
 1 We could consider higher layers, of course, but that’s beyond the scope of this topic.

The Unknown Unknowns Are Not Totally Unknown
David Garlan

Institute of Software Research, Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA
garlan@cs.cmu.edu

Abstract— The question of whether “handling unanticipated
changes is the ultimate challenge for self-adaptation” is
impossible to evaluate without looking closely at what
“unanticipated” means. In this position paper I try to bring a
little clarity to this issue by arguing that the common distinction
between “known unknowns” and “unknown unknowns” is too
crude: for most systems there are changes that are not directly
handled by “first-order” adaptation, but can, with appropriate
engineering, be addressed naturally through “second-order”
adaptation. I explain what I mean by this and consider ways in
which such systems might be engineered.

Keywords—adaptive systems, uncertainty, unknowns

I. INTRODUCTION
Self-adaptive systems (SAS) are, by definition, designed to

handle at run time specific changes in the system, the
environment or the context of use. Typical examples of changes
addressed by today’s SAS include varying loads on the system,
resource variability, system faults, intrusions, etc. However, as
with any control system, a self-adaptive system is designed to
adapt to certain kinds of changes for which it can provide stable
outcomes; outside that envelope all bets are off. The former are
often termed “anticipated”; the latter “unanticipated”.

In characterizing this situation, it is tempting to place
changes into two buckets, often referred to as the known
unknowns and the unknown unknowns. The former are the
anticipated ones, for which the adaptive system is designed to
handle; the latter for which it provides no guarantees. We
engineer a system to adapt to the known unknowns; we rule out
the others as being outside the scope of our engineering effort.

We argue that this is too crude a categorization and that there
is an interesting space of unanticipated changes and
uncertainties that fall outside the envelope of self-adaptation for
which a system was primarily designed, but at the same time are
known well-enough that they can be identified and handled
systematically. We describe an architectural approach to doing
this and outline some of the engineering techniques that can be
used to realize that approach.

II. KNOWN UNKNOWN KNOWNS
All control systems are designed to deal with certain

environmental perturbations (and not others) in order to
maintain some set point. Such scoping assumptions are often
key to the achievability and efficiency of the control function

they are to perform, and there is a considerable body of
knowledge that allows us to design and quantify the properties
of such control.

Self-adaptive systems, viewed as a kind of control system,
are no different: we engineer them to handle certain
uncertainties that are not known until run time. The ability to
characterize and bound those uncertainties allows us to build
efficient mechanisms for adaptation and to reason about them
[2]. These are the known unknowns, or what might be termed
“first-order” concerns.

But what about the changes that fall outside the scope of the
engineered self-adaptive system – the unknown unknowns?
Today’s practice is largely to ignore them: we may not be able
to detect them; even if we can detect them, our models may lack
expressiveness to reason about how to deal with them ; and even
if we can reason about remediation, we may not have
appropriate mechanisms to actually carry out an effective
adaptation.

But let’s look closer. Rather than throwing up our hands,
perhaps we should ask how we might engineer systems to deal
with a subset of these unknown unknowns – what one might
term the known unknown unknowns. The key idea that I’d like
to suggest is that we can engineer second-order systems in which
the adaptive capabilities of a system are themselves adapted to
these known unknown unknowns. Thus we can envision a multi-
layered system, consisting of the managed system, the managing
layer, and a meta-managing layer.1 The meta-management (or
second-order) layer adapts the self-adaptive system based on
meta-models of the (first-order) SAS and its environment.

To create a second-order adaptive system, however, one
must engineer the first-order SAS to be itself adapted. Based on
current research, and inspired by other systems that are robust to
unexpected changes, here are some engineering strategies that
could be used individually and in combination to achieve this.

1) Over-engineer: build in mechanisms to handle more
than we expect. This is a common engineering practice for
NASA space missions and bridge engineering, which build in
considerable “head room” to handle situations that were not
anticipated. In the context of SAS this might include things like
additional sensors that are not normally needed, reserve
resources that we can call on, adaptation tactics that continue to
function even outside the range for which they were designed.

2) Build meta-interfaces: if a higher order system is to

adapt a SAS, it needs to have an interface to monitor and affect

the SAS. Such an interface needs to be designed in, and
appropriately abstract models are needed to support the meta
layer. [1] for example, proposes the use of higher-order
adaptation policies – essentially adaptation policies and
strategies that are parameterized and can be changed at run time
by a meta-manager.

3) Assume less: It is possible to build adaptation

mechanisms that have a broad domain of applicability outside
some particular range of changes by assuming there is more
uncertainty in our knowledge than may be the case. As an
example, autonomous cyber defenses are often designed to
handle certain specific kinds of attack, but run aground when
faced with exploits or attacker profiles that were not known
when those defenses were built. It is possible, however, to build
in approaches that make few assumptions about prior
knowledge of the attacker and system vulnerabilities to reason
more generally about graceful degradation under any attack [4].

4) Create reusable parts: It is possible to design a SAS

from reusable building blocks that can be reassembled in new
ways if the need arises. For example, recent work has
investigated how adaptation strategies can be automatically
carved up into reusable “chunks” that can be genetically
recombined to produce new adaptation strategies to handle
unforeseen changes [3].

III. CONCLUSION
The observant reader will notice that in this paper I haven’t
actually taken a stand on the question posed for debate. This is
because I don’t think it is actually worth debating: instead, I
would argue that we should ask the question, how do we make
our self-adaptive systems more robust to changes in behavior,
environment, and context that are not the primary first-order
management (or control) concern of the system. In this paper I
have tried to sketch out a possible direction from an
architectural point of view, and suggest engineering approaches
to realize it.

ACKNOWLEDGMENT
This research was supported by the National Science
Foundation (CCF-1618220), the NSA (H9823018D0008), and
the Office of Naval Research (N00014172899).

REFERENCES
[1] Thomas J. Glazier, David Garlan and Bradley Schmerl. Case Study of an

Automated Approach to Managing Collections of Autonomic Systems. In
Proceedings of the 2020 IEEE Conference on Autonomic Computing and
Self-organizing Systems, August 2020.

[2] Javier Cámara, Alessandro V. Papadopoulos, Thomas Vogel, Danny
Weyns, David Garlan, Shihong Huang and Kenji Tei. Towards Bridging
the Gap between Control and Self-Adaptive System Properties. In
Proceedings of the 15th International Symposium on Software
Engineering for Adaptive and Self-managing Systems, June 2020.

[3] Cody Kinneer, Rijnard Van Tonder, David Garlan and Claire Le Goues.
Building Reusable Repertoires for Stochastic Self-* Planners. In
Proceedings of the 2020 IEEE Conference on Autonomic Computing and
Self-organizing Systems, August 2020.

[4] [WGF21] Ryan Wagner, David Garlan and Matt Fredrikson.
Architecture-based Graceful Degradation for Security. Unpublished.

	I. Introduction
	II. Known Unknown Knowns
	1) Over-engineer: build in mechanisms to handle more than we expect. This is a common engineering practice for NASA space missions and bridge engineering, which build in considerable “head room” to handle situations that were not anticipated. In the c...
	2) Build meta-interfaces: if a higher order system is to adapt a SAS, it needs to have an interface to monitor and affect the SAS. Such an interface needs to be designed in, and appropriately abstract models are needed to support the meta layer. [1] f...
	3) Assume less: It is possible to build adaptation mechanisms that have a broad domain of applicability outside some particular range of changes by assuming there is more uncertainty in our knowledge than may be the case. As an example, autonomous cyb...
	4) Create reusable parts: It is possible to design a SAS from reusable building blocks that can be reassembled in new ways if the need arises. For example, recent work has investigated how adaptation strategies can be automatically carved up into reus...

	III. Conclusion
	Acknowledgment
	References

