
Hybrid Planning For Self-Adaptation
Ashutosh Pandey and David Garlan

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA
ashutosp@cs.cmu.edu · garlan@cs.cmu.edu

Abstract—Self-adaptive software systems make decisions at run
time that seek to change their behavior in response to faults,
changing environments and attacks. Therefore, having an appro-
priate decision making approach to find an adaptation strategy is
critical to successful self-adaptation. Ideally, when an adaptation is
triggered, one would like to have a decision making approach that
is both quick and finds an optimal adaptation strategy. However,
often designers have to compromise between an approach that
is quick to find an adaptation strategy and an approach that is
slow but finds an optimal adaptation strategy. To deal with this
trade-off between quick decision making and finding an optimal
adaptation strategy, this position paper proposes a hybrid planning
approach that combines more than one decision making approach
to bring their benefits together. As an initial proof of concept, the
paper presents the results of a small experiment to demonstrate
the potential of a hybrid planning approach in dealing with this
trade-off.

I. INTRODUCTION

A typical control loop in many self-adaptive systems has
four fundamental computational elements: Monitoring-Analysis-
Planning-Execution (MAPE), where planning is responsible
for determining a repair strategy for self-adaptation. For the
planning element various approaches, including automated
planning, have been suggested by the research community to
determine a repair strategy [11] [25] [4].

Often there is a trade-off between determining a repair strategy
quickly vs. determining an optimal repair strategy. Looking at
the spectrum of proposed approaches, at one end of the spectrum
are approaches that determine a repair strategy quickly but
the strategy could be sub-optimal. At the other extreme are
approaches that are slow but the identified strategy is optimal.1

For instance, in the Rainbow framework [5], the approach to
determine a repair strategy is quick because the repair strategy
is not generated at run time, but rather selected from a fixed
repertoire of predefined strategies based on applicability condi-
tions of a strategy and the goals of the system.2 However, the
selected strategy might not be optimal because it is impossible to
have an optimal strategy beforehand for all unforeseen scenarios.
At the other extreme, approaches such as AI planning, which
generate the repair strategies at run time [11], could be slow but
can come up with a nearly optimal strategy, since the planning
element dynamically generates a repair strategy based on the
current state of the executing system and possibly its external
environment.

Under some circumstances, such as planning for the shortest
path to the destination for a robot navigating in a stable

1Optimal in terms of an appropriately defined notion of utility.
2This approach is similar to many commercial systems, which have a fixed

set of responses to problems, such as rebooting servers, redistributing stored
information, and adding new servers.

environment, finding an optimal path could be the primary
concern rather than planning quickly. In contrast, there are
situations, such as a self-driving car navigating on a busy street,
where a quick but sub-optimal decision to stop the car, in order
to avoid a collision, might be preferred over finding an optimal
path that takes longer to plan.

However, there are systems such as Amazon Web Services
(AWS), that not only need to find the adaptation plans quickly,
but also require the plans to be optimal. As per its SLA,
Amazon Web Services(AWS) is required to maintain an up-
time percentage of at least 99.95% in any monthly billing cycle,
even though there might be other quality concerns such as cost
minimization.3 In other words, the utility for such systems is
dominated by certain quality constraints: the utility would drop
drastically if any of these quality constraint(s) is violated.

For systems such as AWS, in case of a failure a rapid response
is required to keep the system in a desirable state (in this case,
maintaining availability). However, to maximize overall long-
term utility of the system, the adaptation plan should ideally
also be optimal in terms of metrics such as operating cost.
In such cases, the requirements to plan quickly and to find
optimal plans, are often conflicting in nature, since finding
optimal plans typically requires dealing with uncertainty, which
significantly increases the planning time.4 Therefore, selecting a
single decision making approach from the spectrum of various
approaches, would either be slow to react or find sub-optimal
adaptation plans.

Ideally we would like an approach to self-adaptation that
combines the best of both worlds: providing plans quickly when
timing is critical, while allowing optimal plans to be generated
when the system has sufficient time to do so. In this position
paper, we propose a novel hybrid planning approach that does
just that. The key idea behind hybrid planning is to combine
more than one decision making approaches to obtain the benefits
of each. For instance, a fast decision making approach could be
used in combination with an optimal but slow decision making
approach: the fast planning approach provides plans quickly and
the slow planning approach provides optimal plans. This idea of
hybrid planning is akin to human decision making: depending
upon factors such as available planning time, humans apply
different levels of deliberation while making real life decisions
[27].

Even though hybrid planning seems to be an attractive idea,
however, a successful application of the approach needs to
address multiple research challenges. The first challenge is to

3https://aws.amazon.com/ec2/sla/
4AWS-like systems could have different kinds of uncertainties such as

uncertainty in the client request arrival rate, and hardware failure.

identify appropriate (i.e., applicable in the operating domain)
decision making approaches that could be used in combination
to instantiate a hybrid planner. Another key challenge is to
figure out the criteria for knowing when to invoke each of the
constituent planners and how to coordinate their plans.

In this paper, we provide one possible solution to these
challenges in the context of an experimental AWS-like simulated
cloud-based self-adaptive system. To instantiate the fast and the
slow planning approach, two different automated planning tech-
nologies are used: deterministic planning as a fast approach, and
Markov Decision Processes (MDP) planning [22] as an optimal,
but a slow approach. Specifically, in case of a constraint violation
(such as non-availability or high response time) deterministic
planning ignores uncertainty in the client request arrival rate
by assuming a constant request arrival rate and finds a tactic
that can be executed immediately in the process of satisfying
the constraint. However, while the tactic is being executed, an
MDP planner takes uncertainty in the request arrival rate into
account and finds a more-nuanced, and hence nearly optimal,
MDP policy.5

In our experiments, we used the combination of deterministic
planning and MDP planning since seamless transfer of execution
is possible from a plan generated by the deterministic planning
to a policy generated by the MDP planning. As explained later, if
deterministic and MDP planning have the same initial state, once
the MDP policy is ready, it takes over the plan execution from
the deterministic plan in any of the future states and ensures that
an optimal MDP policy is executed thereafter.

Our initial experimental results show that in the context of
certain cloud-based self-adaptive systems, a hybrid planning
approach performs better than either of the two planning
technologies used in isolation. The hybrid planning performed
better because it can not only plan quickly, and hence provide
rapid response to constraint violations, but also finds repair plans
that are optimal in the long run by taking into consideration
uncertainty and other quality attributes such as cost – hence
combining the benefits of both, deterministic and MDP planning.

The rest of the paper is organized as follows: in Section II, we
introduce a motivating example that will be used throughout the
paper as a reference problem. Section III provides background on
automated planning. In Section IV, we explain hybrid planning
approach in detail. Section V presents the initial experimental
results. Section VI presents related work in the area of self-
adaptive systems and automated planning. Finally, Section VII
concludes with a discussion on the possible future directions.

II. MOTIVATING EXAMPLE

Suppose we have a cloud-based web application, which has
a typical three layered architecture: a presentation layer, an
application layer, and a database layer. When the application
layer receives a client request from the presentation layer, it
processes the request and exchanges data with the database
layer if required. We will assume that the system has servers of
different capacity:6 however, the cost of a server increases with
increase in capacity. The workload on the system depends on

5The plan generated by MDP planning is known as a MDP policy.
6As measured by average number of requests handled per second.

the request arrival rate, which is uncertain as it depends on the
external demand.

To increase profitability, the system needs to minimize oper-
ating cost and maximize revenue. To bring down the operating
cost, the system needs to minimize active servers. To achieve this,
the system has an adaptation tactic, removeServer, to deactivate
a surplus server.

Since higher perceived user response time results in revenue
loss [24], it is desirable to maintain the response time for
user requests below some threshold, say T . The system can
manage the response time either by adding more servers (using
addServer tactic) or by controlling optional content, such as
advertisements and recommendations. For each user request,
there is some mandatory content along with some optional
content presented to the clients. The optional content helps to
generate revenue; however, it also uses additional bandwidth,
which increases the response time. The system uses a brownout
[21] mechanism to control the optional content through a dimmer
variable. Value of the variable varies in the range [0..1], which
represents the probability of having the optional content in a
response. The increaseDimmer and decreaseDimmer tactics
are used to increase and decrease the value of the dimmer
variable respectively. In case of a high workload, the number of
responses having optional content can be reduced by decreasing
the dimmer value; however, it can also bring down the revenue
generated through advertisements [20].

Since the system has servers of different capacity, a round-
robin strategy for assigning client requests to active servers
would not be efficient. The number of client requests delegated
to a server depends on its capacity. The load-balancer uses
queueing theory [29] to decide on the optimal load-distribution
among the active servers. To distribute the load efficiently,
there is a tactic, divert_traffic, which helps the load-balancer
in managing the percentage of client requests, assigned to each
server.

We assume there is a penalty, say P , for each request having
a response time above the threshold. Therefore, in case of a high
average response time, the system needs to react quickly either
by adding servers or decreasing the dimmer value. However,
once response time is under control, system should execute
adaptation tactics to bring down the operating cost i.e., maximize
overall long term utility.

The goal of the system is to maximize the utility, which
depends on the revenue generated, the penalty for response time
above the threshold, and the cost of active servers. If system runs
for duration L, the utility function would be defined as:

U = ROxO +RMxM − PxT −
n∑

i=1

Ci

∫ L

0

si(t)dt (1)

where RO and RM is revenue generated by a response with
optional and mandatory content respectively; xO, xM , and xT
are the number of requests with optional content, only mandatory
content, and having response time above the threshold; Ci is the
cost of server type i and si is the number of active servers of
type i; n is number of different types of servers.

III. BACKGROUND

AI researchers have developed various automated planning
approaches [23]. These approaches can be categorized into two

broad categories: deterministic planning, and planning under
uncertainty. Deterministic planning is applicable to deterministic
domains when there is no uncertainty in action outcomes or
observations of the underlying state.

Planning under uncertainty includes approaches such as
MDP planning [22], and Partially Observable Markov Decision
Processes (POMDP) [28]. These approaches handle uncertainty
in the planning domain, required to generate optimal plans
in terms of maximizing the expected reward. However, since
uncertainty in the planning domain drastically increases the
state space, these approaches are generally much slower in
comparison to deterministic planning approaches.7

In our experiments, MDP planning is used as an approach
that is slow but generates nearly optimal plans. Specifically,
MDP planning helps in dealing with uncertainty in the request
arrival rate that helps in generating an optimal policy, which will
maximize expected utility (reward) for a predefined notion of
utility.

Due to uncertainty in action outcomes, if an adaptation tactic
is applied to a state, the system can end up in one of the many
possible states. In such situations, a linear plan, from the initial
state to a goal state, can fail because the system might end up in
an unanticipated state, not covered by the linear plan. However,
this is not a problem with MDP planning because it generates
an MDP policy, which is a state-action pair for all reachable
states from the initial state. A single state-action pair in an MDP
policy indicates the next action that needs to be taken for the
corresponding state to maximize expected utility.

IV. APPROACH

The key idea behind hybrid planning to combine more than
one decision making approaches to obtain their benefits. For
instance, in our cloud-based system, to deal with the conflicting
requirements of planning quickly (in case of a response time
above the threshold) and finding an optimal plan, we combine a
fast but sub-optimal planning approach with an optimal but slow
planning approach. The intuition is: (1) using a slow planner
alone introduces a gap in decision-making time that can lower
utility; (2) using a fast planner alone provides a quick response
but may not be nuanced enough to provide an optimal solution.
Therefore, the hybrid planning approach uses a fast planner to
handle an immediate problem, but simultaneously uses a slow
planner to provide a nearly optimal solution.

To formulate a hybrid planner in our experiments, we instan-
tiated a fast and a slow planning approach, using two different
automated planning technologies: deterministic planning and
Markov Decision Processes (MDP) planning respectively. To
coordinate the two planners we used the following logic: In case
of response time above the threshold, deterministic planning
provides an adaptation plan quickly since it ignores uncertainty
in the request arrival rate to reduce the planning state-space,
which eventually reduces the planning time. However, while the
deterministic plan is under execution, MDP planning is executed
in the background. Our MDP specification models uncertainty
in the request arrival rate as uncertainty in the outcome of

7In the deterministic domain, an action when applied to state s0 would result
in a certain state s1. However, if there is uncertainty in the action outcomes, an
action when applied to state s0 could result in one of the many possible states,
thereby increasing the state space, and hence increasing the planning time.

actions made by the external environment. As explained later,
we use a time-series predictor to anticipate the future average
interarrival time (inverse of average request arrival rate) between
two consecutive requests.

However, this hybrid planning approach will only be effective
when a seamless transfer of execution is possible from a plan
generated by the deterministic planner to a policy generated by
the MDP planner. There are two properties of MDP policies
that improve the chances of a smooth transition from the
deterministic plan to the MDP policy. First, the MDP policy
defines a state-action pair for all reachable states from the
initial state. The second property is the Markovian nature of
its state transition model, which means the action specified for a
particular state in the MDP policy solely depends on that state
rather than any of the previous states. Therefore, if deterministic
and MDP planning have the same initial state, once the MDP
policy is ready, more likely it takes over the plan execution from
the deterministic plan in any of the future states and ensure that
optimal policy is executed thereafter.

However, if predictions for the interarrival time, used for MDP
planning, are not correct then the MDP policy can fail to take
over the plan execution. To explain this further, suppose an MDP
policy is available at time tr but the predicted value (used for
MDP planning) for the interarrival time at tr is not the same
as the actual value, then the current state would not be found
in the MDP policy. Therefore, the MDP policy would not be
applicable at time tr. In such cases, MDP planning is triggered
using the new current state as its initial.

A. MAPE-K Loop

To bring self-adaptive capability to our cloud-based system,
we implemented a MAPE-K loop [19], consisting of a knowl-
edge base, and four components: monitoring, analysis, planning,
and execution. The knowledge base maintains information
including the architectural structure of the system [26], systemic
properties such as average response time and operating cost,
tactics in progress, the environment model, number of active
servers, dimmer settings, and the portion of the workload
assigned to different servers.

Algorithm 1 hybrid_planning function returns the list of tac-
tic(s)
Require: Scurr, π, Rcurr, Rthreshold

1: List tactics←get_tactics(Scurr, π)
2:
3: if tactics = null then
4: Thread thread← new Thread()
5: thread.run(MDP_planning())
6:
7: if Rcurr > Rthreshold then
8: tactics←deterministic_planning()
9:

10: return tactics

The monitoring component observes the request arrival rate
and the response time perceived by the clients. Our MAPE-K
loop merges the analysis component and the planning component
into a single component, called the analysis-planning component.

This component evaluates the monitored system periodically,
with fixed time period τ , to figure out if there is a chance for
adaptation defined as a opportunity to improve utility.

B. Hybrid Planning Algorithm

At the beginning of each evaluation cycle, to figure out
if adaptation is required, the analysis-planning invokes the
function hybrid_planning shown as Algorithm 1. The inputs
to hybrid_planning algorithm are: state Scurr, which includes
the state of system and environment; MDP policy π if it exists;
response time Rcurr; and upper threshold, Rthreshold, for the
response time. As an output, the algorithm returns a list of tactics
that need to be executed at the current point to improve utility.

Algorithm 2 get_tactics function returns the list of tactic(s)
Require: Scurr, π

1: if π = null or π.find(Scurr) = false then
2: return null
3: else
4: return π.get_tactics_from_policy(Scurr)

The hybrid_planning algorithm calls the function get_tactics
listed as Algorithm 2, which takes state Scurr and MDP policy
π as input. If the policy exists in the knowledge base then
Scurr is searched in the policy. If Scurr is found in the policy,
get_tactics (Algorithm 2: line-4) returns the tactics for all states,
starting from Scurr, within the evaluation cycle. Since our
MDP specification supports concurrent execution of tactics
[17], these tactics are triggered simultaneously at the beginning
of that evaluation cycle. The returned list of tactics could be
empty, which implies further increase in utility is not possible:
adaptation is not required. However, if an MDP policy does
not exist or Scurr is not found in the MDP policy, get_tactics
function returns null indicating that re-planning is required
(Algorithm 2: line-2).

Since MDP planning is generally slow, the hybrid_planning
algorithm does not wait for the MDP planning to complete;
instead, it assigns MDP planning to a newly created thread
(Algorithm 1: line 4-5). However, if a constraint is violated,
deterministic planning is triggered for a quick response (Algo-
rithm 1: line 7-8). Here the assumption is that the deterministic
planning is quick compared to MDP planning.

C. MDP Planning

We use the PRISM model-checker [25] as an MDP solver.
Our MDP specification models each tactic as a separate module
to support concurrency [17]. To handle uncertainty in request
arrival rate, we model the environment as a probability tree,
where the root node represents the current average interarrival
time between two consecutive requests and its children represent
realizations conditioned on the parent, with the edges represent-
ing the probability of the child realization given that the parent
was realized. We use a time-series predictor to anticipate the
future average interarrival time.

As we predict farther into the future, the uncertainty in predic-
tions rises, which could lead to a sub-optimal policy. Therefore,
MDP planning is done for finite horizon, say Nhorizon, which
means that when MDP planning is triggered, we predict the

request arrival rate up toNhorizon evaluation cycles and generate
a policy for that horizon. This period of Nhorizon evaluation
cycles (i.e., Nhorizon × τ) is known as a planning cycle.

In our MDP planning specification, the execution of actions
is done at the granularity of evaluation period τ . However, when
MDP planning is triggered by the hybrid_planning algorithm,
completion time for the planning process might not necessarily
overlap with the start of an evaluation cycle. In cases when
the MDP policy is ready in the middle of an evaluation cycle,
the execution of the policy begins only at the start of the next
evaluation cycle.

1) Storing Policy: Since MDP planning is slow, once the
MDP policy is generated, it is stored for successive evaluation
cycles within the look-ahead horizon. If the system and the
environment behave as expected, the policy will be applicable
at the beginning of each evaluation cycle within the look-ahead
horizon. The policy needs to be re-generated in either of two
cases: the planning horizon is over, or there is an unexpected
change in environment leading to a state not covered by the
MDP policy.

2) State matching heuristic: At the beginning of each eval-
uation cycle, the current state, consisting of state variables rep-
resenting the system and environment, is searched in the policy
to determine which tactic(s) is to be executed for adaptation.
However, in our approach, the prediction discretizes the values
of interarrival time, so it is very likely that the actual value in the
current state is not one of the discrete values. Therefore, current
state would not exist in the MDP policy.

To deal with this problem, we use a heuristic to match the
current state to a state in the MDP policy. The current state is
matched to a state that meets three criteria: (1) all state variables
(except average interarrival time) have same value; (2) among the
states meeting criterion 1, the value of average interarrival time
for the matched state should be closest to the current average
interarrival time; and (3) once the first two criteria are met, the
difference between the values of the average interarrival time in
the current state and the matched state should be within 10% of
the current average interarrival time.

D. Deterministic Planning

For the deterministic planning, we use a modified version
of MDP specification by ignoring uncertainty. To transform
the MDP specification into a deterministic planning specifi-
cation, probabilistic environment model is ignored. Instead,
it is assumed that request arrival rate will remain fixed until
the next planning cycle. Once environmental uncertainty is
removed, the state space reduces significantly, resulting in an
exponential reduction in planning time. In our experiments, the
MDP planning state space of about 2 million states is reduced
to about 23, 000 simply by ignoring environmental uncertainty;
the planning time reduced from (approximately) 40 seconds to
less than a second.

V. PROOF OF CONCEPT

To validate the hybrid planning approach, we conducted
experiments in a simulated setup using a discrete event simulator,
OMNeT++.8 We implemented various architectural components

8https://omnetpp.org/

such as a load-balancer, and different types of servers in
the simulator. Besides the fundamental functionality, these
components also have logic to support the tactics described
earlier. For instance, servers allow increments/decrements of
dimmer values and the load-balancer allows addition/removal of
servers.
A. Experiment Setup

The system has three types of servers: A, B and C. Among
these three types, server type-C is the costliest but has the highest
capacity in terms of its ability to handle requests per second:
server type-A is the cheapest but has the least capacity among
the three types of servers. Therefore, we assign a cost per minute
to be $0.5, $0.7, and $1 for server type-A, type-B, and type-C
respectively. The capacity of server type-A is 50 when serving
with the optional content and 150 without serving the optional
content; the capacity of server type-B is 130 when serving
with the optional content and 200 without serving the optional
content; and the capacity of server type-C is 150 when serving
with the optional content and 300 without serving the optional
content.

Fig. 1. Request arrival rate

Suppose the cost of a server can be covered by the revenue
of handling 1/10 of its maximum capacity with optional content
and the revenue of handling 2/3 of its maximum capacity without
optional content. If the server cost per minute is C, capacity with
optional content is cO and without optional content is cM , then
the revenue for a server with optional content would be RO =
10
cO
C and without optional content would be RM = 3/2

cM
C. For

each request having response time above the threshold value of
1 second, there is a penalty of -3 units.

The evaluation period, τ , for the experiment is configured
as 1 minute. For the experiments, we have 3 dimmer levels
and 1 server of each type i.e. the total number of servers is 3.
We assume a fixed boot-up time of 2 minutes for each server
type. Since at a given point of time, we would have maximum 2
inactive servers and each server requires 2 minutes of boot up
time, our look-ahead horizon for MDP planning is 5 minutes.
This heuristic gives a long enough horizon to go from 1 active
server to 3 active servers plus 1 additional evaluation cycle to
observe the resulting utility.

For a realistic workload pattern, we used a request arrival trace
of from the World Cup ’98 website [18]. As shown in Fig. 1,
the trace includes a considerable load increase from 48 requests
per minute to 73 requests per minute. This trace is scaled down
so the request arrival rate does not exceed the capacity of the
simulation setup. Of the 11 minutes, the last minute is simply an

observation point, therefore, the remaining time is divided into
2 planning cycles of 5 minutes each. This trace contains time-
stamps representing interarrival rate between two client requests.
To simulate the clients, we send requests to the load-balancer
with the interarrival rate indicated by the trace.

We conducted the experiments on a Ubuntu 14.04 virtual
machine having 8GB RAM and 3 processors at 2.5 GHz. The
state space for the MDP planning varies approximately between
1.6 million and 2.2 million and the MDP planning time varies
between 35-45 seconds. The state space for the deterministic
planning is about 23,000 states with planning time less than a
second, which is considered negligible in the experiments.

B. Results

Fig. 2. Normalized aggregate utility for different approaches

We look at the aggregate utility, which is the sum of utility
accumulated at the end of each evaluation cycle, to compare
three approaches: deterministic planning alone, MDP planning
alone, and the two combined in the hybrid approach as described
above. Fig. 2 shows the normalized aggregate utility for three
approaches. As it can be seen, there is a significant performance
gap between the hybrid planning and the other two approaches.

Fig. 3 explains the outperformance of the hybrid planning
approach by analyzing the first MDP planning cycle of the two
cycles. At the beginning of the first evaluation cycle, one server
of type-A is active and dimmer value is 3. Initially, the request
arrival rate is about 48 requests/seconds, which results into an
average client response time greater than 1 second, thereby a
highly negative utility. As shown in Fig. 3, at time step t0, fast
planning comes up with a tactic to add a server of type-C, which
brings down the response time below the threshold at time step t3
because server takes 2 minutes to boot up. Since fast planning is
instantaneous in the experiments, it is invoked at each evaluation
cycle to determine if there is a need for adaptation.

However, the slow planning approach takes one evaluation
cycle to generate a MDP policy, therefore once generated, the
policy is stored for successive evaluation cycles within planning
horizon. Once MDP planning is triggered at time step t0, due to
planning delay, the policy is available at time step t1. Therefore,
a server of type-C is added at time step t1, which results in a
higher utility at time step t4. Since there is a high negative utility
for the response time above the threshold, fast planning has an
edge over slow planning during the time period between t3 and
t4.

At time step t0, since the average response time is above 1
seconds, the hybrid planning approach triggers both the fast and
the slow planning. The fast planning suggests the tactic to add a

server of type-C (at t0), which results in higher utility between
t3 and t4. However, from t1 onward, the hybrid planning refers
to the MDP policy for optimal adaptation decisions. Since MDP
planning deals with uncertainty in the requests arrival rate,
it provides optimal decisions compared to the fast planning
approach. For instance, the hybrid approach achieves higher
utility between t1 and t3 due to an adaptation decision (as
suggested by the MDP policy) of decreasing the dimmer value
at t1.

Fig. 3. Adaptation decisions made by different approaches during a planning
horizon and impact on utility

VI. RELATED WORK

Decision making has been a challenge in self-adaptive commu-
nity [10]. Even though researchers have demonstrated successful
use of automated planning [12] [11] in the context of self-
adaptive systems, such work tends to focus on domains, where
timing is not a critical factor. Generally, the focus of the existing
work has been to demonstrate that automated planning could be
useful in self-adaptive software systems.

To support automated planning, several execution architec-
tures [8] have been suggested to deal with the problem of
planning delay. For architectural based self-adaptation, Kramer
and Magee proposed a layered architecture [6] inspired by Gat
[7], which aims to deal with the problem of planning delay
through hierarchical decomposition of the planning domain.
This is a good first step, however, planning delay also depends
on the planning approach deployed at each layer. Tajali et.
al. [4] extended the hierarchical design by suggesting two
types of planning: application planning and adaptation plan-
ning. However, two types of planning would further add to
the performance overhead. Quite different from these layered
architectures, Musliner et al. [9] proposed a framework, CIRCA,
which generates control plans at run time that meet real-time
constraints. However, the framework requires hard deadlines to
be mentioned in the planning specification.

Planning delay is also a problem that has been considered
by artificial intelligence researchers. Over the years, numerous
heuristics [3] [1] [13] [2] have been suggested to reduce planning

time. Moreover, researchers have proposed case-based reasoning,
which deals with planning delay by storing previously generated
plans for future reuse, thereby reducing the amount of replanning
[14]. Furthermore, researchers have suggested the idea of
incremental planning known as "anytime planning": the planning
process can be interrupted at any time to get a sub-optimal plan,
however, more planning time leads to better plan [15]. The
hybrid planning approach is close to anytime planning since
both use execution time to find optimal plans. However, hybrid
planning is different because it manipulates the state space to
reduce planning time.

The hybrid planning approach falls into the algorith-
mic/heuristic category. However, it differs from the existing
approaches since none of them use more than one planning
approach simultaneously. The closest heuristic is FF-Replan
[16], which solves a relaxed version of a planning problem
by transforming its planning domain with uncertain action out-
comes into a deterministic domain by considering only the most
probable action outcome. From an experimental perspective, our
work is close to Moreno et al [17]. However, their work focuses
on the problem of tactic execution time rather than planning time:
planning time is considered negligible in their experiments.

VII. CONCLUSION

This paper proposes a hybrid planning approach to deal
with the trade-off between quick decision and optimal decision
making in self-adaptive systems. Using a realistic client request
arrival pattern in the context of a cloud-based self-adaptive
system, our experiments provide evidence of the effectiveness
of hybrid planning approach.

However, there are various future directions that need to be
explored to develop a principled theory of hybrid planning. For
instance, in our experiments, fast planning is triggered only when
the response time constraint is violated. However, for a hybrid
planner, we need to develop a generalized theory for deciding:
when to invoke each of the constituent planners.

For the experiments, we used the combination of two planning
approaches to instantiate a fast and a slow planning approach.
However, we need to figure out if more than two decision making
approaches could be combined. Moreover, we would like to
explore whether AI techniques other than automated planning
could be used in combination.

To answer these research questions, we would like to apply
hybrid planning approach on self-adaptive systems from dif-
ferent domains. Experimenting with variety of domains would
improve our understanding of the approach.

ACKNOWLEDGMENTS

This work is supported in part by awards N000141310401 and
N000141310171 from the Office of Naval Research (ONR),
and FA87501620042 from the Air Force Research Laboratory
(AFRL). Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the ONR, AFRL, DARPA or the
U.S. Government.

REFERENCES

[1] Alfonso Gerevini, Alessandro Saetti, Ivan Serina, "LPG-TD: a Fully
Automated Planner for PDDL2.2 Domains" (short paper), in 14th Int.
Conference on Automated Planning and Scheduling (ICAPS-04), booklet
of the system demo section, Whistler, Canada, 2004.

[2] B. Nebel, The FF Planning System: Fast Plan Generation Through Heuristic
Search, in: Journal of Artificial Intelligence Research, Volume 14, 2001,
Pages 253 - 302.

[3] Blai Bonet, Hector Geffner, Planning as heuristic search, Artificial Intelli-
gence 129 (2001) 5-33

[4] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic,
PLASMA: A Plan-based Layered Architecture for Software Model-driven
Adaptation, ASE-10, September 20-24, 2010, Antwerp, Belgium

[5] Shang-Wen Cheng, David Garlan, Stitch: A language for architecture-based
self-adaptation, The Journal of Systems and Software 85 (2012) 2860-2875

[6] Jeff Kramer and Jeff Magee, Self-Managed Systems: an Architectural
Challenge, Future of Software Engineering(FOSE’07)

[7] E. Gat, Three-layer Architectures, Artificial Intelligence and Mobile Robots,
MIT/AAAI Press, 1997.

[8] David Kortenkamp, Reid Simmons, Handbook of Robotics, Chapter 8:
Robotic Systems Architectures and Programming

[9] David Musliner, Ed Durfee and Kang Shin, "World Modeling for Dynamic
Construction of Real-Time Control Plans", Artificial Intelligence, 74:1,
1995.

[10] Frank D. Macìas-Escriva, Rodolfo Haber, Raul del Toro b, Vicente
Hernandez c, Self-adaptive systems: A survey of current approaches,
research challenges and applications, Expert Systems with Applications 40
(2013) 7267-7279

[11] Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer, Plan-Directed Ar-
chitectural Change For Autonomous Systems, Sixth International Workshop
on Specification and Verification of Component-Based Systems (SAVCBS
2007), September 3-4, 2007, Cavtat near Dubrovnik, Croatia.

[12] Carlos Eduardo da Silva, Rogèrio de Lemos, Dynamic Plans for Integra-
tion Testing of Self-adaptive Software Systems, SEAMS, 2011, Waikiki,
Honolulu, HI, USA

[13] Silvia Richter, Matthias Westphal, The LAMA Planner: Guiding Cost-
Based Anytime Planning with Landmarks, Journal of Artificial Intelligence
Research 39 (2010) 127-177

[14] Veloso, M. (1994). Planning and Learning by Analogical Reasoning.
Number 886 in Lecture Notes in Computer Science. Springer, Berlin.

[15] Shlomo Zilberstein, Using Anytime Algorithms in Intelligent Systems,
American Association for Artificial Intelligence. 0738-4602-1996

[16] Sungwook Yoon, Alan Fern, Robert Givan, FF-Replan: A Baseline for
Probabilistic Planning, American Association for Artificial Intelligence,
2007

[17] Gabriel A. Moreno, Javier Càmara, David Garlan, Bradley Schmerl, Proac-
tive Self-Adaptation under Uncertainty: A Probabilistic Model Checking
Approach, ESEC/FSE-15, August 30 - September 4, 2015, Bergamo, Italy

[18] M. Arlitt and T. Jin. A workload characterization study of the 1998 world
cup web site. IEEE Network, 14(3):30-37, 2000.

[19] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, 2003.

[20] M. B. Dias, D. Locher, M. Li, W. El-Deredy, and P. J. Lisboa. The value
of personalised recommender systems to e-business. In Proceedings of the
2008 ACM Conference on Recommender Systems - RecSys ’08, page 291,
New York, New York, USA, Oct. 2008. ACM.

[21] C. Klein, M. Maggio, K.-E . Irz̀en, and F. Hernàndez-Rodriguez. Brownout:
building more robust cloud applications. In Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014, pages
700-711, New York, New York, USA, May 2014. ACM.

[22] Mausam, Andrey Kolobov, Planning with Markov Decision Processes: An
AI Perspective, Synthesis Lectures On Artificial Intelligence and Machine
Learning.

[23] Dana Nau, Malik Ghallab, Paolo Traverso, Automated Planning: Theory
and Practice

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
semantics for low-latency geo-replicated storage. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation, pages 313-328.
USENIX Association, Apr. 2013.

[25] Javier Cam̀ara, David Garlan, Bradley Schmerl, Ashutosh Pandey, Optimal
planning for architecture-based self-adaptation via model checking of
stochastic games, SAC 2015: 428-435

[26] Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley R. Schmerl,
Peter Steenkiste: Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure. ICAC 2004: 276-277

[27] Daniel Kahneman, Thinking, Fast and Slow

[28] Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra,
Planning and Acting in Partially Observable Stochastic Domains, Journal of
Artificial Intelligence Research, Volume 101, Issues 1-2, May 1998, Pages
99-134

[29] Mor Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action

	Introduction
	Motivating Example
	Background
	Approach
	MAPE-K Loop
	Hybrid Planning Algorithm
	MDP Planning
	Storing Policy
	State matching heuristic

	Deterministic Planning

	Proof of Concept
	Experiment Setup
	Results

	Related Work
	Conclusion
	References

