to active servers
would not be efficient. The system has another tactic di-
vert_traffic, which helps the load-balancer in distributing the
workload among active servers. The system uses queueing theory
to determine an optimal distribution of workload [35]. Intuitively,
the percentage of client requests assigned to each active server
depends on their capacity.

The goal of the system is to maximize aggregate utility over a
fixed window of time. The utility increases with the increase in
revenue and decreases with higher operating cost. If the system
runs for duration L, the utility function would be defined as:

U = ROxO +RMxM � PxT �
nX

i=1

Ci

Z L

0
si(t)dt (1)

where RO and RM is revenue generated by a response with
optional and mandatory content respectively; P is the penalty
for request having response time above the threshold; xO, xM ,
and xT are number of requests with optional content, mandatory
content, and having response time above the threshold, respec-
tively; Ci is the cost of server type i, and si is the number of
active servers of type i; n is number of different types of server.

III. BACKGROUND

A. Automated Planning

Automated planning is a well established branch of artificial
intelligence (AI). In essence, planning is the task of coming
up with a sequence of actions to achieve a goal state from the
initial state. Formally, given a set of states S, a set of actions
A : S ! S, an initial state sI 2 S, and a set of goal states
Sg 2 S, the planning problem is the task of finding a sequence
of actions that, when applied to sI , yield goal states in Sg .

Over the years, AI researchers have developed various au-
tomated planning approaches [21]. These automated planning
approaches can be broadly characterized into two categories:
deterministic planning, and planning under uncertainty.

1) Deterministic Planning: Deterministic planning is applica-
ble to domains having no uncertainty, either in action outcomes
or observations of the underlying states. The simplest (although
computationally expensive) way to find a deterministic plan is a
brute-force search of the planning space. To speed up the process
of state-space search, various algorithms [30][32] and heuristics
[3][2] have been proposed by the AI community.

Since there is no uncertainty in deterministic planning, when
an action a is applied to an arbitrary state s, it results in a
single transition to a state s0. Therefore, deterministic planning
approaches, in general, produces a linear plan, which represents
a sequence of actions to get from the initial state to a goal state.

2) Planning Under Uncertainty: Researchers have developed
various approaches to deal with different kinds of uncertainties
in a planning domain. For instance, MDP planning deals with
uncertainty in action outcomes, and POMDP planning deals
with uncertainty, both in action outcomes and observations
of the underlying states. By taking into consideration the
various possible outcomes of actions (and system states) these
approaches often provide much better plans than those rendered
through a deterministic approach. However, the size of the state

space grows exponentially with increasing levels of uncertainty,
thereby increasing the planning time.

As we detail later, our experiments, specifically, we use finite
discrete-time MDP planning as a slow, but optimal, planning
approach since it (1) helps in dealing with uncertainty in the
request arrival rate, and (2) generates an optimal strategy that
maximizes a utility function over a time period.

Definition 3.1 (Markov Decision Process): A Markov Deci-
sion Process (MDP) is a tuple M = hS, sI , A,�, ri, where
S 6= ; is a finite set of states; sI 2 S is an initial state; A 6= ;
is a finite set of actions; � : S ⇥ A ! D(S) is a (partial)
probabilistic transition function; and r : S ! Q�0 is a reward
structure mapping each state to a non-negative rational reward.
D(X) denotes the set of discrete probability distributions over
finite set X .

An MDP models how the state of a system can evolve in
discrete time steps. In each state s 2 S, the set of enabled
actions is denoted by A(s) (we assume that A(s) 6= ; for all
states). Moreover, the choice of which action to take in every
state s is assumed to be nondeterministic. Once an action a is
selected, the successor state is chosen according to probability
distribution �(s, a).

We can reason about the behavior of MDPs using policies.
A policy resolves the nondeterministic choices of an MDP,
specifying which action to take in every state.

Definition 3.2 (Policy): A policy of an MDP is a function
� : (SA)⇤S ! D(A) s.t., for each path ⇡ · s, it selects a
probability distribution �(⇡ · s) over A(s).

In this paper, we use policies that are memoryless (i.e., based
solely on information about the current state) and deterministic
(�(s) is a Kronecker function such that �(s)(a) = 1 if action a
is selected, and 0 otherwise). Hence, mapping states to actions
based on � is straightforward. In this paper, we obviate � for
conciseness, and refer to policies simply as maps from states to
actions. The optimal policy for a MDP is one that maximizes
the expected utility over all the possible policies for that MDP.

IV. APPROACH

The key idea behind hybrid planning is to combine the
advantages of different planning approaches. For instance, to
generate adaptation plans for the cloud-based self-adaptive
system described in Section II, we combine a fast planning
approach with an optimal, but slow planning approach. This
hybrid planning uses a fast planner to handle an immediate
problem, but simultaneously uses a slow planner to provide
an optimal solution. For such systems, intuitively, using only
the slow planner alone would increase the delay in decision
making, thereby resulting in lower utility particularly when a
quick response is needed; however, using the fast planner alone
would provide a quick response but it would not be suitable for
maximizing utility in the long term.

However, there are several research challenges in combining
the multiple planning approaches: (i) identifying the set of plan-
ning approaches that could be used to find an appropriate balance
between conflicting (timing versus quality) requirements, (ii)
identifying planning approaches that are compatible to be used
together, and (iii) determining the criteria for knowing when to
invoke each of the constituent planners.

In the context of our cloud-based system, we handled these
challenges by combining deterministic planning with MDP



planning. When a rapid response is required, the deterministic
planner helps in quick decision making, while the MDP planner
finds an optimal plan that maximizes overall utility in the
long run. Therefore, the two planning approaches provide a
balance between the conflicting requirements of quick and
optimal planning. Moreover, as explained in the next section,
the structure of MDP policy helps in the coordination between
the two planning approaches.

In our cloud-based self-adaptive system, the rationale for
combining the two planning approaches is the following: In case
of a response time above the threshold T , deterministic planning
provides a rapid response, minimizing the penalty for a high
response time. Deterministic planning ignores uncertainty in the
request arrival rate, which reduces the state space to be searched,
thereby reducing the planning time compared to MDP planning.
However, while the deterministic plan is under execution, MDP
planning is performed in the background to find a better policy
by taking environmental uncertainty into account.

To account for uncertainty in the MDP planning, we create
an environment model using future values of interarrival time
(the inverse of average request arrival rate) between two consec-
utive requests. When MDP planning is triggered, a time-series
predictor is used to anticipate the values of interarrival time
(incorporating uncertainty in the predictions). These predicted
values are used to model the environment as a Markov decision
process, where each possible interarrival rate is considered as an
outcome of a probabilistic action made by the environment.

A. Synchronization Between Deterministic and MDP Planning
The success of the hybrid planning approach depends on the

seamless transition of execution from a deterministic plan to an
MDP policy. On applying an action a from the deterministic plan
in state s, if the resultant state is not found in the MDP policy,
the hybrid planning approach would fail to execute the optimal
MDP policy for the subsequent states. However, the structure of
an MDP policy increases the chance of seamless transition of
execution from a deterministic plan to an MDP policy.

Fig. 2 explains the transition of execution from a deterministic
plan to an MDP policy. Suppose, at state s, there is a constraint
violation (e.g., response time goes above the threshold) that
cannot be handled by the existing MDP policy.5 To deal with the
problem, as explained later in Algorithm 1, both deterministic
planning and MDP planning are triggered simultaneously at
time t0. Assuming that deterministic planning is instantaneous,
suppose it suggests an action a to be executed at time t0.
Meanwhile, MDP planning takes predicted, but uncertain, values
of interarrival time into consideration and comes up with a policy,
suppose at time t1. On executing the action a, due to uncertainty
in the client request arrival rate, the system could reach one
of the several possible outcome states, such as s1, s2, and s3.
If the predicted values for the interarrival time (used for MDP
planning) are correct, these states will be found in the MDP
policy, because the policy contains the state-action pair for all
the reachable states from the state s. Therefore, the MDP policy
can take over the plan execution from any of these resulting
states. Moreover, due to the memoryless nature of the MDP
policy, optimality of the action prescribed by the MDP policy
for states such as s1, s2, and s3, depends only on that state, and
not on any of previous states.

5Here a state consists of system state and environment state.

However, if the time-series predictor fails to predict the
interarrival time correctly, the resulting states, such as s1, s2,
and s3, might not exist in the MDP policy; therefore, transition
from the deterministic plans to the MDP policy would not be
possible. In such a situation, planning process is triggered again
as explained later in the hybrid_planning algorithm.

Fig. 2. Transition from Deterministic Plan to MDP policy

B. MAPE-K Loop
To bring self-adaptive ability to our cloud-based system, we

implemented a MAPE-K loop [17], which has a knowledge
base and three components: monitoring, analysis-planning, and
execution. Even though a typical MAPE-K loop has a distinct
analysis and planning component, in our implementation we
merged them into a single component. This is done because in
our MAPE-K loop, the planning process also analyzes if there is
a need for adaptation to improve the utility.

For the running software system, the knowledge base main-
tains the architectural model of the target/managed system
[33], which includes information such as architectural config-
uration of the system, quality attributes, constraints, number
of active/inactive servers, current dimmer settings, work-load
shared among different active servers, and average response time
perceived by the clients. Moreover, the knowledge base keeps
the execution status of the tactic execution since some of the
tactics, such as adding a server, have execution time greater
than the control loop cycle. Furthermore, the knowledge base
incorporates an environment model, which includes information
about the current and future (predicted) request arrival rates.
All this information in the knowledge base is used to make
adaptation decisions.

The monitoring component gathers information from the
running system and the environment to update the architectural
and the environment models. The analysis-planning component
gathers information from the knowledge base periodically, with
the evaluation period ⌧ , to decide if there is a need for adaptation,
defined as an opportunity to improve the utility.

To determine which adaptation tactic(s) should be ex-
ecuted, the analysis-planning component implements the
hybrid_planning algorithm discussed in the next section. If
there is an opportunity for utility improvement, the algorithm
returns a non-empty set of tactics, which are passed to the
execution component.
C. Hybrid Planning

At the beginning of each evaluation cycle, the analysis-
planning component invokes the function hybrid_planning,



listed as Algorithm 1. The inputs to the hybrid_planning
function are: state Scurr, which includes the state of the system
and the environment; and the existing MDP policy ⇡.

Algorithm 1 hybrid_planning function returns the list of adap-
tation tactic(s)
Require: Scurr, ⇡

1: List tactics
2:
3: if ⇡ = null or ⇡.find(Scurr) = false then
4: Thread thread new Thread()
5: thread.run(MDP_planning(Scurr))
6:
7: if any_constraint_violated(Scurr) then
8: tactics deterministic_planning(Scurr)
9: else

10: tactics ⇡.get_tactics_from_policy(Scurr)
11:
12: return tactics

To find an adaptation tactic corresponding to the state Scurr,
the hybrid_planning algorithm first refers to the existing MDP
policy (Algorithm 1: line 3). If Scurr is found in the policy, the
function get_tactics_from_policy returns the list of tactics
corresponding to all the states, starting from Scurr, within the
evaluation cycle. Since our MDP specification and the system
support concurrent execution of non-conflicting tactics,6 the
tactics in the list are triggered simultaneously at the beginning
of that evaluation cycle [15]. However, if there is no opportunity
to improve utility then the function get_tactics_from_policy
returns an empty list. If the MDP policy does not exist or Scurr

is not found in the policy then the planning process is triggered
(Algorithm 1: lines 4-8).

To start planning, the hybrid_planning algorithm assigns an
MDP planning process to a separate thread (Algorithm 1: lines
4-5). However, to provide a quick response in case of a con-
straint violation, the deterministic planning process is triggered
concurrently (Algorithm 1: lines 7-8) in the main thread. With
an assumption that deterministic planning is quicker than MDP
planning, the function deterministic_planning would return
adaptation tactics before the MDP policy is ready. Similar to
our MDP planning specification, deterministic planning specifi-
cation supports concurrent execution of non-conflicting tactics.
Therefore, the function deterministic_planning returns list
of adaptation tactics to be executed at Scurr. However, once
the MDP policy is ready, it will take precedence over the
deterministic plan.

We designed our experiments, such that MDP planning
time is less than the evaluation cycle, ⌧ . This implies that
once MDP planning triggered, the policy will be ready by the
beginning of next evaluation cycle. However, as explained later
(in Subsection V-C), this simplifying assumption does not effect
the generality of the hybrid_planning algorithm.

1) MDP Planning: Probabilistic model checking of for-
malisms that support the specification of nondeterminism, like
MDPs, typically support synthesizing policies able to optimize

6The tactics addServer and removeServer are conflicting, since they can-
cel each other’s effects. Similarly, increseDimmer and decreaseDimmer

is another pair of tactics that is conflicting in nature.

an objective expressed as a quantitative property in a probabilis-
tic temporal logic formula by resolving nondeterminism. In our
case, we use the PRISM model-checker as an MDP planning
tool [27]. Our PRISM specification is based on the work done
by Moreno et. al., which supports concurrent tactic execution,
and accounts for the uncertainty in the environment by modeling
it as a probability tree [15]. Fig. 3 shows each tactic as a module,
the PRISM construct for modeling concurrent processes.

Fig. 3. Module composition of MDP specification

The execution of the MDP process is done at the granularity
of evaluation period, ⌧ . At time 0, which is also the beginning of
the look-ahead horizon, the system analyzes if there is room to
improve utility through adaptation. Once the system has either
adapted or passed on (if no further improvement in utility of
possible), the time advances ⌧ time units -- the length of an
evaluation cycle. Then, the environment takes a probabilistic
transition depending on the predicted interarrival time. After
that, the utility for the system, during the last evaluation cycle,
is calculated and accumulated.

The clk module, shown in Listing 1, controls the passing of
time and synchronizes between different modules or processes in
the MDP specification. The clk module has two actions, tick and
tack, both executed once in a single evaluation cycle. The action
tick, which advances the time, is a shared action between the
environment and the tactic modules. Therefore, when action tick
is executed in the clk module, it is executed synchronously in all
the modules sharing the action tick. However, the clk module
cannot execute the action tick until all the modules sharing the
tick are ready to do so. After tick, clk takes the action tack,
which is also shared with the reward structure util (lines 9-11).
This implies that when tack is executed the utility for the last
period is calculated and accumulated to get the aggregate utility.

At the beginning of each evaluation cycle, the knowledge
base is updated with the average interarrival rate for the
previous period. When MDP planning is triggered, using the
past observations, the time-series predictor estimates the future

1 module clk
2 time : [0..lookAheadHorizon + 1] init 0;
3 readyToTick : bool init true;
4
5 [tick] readyToTick & time < lookAheadHorizon + 1 �> 1 : (time’ = time +

1) & (readyToTick’=false);
6 [tack] !readyToTick �> 1 : (readyToTick’=true);
7 endmodule

8
9 rewards "util"

10 [tack] true : UTILITY_SHIFT + periodUtility;
11 endrewards

Listing 1. Clock module and reward structure



1 module env
2 s : [0..N�1] init 0;
3
4 [tick] s = 0 �> 0.185 : (s’ = 1) + 0.63 : (s’ = 2) + 0.185 : (s’ = 3);
5 [tick] s = 1 �> 0.185 : (s’ = 4) + 0.63 : (s’ = 5) + 0.185 : (s’ = 6);
6 ...
7 endmodule

8
9 formula stateValue = (s = 0 ? E_0 : 0) +

10 (s = 1 ? P5_E_1 : 0) +
11 (s = 2 ? P50_E_1 : 0) +
12 ...

Listing 2. Environment module in PRISM

1 module sys
2 ...
3 [addServer_complete] servers < MAX_SERVERS �> 1 : (servers’ =

servers + 1);
4 [removeServer_complete] servers > 1 �> 1 : (servers’ = servers � 1);
5 [increaseDimmer_complete] dimmer < DIMMER_LEVELS �> 1 :

(dimmer’ = dimmer + 1);
6 [decreaseDimmer_complete] dimmer > 1 �> 1 : (dimmer’ = dimmer �

1);
7
8 // Percentage of traffic is discretized to the values 0, 25, 50, 75, and 100.
9 // Assign 25% traffic to server Type�A, 25% to server Type�B, and

50% traffic to server type�C,
10 [divert_25_25_50] active_servers_A > 0 & active_servers_B > 0 \
11 & active_servers_C > 0 �> 1 :\
12 (traffic_A’ = 1) & (traffic_B’ = 1) & (traffic_C’ = 2);
13 ...
14 endmodule

Listing 3. System module

interarrival time for the requests. As we predict farther into the
future, the accuracy of prediction decreases, which could lead
to a sub-optimal MDP policy; moreover, it also increases the
state space leading to longer planning time. Therefore, MDP
planning is done for a finite horizon, lookAheadHorizon. This
implies that when MDP planning is triggered using predicted
values for the request arrival rate to lookAheadHorizon
evaluation cycles, PRISM generates an MDP policy for that
period. This period of lookAheadHorizon evaluation cycles
(i.e., lookAheadHorizon ⇥ tau time units) is known as the
MDP planning horizon.

The environment module, env, is shown in Listing 2. To
build a model for the environment, we build a probability tree
that represents both the predicted interarrival rates and the
uncertainty of the request arrival rate. We use Extended Pearson-
Tukey (EP-T) three-point approximation [34] that consists of
three points that correspond to the 5th, 50th, and 95th percentiles
of the estimation distribution, with probabilities 0.185, 0.630,
and 0.185, respectively.

The system module (Listing 3), shares tactic completion
actions with each tactic module. This implies that when a tactic
execution is completed, the corresponding shared action is exe-
cuted synchronously in the system module, which updates the
system configuration accordingly. In other words, the system
module represents the knowledge-base, which keeps track of the
current configuration of the system such as the number of active
servers, the value of the dimmer variable, and the workload
assigned to each server. This information is used to calculate
utility. The system module uses queueing theory to estimate
the future average response time based on request arrival rate
and system configuration. We use a variation of a M/G/1/PS
queueing model [35] that supports different capacity servers
operating in parallel.

Listing 3 shows a module representing one of the tactic
module, increaseDimmer. At the beginning of an evaluation
cycle, the increaseDimmer module has three choices. If the

1 module increaseDimmer
2 increaseDimmer_go : bool init true;
3 increaseDimmer_used : bool init false;
4
5 [increaseDimmer_start] sys_go & increaseDimmer_go
6 & increase_dimmer_applicable // applicability conditions
7 �> (increaseDimmer_go’ = false) & (increaseDimmer_used’ =

true);
8
9 // tactic applicable but not used

10 [pass_inc_dimmer] sys_go & increaseDimmer_go // can go
11 �> (increaseDimmer_go’ = false);
12
13 [tick] !increaseDimmer_go �> 1 : (increaseDimmer_go’ = true) &

(increaseDimmer_used’ = false);
14 endmodule

Listing 4. System module

tactic is applicable then module can either choose to take the
action increaseDimmer_start, or pass on using the action
pass_inc_dimmer. However, if the tactic is not applicable e.g.,
dimmer variable is already at its maximum value, then tactic
module executes the tick action synchronously with all the
modules sharing the tick action. Unlike increaseDimmer, the
addServer tactic is not instantaneous. Therefore, the module
representing addServer has actions that represent intermediate
stages while booting up a server [15].

Since MDP planning is slow, once a policy is generated, it is
stored for successive evaluation cycles within the MDP planning
horizon. If the system and the environment behave as expected,
the policy will be applicable at the beginning of each evaluation
cycle within the planning horizon. However, the policy needs
to be regenerated in either of two cases: the planning horizon is
over, or there is an unexpected change in environment leading
to an unanticipated state not covered by the MDP policy.

At the beginning of each evaluation cycle, the current state
is searched in the policy to determine which adaptation tactics
need to be executed (Algorithm 1: line 3). As mentioned earlier,
MDP planning is done based on predicted average interarrival
time between two consecutive requests; not the actual values.
Since the prediction discretizes the values, it is very likely that
the actual is not one of the discrete values. In such cases the
current state would not be found in the existing MDP policy.

To deal with this problem, we use a heuristic to match the
current state to a state in the MDP policy. The current state is
matched to a state that meets three criteria: (1) all state variables
(except average interarrival time) have same value; (2) among the
states meeting criterion 1, the value of average interarrival time
for the matched state should be closest to the current average
interarrival time; and (3) once the first two criteria are met, the
difference between the values of the average interarrival time in
the current state and the matched state should be within some
predefined threshold of the current average interarrival time.

2) Deterministic Planning: In our implementation, we also
use PRISM for the deterministic planning. Since the MDP speci-
fication has uncertainty only in the form of environmental uncer-
tainty, to transform the MDP specification into a deterministic
specification, we ignore the tree-structured prediction model for
the environment. Instead, we assume that interarrival time will
remain fixed at the current value. Since deterministic planning is
done based on the imprecise model of the environment, the plan
generated by the deterministic planning is executed only for the
current evaluation cycle; the rest of the plan is ignored.

Ignoring uncertainty not only transforms the MDP specifi-
cation into a deterministic specification, but also reduces the
planning state space significantly resulting in a reduction of



the planning time. For a particular instance in our experiments,
the MDP planning state space of more than 2 million states
was reduced to about 23,000 simply by ignoring environmental
uncertainty; the planning time was reduced from (approximately)
40 seconds to less than a second.

V. EVALUATION

To evaluate the hybrid planning approach, we developed a
simulation model of cloud-based self-adaptive system using
the discrete event simulator OMNeT++.7 The MAPE-K loop
components (i.e., the knowledge base, the monitoring, the
analysis-planning, and the execution) are implemented in the
simulator. Moreover, in the simulator we also implemented
components such as the load-balancer, and different types of
servers. Besides the fundamental functionality, the components
also have the logic to support various tactics at run time
such as adding a server, changing dimmer settings, and load
redistribution among various active servers.

A. Experiment Setup
For the experiments, we have one server of each type: type-A,

type-B, and type-C. The operating cost per minute for three
types of server, is $0.5, $0.7, and $1.0 respectively. Intuitively,
the capacity of servers, in terms of the ability to handle the client
requests, increases with the cost of server. Therefore, we assume
server type-C has the ability to handle 150 requests/sec when
serving optional content and 300 requests/sec without serving
optional content; server type-B can handle 130 requests/sec
when serving optional content and 200 requests/sec without
serving optional content; and server type-A can handle 50
requests/sec when serving optional content and 150 requests/sec
without serving optional content. However, the service time for
the request is not fixed but assumed to be normally distributed.
At the beginning of the experiment, we start with a server type-A
as the only active server (i.e., connected to the load-balancer to
handle client requests).

We assume that the cost of a server can be covered by the
revenue of handling 1/10 of its maximum capacity with optional
content and the revenue of handling 2/3 of its maximum capacity
without optional content. If server cost per minute is C, capacity
with optional content is cO and without optional content is cM ,
then revenue for a server with optional content would be RO =
10
cO

C, and without optional content would be RM = 3/2
cM

C. For
each request having a response time above the threshold value
of 1 second, there is a penalty (i.e., the value of P in the Eq. 1)
of -3 units per request. The value for the parameter w, used to
find a matching state in an MDP policy, is set at 10%.

For the experiments, there are three dimmer levels and the
experiment starts with the dimmer value 1 (i.e., all the requests
are served with optional content). The evaluation period, ⌧ , is
configured as 1 minute. We assume a fixed server boot-up time
of 2 minutes (2 evaluation cycles). Since at a given point, we
would have a maximum of 2 inactive servers and each server has
2 minutes of boot-up time, our planning horizon for the MDP
planning is 5 minutes. This heuristic gives a planning horizon
long enough to go from 1 active servers to 3 active servers plus
1 additional evaluation cycle to observe the resultant utility.

To simulate realistic request arrival patterns, we used a request
arrival trace (shown in Fig. 4) from the WorldCup ’98 website

7https://omnetpp.org/

Fig. 4. Request arrival trace used as input for the experimental setup

[16]. We scaled the trace in such a way that it does not exceed the
maximum capacity of the setup [15]. This trace has considerable
load increases around the two games that were played on
the same day. This trace contains time-stamps representing
interarrival rate between the two client requests. To simulate
the clients, we simulate the arrival of requests at the system with
the interarrival rate obtained from the trace. Fig. 4 also highlights
the point on the trace that we used to simulate a sudden crash of
server type-C. The first 15 minutes of the trace are used to train
the time-series predictor.

We conducted the experiments on a Ubuntu 14.04 virtual
machine having 8GB RAM and 3 processors at 2.5 GHz. The
state space for MDP planning approximately varies between 1.7
million and 2.2 million states and the number of transitions vary
between 4.3 million to 5.8 million states. The MDP planning
time varies between 35 seconds to 45 seconds. The memory
for storing an MDP policy varies between 140 megabytes to
180 megabytes. In contrast, state space for the deterministic
planning is less than 50,000 and the number of transitions less
than 100,000. The deterministic planning time is negligible in
our experiments (less than a second).

B. Results

Fig. 5. Normalized aggregate utility for different approaches

To evaluate the hybrid planning approach, we compare its
performance with deterministic and MDP planning used in
isolation. Looking at aggregate utility, which is the sum of
utility accumulated at the end of each experiment run, the hybrid
planning approach performs much better compared to the other
two approaches for the given request arrival trace. Fig. 5 shows
the normalized aggregate utility for the three approaches. We
explain the better performance of the hybrid planning approach
using two scenarios: unexpected increase in request arrival rate
and random server crash.

1) Unexpected Increase in Request Arrival Rate: Fig. 6,
which represents the adaptation decisions made during an MDP



Fig. 6. Adaptation decisions made by different approaches and its impact on
utility

planning horizon, explains the better performance of the hybrid
planning in the case of an unexpected increase in the request
arrival rate. Both the evaluation cycle and the MDP planning
cycle begin at time step t2.

When deterministic planning is used in isolation, since the
planning process is instantaneous it is invoked at the beginning
of each evaluation cycle. In the experiment, the average response
time measured at time t2 is higher than the threshold of 1 second.
Assuming the request arrival rate remains constant at the current
value, deterministic planning quickly suggests an adaptation
tactic to add a server of type-C at t2. Since the server boot-
up time is 2 minutes, it would be active at time t4, and hence
the effect of adding a server results in higher utility at time t5.
However, response time remains high during the period from t2
to t4 resulting in lower utility for that period.

In case of the slow approach (i.e., using MDP alone), when
planning is triggered at time step t2, due to planning delay it
takes about one evaluation cycle to generate an MDP policy.
Therefore, no adaptation decision is made at t2 resulting in low
utility for the next few evaluation cycles. However, when the
MDP policy is available at time t3, the policy suggests to add a
server of type-C at t3. This server becomes active at the time t5
resulting in higher utility at time t6.

In case of the hybrid planning approach, both deterministic
and MDP are invoked at time step t2. The deterministic planning
suggests the tactic to add a server of type-C. However, from
t3 onwards, hybrid planning follows the optimal MDP policy
for making adaptation decisions. Using deterministic planning,
since hybrid planning makes a quick decision of adding a server
of type-C at the time step t2, it has higher utility than the slow
planning approach between the time steps t4 and t6. Comparing
the hybrid planning and the fast planning approaches, since from
t3 onward the hybrid planning follows an optimal MDP policy,
the aggregate utility for the hybrid planning is higher than the
fast planning approach.

2) Random Server Crash: To validate the effectiveness of the
hybrid planning approach in case of a random hardware failure,
we simulated a server crash by removing the type-C server at the
point shown in Fig. 4. We chose this particular point because a

Fig. 7. Adaptation decisions made by different approaches on sudden server
crash and its impact on utility

server crash here results in a constraint violation, which triggers
the deterministic planner. The server crash happens at time step
t2 shown in Fig. 7. When high response time is observed at time
step t3, deterministic planning instantly suggests an adaptation
tactic of adding a type-C server, which becomes active at the
time step t5. Moreover, at time step t3, the deterministic planning
suggests a tactic for optimal distribution of workload between
the other two active servers (i.e., one each of type-A and type-B),
which improves the utility between the time steps t3 and t4.

However, even though the MDP planning is triggered at time
t3, due to the planning delay, the policy is not ready until time
t4. Therefore, utility remains low compared to the deterministic
planning approach for the initial three evaluation cycles of the
planning horizon. For this scenario, the performance of the
hybrid planning is the same as the deterministic planning since
both execute the same set of adaptation tactics for the evaluation
cycle. However, the hybrid planning did not perform worse than
the deterministic planning approach.

C. Threats To Validity
There are various parameters such as the length of the MDP

planning horizon and utility function, which could impact the
final results. We have explained the rationale for the length of the
planning horizon and utility function, which seems reasonable.
Another threat to validity use of a simulated cloud setting rather
than a real one. To minimize the impact of using the simulated
setup, we used a realistic request arrival trace as an input.

The accuracy of our time-series predictor is another factor that
could impact the final results. Mostly, our time-series predictor
was able to anticipate future interarrival times with reasonable
accuracy. However, if predictions would have often been wrong,
the MDP policy based on those predictions would not have been
optimal. Moreover, the policy would frequently fail to take over
the execution from a deterministic plan. In such situations, the
performance of the hybrid planning might be worse compared
to using the deterministic planning alone.

The simplifying assumption that MDP planning time is less
than an evaluation cycle could be seen as another threat to



validity. However, we do not see it as a limitation to our approach,
since MDP planning allows us to extract a sub-optimal MDP
policy.8 To elaborate further, if the MDP planning time is more
than ⌧ , a sub-optimal MDP policy could be extracted from
the MDP planner at the beginning of the next evaluation cycle
and passed as an input (⇡) to the hybrid_planning algorithm.
These sub-optimal policies could be better than the deterministic
plans. However, extracting a sub-optimal policy requires some
minimum amount of processing that might not be quick. As
future work, we plan to explore the cases where MDP planning
time is greater than the evaluation cycle.9

In our experimental cloud setting, if the fast planning makes a
sub-optimal decision in the short term, an optimal plan produced
by the slow planning is able to improve the utility in the long
term: there is an opportunity to make up for a sub-optimal rapid
decision. However, this might not be true in some domains,
where a sub-optimal decision could lead to an irreparable failure
state. This leads us to the future challenge of providing formal
guarantees about the hybrid planning approach, in particular-
about the outcomes of plans generated by a fast planner.

VI. RELATED WORK

A. Automated Planning
The AI community has been working towards finding better

algorithms and heuristics to deal with the issue of planning delay.
There have been several works striving to improve planning time
for deterministic domains [30][2][3][1].

For non-deterministic and probabilistic domains, the state-
of-art planning approaches such as MDP [20], POMDP [22],
are generally slow in terms of planning time. Various heuristics
have been suggested to improve the planning time for MDP and
POMDP planning [20][36]. However, long planning time for
MDP and POMDP planning is still an open problem.

Researchers also suggested a broad category of planning
algorithms, based on the idea of incremental planning, known
as anytime planning: the planning process can be interrupted at
any time to get a sub-optimal plan; however, more planning
time leads to better plans [13]. Hybrid planning is close to
anytime planning in the sense that hybrid planning uses the
execution time of a deterministic plan to find better plans using
MDP planning. However, hybrid planning is different because it
manipulates the state space to reduce planning time. Moreover,
the application of anytime planning depends on the algorithm
being used for planning: not all planning algorithms are iterative
in nature.

Our hybrid planning approach of combining multiple decision
making approaches has been explored by the AI community.
Hayes-Roth combined multiple planners to complete different
sections of an abstract plan skeleton. The combined planners
operate in a hierarchical fashion to solve different sub-problems
[39], which is different from the hybrid planning approach.

B. Architectural Frameworks to Support Automated Planning
To support automated planning, various execution frameworks

have been proposed [8]. For architecture-based self-adaptation,

8MDP planning algorithms such as value-iteration and policy-iteration
are "Anytime" in nature, since these algorithms monotonically converge (with
time) to the optimal MDP policy [13] [20].

9This work might require to support the extraction of partial policies in the
PRISM tool or develop an MDP planner.

Kramer and Magee proposed a layered architecture [6] in-
spired by Gat [7], which aims at dealing with the problem
of planning delay through hierarchical decomposition of the
planning domains. Tajali et al. extended the hierarchical design
by suggesting two types of planning: application planning
and adaptation planning [4]. Since hierarchical decomposition
of a planning domain helps in reducing the planning state-
space, the layered architecture helps to bring down the planning
time. However, planning delay also depends on the planning
approach deployed at each layer. The hybrid planning approach
complements the layered architecture since it could be deployed
at each layer to deal with the tradeoff between timeliness and
quality of plans.

Quite different from the layered architectures, Musliner et
al. proposed a framework that ensures the execution of tasks
in a specified deadline [9]. However, unlike hybrid planning,
this framework requires hard deadlines to be specified in the
planning specification.

C. Automated Planning in Self-Adaptive Systems

Automated planning has been used successfully to determine
a sequence operations to go from the initial architectural
configuration to the desired architectural configuration [25][37].
In the context of self-adaptive systems, different automated
planning approaches have been used to generate repair plans
at run time. For instance, Kim et al. [23] and Amoui et
al. [24] used reinforcement learning, Moreno et al. [15] used
MDP planning, Cámara et al. [27] used a variation of MDP
planning known as stochastic multi-player games, Sykes et
al. [10] used model-checking for searching the state space, and
Zoghi et al. [26] implemented a variation of the hill-climbing
algorithm. Generally, the focus of this existing work has been
to demonstrate that automated planning could be useful in self-
adaptive software systems. Therefore, the existing work either
ignores the timing concerns or tends to focus on domains where
timing is not a first-class concern.

The hybrid planning approach is different from existing work
since we combine two automated planning approaches to deal
with the trade-off between quick and optimal planning. The
closest approach is used by the FF-Replan planner, which
solves a relaxed version of a planning problem by transforming
the planning domain with uncertain action outcomes into a
deterministic domain by considering only the most probable
action outcome [14]. In our case, we transform the probabilistic
planning domain into a deterministic planning domain by
ignoring uncertainty in the environment. From an experimental
perspective, our work is close to Moreno et al. [15]. However,
their work focuses on the problem of tactic execution time
rather than planning time, which is considered negligible in
their experiments.

VII. CONCLUSION AND FUTURE WORK

For decision-making in self-adaptive systems, this paper
presents a novel hybrid planning approach to deal with poten-
tially conflicting requirements of timeliness and optimality of
adaptation plans. Our experiments show that the hybrid planning
approach can improve overall utility of self-adaptive systems by
finding a right balance between timeliness and optimality.

Although the hybrid planning approach appears to be effective
in the cloud computing domain, the approach has certain



limitations that need to be addressed in the future. Going forward,
we plan to validate the approach in safety critical domains (e.g.
unmanned aerial vehicles), which require formal guarantees
about the adaptation plans generated by a hybrid planner.

The success of hybrid planning depends on the invoking
condition of the constituent planning approaches. In our ex-
periments, we considered the response time constraint violation
as a trigger for fast planning. However, to apply hybrid planning
more broadly, we need to develop a general theory for deciding
when to trigger a particular constituent planning approach, again
an area for future work.

In our experiments, we combined deterministic planning
with MDP planning since the structure of the MDP policy
helps in coordinating between the two planning approaches.
Going forward, we would like to explore other coordination
mechanisms that could be used to combine different planning
approaches, such as POMDPs.
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