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Many self-adaptive systems benefit from human involvement and oversight, where a human operator can provide expertise not
available to the system and detect problems that the system is unaware of. One way of achieving this synergy is by placing the human
operator on the loop – i.e., providing supervisory oversight and intervening in the case of questionable adaptation decisions. To make
such interaction effective, an explanation can play an important role in allowing the human operator to understand why the system is
making certain decisions and improve the level of knowledge that the operator has about the system. This, in turn, may improve
the operator’s capability to intervene and if necessarily, override the decisions being made by the system. However, explanations
may incur costs, in terms of delay in actions and the possibility that a human may make a bad judgement. Hence, it is not always
obvious whether an explanation will improve overall utility and, if so, what kind of explanation should be provided to the operator. In
this work, we define a formal framework for reasoning about explanations of adaptive system behaviors and the conditions under
which they are warranted. Specifically, we characterize explanations in terms of explanation content, effect, and cost. We then present a
dynamic system adaptation approach that leverages a probabilistic reasoning technique to determine when an explanation should be
used in order to improve overall system utility. We evaluate our explanation framework in the context of a realistic industrial control
system with adaptive behaviors.
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1 INTRODUCTION

Self-adaptive systems are designed to be capable of dynamically modifying their structure and behavior in response to
changes in the environment [1, 2]. Although automation is a major goal of self-adaptation, certain adaptive systems
benefit from human involvement and oversight. For example, a human operator may be able to detect events that are
not directly observable by the system, or possess knowledge that is external to those already built into the system. In
these cases, the system may be able to respond more effectively to potential anomalies and achieve greater utility when
its adaptation decisions are guided by a human input [3–5].

One way to achieve this synergy for the system is by placing an operator in-the-loop between the self-adaptation
framework and the environment as a deciding authority. A variant of human-in-the-loop is human-on-the-loop, in which
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the operator plays a less central role. In this approach, the operator periodically monitors the interaction between
the machine and the environment, and intervenes only when deemed necessary (e.g., to avert potentially anomalous
behavior) [6]. In this paper, we focus on self-adaptive systems that employ a human-on-the-loop approach. Note that in
this context the “system” consists of a machine (i.e. software), human operator, and the environment.

Figure 1 depicts a closed-loop adaptive system in which a human operator is engaged on-the-loop. The dynamic
behaviors exhibited by the environment (which may be an occurrence of certain events or changes in the environmental
state) are periodically monitored by a set of sensors. Given these sensor readings, the controller will perform an analysis
of available actions and their potential outcome on the system utility, and plan adaptation decisions to be enacted by
the actuators. The role of the human operator on the loop is to observe the adaptation decision made by the controller
and determine whether this decision is appropriate or potentially erroneous (i.e., likely to degrade the overall utility or
lead the system into an unsafe state). In the latter case, the operator may intervene in this control loop by overriding the
commands sent to the actuators or, in the worst case, pausing or shutting down the system.

Prior works have investigated the role of explanation as a mechanism to improve an operator’s trust in the behavior
of an autonomous system [7, 8]. Our conjecture, which we investigate in this paper, is that in the context of self-adaptive
systems, appropriate explanations can be used to aid an operator in dynamically calibrating their knowledge about the
system. When an explanation is provided along with a control decision, under the right conditions, the operator may
become more certain that the machine is following a desirable (undesirable) course of adaptation decision, and thereby
be more likely to allow (disallow) the machine to continue with its recommended course of decision.

Though explanations might yield positive effects on system outcomes, they also incur costs to system operation. In
particular, the operator needs time and mental effort to comprehend this information. This, in turn, may delay actions
or in an extreme case, cause an overload of information to the operator. Hence, given the space of potential costs and
effects of an explanation, it may not always be apparent when it is beneficial to provide an explanation (e.g., whether
its potential benefit outweighs the cost), or what type of information must be provided as part of the explanation.
Therefore, a human-on-the-loop system that uses explanations to steer human decisions must consider the trade-offs
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Fig. 1. A human-on-the-loop self-adaptive system.
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between the costs and effects of alternative explanations (including not giving one at all) and select one that is optimal

in the given environmental context.
In [9], we proposed a theoretical framework to specify and reason about the effects of explanations on the human-

on-the-loop in self-adaptive systems. In particular, our framework defines an explanation in terms of three major
components: (1) explanation content, describing the types of information provided as part of an explanation; (2) effect,
describing how an explanation can impact the operator’s capability in supervisory control decisions; and (3) cost,
specifying the cost involved in comprehending an explanation. Using this, we provide an approach for synthesizing
an explanation strategy for human-on-the-loop systems based on probabilistic model checking [10]. An explanation
strategy describes what explanation (if any) should be provided at a particular point in the execution of a system.
The key idea here is to use non-determinism to under-specify the components (i.e., content, effect, and cost) of an
explanation candidate, and have the model checker resolve the non-deterministic choices and synthesize an explanation
strategy so that the expected system utility is maximized.

In this paper, we demonstrate an application of our proposed approach to a case study involving a real world water
treatment system with a human operator who periodically monitors the system for potential undesirable behaviours.
We present a case study to demonstrate how our approach can be used to provide explanations that guide the system
and the operator towards optimal system utility. We also present a user study that demonstrates the applicability of our
approach among human operators who design, build and operate real-world industrial control systems (ICSs). This
evaluation aims to investigate how explanation is helpful to improve human operators’ knowledge and contributes to
their capability to intervene in the system actions.

Our main contributions are:

• A formal framework for designing human-on-the-loop self-adaptive systems where an explanation can be used
to aid the human operator to improve the utility of the overall system;

• The use of probabilistic model checking to perform the synthesis of optimal explanations;
• An illustration of the applicability of our approach on a case study involving a realistic industrial control system
(namely, a secure water treatment plant [11]); and

• A user study validating the applicability of explanations in real-world ICSs.

The rest of the paper is structured as follows. Section 2 provides a formal definition of explanations, and Section 3 provides
a technique for explanation selection using probabilistic model checking while Section 4 presents the experimental
results. The case study on industrial control system is presented in Section 5. The user study is presented in Section 6.
Section 7 discusses related work and Section 8 concludes the paper.

2 EXPLANATIONS: FORMAL FRAMEWORK

In our approach, an explanation is defined as a triple Exp = ⟨ content, effect, cost ⟩. In the following, we introduce a
motivating example and describe how the three components of an explanation can be formally modeled. We also
motivate why it is important to consider the trade-offs between the effect and cost of an explanation.

Running example: Consider a self-driving car that is capable of combining a variety of sensors (such as radar, sonar,
camera, etc.) to perceive pedestrians and other objects in the environment and move safely with little or no human input.
A software controller interprets sensory information and identifies appropriate navigation paths and operations. The
driver in this system acts as a human-on-the-loop and may intervene to reduce risks or prevent accidents in dangerous
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Scenario 1 Scenario 2

Fig. 2. Self-driving vehicle scenarios.

situations.

Consider two possible scenarios involving a self-driving car, as shown in Figure 2:

• Scenario 1: Another car is approaching from the opposite direction, and the driver sitting in the ego vehicle
decides that it would be safer to move the car to the right to avoid a potential collision. However, the self-driving
car makes an adaptation decision to stop in this situation because it has detected a child on the right front. For
the driver, although he observes the oncoming car, the child is out of sight (grey triangle).

• Scenario 2: A large truck is turning right in front of the ego vehicle. However, the machine makes a decision to go
ahead at full speed because it identifies the truck as a highway overpass. Though humans can easily distinguish a
truck and an overpass and derive at the safer decision of slowing down or stopping, the machine is not able to do
so due to its limited perception capabilities. This scenario is similar to a recent accident involving the autopilot
software in a Tesla vehicle [12], where the system failed to recognize the truck in time (which would have been
seen by a human driver).

In the remainder of this section, we will revisit these two scenarios in the context of our explanation framework.

2.1 Explanation Content

The content of an explanation corresponds to the type of information that the explanation provides to the human
operator. In our approach, an explanation is intended to justify why the system has made a decision to behave in a
particular way (e.g., perform a particular action or transition to a different state from the current state). To capture this
intent, we encode two types of information in the explanation content: (1) the current state, and (2) the transition of the
machine that are relevant to the decision being made by the machine. Let us motivate the design of explanation content
using the following example.

A well-known class of problems, known as automation surprises [13, 14], occur in human involvement when the
machine behaves differently than its operator expects. Two reasons are identified as accounting for these problems, as
shown in Figure 3. One is that the operator may know only a subset of the information that the machine has (e.g., the
presence of a child in Scenario 1). The other is due to additional information from the environment that is hidden from
the machine but known to the operator (for example, the presence of a truck instead of an overpass in Scenario 2). Both
Manuscript submitted to ACM
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the machine and the operator analyze and plan adaptation decisions for a given situation using their information and
reasoning process. But since they have asymmetric information about the environment, there might be differences
between their adaptation decisions.

Machine Information

Information for 
OperatorB

Analysis 
& Planning

Adaptation 
Decisions

Analysis 
& Planning

Adaptation 
Decisions

Analysis 
& Planning

Adaptation 
Decisions

Compare and 
Contrast

Information for 
OperatorA

Fig. 3. Automation Surprises.

To formally define what constitutes an explanation, we first model the information that the machine and the operator
possess. Machine information is defined as a tuple𝑀𝐼 = ⟨𝑆𝑀 ,𝑇𝑀 ⟩, where 𝑆𝑀 represents the set of states while 𝑇𝑀 is the
transition function. For example, 𝑆𝑀 may encode the status of sensors and actuators inside a self-driving car, and 𝑇𝑀
may describe how the action of the controller modifies the states of the actuators. Similar to the machine information,
environment information is defined as a tuple 𝐸𝑁𝑉 𝐼 = ⟨𝑆𝐸 ,𝑇𝐸⟩, representing the state of the environment and how this
state will change based on the actions of the agents in the environment, respectively.

Then, the information possessed by the human operator is defined as a tuple 𝐻𝐼 = ⟨𝑆𝐻 ,𝑇𝐻 ⟩, where the state in
the operator’s mind is the union of partial environment state and partial machine state, i.e., 𝑆𝐻 = 𝜌𝑆 (𝑆𝑀 ) ∪ 𝜌𝑆 (𝑆𝐸 ).
For example, in Scenario 1, the driver can observe the oncoming car, which is part of machine information since
the oncoming car can be detected by the sensors. However, the driver may additionally be able to access part of the
environment state (which cannot be observed by the machine), such as the incoming truck. The transition set in the
operator’s mind, i.e., 𝑇𝐻 = 𝜌𝑇 (𝑇𝑀 ) ∪ 𝜌𝑇 (𝑇𝐸 ) is also the union of partial environment transition and partial machine
transition.

The explanation provided by the machine to the operator contains partial information about the machine state
(𝜌𝑆 (𝑆𝑀 )) and transition (𝜌𝑇 (𝑇𝑀 )), describing why the machine has decided to perform a particular action. For instance,
sensorLeftFront = car& sensorRightFront = child represents the state in which the ego vehicle has detected another
car in its front left and a child in the front right. In addition, sensorLeftFront ≠ null& sensorRightFront ≠ null =⇒
Stop is a representation of a machine transition, which states that the ego vehicle will stop when it has detected objects
in both its front, right and left.

Manuscript submitted to ACM
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Fig. 4. Effect of an explanation as influencing the probabilities that the operator agrees or disagrees with the decision by the machine.

2.2 Explanation Effect

In our approach, we model the effect of an explanation as calibrating the operator’s capability to make intervention
decisions.

There are two cases that we consider. First, an explanation can potentially enable the operator to gain more capability
that the system is making the right adaptation decision. Here, the right decision is one that would lead the system into a
state with a desirable outcome (e.g., a high utility value). With additional information supplemented by an explanation,
the operator is more likely to accept the machine decision without intervening on it, especially when the operator has
limited observations about the system.

On the other hand, the machine may sometimes make an adaptation decision that is undesirable, in that it leads
the system into a state with a low utility. This may occur, for example, due to design faults or security attacks that
cause the machine to make a suboptimal decision. In these cases, additional information in an explanation may inform
the operator of this undesirable behavior and encourage them to intervene; we capture this as having the effect of
decreasing the operator’s capability in the machine.

The explanation effect is formally defined as a function expEff: ⟨𝑃𝑟, 𝑃𝑟 ⟩ → ⟨𝑃𝑟, 𝑃𝑟 ⟩, mapping a pair of probabilities
(i.e., probabilities of true-positive 𝑥 and true-negative 𝑦) to another pair of probabilities. False-positive, denoting
the likelihood that the operator approves a wrong adaptation decision by the machine, can be determined by the
true-negative (i.e., 1 − 𝑦). Similarly, false-negative can be determined by the true-positive (i.e., 1 − 𝑥 ) and describes the
situation of unnecessary human intervention following a correct adaptation decision from the machine. These are also
known as type I and II errors in statistical hypothesis.

Initially, the operator is assigned some true-positive and true-negative probabilities based on their existing view
of the system. For example, the driver may equally oscillate between their own adaptation decision and machine
adaptation decision if they cannot judge which is more reliable, yielding the true-positive and false-negative values of
0.5 each in Scenario 1 and the true-negative and false-negative of 0.5 in Scenario 2.

The effect of an explanation on the operator is modeled as reducing the probabilities of the operator making false-
negative and false-positive errors (i.e., the probabilities of true-positive and true-negative, respectively, will be increased).
In Scenario 1, given the information about the presence of the child in front of the vehicle, the driver is more likely to
believe that stopping is a better action than turning right, thus decreasing the probability of operator intervention. In
contrast, the driver may be encouraged to intervene and apply the brake in Scenario 2 if an explanation reveals that the
vehicle (mistakenly) assumes the presence of an overpass instead of the truck. Figure 4 summarizes explanation effects
as causing changes in false-negative or false-positive probabilities by Δ𝑥 and Δ𝑦, respectively.

2.3 Explanation Cost

Explanation does not come for free; it also incurs costs. In particular, the operator needs time and energy to comprehend
this information. In a self-driving system, prompt response from the driver is vital in an emergency, and an explanation
might delay the reaction time and distract the driver due to the overload of information. Given this, it is not immediately
Manuscript submitted to ACM
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apparent when to explain; the system needs to consider the trade-offs between the costs and benefits that a particular
type of explanation brings. In this work, we simplified the cost as an abstract value that could represent, for example, the
human annoyance due to the overload of information, or delays due to the time spent on explanation comprehension.
More discussion on explanation cost can be found in subsection 6.2.

Hence, given a pool of explanation candidates, by balancing the effect and cost that the explanation brings for the
system, the explanation with the highest utility will be selected by the operator, or no explanation will be provided if
the cost outweighs its benefits.

3 EXPLANATION SELECTION

In this section, we describe an approach to the explanation selection problem; i.e., deciding what information to include
as part of an explanation to the operator. In the running example, intuitively, a good explanation for Scenario 2 might
only point out the mis-identification of an overpass, assuming the driver is experienced. However, for a novice driver, an
explanation that includes more details might be more useful, although a more verbose explanation may incur additional
operator cost in comprehending the information. Thus, selecting an explanation must take into account potential
trade-offs between its potential benefit and cost.

The key idea of solving the explanation selection problem is to leave the explanation under-specified in the model
through non-deterministic behavior [15, 16]. In this work, we use the PRISM tool [17], which supports reasoning
about well-known behavioral specifications, such as Markov Decision Processes (MDPs) [18] and probabilistic timed
automata (PTAs) [19], along with support for non-determinism. In particular, PRISM is used to synthesize a strategy
that maximizes the expected utility.

In our approach, the human operator and machine are specified as processes that are composed in the MDP model.
Processes are abstracted and simplified, containing only the variables that are necessary to compute the value of the
utility and to keep track of how the machine and human change when the explanation is used. In this model, we only
focus primarily on whether an explanation is worthwhile to be provided, as the extension to multiple explanations is
straightforward.

3.1 Probabilistic Model Checking

Probabilistic model checking is a powerful technique for formally modeling and analyzing systems that exhibit stochastic
behavior, allowing quantitative reasoning about probability and reward-based properties (e.g., resource usage, time,
etc.) [10]. These techniques employ state-transition systems augmented with probabilities to describe stochastic system
behavior. Moreover, probabilistic model checking approaches that support specification of non-determinism, such as
Markov Decision Processes (MDPs) [18], and probabilistic timed automata (PTAs) [19], also enable the synthesis of
strategies guaranteed to achieve optimal expected rewards. Our approach is based on the synthesis of optimal strategies
for reward-based properties using PRISM [17].

Definition 3.1. (Markov Decision Process) A Markov decision process (MDP) is a tuple𝑀 = ⟨𝑆, 𝑠𝐼 , 𝐴, 𝛿, 𝑟 ⟩, where

• 𝑆 denotes a finite set of states, and 𝑆 ≠ ∅;
• 𝑠𝐼 ∈ 𝑆 is an initial state;
• 𝐴 ≠ ∅ is a finite set of actions;
• 𝛿 : 𝑆 ×𝐴 → 𝐷 (𝑆) is a (partial) probabilistic transition function and 𝐷 (𝑆) denotes the set of discrete probability
distributions over finite set S;
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• 𝑟 : 𝑆 → 𝑄≥0 is a reward structure mapping each state to a non-negative rational reward.

An MDP models how the state of a system can evolve in discrete time steps. In each state 𝑠 ∈ 𝑆 , the set of enabled
actions is denoted by 𝐴(𝑠) (we assume that 𝐴(𝑠) ≠ ∅ for all states). Moreover, the choice of which action to take in
every state is assumed to be non-deterministic Once an action is selected, the successor state is probabilistically chosen
according to probability distribution 𝛿 (𝑠, 𝑎). We can reason about the behavior of MDP using strategies (also referred to
as policies). A strategy resolves the non-deterministic choices of an MDP, selecting which action to take in every state.

Definition 3.2. (Strategy) A strategy of an MDP, M, is a function 𝛿 : 𝑆 → 𝐷 (𝐴) s.t., for each state 𝑠 ∈ 𝑆 , it selects a
probability distribution 𝛿 (𝑠) over 𝐴(𝑆).

The strategy in this context is memoryless (i.e., based solely on information about the current state) and deterministic
(𝛿 (𝑠) is a Kronecker function such that 𝛿 (𝑠) (𝑎) = 1 if action a is selected, and 0 otherwise).

Reasoning about strategies is a fundamental aspect of model checking an MDP, which enables checking for the
existence of a strategy that can optimize an objective expressed as a quantitative property in a subset of probabilistic
reward computation-tree logic (PRCTL) [15]. PRCTL extends PCTL [16] to reason about reward-based properties. A
PRCTL property can state that an MDP has a strategy that can ensure that the probability of an event’s occurrence or
an expected reward measure meets some threshold. An extended version of the PRCTL reward operator 𝑅𝑟

𝑚𝑎𝑥=? [𝐹
∗𝜙]

enables the quantification of the maximum accrued reward 𝑟 along paths that lead to states satisfying the state formula
𝜙 .

3.2 Machine Model

The machine is modeled over its evolution of one decision-making. A part of machine behavior is shown in Figure 5.
Four steps will be considered in one horizon. First, the machine makes an adaptation decision, which is probabilistic.
That decision might be a correct or an incorrect one. (For example, it would be optimal to stop the car in Scenario 1,
and incorrect to go ahead in Scenario 2. If it is the right decision, as illustrated in the upper part of the figure (the
other option is not shown for simplicity), the machine can provide an explanation to the operator or choose not to,
which is the explanation strategy the machine can choose to resolve the non-determinism. After that, the final action is
executed, such as stopping the car if without human intervention. The probability of intervention is based on the human

Fig. 5. Fragment of machine behaviors.
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operator’s capability for making correct oversight decisions (i.e. the probability of true-positive and false-negative).
Finally, the successor state after the final action will be assigned an utility value over the look-ahead horizon. Usually,
the optimal states, such as two states with annotation “case_TP" will be assigned with higher utility where the machine
makes a correct adaptation decision and performs that decision without human intervention. In contrast, false-negative
states (with the annotation “case_FN") will typically accrue less utility as human erroneously rejects the right system
decision.

1 module machine
2 macStep : [ 0 . . 4 ] i n i t 0 ;
3 macDec is ion : [ 0 . . 2 ] i n i t 0 ;
4 macCase : [ 0 . . 4 ] i n i t 0 ;
5

6 [ ] macStep = 0 & macDec i s ion = 0 −>
7 ProMac : ( macStep ' = 1 ) &(macDecis ion '= good )
8 + (1−ProMac ) : ( macStep ' = 1 ) &(macDecis ion '= bad ) ;
9

10 [ g i v e _ e x p l a n a t i o n ] macStep =1 −> ( macStep ' = 2 ) ;
11 [ no_exp l ana t i on ] macStep =1 −> ( macStep ' = 2 ) ;
12

13 [ ] macStep =2 & macDec i s ion=good −>
14 TP : ( macStep ' = 3 ) &(macCase '= case_TP )
15 + FN : ( macStep ' = 3 ) &(macCase '= case_FN ) ;
16 [ ] macStep =2 & macDec i s ion=bad −>
17 TN : ( macStep ' = 3 ) &(macCase '= case_TN )
18 + FP : ( macStep ' = 3 ) &(macCase '= case_FP ) ;
19

20 [ per form ] macStep =3 −> ( macStep ' = 4 ) ;
21 endmodule

Listing 1. Machine model

Generating the PRISM code representing the MDP for the machine behavior is straightforward. Listing 1 shows its
specification in PRISM. Three variables represent the state of the machine. The first one is “macStep" encoding the four
different steps mentioned previously. The transition out of each step can be encoded directly as commands in PRISM1.
Variable “macDecision" denotes the adaptation decision that the machine makes. The first command (line 6-8) will
advance the step of adaptation decision making, leading to a probabilistic behavior. With the probability of “ProMac"
which is defined and initialized as a global variable, the machine makes a correct decision. The action “give_explanation"
and “no_explanation" in lines 10-11 are used to synchronize the transitions between the machine and the human. These
two commands overlap with the same guard introducing non-determinism in explanation selection. “macCase" records
the state the machine will enter after the explanation selection. With the probability of “TP" and “FN", the machine will
enter an optimal or suboptimal state with intervention when the machine decision is correct in lines 13-15. Meanwhile,
the probability will be “TN" and “FP" when the machine decision is wrong. Finally, the machine will perform the last
step, representing the expected utility the machine will obtain in this decision making, which will be described and
calculated in the reward subsection 3.4 below.
1MDPs are encoded in PRISM with commands like: [action]guard→ 𝑝1 :𝑢1 +... + 𝑝𝑛 : 𝑢𝑛 where guard is a predicate over the model variables. Each
update 𝑢𝑖 describes a transition that the process can make (by executing action) if the guard is true. An update is specified by giving the new values
of the variables and has an assigned probability 𝑝𝑖 ∈ [0, 1]. Multiple commands with overlapping guards (and probably, including a single update of
unspecified probability) introduce local non-determinism.
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3.3 Human Model

The specification of the human module is shown in Listing 2. Lines 7-8 describe two variables “HuYes_MacGood" and
“HuNo_MacBad" that capture the human’s capability in machine decisions. They range from 0 to 100, as variables in the
processes in PRISM cannot be specified as a decimal. They are initialized with some constants that represent the initial
capability a human has based on his existing information at the time the machine adaptation decision is invoked; that
is, at the beginning of the decision horizon. And the probabilities of TP, FP, TN, and FN can be acquired by normalizing
these two variables as shown as formula in lines 1-4. For example, the initial four probabilities for a driver novice
could be all 50% with random guessing. Another Boolean variable “exp_received" denotes the status of receiving an
explanation or not and is initialized with a false value.

1 fo rmula TP = HuYes_MacGood / 1 0 0 ;
2 fo rmula FN = 1−(HuYes_MacGood / 1 0 0 ) ;
3 fo rmula TN = HuNo_MacBad / 1 0 0 ;
4 fo rmula FP = 1−(HuNo_MacBad / 1 0 0 ) ;
5

6 module human
7 HuYes_MacGood : [ 0 . . 1 0 0 ] i n i t in i t i a l_HuYes_MacGood ;
8 HuNo_MacBad : [ 0 . . 1 0 0 ] i n i t in i t i a l_HuNo_MacBad ;
9 e xp_ r e c e i v ed : boo l i n i t f a l s e ;
10

11 [ g i v e _ e x p l a n a t i o n ] t r u e −>
12 ( HuYes_MacGood '= HuYes_MacGood+Del ta_X )
13 &(HuNo_MacBad '=HuNo_MacBad+Del ta_Y )
14 &( exp_ re ce i v ed '= t r u e ) ;
15 [ no_exp l ana t i on ] t r u e −>
16 ( HuYes_MacGood '= HuYes_MacGood )
17 &(HuNo_MacBad '=HuNo_MacBad ) ;
18 endmodule
19 \ v space { −0 . 2 1cm }

Listing 2. Human model

Lines 11-14 describe a command that captures how the human capability can be calibrated and updated with the
action “give_explanation” synchronized with machine module, i.e., adding the effect of an explanation “Delta_X" and
“Delta_Y” to two variables representing human capability. Correspondingly, the value of the formula in lines 1-4 will be
updated to reflect these changes, which will affect the probabilistic behavior of the machine (line 13-18 in Machine
module). The variable “exp_received” will also be set to true. On the contrary, lines 15-17 depict the command where no
explanation is received from the machine, and here all the variables will remain the same. So does the capability in
machine decision. Here we assume a decision making is a short period where human’s capability in the machine will
not degrade even if machine decision making is different and opaque to the human. However, when the time passes
without explanation, the complex analysis, and planning of the machine will probably make human operators lose
trust, i.e., reducing the probability of true-positive and true-negative.

Here only one explanation with its effect is shown both in human and machine modules. As described in section 2, a
pool of explanation candidates with various effects, i.e., different “Delta_X” and “Delta_Y” values can be specified as
commands for possible explanation candidates in the explanation selection problem.
Manuscript submitted to ACM
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3.4 Explanation Selection

Explanation selection is carried out after the machine model has made an adaptation decision. The input to the
probabilistic model checker is the composition of above two modules. Then, we need to specify the property of the
model that must hold under the generated strategy. In this case, the desired property is to maximize overall system
utility. In PRISM, this property is expressed as

𝑅
𝑠𝑦𝑠𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝑚𝑎𝑥=? [𝐹𝑐𝑒𝑛𝑑]

where “sysUtility" is the reward structure specified in Listing 3, and end is a predicate that indicates the end of the
execution in a decision horizon. Such a reward construct in lines 9-12 assigns the value, which is the sum of machine
performance and human cost to the transition labeled with action “execute”. Machine performance is decided by the
state in which the machine will enter in lines 1-5. For example, the utility of “Utility_Case_TP” will be assigned if the
machine enters a case “case_TP” where it makes the right decision without human intervention. These utility values
are specific to different situations – such as in self-driving system, the mistakes of turning right (i.e., false negative)
in Scenario 1 or going ahead with the full speed (i.e., false positive) in Scenario 2 is pretty high, and the differences
between utility of “case_TP” and “case_FN” and between utility of “case_TN” and “case_FP” will be significant since
these are all critical decisions. However, the differences might be minor in non-critical systems. The human cost is an
abstract value based on whether the human receives an explanation and translated with a positive shift because PRISM
does not allow negative rewards.

1 fo rmula machine_per formance =
2 ( macCase=caseTP ? U t i l i t y _Ca s e _TP : 0 )
3 + ( macCase= caseFP ? U t i l i t y _C a s e _ F P : 0 )
4 + ( macCase=caseFN ? U t i l i t y _Ca s e _ FN : 0 )
5 + ( macCase=caseTN ? Ut i l i t y _Ca s e_TN : 0 ) ;
6 fo rmula human_cost =
7 ( e xp_ r e c e i v ed = t r u e ? 0 : Cost ) ;
8

9 rewards " s y s U t i l i t y "
10 [ e x e cu t e ] t r u e :
11 machine_per formance+human_cost ;
12 endrewards

Listing 3. Reward structure

4 EXPERIMENTAL RESULTS

To further investigate under what conditions an explanation should be provided, we statically analyze the MDP model
described above with a region of the state space, which is projected over three dimensions that correspond to the 1)
cost of mistakes; 2) explanation effect; 3) cost of explanation (with values in the range [0,1], [0,100%], [0,1] respectively).
To be more specific, cost of mistakes denotes subtracting the high utility value with correct cases (“case_TP" and
“case_TN") from the low utility with incorrect cases (“case_FN" and “case_FP") and with normalization; explanation
effect averages the value of “Delta_X" and “Delta_Y"; cost of explanation is the single abstracted value representing the
cost explanation brings. We plot two three-dimensional graphs with R [20], as shown in Figure 6. These two cubes
encompass all the condition points where it is beneficial to explain, while the remaining part of the three-dimensional
state space represents the unnecessary conditions.
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Fig. 6. (a) Explanation conditions for a novice (left); (b) explanation conditions for an expert (right).

We can conclude the following from the graphs: 1) when the cost of mistakes is close to zero, there is more space
where the explanation will not be provided than those in a high cost of mistakes; 2) when the explanation effect is not
obvious (i.e., near zero), which means the human cannot gain much useful information from the explanation to increase
the probabilities of true-positive and true-negative, explanation is not necessary for these conditions; 3) when the cost
of explanation increases, the chance of explaining will decrease with the gradually decreasing horizontal cross-sectional
area of the cube as it is less likely the benefits could outweigh its cost. These conclusions are all consistent with our
intuitions.

In addition, graph (a) depicts the conditions for a novice, while (b) is for an expert, who has more information than
the machine does and is initialized with higher initial probability of true-positive and true-negative. The differences
between two graphs show that the cube volume for a novice is greater than that for an expert as the cube height is
around 1 while it reaches 0.8 at most for the expert. Moreover, the area of each horizontal cross-section for an expert is
much smaller than each for a novice. This matches our expectation that a novice operator may need to be provided
with an explanation more frequently than an expert with more knowledge about the system operation.

5 CASE STUDY: SWAT

In this section, we illustrate an application of our approach to a case study involving a real-world industrial control
system (called Secure Water Treatment plant, or SWaT [11]) with a human operator who periodically monitors the
system for potentially undesirable behaviors (e.g., faulty components or unexpected environmental inputs). In particular,
for this case study, we have constructed PRISM models that describe (1) the behavior of the system, including how
the machine makes decisions based on the state of the environment, (2) the behavior of a human operator, including
how they may override the machine decisions when provided with an explanation, and (3) a space of candidate
explanations and their impact on the operator’s decision. We constructed the models based on knowledge collected
from SWaT [21] and analysis of SWaT [22, 23]. In the following sections, we describe how our approach can be used to
provide explanations that guide the system and the operator towards optimal system utility.
Manuscript submitted to ACM
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Stage 1 Stage 2 Stage 3

Fig. 7. First three stages of the water treatment process in the SWaT. Each stage is equipped with a set of sensors (e.g., level sensor
LIT101) and actuators (valve MV101, pump 101) to monitor and manipulate the states of physical processes (tank T101).

5.1 SWaT: Secure Water Treatment

SWaT [21] is a water treatment testbed deployed at the Singapore University of Technology Design. It is a fully opera-
tional plant that produces five gallons/minute of purified water, with a capability to operate non-stop continuously in a
fully autonomous mode. The system consists of multiple stages of water treatment processing, with each stage being
controlled by a programmable logic controller (PLC) that monitors the state of the physical processes (e.g., water tank,
pumps) through sensors and generates appropriate commands to actuators to manipulate those processes. Many of the
published articles in ICS security are assessed for their effectiveness in SWaT [24–28]. Figure 7 illustrates the first three
stages of the treatment process (which our case study focuses on).

Plant supervision and control: SWaT is equipped with a Supervisory Control And Data Acquisition (SCADA) system
that can be used by a human operator to monitor the status of various physical processes and software throughout
the stages. In a complex plant like SWaT, multiple operators may observe and manage different parts of the system
through multiple SCADA displays. For example, as shown in Figure 7, operator A is in charge of managing the water
tank and the two pumps in Stage 1, while a higher-level operator (e.g., operator B) may have access to a global view of
the system by monitoring all three stages. (In industrial control systems like SWaT, different levels of operators are
responsible for operating different parts of the plant, with a hierarchical relationship between the operators.)

SWaT operation: When initiated by an operator at the SCADA workstation, the system carries out the 6-stage
treatment process in an autonomous manner, with the PLCs monitoring the sensors and generating appropriate actuator
commands. (E.g., when the water level in the tank is detected as being too high, the PLC for Stage 1 generates a
command to activate one of the attached pumps to allow water to flow out of the tank.)

When necessary, the operator can take control of the plant operations through SCADA and override commands
generated by the PLCs. There are a number of scenarios in which human intervention may be needed. For example,
sensors might fail from time to time and produce incorrect readings; similarly, due to malfunction, actuators may not
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always respond to the commands from the PLCs in an expected manner. In addition, the system, being connected to the
Web and an unencrypted wireless network, may be susceptible to a range of security attacks. In particular, a malicious
attacker may attempt to compromise the communication between the PLCs and the SCADA by spoofing network
packets and injecting malicious sensor and actuator data[29]. In these cases, an operator is responsible for identifying
potential anomalies and mitigating them based on their knowledge of the system.

Certain aspects of the control operation involve cooperation among multiple PLCs. For instance, Pump P101, when
its state is set to ON, allows water to flow out of tank T101. Although P101 is controlled by PLC1 (PLC for Stage 1,
not shown in Figure 7), the decision to turn it on or off depends on the water level in tank T301. In particular, as soon
as PLC2 detects that the water level in tank T301 falls below a predefined value, it opens the motorized valve MV201.
In turn, when PLC1 receives information about LIT301 and MV201, it turns on P101 to allow water to flow through
MV201 and eventually into T301. This distributed nature of the control logic means that an operator with a partial view
of the system may reach a decision that is sub-optimal with respect to overall system utility.

Explanation: In our approach, the information observed by the human operator through SCADA can be augmented
with an explanation that is used to calibrate the operator’s capability in the behavior of the plant. In particular, for the
SWaT, explanations are used to justify two types of decisions made by a PLC: (1) open or close a motorized valve, and (2)
turn on or off a water pump. If the operator believes that the machine is performing a wrong action, the operator might
temporarily pause part of the plant operation and change the status of a particular actuator manually from the SCADA.

Utility functions: In the SWaT system, the following quality attributes are considered [23]: 1) throughput, measured
by the water output from P301 for this study; and 2) safety, denoting that water tank should not overflow and the water
properties (i.e., pH) are within the range. Below are the utility functions: 1) water output from T301 in a period of
10 minutes; 2) the risk of water overflow where water level in tank ranges from zero to 1100 millimeters (mm); and 3)
pH value of water, where the water property is the best between 6 and 8. For simplicity, we only consider pH values
and discard other water properties such as conductivity and oxidation-reduction potential.

𝑈𝑤𝑎𝑡𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 =


1 if𝑊𝑂 ≥ 90

0.5 if 40 <𝑊𝑂 < 90

0 if𝑊𝑂 ≤ 40

𝑈𝑇 301𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 =


1 if𝑇 301 ≤ 1100

0.5 if 1100 < 𝑇 301 < 1150

0 if𝑇 301 ≥ 1150

𝑈𝑝𝐻 =


1 if 6 ≤ 𝑝𝐻 ≤ 8

0.5 if 5 ≤ 𝑝𝐻 < 6 & 8 < 𝑝𝐻 ≤ 9

0 if 𝑒𝑙𝑠𝑒

A utility function 𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑋 ∗ 𝑈𝑜𝑢𝑡 𝑓 𝑙𝑜𝑤 + 𝑌 ∗ 𝑈𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 + 𝑍 ∗ 𝑈𝑝𝐻 is used to calculate the total utility for the
machine. X, Y, and Z are the weights in the equation where 𝑋 + 𝑌 + 𝑍 = 1 and we assign ‘1/3’ to all three weights for
this case study.
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5.2 Experimental Scenarios

In self-adaptive systems, adaptation refers to situations in which the environment deviates from its expected behavior.
In SWaT, there are two different types of deviations: 1) the level of water in a tank moving into an unsafe state such as
an overflow or underflow, 2) water properties, such as pH and conductivity, increasing or decreasing beyond a safe range.

Table 1. A scenario in which the PLC decides to turn OFF pump P101. Operators A and B may decide to intervene and override the
PLC command. Since they have only partial information about the system, their overriding action (i.e., turn ON P101) is one that
actually results in a state with a lower utility.

Sensors
actua-
tors

Curr.
state

Machine
deci-
sion

Control
logic

Info
(Op.A) decision

(Op.A)

Info
(Op.B) decision

(Op.B)

State
with
higher
utility

State
with
lower
utility

P101/
P102

ON OFF When
LIT301 ≥
1000,
turn OFF
pump P101

State (⊆ 𝑆𝑀 ):
P101, P102,
LIT101

Transition
(𝑇𝑀 ):
When
LIT101>250,
turn ON
pump
P101

Turn
P101 ON

State (⊆ 𝑆𝑀 ):
P101, P102,
LIT101,
LIT301,
P301, pH

Transition
(𝑇𝑀 ):
None

Turn
P101 ON

P101 ==
OFF, where
water
inflow is
stopped
into T301

P101==ON,
where tank
T301 will
overflow
in 10 mins

MV101 CLOSE CLOSE

LIT101 750 -

LIT301 1000 -

P301 ON ON

pH 7 -
Note: The control logic is shown for the adaptation decision

Scenario 1: In one possible adaptation scenario, the PLC1 makes a decision turning OFF pump P101 as shown in Table
1. Here, the water level in tank T301 has reached the maximum safe threshold value (1000 mm). Based on the current
state of sensors and actuators, pump P101 is to be turned off in order to stop the inflow into tank T301 and avoid
overflow. In this case, the machine is making the right decision. However, since operator A does not have access to the
status of LIT301, it makes a decision that the pump P101 should remain ON, which will eventually lead to an overflow
of water in T301. Similarly, even though operator B has access to all of the sensors and actuator’s statuses, it does
not have knowledge of the control logic that governs how PLC1 and PLC2 manipulate LIT101, LIT301, and P101, and
prefers maintaining the status quo (i.e., keep P101 ON). Therefore, both operators may benefit from an explanation to
reduce the false-negative error and decrease the probability of operator intervention.

Two of the possible explanation candidates explored by our PRISM method are shown as follows:

Explanation Candidate 1:

Content = {
Transitions:
When LIT301 ≥ 1000, turn OFF pump P101;

States:
LIT101= 750;
LIT301 = 1000;

}

Explanation Candidate 2:

Content = {
Manuscript submitted to ACM
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Transitions:
When LIT301 ≥ 1000, turn OFF pump P101;

States:
N/A

}

Here, we assign the cost of 0.15 and 0.1 to Candidates 1 and 2, respectively, since the latter contains less amount
of information. The utility for the state that results when P101 is turned OFF is assigned a value of ‘1’ (computed as
0.33 × overflow(1) + 0.33 × output(1) + 0.33 × pH(1)). On the other hand, if P101 remains ON, it eventually leads to an
overflow in T301, and thus the utility for the resulting state is assigned a value of 0.66.

For operator A, explanation candidate 1 will promote the probability of true-positive by 0.4 (i.e., Δ𝑥 = 0.4), which
means this candidate can increase the capability of machine adaptation decision to 0.9 from 0.5 (randomly guessing
whether he should trust machine decision without intervention), while explanation candidate 2 only has positive effect
of 0.1 as operator A still does not know the status of water level LIT301 from SCADA and this explanation. Therefore,
the optimal strategy of the machine to maximize its utility is to provide explanation candidate 1 to operator A. However,
for operator B, since both of the candidates could increase the true-positive probabilities by 0.4, explanation candidate 2
should be chosen as its cost is less than that of candidate 1.

Scenario 2: In this scenario, as shown in Table 2, the initial LIT101 is 800, and MV101 is OPEN. Based on the control
logic (LIT101 ≥ 800 then CLOSE MV101), MV101 is supposed to be CLOSE. However, an attacker injects the value of
500 to the controller instead of 800; PLC could only access the water level LIT101 as 500. Based on that, the machine
adaptation decision is OPEN. Due to the physical environment information about tank T101, Operator A is able to see
the real water level LIT101 and plan the adaptation decision CLOSING valve MV101. However, operator B prefer the
remaining status quo as he does not have information about the control logic.

Table 2. Scenario for action to overflow tank T101

Sensors ac-
tuators

Curr.
state

Machine
decision

Control
logic

Info
(Op.A) decision

(Op.A)

Info
(Op.B) decision

(Op.B)

State
with
higher
utility

State
with
lower
utility

LIT101 800 - When
LIT101 ≥
800,
CLOSE
valve
MV101

State (⊆ 𝑆𝑀 ):
LIT101

Transition
(𝑇𝑀 ):
When
LIT101≥250,
CLOSE valve
MV101

CLOSE
valve
MV101

State (⊆ 𝑆𝑀 ):
LIT101

Transition
(𝑇𝑀 ):
None

OPEN
valve
MV101

MV101==
CLOSE,
where water
inflow is
stopped
into T101

MV101==
OPEN,
where tank
T101 will
overflow
in 2 mins

MV101 OPEN OPEN

Explanation Candidate 1:

Content = {
Transitions:
When LIT101 ≥ 800, CLOSE valve MV101;

States:
LIT101= 800;
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}

We assign a cost of 0.15 to this explanation candidate. The utility for the state with low utility (i.e., OPEN MV101
without operator intervention and after 2 minutes water will overflow tank T101) is ‘0.66’ (=0.33 × overflow(0) + 0.33 ×
output(1) + 0.33 × water properties(1)). While the utility for the state with high utility (i.e., CLOSE MV101 manually
from SCADA) is 1 without overflow in 10 minutes. For operator A, explanation candidate will promote the capability of
0.4 (i.e., from 0.5 probability of true-negative to 0.9 while probability of false-negative will reduce from 0.5 to 0.1) as
he is close to the physical environment of stage 1 and very likely to identify the fake value of LIT101 by comparing
information the environment has with the one the machine has, and know the good adaptation from the control logic.
However, the effect of this candidate for operator B is zero since he only has access to his SCADA screen, which is not
located close to the physical environment of stage 1. In this scenario, the explanation candidate will be provided to
operator A while operator B will receive no explanation.

To give an indication of the complexity of explanation selection, we note that our prototypical implementation for
the SWaT case study consisted of 62 lines of PRISM, and the model checking time was under a few seconds on average.

6 USER STUDY

To validate the applicability of our approach with operators in real-world industrial control systems (ICSs), we performed
an evaluation through a survey. This evaluation aims to investigate how explanation is helpful for improving the
operators’ the capability to make intervention decisions in industrial control systems. We designed a questionnaire that
presented participants with multiple, possibly unsafe scenarios that may arise in an ICS (in particular, the SWaT system);
the questions were then designed to evaluate how their decision to intervene on the system decision might change after
they were presented with an explanation. For recruiting, we invited 100 participants who may prior experience with
ICS through emails and the LinkedIn network; out of these, 43 agreed to participate and completed the questionnaire.
We discuss the design of the questionnaire and the results of our study in more detail next.

6.1 Study Details

The questionnaire: After introducing the participants to our work, they were required to fill in a questionnaire. Partici-
pation was voluntary and the estimated time to complete each survey was around 15 minutes, including 5 minutes of
background introduction and 10 minutes for questionnaire completion. Our survey included the 10 questions shown in
Figure 8. The first two questions (Q1 and Q2) investigate the familiarity of the SWaT system. Questions 3, 4 and 5 are used
to investigate whether an explanation might aid in the operator’s decision to intervene in a given scenario—in particular,
identical to Scenario 1 presented in Section 5.2. In Q6 and Q7, the participants are asked whether an explanation could
be helpful for recognizing that the system is making an erroneous decision in Scenario 2 from Section 5.2. Question 8
asks more generally whether an explanation would be help in improving the operator’s knowledge of the system; Q9
and Q10 ask for other types of information beside our notion of explanation that might be helpful in similar scenarios.

Figure 9, Figure 10 and Figure 11 show the results of the survey collected from the 43 participants. We provide a brief
summary of the results in the following.

Capability: In Q5, out of 43 participants, 36 responded that an explanation was helpful in aiding their decisions to
intervene in Scenario 1 while 7 responded that an explanation was not helpful. As shown in Figure 11, in Q6 (Scenario 2),
18 out of 43 indicated that explanation did not have any effect on improving their knowledge when one could not
directly observe the faulty sensor, while 6 responded with ‘don’t know’. In Q7, 31 out of 43, participants indicated that
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Q1. Are you familiar with sensors and actuators in the SWaT? (Yes, No)
Q2. Are you familiar with control actions (control logic) in the SWaT? (Yes, No)

(Description only) Figure 7 (cf. 5.1): The first three stages of the water treatment process in the SWaT. Each stage is equipped with a set of sensors (e.g.,
level sensor LIT101) and actuators (valve MV101, pump 101) to monitor and manipulate the states of physical processes (tank T101).

Q3. Current state: P101 = ON, MV101=CLOSE, LIT101=750,
LIT301=1000 and P301=ON;
Operator observable state (at SCADA): P101 = ON,
MV101=CLOSE, LIT101=750, LIT301=1000 and P301=ON;
Control Action: turn OFF P101;
How likely will you pass the system action given the state?Choose your likelihood to pass the action from below: (No, Not-much, Low, Medium, High)

Q4. Explanation: The system has produced action ‘turn OFF pump P101’ because of the following control logic:
Control logic: When LIT301>= 1000, turn OFF pump P101;
how likely will you pass the systems action given the state after the explanation? Choose your likely to pass the action from below: (No, Not-much,
Low, Medium, High)

Q5. Does an explanation above change your likelihood on intervening the control action associated with P101.? (Yes, No)
Q6. Let us assume, we have an operator who can directly observe the physical water level of Tank T101.

Current state: LIT101=800, MV101=OPEN
Operator observable state (at SCADA): LIT101=500, MV101=OPEN. Here, due to a glitch on LIT101 (level sensor), the controller reports 500 instead of
800 to the SCADA.
Control Action: OPEN MV101
Explanation:
Control logic: When LIT101>= 800, CLOSE MV101
Current state: LIT101=800, MV101=OPEN
Does an explanation have any effect on the probability of intervention decision of the operator who cannot directly observe the faulty sensor? (Yes,
No, Don’t Know)

Q7. Do you think the explanation above can help the operator recognize that the system is making an erroneous decision with MV101, so that increase
operator’s probability to intervene? (Yes, No, Don’t Know)

Q8. If you are an operator, would you be interested in using such an explanation to calibrate your capability that the system is making an appropriate or
erroneous decision? (Yes, No)

Q9. Do you think you need any further assistance as an operator other than an explanation? (Yes, No, Maybe)
Q10. If yes or maybe to the above question, what other types of information would you like to have?

Fig. 8. Survey questionnaire

Fig. 9. Familiarity of participants with the SWaT (Q1, Q2)

an explanation was helpful in recognizing whether the system was making an erroneous decision with MV101 (in
scenario 2). In Q8, 38 out of 43 expressed interest in using an explanation as an aid for making intervention decisions.

Suggestions for explanation: In total, 28 out of 43 would like to have other types of assistance an operator apart from
the explanation (Q9). We have combined these suggestions in Table 3 (Q10).

Conclusions: Our study shows that 1) an operator’s capability to intervene with machine decisions can be improved
by explanations; 2)When the system is making an erroneous decision, the explanation is helpful for the operator to
recognize it; and 3) operators are interested to use an explanation as an aid in determining whether that the system is
making an appropriate or erroneous decision in real plants.
Manuscript submitted to ACM
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Fig. 10. Number of participants opinion on whether the explanation is improving the capability of the operator in scenario 1 (Q3, Q4,
Q5).

Fig. 11. Number of participants opinion on whether the explanation is improving the capability of the operator in scenario 2 (Q6, Q7,
Q8).

In total, 7 out of 43 participants indicate that the explanationmay not help to improve operator accuracy of information
in control action associated with P101 (Q5). It indicates that experts may not need any explanation to understand the
control action associated with P101. Experts already have enough capability in this particular scenario to pass the
actuator action. It is also possible that some of the operators may not want to change the system decision irrespective of
the input information. In Q6, the majority (19) of the participant’s responses state that explanation does affect improving
the accuracy of the operator who cannot directly observe the faulty sensor.
Threats to Validity: The study is focused on explanation effect, and not considered about explanation cost (i.e., human
annoyance or human satisfaction). Although our framework includes explanation cost as an important component, this
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Table 3. Responses for the Q10. If yes or maybe to the above question, what other types of information would you like to have?

S.No Q8 response
1 An alert message showing malfunctioning of MV101
2 I need to know the status of the other sensors and actuators dependent on stage 1 and flow

rate of the water to determine and take appropriate action
3 Explanation is only helpful if an operator can directly observe the physical state but it

would not be possible for a huge number of physical states in a city-scale plant
4 It would be great to pinpoint the anomalies and potential faults in the system based on the

control logic to help the operator adjust their capability
5 It should be able to detect sensor failures instead and inform the operator there is a fault.

Alert him to check and rectify.
6 A more user-friendly explanation (or as a simple message) as an operator may not have a

logic level or debug experience.
7 Most SCADA Operators do not have the academic background to appreciate SCADA

control systems using state mechanics. It would be more helpful to simply provide a
conclusion of a glitch affecting readings will sometimes happen

8 The explanation may also be faulty as the explanation is based on the sensor glitch. So I
do not think it will affect capability.

9 Possible resolutions, and automatic incidence response
10 explanation with graphical representations.

Note: This table presents a non-exhaustive list of suggestions.

study does not consider it. We are not considering different explanations for different abilities of operators in the study.
The explanation effect for different operators with different training levels could be different. A more accurate study
can be conducted to handle different abilities of operators by collecting the amount of time and annoyance levels to
read and performing actions after understanding the explanation.

6.2 Discussion

Our framework relies on an assumption that the probabilities behind intervention decision levels, as well as explanation
effect, can be accurately measured. In our group, an ongoing research project with a user study is exploring how such
probabilities may be obtained through experimentation [30]. In addition, the cost of an explanation may not be easy to
measure for different operators. One way to overcome this challenge is by assigning the cost based on the complexity
of information in the explanation content, e.g., the amount of the information. A qualitative estimate of time for the
operator to understand the explanation could be another approach [31].

Another current limitation of our study is that to simplify the explanation selection problem, the overall system utility
is computed as a single objective by merging multiple attributes. However, it may not always be appropriate to compare
and aggregate certain types of attributes, such as human cost and system performance. In such cases, formulating
explanation selection as a multi-objective optimization problem with Pareto-optimal solutions as alternative candidate
explanations may be a more suitable approach [32]. In addition, our initial investigation suggests a number of further
research questions to be explored, such as how to find the optimal information as an explanation candidate to maximize
overall utility, and how to take the time delay between decision making and human intervention into consideration.

The results from our study show that our explanation approach significantly improves the operators’ capability to
correctly determine actuator status. The operators who are given explanations are, on average, more likely to gain
more capability than those who are not. The explanations provide an improvement in the operators’ capability. The
results also show that, when one or more sensors are malfunctioning, it is more difficult for the participant to recognize
Manuscript submitted to ACM
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the actuator state. In that situation, the operators are 50% of less likely to be correct in this type of scenario. This poses
many challenges to improve explanation for operators and other types of assistance during plant operation.

Two participants suggested less capability with the explanation than without explanation for the scenario 1. This
indicates that the two participants’ capability was reduced with the explanation. Two more participants mentioned
the accuracy of information level of “Not sure" with and without explanation while participants mentioned that they
are aware of sensors, actuators and control strategy. In our approach, we model the explanation effect as the Δ in true
positive and true negative probability. The Δ could be a positive or negative value. So, if the explanation is confusing, it
could have no or even detriment effect on the operator. Several further directions Include exploring building models,
reason model, and conduct empirical studies on important aspects collected in Q10 such as possible resolutions and
automated incident response, and explanations with graphical representations.

7 RELATEDWORK

The explanation has surged recently especially in the field of artificial intelligence, with the notion of eXplainable
Artificial Intelligence (XAI) [33]. However, over three decades ago, explanation has been investigated with prosperity
in expert systems [34–36]. Also, there exists literature on explainable agents and robots; in applications on factory envi-
ronments [37], military missions [38], human players [39], training [40], e-health [41] and recommendation systems [42].
And in the fields of philosophy, social psychology, and cognitive psychology, there are vast questions such as what
constitutes an explanation, what is the function of explanation and what are their structures. However, despite the fact
that self-adaptive systems are becoming a trend for several applications such as self-driving, smart office and e-health,
research work on explanation is still in its infancy stage. This direction is necessary to support any human-system
interaction and confirmed by the ratification of General Data Protection Regulation (GDPR) law which underlines the
right to explanations [43].

Explaining self-adaptive systems’ behaviors and reasoning mechanisms have been studied in different ways across
different disciplines. The authors in [44] distinguish three explanation phases: explanation generation, explanation
communication, and explanation reception. Our formal definition of explanation touches all three phases, generating
the explanation content, presenting the content to the human operator, and denoting how well the operator understands
the explanation with the explanation effect. Explanation generation is aiming to generate two categories [30]: 1)“what-
explanation", a description of the solution of a planning problem; 2)“why-explanation", a justification of why the policy
is selected as the solution. In our work, we focus on the second category – justifying why the adaptation decision is
chosen or why the machine behaves in a particular way.

Several existing works are aiming to explain systems that produce particular behaviors. The work in [45] describes
how the state of the machine is captured in a human’s mind. When the behavior of an agent is not explained, the state
in mind may not be consistent with the real state, which could lead to dangerous situations. Also, lack of mental model
for the human estimating the actions of robots may lead to safety risks [46, 47]. Lin et al. contributed an automatic
explanation for the different explanation types and decision model types [31]. Chakraborti et al. treated the explanation
as the model reconciliation problem aiming to make minimal changes to the human’s model to bring it closer to the
robot’s model [48]. Elizalde et al. contributed an approach that identifies factors that are most influential to the decision
making with MDP [49]. Khan et al. presented an approach for explaining an optimal action in policy by counting the
frequency of reaching a goal by taking the action [50]. Sukkerd et al emphasized contrastive justification based on
quality attributes and presented a method for generating an argument of how a policy is preferred to other rational
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alternatives [51]. However, most of their work only focuses on the explanation generation and does not capture the
explanation effect nor the cost explanation brings.
Secure industrial control systems: As we know there is no related work exists related to explanation in secure industrial
control systems. However, in this part of the related work, we cover related work in ICS security. A large body of
research has investigated impact of cyber attacks on industrial control systems measurement and control signals[29, 52].
These works consider different attack models that result in different kinds of cyber attacks from false data injection
to denial of service attacks. The false data injection attacks on industrial control systems are also investigated in
various instances ([53–55]). To protect against cyber attacks, the works in [56–58] to develop various methods for
monitoring, detecting and preventing cyber attacks. When there is an alert from these monitoring systems for the
human operator, it is necessary to analyse and determine how the operator is receiving the alerts information. Close
work in these aspects studied about explainable software for cyber physical systems in [59]. Mentioned the importance
of self-explainable software systems within CPS in run-time and how explainability useful for safety and security. They
are briefly discussed ‘security explain-ability by design’ in evolving security mechanisms and explain-ability of provably
safe distributed autonomous cars.

8 CONCLUSIONS

Within the context of self-adaptive systems, some human involvement as an operator is crucial. The machine may
behave differently than the human operator expects, known as automation surprises. We present an explanation
selection framework with a formal definition of explanation in three components and synthesize explanation strategy
based on probabilistic model checking. This proposed framework is applied in a water treatment plant and evaluated in
a real-world human-on-the-loop system. We have conducted a user study to determine the applicability of our approach
among human operators who design, build and operate ICSs.
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