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Abstract

Software systems are increasingly called upon to autonomously manage their goals

in changing contexts and environments, and under evolving requirements. In some

circumstances, autonomous systems cannot be fully-automated but instead cooperate

with human operators to maintain and adapt themselves. Furthermore, there are times

when a choice should be made between doing a manual or automated repair. Involv-

ing operators in self-adaptation should itself be adaptive, and consider aspects such

as the training, attention, and ability of operators. Not only do these aspects change

from person to person, but they may change with the same person. These aspects make

the choice of whether to involve humans non-obvious. Self-adaptive systems should

trade-off whether to involve operators, taking these aspects into consideration along

with other business qualities it is attempting to achieve. In this chapter, we identify the

various roles that operators can perform in cooperating with self-adapting systems. We

focus on humans as effectors - doing tasks which are difficult or infeasible to automate.

We describe how we modified our self-adaptive framework, Rainbow, to involve opera-

tors in this way, which involved choosing suitable human models and integrating them

into the existing utility trade-off decision models of Rainbow. We use probabilistic

modeling and quantitative verification to analyze the trade-offs of involving humans in

adaptation, and complement our study with experiments to show how different business

preferences and modalities of human involvement may result in different outcomes.
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1. Introduction

Modern society increasingly relies upon software-intensive systems to support a

wide range of tasks in multiple application domains, such as energy, transportation, and

communications. Despite the critical nature of many of these systems, it is increasingly

difficult to obtain guarantees about their ability to provide service that can justifiably5

be trusted in the presence of changes happening in their environment (e.g., resource

availability), or within the system itself (e.g., faults). The growing complexity of these

systems and the high degree of uncertainty in the environment in which they typically

have to operate are two of the main factors that contribute to their lack of predictability.

Early attempts to address this situation involved human oversight, which is expen-10

sive and has often been considered as unreliable due to the fact that humans are liable to

err and have difficulty to react in a timely manner when situations that demand changes

to the system at runtime arise.

In contrast, approaches developed over the last decade in the area of self-adaptive

systems [1, 2, 3] advocate for the full automation of mechanisms to adapt the structure15

and behavior of a system at runtime to overcome some of the limitations associated

with human oversight. Self-adaptive approaches often rely on closed-loop control,

eliminating the human factor from the solution.

Although fully automated adaptation has proven successful in different application

domains, this class of approach may be suboptimal in some situations (e.g., when in-20

formation required for decision-making is difficult to capture and/or analyze), or may

simply be insufficient to effect changes in the system (e.g., when adaptations involve

physical changes that cannot be automated).

Among self-adaptive approaches, one of the most successful paradigms to date is

MAPE-K, which includes activities to monitor and analyze a software system and its25

environment, and if the situation demands it, plan and execute adaptations. MAPE-K

systems rely on a knowledge base that can include models of a system’s environment,

goals, and architecture [3, 4]. The different activities in the MAPE-K loop can benefit

from human involvement in a variety of ways:

• Monitoring and analysis can receive information from humans (acting as sophis-30
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ticated sensors) that would be otherwise difficult to automatically monitor or an-

alyze (e.g., humans can indicate whether there is an ongoing anomaly based on

context information that is not captured by the models included in the knowledge

base).

• Planning can incorporate into the decision-making process input (e.g., recom-35

mendations, validation) from application domain experts who can have addi-

tional insight about the best way of adapting the system.

• Execution can employ humans as system-level effectors to execute adaptations

when changes to the system cannot be fully automated, or as a fallback mecha-

nism.40

Despite the benefits that involving humans in adaptation can bring, it is worth notic-

ing that their behavior is influenced by factors external to the system that affect their

effectiveness at carrying out different tasks, such as fatigue, or training level. These

factors need to be carefully considered if we want to enable systems to discriminate

situations in which human involvement is preferable over fully automated adaptations.45

Analyzing the trade-offs of involving humans in adaptation demands new approaches

to systematically reason about the way in which the behavior of human participants af-

fects the outcome of adaptations. In this chapter, we describe a formal framework to

analyze trade-offs in self-adaptation at two different levels: (i) reasoning about busi-

ness concerns in the context of other (potentially conflicting) business properties; and50

(ii) reasoning about the effectiveness of automated vs. human-driven adaptations with

respect to a set of business concerns and preferences.

The core of the framework consists of an extended version of a language to express

adaptation models with elements that capture some of the main factors affecting human

behavior. Moreover, we show how adaptation models expressed in this language can be55

encoded as stochastic multiplayer games (SMGs), a formalism amenable to automated

verification that can be employed to analyze human-system-environment interactions.

We explore the topics discussed in this chapter using an extension of the Stitch

language [5] employed by the Rainbow framework for self-adaptation [4] with el-
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ements inspired from opportunity-willingness-capability models employed in cyber-60

human systems [6] that capture major factors that influence human-system interactions.

Moreover, we illustrate our approach in the domain of security, employing as motivat-

ing scenario the mitigation of denial of service (DoS) attacks in Znn.com, a simple

news site system that has been extensively used to assess different research advances

in self-adaptive systems.65

In the remainder of this chapter, Section 2 describes the example that we employ

to illustrate our approach, and Section 3 discusses related work. Section 4 provides an

overview of trade-off analysis in self-adaptation as embodied in Stitch. Next, Section

5 describes our human model and its integration in adaptation models described using

Stitch. Section 6 describes probabilistic modeling and analysis of adaptation models70

including humans in the loop. Finally, Section 7 concludes the chapter, indicating

research avenues to explore in future work.

2. Motivating Scenario

Before detailing the formal framework to reason about trade-offs of human involve-

ment in adaptation, we introduce an example that will be used to illustrate the approach.75

Znn.com [7], is a case study portraying a representative scenario for the applica-

tion of self-adaptation in software systems embodying the typical infrastructure for a

news website. It has a three-tier architecture consisting of a set of servers that provide

contents from backend databases to clients via front-end presentation logic (Figure 1).

The system uses a load balancer to balance requests across a pool of replicated servers,80

the size of which can be adjusted according to service demand. A set of clients makes

stateless requests, and the servers deliver the requested contents.

From time to time, Znn.com can experience spikes in requests that it cannot serve

adequately, even at maximum pool size. These spikes can result either from legitimate

client traffic caused by a popular event (slashdot effect), or by DoS attacks in which85

malicious clients try to overwhelm system capacity in order to render system services

unavailable.
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Figure 1: Znn.com system architecture

2.1. System Objectives

Regarding Znn.com’s objectives, users of the system are concerned with experienc-

ing service without any disruptions, whereas the organization is interested in minimiz-90

ing the cost of operating the infrastructure (including not incurring additional operating

costs derived from DoS attacks). For users, service disruption can be mapped to spe-

cific runtime conditions such as (i) experienced response time for legitimate clients,

and (ii) user annoyance, often related to disruptive side effects of defensive tactics. For

the organization, we map cost to the specific resources being operated in the infras-95

tructure at runtime (e.g., number of active servers). Moreover, in addition to keeping

costs below budget, the organization is also interested in minimizing the fraction of that

cost that corresponds to resources consumed by malicious clients. Hence, we identify

minimizing the presence of malicious clients as an additional objective.

In short, we identify four quality objectives for Znn.com: (legitimate) client re-100

sponse time (R), user annoyance (A), cost (C), and client maliciousness (M).

2.2. Adaptation Mechanisms

When response time becomes too high due to spikes in requests, the system can

employ two general approaches for dealing with the situation: absorb the excess of

traffic or suppress it. While the former approach is better suited to situations in which105

legitimate user traffic has increased due to a popular event, the latter is indicated for

dealing with DoS attacks.

Znn.com can absorb the excess traffic employing the tactics: (i) adding capacity,

which commissions a new replicated web server to share the load; and (ii) reducing
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service, which reduces the level of service to text only (Znn.com has two fidelity levels:110

high, which includes full multimedia content; and text only, which does not provide any

multimedia content). These tactics are fully automated, and are good at improving the

performance of the system without compromising the experience of legitimate users.

However, employing these tactics comes at a price, since they do not deal with reducing

the cost derived from resources consumed by potentially malicious clients, and they can115

even result in an increment of the cost of operating the system (in the case of adding

capacity).

Alternatively, Znn.com can eliminate the excess traffic by enacting the tactics:

(i) blackholing, which adds the IP addresses of clients that are determined to be at-

tacking the system to a blacklist that blocks their requests; and (ii) throttling, which120

limits the rate of requests accepted from potentially malicious clients. Eliminating ex-

cess traffic from potentially malicious clients is an approach that requires accurately

identifying the attackers to be effective. Znn.com relies upon the judgement of a hu-

man operator to enact these tactics. In general, well-trained operators will be effective

at eliminating traffic from malicious clients, but poorly trained operators can increase125

user annoyance if they cause service disruption to legitimate clients due to mistakes in

malicious client identification.

3. Related Work

Deciding whether humans should be involved in the execution of adaptation is no

easy task, since their behavior and the outcome of their actions can be affected by tran-130

sient factors such as changing levels of attention and load, fixed attributes (e.g., level of

expertise in carrying out a particular task), or even their physical context (e.g., access

to different locations, timing issues). These factors constitute an additional source of

uncertainty affecting the self-adaptive system (acknowledged by Esfahani and Malek

as uncertainty due to human in the loop [8]) that needs to be managed if we want to135

answer the following questions:

Q1: How can the outcome of adaptation be predicted if human actors are involved in

its execution?
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Q2: How can it be determined whether human actors should be involved in adapta-

tion?140

While answering Q1 calls for employing models of human characteristics sufficient

for representing the probabilistic nature of human behavior and its interaction with

the system, Q2 also demands exploring mechanisms suitable to compare candidate

solutions that might include human-system collaborations, as well as fully automated

adaptations.145

Some existing approaches in self-adaptation that automatically generate adaptation

plans at runtime are able to rank candidate solutions by analyzing trade-offs among

different qualities [9] or consider uncertainty when tuning the operation of the sys-

tem (e.g., by dynamically adjusting parameters [10, 11]). However, there are no ap-

proaches to the best of our knowledge able to rank candidate solutions by factoring150

in uncertainty, rendering these approaches insufficient for generating adaptation plans

involving humans.

Other approaches in self-adaptation that rely on selection of adaptation strategies

defined by a designer at development time [4, 12] are also able to rank candidate so-

lutions by analyzing trade-offs among different quality concerns. Moreover, these ap-155

proaches are sometimes able to deal with some aspects of uncertainty and timing [4].

These proposals are limited to ranking and selection of fully automated adaptations,

since the knowledge models they employ are unable to capture the multiple facets of

uncertainty derived from human behavior that affect the outcome of adaptations.

While all the aforementioned approaches focus on fully automated adaptations,160

Dorn and Taylor [13] introduce a framework that enables a system adaptation manager

to reason about the effects of software-level changes on human interactions and vice-

versa by mapping a model of what they describe as human architecture (described in

a language called hADL) to a model of the system’s architecture updated at runtime.

This approach focuses on the collaboration topology and is able to rank collaboration-165

(un)aware adaptations to select the best course of action, although it does not explicitly

consider uncertainty derived from human behavior as a major factor affecting the out-

come of adaptations.
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Outside of the scope of self-adaptive systems, some approaches in the business

process modeling domain include some aspects of human involvement, providing con-170

structs for describing human activities in business processes and their dependencies [14,

15]. These languages target primarily service-oriented architectures and have limited

or no support for other common architectural styles.

Eskins and Sanders [6] introduce a definition of a cyber-human system (CHS) and

the opportunity-willingness-capability (OWC) ontology for classifying CHS elements175

with respect to system tasks. This approach provides a structured and quantitative

means of analyzing cyber security problems whose outcomes are influenced by human-

system interactions, reflecting the probabilistic nature of human behavior.

If we contrast questions Q1 and Q2 with the characteristics of the related ap-

proaches described in this section, we can list a set of requirements that a suitable180

approach to our problem should satisfy:

R1: The approach must include a value system that enables candidate solution rank-

ing, allowing context-sensitive adaptation.

R2: The approach must be able to consider uncertainty as a primary factor that con-

ditions the effectiveness of tasks or adaptations.185

R3: The approach must consider timing delays that capture the notion of task or

adaptation latency.

R4: The approach must be able to represent and enable the analysis of human partic-

ipant behavior.

R5: The approach must provide support for a variety of architectural styles.190

Although the approaches described in this section partially satisfy these require-

ments (see Table 1), in this chapter we propose an approach that combines the strengths

of the Rainbow framework for self-adaptation [4] and the OWC ontology described

in [6]. On the one hand, Rainbow includes a value system based on utility to rank

candidate adaptations, explicit time delays to observe the effects of adaptation actions195

executed on the target system, and it is able to account for uncertainty in the selection
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Area Approach R1 R2 R3 R4 R5

Self-adaptive Systems Sykes et al. [9] X X

Calinescu et al. [10] X X

Epifani et al. [11] X X

Cheng et al. [4] X X X X

Oreizy et al. [12] X X

Dorn & Taylor [13] X X X

Business Process BPMN [15] X X

Modelling WSBPEL4People [14] X X

Cyber-Human Systems Eskins & Sanders [6] X X

Table 1: Requirements satisfied by related approaches.

of adaptive actions. On the other hand, OWC models provide the concepts required to

capture human factors that can influence adaptation, some of which are of a probabilis-

tic nature.

In previous work [16], we presented an analysis technique based on model checking200

of SMGs to quantify the potential benefits of employing different types of algorithms

for self-adaptation. Specifically, the paper shows how the technique enables the com-

parison of alternatives that consider tactic latency information for proactive adaptation

with those that are not latency-aware. In this paper, we apply this analysis technique

to the context of human-in-the-loop adaptation, extending SMG models with elements205

that encode an extended version of Stitch adaptation models with OWC constructs.

4. Analyzing Trade-Offs in Self-Adaptation

In this section, we first introduce the main concepts behind the Stitch language

for self-adaptation, showing how elevating the reasoning to an architectural level can

provide a principled basis for analyzing the trade-offs among potentially conflicting210

business objectives. Then, we present a candidate model for quantifying how human

involvement in adaptation can affect business objectives. This model is inspired by the

OWC ontology described in [6]. Finally, we describe how the concepts behind Stitch

and the proposed OWC model can be combined to capture descriptions of adaptations

that involve collaborations among the system and human participants.215
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4.1. Adaptation Model

Although many proposals that rely on closed-loop control exploit architectural

models for adaptation [4, 12, 17], in this chapter we use some of the high-level concepts

in Stitch [5] as a reference framework to illustrate our approach. Stitch is the language

employed by the Rainbow framework [4] to describe automated repairs based on an ar-220

chitectural description of the underlying target system. Rainbow has among its distinct

features an explicit architecture model of the target system, a collection of adaptation

tactics, and utility preferences to guide adaptation.

We assume a model of adaptation that represents adaptation knowledge employing

the following high-level concepts:1 (i) tactics, or primitive actions that correspond to225

a single step of adaptation; (ii) strategies, which encapsulate an adaptation process,

where each step is the conditional execution of a tactic; and (iii) utility profile, which

drives the selection of strategies at runtime based on a set of utility functions and pref-

erences.

4.1.1. Tactic230

A tactic is a primitive action that corresponds to a single step of adaptation. Tactics

require three parts to be specified: (1) the condition, which specifies when a tactic is

applicable; (2) the action, which defines the script for making changes to the system;

and (3) the effect, which specifies the expected effect that the tactic will have.

Listing 1 shows an example tactic for activating a set of servers in Znn.com. Line235

3 specifies the applicability condition, which says that the tactic may be executed if

(i) there is a client experiencing a response above the maximum acceptable threshold

(predicate cHiRespTime defined in line 1), and (ii) there are enough servers available to

activate. Lines 4-7 specify the action, which is to select a set of servers among those

currently inactive (line 5), and enable them (line 6). Line 8 states that the intended240

effect of the tactic is achieved only if all clients experience a response time below the

maximum acceptable threshold.

1We use a simplified version of Stitch [5] to illustrate the main ideas in this chapter.
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1 define boolean cHiRespTime = exists c:T.ClientT in M.components | c.experRespTime>M.MAX RESPTIME;

2 tactic enlistServers (int n) {

3 condition { cHiRespTime && set.Size(s : T.ServerT in M.components | !s.isArchEnabled)>=n;}

4 action {

5 set servers = Set.randomSubset(Model.findServices(T.ServerT), n);

6 for (T.ServerT freeSvr : servers) { M.enableServer (freeSvr, true); }

7 }

8 effect { !cHiRespTime; }

9 }

Listing 1: Tactic for activating a server in Znn.com.

Tactics have an associated cost/benefit impact on the different dimensions of con-

cern in the system. Table 2 shows the impact on different properties of the tactics

employed in Znn.com, as well as an indication of how the tactic affects the utility for245

every particular dimension of concern (the number of upward or downward arrows is

directly proportional to the magnitude of utility increments and decrements, respec-

tively).2 While all tactics reduce the response time experienced by legitimate clients,

some of them (e.g., enlistServers and blackholeAttacker) cause a more drastic re-

duction, resulting in higher utility gains in that particular dimension. Regarding the250

presence of malicious clients, tactics blackholeAttacker is the most effective, whereas

other tactics (e.g., enlistServers) do not have any impact. With respect to cost, strat-

egy enlistServers increases the operating cost and reduces utility in this dimension,

since it employs additional resources to absorb incoming traffic. Finally, tactics black-

holeAttacker and throttleSuspicious impact negatively on user annoyance, since there255

is a risk that incorrect detection of malicious clients will lead to annoying a fraction of

legitimate clients by blackholing or throttling them.

2Note that, to obtain the impact on the different quality dimensions of tactics in practice, the approach

relies on expert knowledge or field data about similar existing systems, although nothing prevents the use of

machine learning techniques to obtain that information. In this chapter we consider fixed cost/benefit impacts

for illustration purposes, although Stitch also supports the specification of sophisticated impact models that

are context-sensitive, and can capture probabilistic aspects in the outcome of tactic executions [18].
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Tactic Response Time (R) Malicious Clients (M) Cost (C) User Annoyance (A)

∆ Avg. Resp. Time (ms) ∆UR ∆ Mal. Clients (%) ∆UM ∆ Cost (usd/hr) ∆UC ∆ U. Annoyance (%) ∆UA

enlistServers -1000 ↑↑↑ 0 = +1.0 ↓↓↓ 0 =

lowerFidelity -500 ↑↑ 0 = -0.1 ↑ 0 =

blackholeAttacker -1000 ↑↑↑ -100 ↑↑↑ 0 = +50 ↓↓

throttleSuspicious -500 ↑↑ 0 = 0 = +25 ↓

Table 2: Tactic cost/benefit on qualities and impact on utility dimensions

4.1.2. Strategy

A strategy encapsulates an adaptation process, where each step is the conditional

execution of a tactic. Strategies are characterized in Stitch as a tree of condition-action-260

delay decision nodes, where delays correspond to a time window for observing tactic

effects. System feedback (through the dynamically-updated architectural model of the

system) is used to determine the next tactic at every step during strategy execution.

1 strategy Outgun [cHiRespTime] {

2 t0: (cHiRespTime) −> enlistServers(1) @[30000 /∗ms∗/] {

3 t1: (success) −> done;

4 t2: (fail) −> lowerFidelity() @[2000 /∗ms∗/] {

5 t2a: (success) −> done;

6 t2b: (fail) −> TNULL;

7 }

8 }

9 }

Listing 2: Strategy for absorbing excess traffic.

Listing 2 shows the Stitch code for a simple adaptation strategy in Znn.com that

deals with degraded performance by activating additional servers and reducing the fi-265

delity of the contents served: line 1 specifies the applicability condition that needs to

be satisfied for the strategy to be eligible for execution (in this case, predicate cHiResp-

Time indicates that there are clients experiencing a response time above the acceptable

threshold). In the body of the strategy, node t0 (line 2) executes tactic enlistServers if

the guard cHiRespTime evaluates to true. To account for the delay in observing the out-270

come of tactic execution in the system (settling time), t0 specifies a time window of 30

seconds, after which, if the tactic’s intended effect (as defined in the tactic script – List-

ing 1, line 8) is observed, successful tactic completion (keyword success, line 2) leads
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to the end strategy execution in normal conditions through node t1 (keyword done).

Otherwise, if the intended tactic effect is not observed after the delay window expires275

(keyword fail, line 4), the strategy attempts to reduce response time by executing the

tactic lowerFidelity and waiting 2 seconds to observe its effect, exiting through node t2a

if the tactic succeeds. If the intended effect of lowerFidelity is not observed, the strategy

exits with an error status via node t2b (line 6).

4.1.3. Utility Profile280

In Stitch, the selection of strategies at runtime is driven by utility functions and

preferences, which are sensitive to the context of use and able to consider trade-offs

among multiple potentially conflicting objectives. The different qualities of concern

are characterized as utility functions that map them to architectural properties.

UR UM UC UA

0 : 1.00 0 : 1.00 0 : 1.00 0 : 1.00
100 : 1.00 5 : 1.00 1 : 0.90 100 : 0.00
200 : 0.99 20 : 0.80 2 : 0.30
500 : 0.90 50 : 0.40 3 : 0.10
1000 : 0.75 70 : 0.00
1500 : 0.50
2000 : 0.25
4000 : 0.00

Table 3: Utility functions for Znn.com.

In this case, utility functions are defined by an explicit set of value pairs (with285

intermediate points linearly interpolated). Table 3 summarizes the utility functions for

Znn.com. Function UR maps low response times (up to 100 ms) with maximum utility,

whereas values above 2000 ms are highly penalized (utility below 0.25), and response

times above 4000 ms provide no utility. In this case, utility and mapped property values

across all quality dimensions are inversely proportional, although this is not necessarily290

true in general.

Scenario Priority wUR wUM wUC wUA

1 Minimizing number of malicious clients. 0.15 0.6 0.1 0.15

2 Optimizing good client experience. 0.3 0.3 0.1 0.3

Table 4: Utility preferences for Znn.com scenarios.

Utility preferences capture business preferences over the quality dimensions, as-
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signing a specific weight to each one of them. We consider two scenarios in Znn.com,

whose priority concerns are summarized in Table 4.

4.2. Adaptation Strategy Selection295

A situation that demands adaptation can generally be addressed in different ways

by executing alternative adaptation strategies, many of which may be applicable under

the same runtime conditions. Different strategies impact run time quality attributes

in various ways, thus there is a need to choose a strategy that will result in the best

outcome with respect to achieving the system’s desired quality objectives.300

To enable decision-making for selecting strategies we use utility functions and

preferences, which are sensitive to the context of use and able to consider trade-offs

among multiple potentially conflicting objectives. By evaluating all applicable strate-

gies against the different quality objectives, we obtain an aggregate expected utility

value for each strategy by using the specified utility preferences. The strategy selected305

for execution by the adaptation manager is the one that maximizes expected utility.

The aggregated impact on utility of a strategy is obtained by: (i) computing the

aggregate impact of the strategy on the system’s state, (ii) merging aggregated strategy

impact with current system state to obtain the expected state after strategy execution,

(iii) mapping expected state to utilities, and (iv) combining all utilities using utility310

preferences.

As an example of how the utility of a strategy is calculated, let us assume that the

adaptation cycle is triggered in system state [1500, 90, 2, 0], indicating response time,

percentage of malicious clients, operating cost, and user annoyance level, respectively.

We focus on the evaluation of strategy Outgun.315

To obtain the aggregate impact on system state of a strategy, we need to estimate

the likelihood of selecting different tactics at runtime due to the uncertainty in their

selection and outcome within the strategy tree. To this end, Rainbow uses a stochastic

model of a strategy, assigning a probability of selection to every branch in the tree

(by default, divided equally among the branches). Figure 2 shows how the aggregate320

impact on state is computed bottom-up in the strategy tree: the aggregate impact of

each node is computed by adding the aggregate impact of its children, reduced by the
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probability of their respective branches, with the cost-benefit attribute vector of the

tactic in the node (if any). In the example, the impact contributed by nodes t0 and

t2 correspond to the cost-benefit vectors of the associated tactics, whereas leaf nodes325

make no changes to the system and therefore have no impact.

done
[0,0,0,0]

enlistServers()
[-1000,0,+1.0,0]

0.5 0.5

done
[0,0,0,0]

fail
[0,0,0,0]

lowerFidelity()
[-500,0,-0.1,0]

0.5 0.5

1

[-1250,0,+0.95.0,0]

1

[-250,0,-0.05,0]

[-1250,0,+0.95,0]

[0,0,0,0]

[0,0,0,0][0,0,0,0]

t0

t1t2

t2a t2b

Figure 2: Calculation for aggregate impact of strategy Outgun.

Once the aggregate impact of the strategy is computed, it is merged with the current

system state to obtain the expected system state after strategy execution:

[1500,90,2,0]+[-1250,0,+0.95,0]=[250,90,2.95,0]

Next, we map the expected conditions to the utility space:330

[UR(250),UM(0),UC(2.95),UA(0)]=[0.975, 1.0, 0.11, 1.0]

And finally, all utilities are combined into a single utility value by making use of

the utility preferences. Hence, if we assume that we are in scenario 2, the aggregate

utility for strategy Outgun would be:

0.975*0.3+1.0*0.3+0.11*0.1+1.0*0.3=0.9035335

Utility scores are computed similarly for all strategies. In this case, strategies Eliminate

and Outgun score 0.81 and 0.90 respectively, thus Outgun would be selected.

5. Analyzing Trade-Offs of Involving Humans in Adaptation

In the previous section, we described a language to express adaptation models that

can be analyzed to evaluate trade-offs among different concerns in self-adaptation. In340
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this section, we incorporate a model of the human operators interacting with the system

to extend the language. This extension enables the evaluation of trade-offs of involving

humans in adaptation with respect to a given set of concerns and preferences expressed

in a utility profile.

5.1. Human Model345

Attributes of human actors that might affect interactions with the system are cap-

tured in a model inspired by an opportunity-willingness-capability (OWC) ontology

described in the context of cyber-human systems [6]. These models extend the de-

scription of the underlying system’s architecture, and can incorporate multiple human

actor types (e.g., human actor roles specialized in different tasks), each of which can350

have multiple instances (e.g, operators with different levels of training in a particular

task). Attributes of human actor types can be categorized into:

5.1.1. Opportunity

captures the applicability conditions of the adaptation tactics that can be executed

by human actors on the target system as constraints imposed on the human actor (e.g.,355

by the physical context – is there an operator physically located on site?).

Example 1. We consider a tactic to have a human operator manually select malicious

clients to blackhole (blackholeAttacker) in a DoS attack scenario. Opportunity elements

are OEblackholeAttacker = {L, B}, where L represents the operator’s location, and B tells

us whether the operator is busy doing something else:360

• L.state ∈ {operator on location (ONL), operator off location (OFFL)}.

• B.state ∈ {operator busy (OB), operator not busy (ONB)}.

Using OEblackholeAttacker, an opportunity function for the tactic f blackholeAttacker
O =

(L.state == ONL)·(B.state == ONB) can be used to constrain its applicability only to

situations in which there is an operator on location who is not busy.365
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5.1.2. Willingness

captures transient factors that might affect the disposition of the operator to carry

out a particular task (e.g., load, stamina, stress). Continuing with our example, willing-

ness elements in the case of the blackholeAttacker tactic can be defined as WEblackholeAttacker =

{S }, where S .state ∈ [0, 10] represents the operator’s stress level. A willingness func-370

tion mapping willingness elements to a probability of tactic completion can be defined

as f blackholeAttacker
W = prW (S .state), with prW : S → [0, 1].

5.1.3. Capability

captures the likelihood of successfully carrying out a particular task, which is de-

termined by fixed attributes of the human actor, such as training level. In our example,375

we define capability elements as CEblackholeAttacker = {T }, where T represents the opera-

tor’s level of training (e.g., T.state ∈ [0, 1]). We define a capability function that maps

training level to a probability of successful tactic performance as f blackholeAttacker
C =

prC(T.state), with prC : T → [0, 1]. This models the fact that better trained operators

are more effective at eliminating malicious users and less likely to blackhole legitimate380

clients, resulting in better reductions in the percentage of malicious clients with no or

little increments in the level of user annoyance.

5.2. Integrating Human and Adaptation Models

Incorporation of OWC elements for adaptation execution in Stitch affects the spec-

ification of different elements in adaptation tactics and strategies.385

5.2.1. Tactics

In tactics involving humans, constraints that affect the applicability of a tactic can

be derived either from the human model (opportunity elements), or properties of the

architecture itself (e.g., are there any available servers to activate?). In general, ap-

plicability conditions of these tactics will be a combination of both. In Listing 3, the390

condition block of tactic blackholeAttacker (line 4) combines opportunity elements from the

human model (operator on location and not busy – predicate ONLNB, defined in line 1),

with a predicate defined over the properties of the architecture (legitimate clients are

experiencing a high response time – cHiRespTime).
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The action block of these tactics can execute automated operations, as in the case of395

tactic enlistServers (Listing 1), but also notify human actors to perform a task. The action

block of of tactic blackholeAttacker (Listing 3, lines 5-6) first selects an available operator

(line 5), and next it notifies the selected operator that she has to blackhole potentially

malicious clients via a text message (line 6).

1 define boolean ONLNB=exists o:operatorT in M.participants | o.onLocation && !o.busy;

2 ...

3 tactic blackholeAttacker(){

4 condition {ONLNB && cHiRespTime;}

5 action {ao=Set.RandomSubSet({select o:operatorT in M.participants | o.onLocation && !o.busy},1);

6 notify(ao, ”Blackhole potentially malicious clients”);}

7 effect {!cHiRespTime;}

8 }

Listing 3: Tactic for blackholing malicious clients via human operator.

5.2.2. Strategies400

Fully automated, as well as tactics involving humans can be combined to achieve

better outcomes in adaptation strategies. Listing 4 shows strategy Eliminate for elim-

inating excess traffic from potentially malicious clients first by notifying an operator

(via tactic blackholeAttacker, line 5) to manually block traffic from malicious clients. If

the assigned time window of 5 minutes expires and the intended effect of the tactic405

(!cHiRespTime, Listing 3) is not observed, the strategy notifies an operator to execute the

throttleSuspicious tactic as a fallback, throttling suspicious clients (line 7).

6. Reasoning about Human-in-the-Loop Adaptation

When defining a collection of adaptation strategies and their associated utility pro-

file, we need to guarantee not only that the system will carry out reasonable choices410

under all possible circumstances, but also that the effect of those choices combined

with the behavior of human participants will have a reasonable impact on business

concerns. To provide such guarantees, we make use of a formal model based on an

abstraction of the extended Stitch profile for human-in-the-loop adaptation presented
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1 define boolean unhandledMalicious=exists c:T.ClientT in M.components | c.maliciousness>M.MAL THR && !c.isBlackHoled;

2 define boolean unhandledSuspicious=exists c:T.ClientT in M.components | c.maliciousness > M.SUS THR and !c.isThrottled;

3 ...

4 strategy Eliminate [unhandledMalicious || unhandledSuspicious] {

5 t0: (unHandledMalicious) −> blackholeAttacker () @[300000] {

6 t0a: (success) −> done;

7 t0b: (unHandledSuspicious) −> throttleSuspicious () @[300000] {

8 t1a: (success) −> done;

9 t1b: (default) −> fail; }

10 }

11 }

Listing 4: Strategy to eliminate excess traffic in Znn.com

in Section 5.1 that enables us to reason about: (i) the choices made by the adapta-415

tion manager for adaptation strategy selection, and (ii) the impact of the execution of

selected adaptation strategies on the target system.

Our modeling approach for human-in-the-loop adaptation consists in describing a

stochastic multiplayer game in which we consider that one of the players is the adaptive

system (including both automated adaptation mechanisms and human actors) and the420

other is the environment within which the system operates. The goal of the system

player is to maximize accrued utility during the system’s execution (encoded formally

as a reward structure), while we consider the environment to be an antagonistic player

that tries to minimize that same reward.

In the remainder of this section, we first introduce some background on model425

checking SMGs, the formal technique that we use to formally reason about human in-

volvement in adaptation. Next, we provide a description of our Znn.com model imple-

mented in the probabilistic model-checker PRISM-games [19], as well as the analysis

and results that we obtained for human-in-the-loop adaptation analysis.

6.1. Model Checking Stochastic Multiplayer Games430

Automatic verification techniques for probabilistic systems such as probabilistic

model checking provide a means to model and analyze systems that exhibit stochastic

behavior, effectively enabling reasoning quantitatively about probability and reward-

based properties (e.g., about the system’s use of resources, or time).
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Competitive behavior may also appear in (stochastic) systems when some compo-435

nent cannot be controlled, and could behave according to different or even conflicting

goals with respect to other components in the system. In such situations, a natural fit is

modeling a system as a game between different players, adopting a game-theoretic per-

spective. Automatic verification techniques have been successfully used in this context,

for instance for the analysis of security [20] or communication protocols [21].440

Our approach to analyzing human involvement in adaptation builds upon a recent

technique for modeling and analyzing SMGs [22]. In this approach, systems are mod-

eled as turn-based SMGs, meaning that in each state of the model, only one player can

choose between several actions, the outcome of which can be probabilistic. Players can

either cooperate to achieve the same goal, or compete to achieve their own goals.445

The approach includes a logic called rPATL for expressing quantitative proper-

ties of stochastic multiplayer games, which extends the probabilistic logic PATL [23].

PATL is itself an extension of ATL [24], a logic extensively used in multiplayer games

and multiagent systems to reason about the ability of a set of players to collectively

achieve a particular goal. Properties written in rPATL can state that a coalition of play-450

ers has a strategy3 which can ensure that either the probability of an event’s occurrence

or an expected reward measure meets some threshold.

rPATL is a CTL-style branching-time temporal logic that incorporates the coali-

tion operator 〈〈C〉〉 of ATL, combining it with the probabilistic operator P./q and path

formulae from PCTL [25]. Moreover, rPATL includes a generalization of the reward455

operator Rr
./x from [26] to reason about goals related to rewards. An extended version

of the rPATL reward operator 〈〈C〉〉Rr
max=?[F? φ] 4 enables the quantification of the

maximum accrued reward r along paths that lead to states satisfying state formula φ

that can be guaranteed by players in coalition C, independently of the strategies fol-

lowed by the rest of players. An example of typical usage combining the coalition and460

3The term strategy employed in the context of SMGs refers to a game strategy (referred to also as policy

or adversary) as defined in [22], and should not be confused with Stitch adaptation strategies.
4The variants of F?φ used for reward measurement in which the parameter ? ∈ {0,∞, c} indicate that,

when φ is not reached, the reward is zero, infinite or equal to the cumulated reward along the whole path,

respectively.
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reward maximization operators is 〈〈sys〉〉Rutility
max=?[Fc end], meaning “value of the max-

imum utility reward accumulated along paths leading to an end state that a player sys can

guarantee, regardless of the strategies of other players.”

Reasoning about strategies is a fundamental aspect of model checking SMGs, which

enables checking for the existence of a strategy that is able to optimize an objective ex-465

pressed as a property including an extended version of the rPATL reward operator. The

checking of such properties also supports strategy synthesis, enabling us to obtain the

corresponding optimal strategy. An SMG strategy resolves the choices in each state,

selecting actions for a player based on the current state and a set of memory elements.5

6.2. Formal Model470

Our game is played in turns by two players that are in control of the behavior of the

environment and a Znn.com system (including human actors), respectively. The SMG

model consists of the following parts:

6.2.1. Player definition

Listing 5 illustrates player definition in the SMG. Player env is in control of all the475

(asynchronous) actions that the environment can take (defined in the environment mod-

ule), while system player sys controls all the actions that belong to the human actor

and the target system, whose behavior is specified in the processes ha system, as well

as Outgun and Eliminate (adaptation strategies for absorbing and eliminating excess traf-

fic, respectively). Moreover, the system player controls the synchronization of actions480

between adaptation strategies and the target system, thus modeling the triggering of

adaptation tactics. Global variable turn (line 4) is used to explicitly encode alternating

turns between the system and environment players.

6.2.2. Environment

controls the evolution of variables in the execution context that are out of the sys-485

tem’s control. For the sake of simplicity, we assume in our model a simple behavior

5See [22] for more details on SMG strategy synthesis.
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1 player sys ha system, Eliminate, Outgun, [blackholeAttacker], [throttleSuspicious], [enlistServers],

[lowerFidelity] endplayer

2 player env environment endplayer

3 const ENVT=0; const SYST=1;

4 global turn:[ENVT..SYST] init ENVT;

Listing 5: Player definition for the Znn.com SMG.

of the environment that only keeps track of time, although additional behavior con-

trolling other elements (e.g, network delay) can be encoded (please refer to [16] for

further details illustrating the modeling of adversarial environment behavior in turn-

based SMGs).490

1 const MAX TIME; // Exercution time frame [0,MAX TIME]

2 module environment

3 t:[0..MAX TIME] init 0;

4 [] (turn=ENVT) & (t<MAX TIME) −> (t’=t+1) & (turn’=SYST);

5 endmodule

Listing 6: Environment module.

6.2.3. Human Model

Listing 7 shows the encoding of the OWC elements corresponding to an operator

in the Znn.com system. Opportunity elements (line 2) indicate whether the operator

is on location and/or busy. These predicates are used to guard the execution of tactics

blackholeAttacker and throttleSuspicious in the model (Listing 8, line 19). The willingness495

function of the operator (line 6) is inversely proportional to her stress level, declared in

line 5. The capability function (line 9) corresponds to the training level of the operator

in this case.

6.2.4. System

The combined behavior of the target system and human actors is described in mod-500

ule ha system (Listing 8). The module incorporates a collection of variables encoding

the different system qualities of concern, as well as the aspects relevant to the appli-

cability conditions of tactics (e.g., values of predicates used in the condition block of a

tactic). Lines 12-17 illustrate how the different variables are initialized:
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1 // Opportunity elements

2 global op onLocation:bool init true, op busy: bool init false;

3 // Willingness elements and function

4 const MAX STRESS LEVEL, INIT STRESS LEVEL;

5 global op stressLevel: [0..MAX STRESS LEVEL] init INIT STRESS LEVEL;

6 formula op f w=(MAX STRESS LEVEL−op stressLevel) / MAX STRESS LEVEL;

7 // Capability elements and function

8 const double op trainingLevel;

9 formula op f c= op trainingLevel;

10 // Combined WC probability for tactic BlackholeAttacker

11 formula ba wc prob = op f c ∗ op f w;

Listing 7: Human actor model encoding for a Znn.com operator.

• rt, as, mc, and ua encode the response time, number of active servers, percentage505

of malicious clients, and level of user annoyance in the system, respectively.

• cnt es and cnt ba are counters used to keep track of the latency of tactics enlist-

Servers and blackholeAttacker, respectively.6

Moreover, the module includes commands that model the effect of executing the

different tactics as updates on its variables. In particular, there are three different com-510

mands per tactic in the module. We focus on tactic blackholeAttacker to illustrate how

tactic execution is modeled:

• Tactic trigger (line 19). Triggers tactic execution when: (i) an operator is on

location and not busy, (ii) the estimated percentage of malicious clients is above

zero, and (iii) the latency counter for the tactic is zero. As a consequence, the515

operator is flagged as busy and the latency counter is activated (cnt ba’=1).

• Tactic latency counter update (line 22). If the tactic counter is active, but still

has not reached the tactic’s latency value, the counter is incremented in one unit.

• Tactic completion (line 25). When the tactic’s latency counter expires, the com-

mand updates variables rt, mc and ua according to the encoding of the impact of520

6We do not describe the code corresponding to tactics lowerFidelity and throttleSuspicious in Listing 8

for the sake of clarity.
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the tactics on the different quality dimensions (lines 5-7), which are affected by

the probability ba wc prob (determined by the willingness and capability elements

defined in Listing 7). The latency counter is reset, and the busy status of the

operator is set to false.

The encoding used for the enlistServers tactic (lines 20,23,26) follows the same struc-525

ture, but without any OWC elements encoded in the guards or updates of the com-

mands.

Every command in the module includes a predicate in the guard to ensure that

the command is triggered only during the system player’s turn (turn=SYST), and an

additional predicate in the post state that yields the turn to the environment player530

(turn’=ENVT). Moreover, an additional command (line 28) lets the process progress with-

out any variable updates when none of the latency periods for the tactics are active.

Note that in our model, we assume sequential execution of tactics (in accordance with

Stitch semantics).

6.2.5. Adaptation logic535

Modules Eliminate and Outgun model the adaptation logic placed in the controller,

according to the description of their respective Stitch strategies described in Listings 4

and 2. Each of the commands corresponds to a tactic that can be executed in the

target system via synchronization on shared action names with trigger commands in

the ha system module (Listing 8, lines 19-20).540

Module Eliminate (Listing 9) models the strategy to eliminate excess traffic with

the help of a human operator. The command on line 3 encodes the triggering of tactic

blackholeAttacker 7, which sets the value of the timestamp variable ba trigger t that indicates

at which time point the tactic was triggered. This variable is used on the guard of

the command encoding the execution of throttleSuspicious (line 4) to determine whether545

the settling time for observation of the previous tactic’s effect has already expired.

If this is the case, and the blackholing of malicious clients by the human operator

7We abstract away predicates unhandledMalicious and unhandledSuspicious (Listing 4, lines 4,5),

which we assume to be true in the scenarios encoded in our model.
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1 // EnlistServer Tactic cost/benefit attribute vector functions

2 formula es f rt = rt−1000 >=0 ? (rt−1000<=MAX RT? rt−1000 : MAX RT) : 0;

3 formula es f as=as<MAX SERVERS ? as+1:as;

4 // BlackholeAttacker Tactic cost/benefit attribute vector functions

5 formula ba f rt = rt−1000 >=0 ? (rt−1000<=MAX RT? rt−1000 : MAX RT) : 0;

6 formula ba f mc = ba wc prob∗mc > 0 ? (ba wc prob∗mc < 100? floor(ba wc prob∗mc) : 100) : 0;

7 formula ba f ua = ua+(1−ba wc prob)∗50 >=0 ? (ua+(1−ba wc prob)∗50<=100? floor(ua+(1−ba wc prob)∗50)

: 100) : 0;

8 ...

9 formula cost=as ∗ cost per server;

10 ...

11 module ha system

12 rt : [0..MAX RT] init init rt; // Response time

13 as : [0..MAX SERVERS] init init as; // Active servers

14 mc : [0..100] init init mc; // Malicious clients

15 ua : [0..100] init init ua; // level of annoyance

16 cnt es :[0..MAX TIME] init 0;

17 cnt ba :[0..MAX TIME] init 0;

18 // Tactic triggers

19 [blackholeAttacker] (turn=SYST) & (op onLocation) & (!op busy) & (mc>0) & (cnt ba=0) −> (cnt ba’=1) &

(op busy’=true);

20 [enlistServers] (turn=SYST) & (as<MAX SERVERS) & (cnt es=0) −> (cnt es’=1) & (turn’=ENVT);

21 // Tactic latency counter update

22 [] (turn=SYST) & (cnt ba>0) & (cnt ba<ba latency) −> (cnt ba’=cnt ba+1) & (turn’=ENVT);

23 [] (turn=SYST) & (cnt es>0) & (cnt es<es latency) −> (cnt es’=cnt es+1) & (turn’=ENVT);

24 // Tactic completion (after latency period expires)

25 [] (turn=SYST) & (cnt ba=ba latency) −> (cnt ba’=0) & (rt’=ba f p) & (mc’=ba f mc) & (ua’=ba f ua) &

(op busy’=false) & (turn’=ENVT);

26 [] (turn=SYST) & (cnt es=es latency) −> (rt’=es f rt) & (cnt es’=cnt es+1) & (as’=es f as) & (cnt es’=0) &

(turn’=ENVT);

27 // Do nothing

28 [] (turn=SYST) & (cnt es=0) & ... & (cnt ba=0) −> (turn’=ENVT);

29 endmodule

Listing 8: Target system extended with human actors module.

is not successful (ba fail), the command executes, triggering the throttleSuspicious tactic,

consistently with the Stitch code in listing 4, line 4.

Module Outgun (Listing 9, line 7) follows a similar PRISM encoding that models550

the automatic strategy to absorb excess traffic in Znn.com.
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1 module Eliminate

2 ba trigger t:[0..MAX TIME] init 0;

3 [blackholeAttacker] (turn=SYST) −> (ba trigger t’=t);

4 [throttleSuspicious] (turn=SYST) & (t=ba trigger t+ba settling) & (ba fail) −> true;

5 endmodule

6

7 module Outgun

8 es trigger t:[0..MAX TIME] init 0;

9 [enlistServers] (turn=SYST) −> (es trigger t’=t);

10 [lowerFidelity] (turn=SYST) & (t=es trigger t+es settling) & (es fail) −> true;

11 endmodule

Listing 9: Eliminate and Outgun adaptation strategy modules.

6.2.6. Utility Profile

Utility functions and preferences are encoded using formulas and reward structures

that enable the quantification of the utility of a given game state. Formulas compute

utility on the different dimensions of concern, and reward structures weigh them against555

each other by using the utility preferences of a given scenario.

1 formula uM = (mc>=0 & mc <=5? 1:0)

2 +(mc>5 & mc <=20? 1+(0.80−1)∗((mc−5)/(20−5)):0)

3 +(mc>20 & mc <=50? 0.80+(0.40−0.80)∗((mc−20)/(50−20)):0)

4 +(mc>50 & mc <=70? 0.40+(0.00−0.40)∗((mc−50)/(70−50)):0)

5 +(mc>70 ? 0:0);

6 ...

7 rewards ”rGU”

8 scenario=1 : 0.15∗uR +0.6∗uM +0.1∗uC +0.15∗uA;

9 ...

10 endrewards

Listing 10: Utility reward structure for Znn.com DoS scenarios.

Listing 10 illustrates in lines 1-5 the encoding of utility functions using a formula

for linear interpolation based on the points defined for utility function UM in the second

column of Table 3. Lines 7-10 show how a reward structure can be defined to compute a

single utility value for any state by using the utility preferences defined for a particular560

scenario.
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6.3. Analysis

SMG models of human-in-the-loop adaptation can be exploited to determine: (i) the

expected outcome of human involvement in adaptation, and (ii) the conditions under

which such involvement improves over fully automated adaptation. To answer these565

questions, we make use of rPATL specifications that include reward-specific operators

aimed at checking quantitative properties over SMG models. Specifically, our tech-

nique enables us to statically analyze a particular region of the state space, which first

has to be discretized to check rPATL properties. Obtaining the results of the analy-

sis for each state in the discrete set requires an independent run of the model checker570

in which model parameters are instantiated with variable values corresponding to that

state.

6.3.1. Strategy Utility

The expected utility value of an adaptation strategy (potentially including non-

automated tactics) is quantified by checking the reachability reward property:575

umau , 〈〈sys〉〉RrGU
max=?[F

c t=MAX TIME]

The property obtains the maximum accrued utility value (i.e., corresponding to

reward rGU – Listing 10) that the system player can achieve until the end of execution

(t=MAX TIME).

Figure 3(a) depicts strategy utility analysis results for the different adaptation strate-

gies in a DoS scenario in which the priority is eliminating malicious clients (Scenario580

1 in Table 4). In the figure, a discretized region of the state space is projected over the

dimensions that correspond to the training level of a human actor, and the percentage

of malicious clients (with values in the range [0,1] and [0,100], respectively). Each

point in the mesh represents the maximum accrued utility that the system can achieve

on the model instanced for a time frame of 15 minutes. The initial state of the scenario585

corresponds to 0 stress level of the operator, a response time is 2000 ms, 0% of user

annoyance, and 2 active servers. Tactic cost/benefit values and the utility profile em-

ployed are those described in Section 4, whereas the latency value employed for tactics

blackholeAttacker and throttleSuspicious is 5 minutes (this latency models the time that the
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human operator takes to decide which clients have to be blackholed or throttled). Time590

delays to observe the effect of tactic executions in the different strategies are those

indicated in the Stitch code shown in Listings 4 and 2, respectively.

0 20 40 60 80 1000

0.5

1

0

10

20

Malicious Clients (%)
Trai

ning lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau(Outgun) = 11.43

0 20 40 60 80 1000

0.5

1

0

10

20

Malicious Clients (%)
Trai

ning lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau(Eliminate) = 12.88

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Malicious Clients (%)

Tr
ai

ni
ng

le
ve

l

s↑=outgun (49.78%)
s↑=eliminate (50.22%)

0 20 40 60 80 1000

0.5

1

0

10

20

Malicious Clients (%)
Trai

ning lev
el

A
cc

ru
ed

ut
ili

ty

Avg. umau(s↑) = 13.65

Figure 3: Results for Scenario 1 (minimizing number of malicious clients): (a) outgun (top left) and elimi-

nate (top right) strategy utility, (b) strategy selection (bottom left), and (c) combined utility (bottom right).

In the top left of Figure 3, the plot shows that the utility obtained by the strategy

Outgun in this scenario is not affected by the level of training of the human operator

because the tactics employed by the strategy are fully automated. Moreover, the utility595

that can be obtained decreases progressively with increasing levels of malicious clients.

This is consistent with the fact that strategy Outgun employs only tactics that try to im-

prove user experience without dealing with malicious users (e.g., adding new servers),

and in Scenario 1, the main contribution to utility results from low levels of malicious
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clients.600

The top right of Figure 3 depicts the utility obtained by strategy Eliminate. In con-

trast with strategy Outgun, the plot shows how increasing levels of training yield better

results. When the percentage of malicious clients is low, the impact of training on util-

ity is negligible because there are few or no malicious clients to deal with. However,

the outcome of the execution of tactics blackholeAttacker and throttleSuspicious in situations605

with increasing levels of malicious clients can vary significantly depending on the level

of training of the human operator, who has to judge which clients will be affected by the

tactics. Poorly trained operators can often apply counter measures to legitimate clients,

being less efficient at reducing the percentage of malicious clients while increasing the

level of annoyance in legitimate clients when blackholing or throttling.610

Figure 4 shows results for Scenario 2, in which the top priority is optimizing the

experience of legitimate clients, independently of the level of malicious clients making

use of system resources. The top left plot of the figure shows how strategy Outgun still

experiences a reduction in the utility with increasing levels of malicious users (similarly

to Scenario 1). However, in this scenario the reduction in utility is less pronounced615

than in Scenario 1 because in this case the main contribution to utility results from

optimizing legitimate client experience, and efficiency at reducing the percentage of

malicious clients is not as relevant.

6.3.2. Strategy Selection

Given a repertoire of adaptation strategies S, we can analyze their expected out-620

come in a given situation by computing their expected accrued utility according to the

procedure described above. Based on this information, the different strategies can be

ranked to select the one that maximizes the expected outcome in terms of utility. Hence

the selected strategy s↑ can be determined according to:

s↑ , arg max
s∈S

umau(s)

where umau(s) is the value of property umau evaluated in a model instantiated with625

the adaptation logic of strategy s.

Figure 3(b) shows the results of the analysis of strategy selection in Scenario 1. The

states in which human involvement via strategy Eliminate is chosen (50.22% of states)
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Figure 4: Results for Scenario 2 (optimizing experience of legitimate clients): (a) outgun (top left) and

eliminate (top right) strategy utility, (b) strategy selection (bottom left), and (c) combined utility (bottom

right).

are represented in white, whereas states in which the automated strategy Outgun is se-

lected (49.78%) are colored in black. The figure shows how progressively higher levels630

of malicious clients make human involvement preferable even when the level of train-

ing of the operator is limited (0.3-0.4) because, even under these conditions, Eliminate

is still better at improving utility than Outgun. This is explained by the fact that the

top priority in Scenario 1 is minimizing the number of malicious clients, and Outgun

does not employ any tactics for dealing with them. However, it is worth noting that635

when the training level is very low, the improvement on user experience provided by

Outgun can outweigh the moderate improvement in utility provided by inefficient exe-
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cutions of Eliminate (even if the percentage of malicious clients is high). This situation

can be observed in the area in which training levels are below 0.4 and the percentage

of malicious clients are in the range 80-100%.640

Figure 3(c) shows the combined accrued utility mesh that results from the selection

process (i.e, every point in the mesh is computed as umau(s↑)). The average improve-

ment is 16.3% over the Outgun strategy, and 5.6% over Eliminate. Note that the minimum

accrued utility never goes below the achievable utility level of the automatic approach,

over which improvements are made in the areas in which the strategy involving human645

actors is selected.

Figure 4(b) shows the results of the analysis of strategy selection in Scenario 2.

In this case, the plot shows how Outgun is selected in more than 80% of the states.

This represents a remarkable increment in the selection of the automated strategy with

respect to Scenario 1, which is explained by the different priorities that exist in Scenario650

2 (improving legitimate client experience, independently of the percentage of malicious

clients). Indeed, it can be observed that the selection of Eliminate in this scenario is

justified only in the area in which both the percentage of malicious clients and the

training level of the operator are high.

Figure 4(c) shows the combined accrued utility mesh in Scenario 2. In this case, the655

improvement in utility obtained by the combined approach with respect to the individ-

ual strategies is not too far from those in Scenario 1, but transposed (the improvement

over Outgun is 2%, and 16.2% for Eliminate). This is motivated by the better alignment

of the priorities in Scenario 2 and the target of strategy Outgun (improving client experi-

ence), whereas the priorities of Scenario 1 are better aligned with the target of Eliminate660

(dealing with malicious clients).

7. Conclusion

In this chapter, we have described an approach that employs formal reasoning to

analyze trade-offs in self-adaptation at two different levels: (i) reasoning about busi-

ness concerns in the context of other (potentially conflicting) business properties; and665

(ii) reasoning about the effectiveness of automated vs. human-driven adaptations with
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respect to the different business concerns.

We have focused on the execution stage of MAPE-K systems, in which human

actors adopt the role of system-level effectors. We have shown how to incorporate

concepts from cyber-human systems (CHS) that model the probabilistic aspects of hu-670

man behavior into a language tailored to describe runtime adaptation (Stitch). We have

also shown how such specifications can be encoded into stochastic multiplayer game

models amenable to analysis via model checking. We illustrated our approach in the

context of Znn.com, a benchmark system in the self-adaptive systems community that

embodies the typical infrastructure of a dynamically scalable web infrastructure. Our675

results showed that our approach can: (i) discriminate cases in which the involvement

of human actors in execution leads to an improvement of system utility, providing the

basis to combine human-based and automated adaptations; and (ii) decide about human

involvement in a context-sensitive manner, selecting different adaptations for different

preferences over business concerns.680

Concerning future work, our current models assume that actors and system are

working in coalition to achieve goals. In fact, the interaction may be more subtle than

that; Eskins and Sanders point out that humans may have their own motivations that

run counter to policy [6]. To capture this subtlety, we plan on extending the encoding

of SMGs to model human actors as separate players. Moreover, we will extend our ap-685

proach to formally model and analyze human involvement in other stages of MAPE-K,

studying how to best represent human-controlled tactic selection, and human-assisted

knowledge acquisition.
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