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Abstract—Many self-adaptive systems benefit from human
involvement, where a human operator can provide expertise
not available to the system and perform adaptations involving
physical changes that cannot be automated. However, a lack
of transparency and intelligibility of system goals and the au-
tonomous behaviors enacted to achieve them may hinder a human
operator’s effort to make such involvement effective. Explanation
is sometimes helpful to allow the human to understand why the
system is making certain decisions. However, explanations come
with costs in terms of, e.g., delayed actions. Hence, it is not always
obvious whether explanations will improve the satisfaction of
system goals and, if so, when to provide them to the operator.
In this work, we define a formal framework for reasoning about
explanations of adaptive system behaviors and the conditions
under which they are warranted. Specifically, we characterize
explanations in terms of their impact on a human operator’s
ability to effectively engage in adaptive actions. We then present
a decision-making approach for planning in self-adaptation that
leverages a probabilistic reasoning tool to determine when the
explanation should be used in an adaptation strategy in order to
improve overall system utility. We illustrate our approach in a
representative scenario for the application of an adaptive news
website in the context of potential denial-of-service attacks.

I. INTRODUCTION

A self-adaptive system is designed to be capable of mod-
ifying its structure and behavior at run time in response
to changes in its operational environment and the system
itself (e.g., faults, changing requirements and attacks) [1], [2].
Although automation is one desirable characteristic of self-
adaptation, many adaptive systems also benefit from human
involvement: e.g., when a human operator has contextual
information that is not available to the system. In these cases,
the system may be able to adapt more effectively when its
adaptation strategies can exploit human actions [3], [4], [5].
For example, in a security setting, it is common to combine
automated actions for intrusion detection and remediation with
human-guided decision making to defend the system against
potential attackers [6].

Enabling effective human-system coordination, however, is
challenging mostly because humans may not fully understand
the system state, goals, and rationale for carrying out their
actions [7]. To deal with this problem, there has been recent
considerable interest in using system-generated “explanation”
as a way to improve human understanding and ability to
cooperate with the system [8], [9].

While explanations have been shown to be effective in many
circumstances, they also come with costs typically in the form

of delayed human actions (since the human will need to read
and understand the explanation before carrying out an action).
Thus, it is important for the system to be able to reason about
when to use explanation: too little explanation, and the human
may not be as effective; too much, and the system will be slow
to respond to adaptation needs.

In this paper we propose a formal framework for such
reasoning. Specifically, we see explanation as an action (or
tactic) that the system can use judiciously in strategies involv-
ing human participation. Such tactics come with associated
context-sensitive costs and benefits that affect overall system
utility, and allow a probabilistic planner to determine the
optimal use of explanation under an uncertain environment
(where uncertainty is induced, among other factors, by human
behavior and other external conditions –like the amount of
malicious clients attacking the system). Key to this frame-
work is the use of explicit models of human capability and
willingness [10], which are affected positively by explanation,
as well as the notion of delays induced by explanation which
may negatively affect responsiveness to adaptation needs.

As we elaborate, using our framework allows an on-line
planner to determine when explanation will be effective.
Important features of the framework are that it can be tuned
as needed to accommodate: (a) different levels of capability
of the human operator, (b) the impact that explanation will
have on an operator’s willingness and capability to perform
an action, (c) the ability to decide dynamically on a per-tactic
basis whether explanation is warranted, and (d) different costs
that arise from timing delays when using explanation.

The main contributions in this paper are:
• A formal framework for designing self-adaptive systems

where explanation can be used as a tactic to aid the human
operator in improving overall system utility;

• The use of probabilistic model checking to analyze trade-
offs of using explanation in an adaptation strategy;

• An illustration of the applicability and benefits of our
approach in collaborative mitigation of distributed denial-
of-service (DDoS) attacks on an enterprise system.

The rest of the paper is structured as follows. Section II
describes a motivating scenario of a DDoS attack on an
adaptive news website. Section III introduces the background
on probabilistic model checking and discusses related work.
Section IV illustrates how the formal modeling of human
involvement can be leveraged through probabilistic model



checking to reason about explanation as a potential tactic,
while Section V presents analysis results. Section VI concludes
the paper with potential directions for future work.

II. MOTIVATING SCENARIO

To illustrate our explanation framework, we employ
Znn.com [11], [6], an adaptive news website portraying a
representative scenario for self-adaptive systems. Pages in
the website can render multimedia content to enhance user
experience, or could show only text content which requires
less computation. A load balancer distributes stateless requests
from users to a pool of replicated servers, which deliver the
requested contents.

Sometimes, Znn.com might experience spikes in requests
resulting from either legitimate client traffic caused by a pop-
ular event (slashdot effect), or denial-of-service (DoS) attacks
in which malicious clients try to exhaust system capacity
to render system services unavailable. In these cases, the
system cannot serve all the requests adequately and users will
experience unexpected long response time. The organization
needs to take actions to maintain responsive service provision
while keeping the cost of operating the infrastructure within
budget (ideally, this includes not incurring operating costs that
correspond to resources consumed by malicious clients). In
addition, the actions taken should minimize interference with
legitimate user experience. In short, we identify four concerns
that can be mapped to the following quality attributes:
• Response Time (R), the time elapsed from receiving the

request to sending the response from the server;
• User Annoyance (A), the percentage of disturbed users

due to defensive tactics;
• Cost (C), the resources being operated in the system (e.g.,

number of active servers);
• Client Maliciousness (M), the percentage of malicious

clients.
Znn.com can generally employ the following four tactics

for dealing with the spikes in requests:
• enlistServer, commissioning a new replicated web server

to share the load;
• lowerFidelity, reducing the level of service to text only;
• blackhole, adding the IP addresses of clients that are

deemed to be attacking the system to a blacklist that
blocks their requests;

• throttle, limiting the rate of requests accepted from po-
tentially malicious clients.

The first two tactics are fully automated and could absorb
the excess of user traffic without increasing the annoyance
to legitimate users. However, they cannot handle malicious
clients and can result in an unnecessary increment of the cost
of operating the system. On the contrary, the last two tactics
could suppress the spikes due to a DoS attack and require a
human operator to accurately identify attackers. A well-trained
operator will be effective at eliminating traffic from malicious
clients, but a poorly trained one might increase user annoyance
by misidentifying attackers and causing service disruption to
legitimate clients.

Tactic Response Time Malicious Clients Cost User Annoyance

∆(ms) ∆UR ∆(%) ∆UM ∆(usd/hr)∆UC ∆(%) ∆UA

enlistServers -1000 ↑↑↑ 0 = +1.0 ↓↓↓ 0 =

lowerFidelity -500 ↑↑ 0 = -0.1 ↑ 0 =

blackhole -1000 ↑↑↑ -100 ↑↑↑ 0 = +50 ↓↓

throttle -500 ↑↑ 0 = 0 = +25 ↓

TABLE I: Tactic cost/benefit on utility dimensions.

The impact on different quality attributes of the four tactics
is shown in Table I. The number of upward or downward ar-
rows is proportional to the magnitude of utility increments and
decrements, respectively. For example, tactics enlistServers
and blackhole cause a drastic reduction of response time (-
1000 ms), which results in a much better utility in response
time (UR). Regarding the presence of malicious clients, tactic
blackhole is the most effective one, whereas the other three
tactics do not have any impact.

III. BACKGROUND AND RELATED WORK

This section introduces some background on model check-
ing of stochastic multi-player games (SMG), human involve-
ment in self-adaptation, as well as related work on explanation
for human involvement.

A. Model Checking Stochastic Multiplayer Games

Probabilistic model checking is a technique for formally
modeling and analyzing systems that exhibit stochastic be-
havior, allowing quantitative reasoning about probability and
reward-based properties (e.g., resource usage, time, etc.) [12].
Our approach to reasoning about explanation for human in-
volvement in adaptation builds upon a recent technique for
modeling and analyzing stochastic multiplayer games [13].

In our approach, systems are modeled as a turn-based SMG,
meaning that in each state of the model, only one player can
choose between several actions, the outcome of which can be
probabilistic. Players can follow strategies to either cooperate
to achieve the same goal, or compete to achieve their own
(possibly conflicting) goals.

Reasoning about strategies enables checking for the exis-
tence of a strategy that is able to optimize an objective ex-
pressed as a quantitative property in a logic called rPATL [14],
which extends ATL [15], a logic extensively used to reason
about the ability of a set of players to collectively achieve
a particular goal. Properties written in rPATL can state that a
coalition of players 〈〈C〉〉 has a strategy which can ensure that
the probability of an event’s occurrence P./q or an expected re-
ward measure meet some threshold Rr./x. Moreover, extended
versions of the rPATL reward operator 〈〈C〉〉Rrmax=?[F ∗φ]
and 〈〈C〉〉Rrmin=?[F ∗φ], enable the quantification of the max-
imum and minimum accrued reward r along paths that lead
to states satisfying φ that can be guaranteed by players in
coalition C, independently of the strategies followed by the
rest of players. Model checking of rPATL properties supports
optimal strategy synthesis for a given property.



B. Human Involvement in Self-Adaptation

Self-adaptive systems (innermost boundary labeled as “Ma-
chine” in Figure 1) were developed to autonomously adapt
to changing circumstances. System dynamics (which results
from the occurrence of certain events or changes in the envi-
ronment state or target system –i.e., the system under control–
state) is periodically monitored by a set of sensors. Given
these sensor readings, the controller performs an analysis of
available actions and their potential impact on the satisfaction
of system goals based on the information available in the
knowledge base, and plan corresponding adaptation decisions
to be enacted via actuators.

The different activities in the feedback loop can benefit from
human involvement in a variety of ways: Monitor can receive
information from humans (acting as sophisticated sensors)
that would be otherwise difficult to automatically monitor or
analyze (e.g., humans can indicate whether there is an ongoing
anomaly based on context information that is not captured by
the models included in the knowledge base). The controller can
incorporate inputs (e.g., recommendations, validation) into the
decision-making process from application domain experts who
can have additional insight about the best way of adapting the
system. Execution can employ humans as system-level actua-
tors to execute adaptations when changes to the system cannot
be fully automated, or as a fallback mechanism. Beyond that,
the role of the human can be supervisory, observing the
activities carried out by the system and determining whether
they are appropriate or potentially erroneous (e.g., likely to
lead the system into an unsafe state, or degrade the satisfaction
of system goals). In this paper, we focus on the case in which
human operators act as sophisticated system-level actuators.

To capture the attributes of human agents that might af-
fect interactions with the system, we employ the OWC [10]
(opportunity-willingness-capability) model, which categorizes
attributes into: 1) Opportunity: captures the applicability con-
ditions of the actions that can be carried out by human actors
upon the target system as constraints (e.g., is there an operator
physically located on site?); 2) Willingness: captures transient
factors that might affect the disposition of the operator to
carry out a particular task (e.g., load, stamina, stress); and
3) Capability: captures the likelihood of successfully carrying
out a particular task, which is determined by fixed attributes
of the human actor, such as training level. OWC has been
employed in several works that study human involvement in
self-adaptation [16], [6], [4].

The activities generated by the autonomous machine will
usually be interpreted by the human with respect to his model.
When the machine model in a human’s mind does not match
reality, the machine is not behaving according to operator
expectations. This phenomenon is known as automation sur-
prises [17], [18]. Explanation is a mechanism that a machine
can use to align a human’s mental model of the system and
its adaptive behavior with the machine’s. This, in turn, can
help to increase the willingness and capability of operators in
performing different tasks assigned by the machine.
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Fig. 1: Human Involvement in Self-Adaptation.

C. Explanation

For over a hundred years, many works in the fields of
philosophy, social psychology, and cognitive psychology, have
studied what constitutes an explanation, how they are struc-
tured, as well as how people generate and evaluate expla-
nation [19]. Over three decades ago, there was extensive
research on explanation in the context of expert systems [20].
Recently, the role of explanation has seen a resurgence in the
field of artificial intelligence with the notion of eXplainable
Artificial Intelligence (XAI) and in autonomous agents and
robots as an important capability [19]. Currently, self-adaptive
systems are being used as foundation to develop applications
in many domains like autonomous driving, smart office and
e-health. The work in [21] describes how the state of the
machine is captured in a human’s mind. When the behavior
of the system is not explained, the state in mind may not be
consistent with the real state, which could lead to dangerous
situations. Also, the lack of a mental model for the human to
estimate the actions of system may lead to safety risks [22],
[23]. Therefore, explanation is necessary to support human-
involved self-adaptive systems, as ratified by the General Data
Protection Regulation (GDPR) law, which underlines the right
to explanations [24]. Although some results from prior work
can be be exploited by research on self-adaptive systems,
such as explanation structures and explanation evaluation, new
challenges arise, like understanding how timely explanation
comprehension works, and its influence on human behaviors,
which in turn affect adaptation behaviors.

The authors in [25] distinguish three explanation phases:
explanation generation, explanation communication, and ex-
planation reception. Explanation generation aims to generate
two categories [26]: 1) “what-explanation”, a description of
the solution of a planning problem; 2) “why-explanation”, a
justification of why that particular solution is selected. Goal-
based requirements models can be adopted to offer explanation
of how a system is meeting its requirements [7]. Lin et



al. contributed an automatic explanation for the different
explanation types and decision model types [27]. Explanation
is also treated as different levels of reflective capabilities
from forensic self-explanation to autonomous history-aware
decision-making [28]. Elizalde et al. contributed an approach
that identifies factors that are most influential to decision
making with MDP [29]. Khan et al. present an approach
for explaining an optimal action in a solution by counting
the frequency of reaching a goal by taking the action [30].
Sukkerd et al. emphasized contrastive justification based on
quality attributes and presented a method for generating an
argument of how a solution is preferred to other rational
alternatives [31].

These existing works either focus on the explanation content
in the explanation generation stage or explanation effects on
the human in the communication and reception stages. None
of them, to the best of our knowledge, capture the explanation
cost or the latency explanation induces in adaptation behavior.
Our previous work [6], [4] applies an analysis technique
based on model checking of SMGs to reason about human
involvement without any explicit consideration about the role
of explanation in such involvement. In this work, we build
on this analysis technique, which is particularly suitable for
our purposes since it enables reasoning quantitatively about
trade-offs and under uncertainty about “when” explanations
should be provided. Other prior work has investigated the role
of explanation as a mechanism to improve the understanding
of human agents when they are involved in a supervisory
role, either approving or rejecting the autonomous system’s
proposed course of action [32]. In contrast, the aspect of
explanation analyzed in this paper is in the context of a
human operator carrying out tasks for the system, where the
main trade-off analyzed is between the potential improvement
due to increased levels of willingness and capability, and the
cost incurred by adaptation delays caused by the latency of
explanation comprehension.

IV. REASONING ABOUT EXPLANATION FOR
HUMAN-IN-THE-LOOP ADAPTATION

Deciding whether explanations should be provided for
human-involved self-adaptive systems is not an easy task,
since their influence on humans can be affected by factors
such as the level of expertise in carrying out particular tasks.
Also, the cost incurred by the explanation may reduce the
satisfaction of systems goals due to, for example, the delayed
adaptation behaviors and human confusion. These factors build
as additional sources of uncertainty affecting the behavior of
the self-adaptive system [33].

In this context, we want to answer the following questions:
(Q1) How can the outcome of adaptation with explanation be
predicted for human-involved adaptive systems? and (Q2) How
can a self-adaptive system determine whether explanation
should be provided to a human operator in a given situation?

The key idea of our approach to enable automated rea-
soning about explanation is to: (i) consider it as one of the
possible actions or tactics that the system can enact as part

of an adaptation strategy, and (ii) leave the choice of using
such explanation tactics under-specified in the SMG model
(encoded as a non-deterministic choice). The probabilistic
model checker PRISM-games [34] is then used to analyze the
model, resolving the nondeterminism to produce a strategy
that maximizes the expected utility by selecting when expla-
nation should be given (i.e., at which choices in the model
explanation tactics should be used).

Our system is modeled as a SMG with three players,
illustrated in Listing 1. Player env is in control of all the
(asynchronous) actions that the environment can take out
of system’s and human’s control while player ope specifies
the actions controlled by the human actor. Player sys con-
trols the actions that belong to the system, whose behavior
is encoded in the processes ha system (which captures the
behavior of the system under control), as well as Outgun,
Eliminate and Eliminate Explanation, which are processes
that capture different adaptation strategies of the controller for
absorbing, eliminating and eliminating with explanation excess
traffic, respectively. Moreover, the system player controls
the synchronization of actions between adaptation strategies,
the target system and the human operator, thus modeling
the triggering of adaptation tactics. The global variable turn
(line 5) is used to explicitly encode alternating turns between
the environment, system and operator players. The following
subsections present the models of the three players.

player AyA 
       h21AyAtem, Outgu=, E;imi=2te, E;imi=2te1EFp;2=2tio=, 
       [e=;iAtServer0, [;oEerFide;ity0, [eFp;2i=1bA0, [b;2c:ho;eAtt2c:er0,
       [eFp;2i=1tS0, [thrott;eSuApiciouA0 endplayer
player e=v e=viro=me=t endplayer
player ope oper2tor endplayer

const ENV,=0; const S.S,=1; const OPER =2;
global tur=:[ENV,  OPER0 init ENV,;

1

2
3

4
5

Listing 1: Player Definition for the Znn.com SMG.

The environment process env (Listing 2) models potential
evolution of environment variables. For simplicity, we assume
our environment model only keeps track of time, although
additional behavior controlling other elements (e.g, network
delay) can be encoded (please refer to [35] for further details
illustrating the modeling of adversarial environments in turn-
based SMGs). Variable t (line 2) keeps track of execution time
(the time frame for the system’s execution is determined by [0,
MAX TIME]). During its turn, the environment checks that the
end of the time frame for the execution has not been reached
yet, and if that is the case, it increments the value of t one
unit, yielding the turn to the system player (line 3).1

1We model the SMG using the syntax of the PRISM language, encoded as
commands [action] guard → p1 : u1 + ... + pn : un Where guard is a
predicate over the model variables. Each update ui describes a transition that
the process can make (by executing action) if the guard is true. An update
is specified by giving the new values of the variables, and has an assigned
probability pi ∈ [0, 1]. Multiple commands with overlapping guards (and
probably, including a single update of unspecified probability) introduce local
nondeterminism.



module e:vi<;:me:=
= : [0..-AX_0I-+] init 0&
[           ] (=><:(+.10) & (='-AX_0I-+) -) (= (=+1) & (=><: (SYS0)&

endmodule

1
2
3
4

Listing 2: Environment Model.

A. Human Model

Listing 3 shows the encoding of behaviors corresponding
to an operator in the Znn.com system. Opportunity elements
(lines 4-5) are used to guard the execution of tactics such as
explain ba and blackhole (lines 12 and 15) in the process.
Willingness (line 1) is initialized with some constants (line 6)
that represent the initial willingness a human has based on his
current state. Capability denotes the likelihood of successfully
carrying out a particular task, such as training level (line 7) and
is defined by an explicit set of value pairs (with intermediate
points linearly interpolated in line 2) as shown in the dotted
red rectangle.

formula oV_M_[_Ia 2 oV_[PRR_Ia3'? (oV_[PRR_Ia1(''? oV_[PRR_Ia&(''/()/'0
formula oV_M_c_Ia 2 
      (oV_caV_Ia3'  oV_caV_Ia12)+? '.(!(oV_caV_Ia-')&)+/')
   +(oV_caV_Ia3)+ oV_caV_Ia12+'? '.(+'.)!(oV_caV_Ia-)+)&)+/')
   +(oV_caV_Ia3+' oV_caV_Ia12-'? '.*+'.,!(oV_caV_Ia-+')&*'/')
   +(oV_caV_Ia3-' oV_caV_Ia12(''?'..+'.(!(oV_caV_Ia--')&)'/')
   +(oV_caV_Ia3(''? (/')0
……

ELxVRaPT_Ia] (cTt_comV9xVIa 2 ')   (oV_oT;ocatPoT)  
                    (!oV_IuX])   (LxV_Ia_doTL2 false) 
               -3 (oV_IuX]'2 true)   (cTt_comV9xVIa'2()0
E                 ] (tuWT2>?9R)   (cTt_comV9xVIa3')  
                    (cTt_comV9xVIa12LxV_Ia_RatLTc]) 
               -3 (cTt_comV9xVIa'2cTt_comV9xVIa+()   (tuWT'29=BA)0
E                 ] (tuWT2>?9R)   (cTt_comV9xVIa2LxV_Ia_RatLTc]+() 
               -3 (LxV_Ia_doTL'2 true)   (cTt_comV9xVIa'2')  
                    (oV_caV_Ia'2min((caV_Ia+89;A5_C5?),(''))  
                    (oV_[PR_Ia'2 min(([PRR_Ia+89;A5_C:;),('')) (tuWT'29=BA)
                     (oV_IuX]'2 false)0

E IRackOoRL ] (oV_oT;ocatPoT)   (!oV_IuX])  
                                (cTt_Ia2')   (Ia_doTL2 false)
                -3 (cTt_Ia'2()   (oV_IuX]'2tWuL)0
E                ]  (tuWT2>?9R)   (cTt_Ia3')   (cTt_Ia12Ia_RatLTc])
                -3 (cTt_Ia'2cTt_Ia+()   (tuWT'29=BA)0
E                ] (tuWT2>?9R)   (cTt_Ia2Ia_RatLTc]+()
           -3 (cTt_Ia'2') (tuWT'29=BA) (oV_IuX]'2 false) 

                     (Ia_doTL'2 true)0
    ……
    E                ]  (tuWT2>?9R)   (cTt_Ia2')   (cTt_comV9xVIa2')   ... 
              -3 (tuWT'2 9=BA)0

endmodule

CPRRPTNTLXX aTd caVaIPRPt] MuTctPoTX

6RackOoRL 9xVRaTatPoT AactPc

6RackOoRL AactPc

1
2

3
4
5
6
7
8
9

10
11

12

13

14

15

16

17

18

19

module oVLWatoW
   oV_oT;ocatPoT/ bool init true0
   oV_IuX]/IooR init false0
   oV_[PR_Ia/ E'..(''] init :=:A_C:;0
   oV_caV_Ia/E'..(''] init :=:A_AR5:=0
   LxV_Ia_doTL/ IooR init false0
   cTt_comV9xVIa / E'..<5D_A:<9] init '0
   Ia_doTL/IooR init false0
   cTt_Ia / E'..<5D_A:<9] init '0
   ……

C
ap

ab
ilit

y

Training Level

Capability Function

Listing 3: Human Model.

Variables cnt compExpba and cnt ba are counters used
to keep track of the latency of tactics explain ba (i.e., the
time needed to comprehend the explanation with respect to

blackholing tactic) and blackhole (i.e., the time to manu-
ally block traffic from malicious clients) respectively while
exp ba done and ba done indicate the end of tactics execution
in avoid of tactic repetition. Moreover, the module includes
commands that model the effect of executing the different
tactics as updates on its variables. In particular, there are three
different commands per tactic in the module. We focus on
tactic explain ba to illustrate how tactic execution is modeled:
• Tactic trigger (line 12) Triggers tactic execution when:

(i) an operator is on location and not busy, (ii) the
tactic has not been executed before, and (iii) the latency
counter for the tactic is zero, meaning that the tactic is
not being executed. As a consequence, the operator is
flagged as busy and the latency counter is activated (i.e.,
cnt compExpba′ = 1);

• Tactic latency counter update (line 13). If the tactic
counter is active, but still has not reached the tactic’s
latency value, the counter is incremented in one unit;

• Tactic completion (line 14). When the tactic’s la-
tency counter expires, the command updates variables
op cap ba and op wil ba according to the encoding of
the impact of the explanation on the willingness and
capability of the designated human operator. The latency
counter and task completion identification is reset, and
the busy status of the operator is set to false.

Ordinarily an explanation will motivate the operator with
more willingness to complete the task and reduce the probabil-
ity of making mistakes when identifying the attackers, denoted
as the effect of DELTA WIL and DELTA CAP. Correspond-
ingly, the value of the formula in lines 1-2 is updated to reflect
these changes, which affect the probabilistic behavior of the
system, described in Section IV-A.

The encoding used for the tactic blackhole (lines 15-17)
follows the same structure. Every command in this module,
except two with synchronized actions (line 12 and 15) ini-
tialized by the system, includes a predicate in the guard to
ensure that the command is triggered only during the operator
player’s turn (turn=OPER), and an additional predicate in
the post state that yields the turn to the environment player
(turn’=ENVT). Moreover, an additional command (line 18)
lets the process progress without any variable updates when
none of the latency periods for the tactics are active. Note that
in our model, we assume sequential execution of tactics2.

B. System Model

The system behavior module (Listing 4) incorporates a
collection of variables encoding the different system qualities
of concern, as well as the aspects relevant to the applicability
conditions of tactics.Variables rt, as, mc, and ua encode
the response time, number of active servers, percentage of
malicious clients, and level of user annoyance in the system,
respectively and lines 6-9 illustrate how the different variables
are initialized. Variable ba fail (line 10) denotes the failure of

2We do not describe the commands corresponding to tactics explain ts and
throttle related to human operator in Listing 3 for the sake of clarity.



performing tactic blackhole. The encoding used for the tactic
related to the system module follows the same structure and
is quite similar to those described in operator module.

formula bBAfAPR -  
    PR-&000*oOAfADAbB .-0 ? ( PR-&000*oOAfADAbB ,- 50=AR: ? 
    ( flooP(PR-OeMBlRVAbB*&000*oOAfADAbB) * 50=AR:) * 0)+
formula bBAfAmD - mD-oOAfADAbB*mD .- 0 ? ( mD-oOAfADAbB ,- &00 ? 
    ( flooP(mD-OeMBlRVAbB*oOAfADAbB*mD)*&00)*0+
formula bBAfASB - SB+(0.-0 ? (SB+(0,-&00 ? SB+(0*&00)*0+

?eUOlBIMAbB] (RSPM-9>9:) & (DMRADomOEUObB-0)&(eUOAbBAEoMe- false) 
               -. (RSPM -OPER)+
?                 ] (RSPM-9>9:) & (DMRADomOEUObB.0) & 
                    (DMRADomOEUObB ,- eUOAbBAlBReMDV)
               -. (RSPM -OPER)+
?                 ] (RSPM-9>9:) & (DMRADomOEUObB - eUOAbBAlBReMDV+&) 
               -. (RSPM -OPER)+

?blBDkhole] (RSPM-9>9:) & (DMRAbB-0) & (bBAEoMe- fBlse)
              -. (RSPM -OPER)+
?                ] (RSPM-9>9:) & (DMRAbB.0) & (DMRAbB,-bBAlBReMDV) 
              -. (RSPM -OPER)+
?                ] (RSPM-9>9:) & (DMRAbB-bBAlBReMDV+&) 
       -. oOATAOPobAbB * 
               (PR -bBAfAPR) & (mD -bBAfAmD) & (SB -bBAfASB) & (RSPM -OPER)
            &-oOATAOPobAbB * 
               (bBAfBIl -true) & (RSPM -OPER)+

      ...
    ?                ] (RSPM-9>9:) & (DMRAbB-0) &... -. (RSPM -OPER)+
endmodule

1lBDkhole EUOlBMBRIoM :BDRID

1lBDkhole :BDRID

1

2

3

4

5

6
7
8
9
10

11

12

13

14

15

16

17
18

module hBAsVsRem
    Bs * ?0..50=A9ER<ER9] init IMIRABs+
    PR * ?0..50=AR:] init IMIRAPR+
    mD * ?0..&00] init IMIRAmD+ 
    SB * ?0..&00] init IMIRASB+ 
    bBAfBIl * bool init false+
    ...

formula OeMBlRVAbB - OoT(0.)),OoT(eUOAbBAlBReMDV,'))+

1lBDkhole :BDRID ImOBDR oM ;RIlIRV 2ImeMsIoMs

Listing 4: System Model.

As shown in ha system module, tactics trigger when: (i) the
tactic has not been executed before, and (ii) the latency counter
for the tactic is zero. Since the commands (lines 11, 14) are
synchronized with the commands for human operator in listing
3, the conditions/guards should also satisfy such as human
operator on location and not busy to simultaneously trigger
both commands. When the latency counter of tactic blackhole
expires (line 16), the command can (1) update variables rt,
mc and ua with willingness probability op w prob ba from
the human model with respect to a successful activation of
tactic shown in Table I (defined as formulas in lines 1-3),
discounted by the capability probability op c prob ba and
penalty penalty ba that is positively correlated with expla-
nation latency (line 4); or (ii) fail to blackhole malicious
attacker with probability 1-op w prob ba, flagging the failure
on variable ba fail. Beside, we assume penalty is applicable
to both variables rt and mc with positive tactic impact as
we model the fact that a small periods of latency with high
response time and malicious clients are tolerable while longer
periods are much worse.

Unlike blackhole, the tactic explain ba will only affect the
willingness and capability of a human operator not directly the
system variables (line 13). The encoding used for the enlist-
Servers tactic and lowerFidelity follows the same structure of
tactic blackhole, but without any OWC elements encoded in

the guards or updates of the commands. We do not describe
these code in listing 4 for the sake of clarity.

Module Eliminate (Listing 5) models the strategy to elim-
inate excess traffic with the help of a human operator. It
first notifies an operator to manually block traffic from ma-
licious clients. The command on line 3 encodes the triggering
of tactic blackhole, which sets the value of the timestamp
variable ba trigger t that indicates at which time point the
tactic was triggered. If the settling time expires (i.e., t >
trigger t+ ba latency) and the intended effect of the tactic
is not observed (i.e., ba fail), the strategy notifies another
operator to execute the throttle tactic as a fallback, throttling
suspicious clients. Module Eliminate Explanation follows a
similar structure except explicitly providing the explanation
as a tactic explain ba and explain ts before assigning tasks
to the human, while module Outgun models the automatic
strategy to absorb excess traffic in Znn.com.

module )>iminaEe
Eri::er_E:[0..M(0_T+M)] init 0;
[b>ac=;A>e] (Eurn&.Y.T) -' (Eri::er_E &E);
[ E;rAEE>e  ]  (Eurn&.Y.T) & (ba_fai>) & (E'Eri::er_E+ba_>aEency) 

                    -' true;
endmodule

1
2
3
4

module )>iminaEe_)Gp>anaEiAn
Eri::er_E:[0..M(0_T+M)] init 0;
[eGp>ain_ba] (Eurn&.Y.T) -' (Eri::er_E &E);
[ b>ac=;A>e]  (Eurn&.Y.T) & (E'Eri::er_E+eGp_ba_>aEency) 
               -'  (Eri::er_E &E);
[ eGp>ain_Es] (Eurn&.Y.T) & (ba_fai>) & (E'Eri::er_E+ba_>aEency)
               -' (Eri::er_E &E);
[   E;rAEE>e  ] (Eurn&.Y.T) & (ba_fai>) & (E'Eri::er_E+eGp_Es_>aEency)
               -'  true;

endmodule
module -uEGun

...
endmodule

5

6
7
8
9

10

11

12

13

14

Listing 5: Strategy Model.

C. Utility Profile

Utility functions and preferences are encoded using formu-
las and reward structures that enable the quantification of the
utility of a given game state. Formulas compute utility on the
different dimensions of concern, and reward structures weigh
them against each other by using the utility preferences of a
given scenario. Listing 6 illustrates in line 1 the encoding of
utility functions using a formula for linear interpolation based
on the points defined for utility function UM from the domain
knowledge. Lines 2-5 show how a reward structure can be
defined to compute a single utility value for any state by using
the utility preferences defined for a particular scenario.

V. ANALYSIS RESULTS

In this section, we demonstrate how our approach can
produce decisions about when to involve humans in adaptation
and when to provide them with explanations in a DoS scenario.
In particular, we exploit SMG models of human-involved
adaptation to determine: (i) the expected outcome of human
involvement in adaptation, (ii) the conditions under which



formula G7 1 (A>210   A> 01*3 & . 0)
   +(A>2*    A> 01203 &+(0.-0"&)*((A>"*)/(20"*)) .0)
   +(A>220   A> 01*030.-0+(0.)0"0.-0)*((A>"20)/(*0"20)) .0)
   +(A>2*0   A> 01703 0.)0+(0.00"0.)0)*((A>"*0)/(70"*0)) .0)
   +(A>270 3 0.0)/
...

1

2
3

rewards "r6;"
tGrn 1 S<S:   s>?n=riC1&. 0.&**G8+0.+*G7 +0.&*G5+0.&**G4/ 
tGrn 1 S<S:   s>?n=riC12. 0.(*G8+0.(*G7 +0.&*G5+0.(*G4/ 
...

endrewards

4

5

Listing 6: Utility Reward Structure for Znn.com SMG.

explanation as a tactic could improve the expected outcome
of human involvement, and (iii) the conditions under which
human involvement facilitated by explanation improves over
fully automated adaptation or human involvement without
explanation.

To explore our scenario, we statically analyze a discretized
region of the state space of our problem. Each state of the
discrete set requires a run of the model checker per adaptation
alternative (i.e., automated, human-involved without expla-
nation, human-involved with explanation) that quantifies the
accrued system utility encoded in a temporal logic formula.
For PRISM-Games, this property is expressed in rPATL as
umau ≡ RrGUmax=?[F end] where “rGU” is the reward structure
specified in listing 6, and end is a predicate that indicates the
end of the adaptation decision-execution period.

Once we have quantified the utility of every alternative
in each state of the discrete space S, we rank the different
adaptation alternatives and select the one that maximizes the
expected accrued utility. Hence the selected adaptation strategy
for a state s ∈ S from a set of strategy alternatives Γ can
be determined according to: γ↑(s,Γ) , argmax

γ∈Γ
umau (s, γ)

where umau(s, γ) is the value of property umau evaluated
in a model instantiated with with an initial state s and the
adaptation logic of strategy γ.

A. Experimental Results

We analyze our results in two scenarios that differ in the
priority given to the different concerns: eliminating malicious
clients (Scenario 1) and optmizing the experience of legiti-
mante clients (Scenario 2).

Scenario 1. Figure 2 depicts utility analysis results for the
different adaptation strategies in a DoS scenario in which the
priority is eliminating malicious clients. The initial state of the
scenario corresponds to, a response time 2000 ms, 0% of user
annoyance, and 2 active servers. The overall time frame for
the scenario is 30 minutes, and the latency value employed
for tactics blackhole and throttle is 10 minutes. This tactic
latency models the time that the human operator requires to
decide (without an explanation being provided) which clients
have to be blackholed or throttled. Note that tactic latency
is different from the latency of explanation comprehension,
which will be introduced in the following.

Plots 2 (a) and (b) illustrate the maximum accrued utility
the system can achieve for varying initial levels of malicious

clients and training of a human operator with strategies Elim-
inate and OutGun, respectively. As expected, the utility for
OutGun is not affected by the level of training of the human
operator because the tactics employed by the strategy are
fully automated. Moreover, the utility decreases progressively
with increasing levels of malicious clients as strategy OutGun
employs tactics (e.g., adding server or lowering fidelity) that
do not deal with malicious users. In contrast, we can observe
how Eliminate yields significantly better results when both the
percentage of malicious clients and training level are high. On
the contrary, the utility gap between OutGun and Eliminate
is small when the percentage of malicious clients is low as
there are few or no malicious clients to deal with, and when
the operator is poorly trained and is less efficient at reducing
malicious clients, increasing user annoyance in legitimate
clients who might be incorrectly blacklisted or throttled.

Plot 2 (c) shows the delta in utility between strategy Elimi-
nate Explanation (which includes explanation as potential tac-
tics) and strategy Eliminate without explanation. Explanation
latency (i.e., the average time that it takes for the human
operator to go through and understand the explanation) is fixed
to a value of 4 minutes for explanation tactics explain ba
and explain ts. The effectiveness of the explanation tactics
(i.e., their influence on willingness and capability encoded
by DELTA CAP and DEL WIL in our model, respectively)
is fixed to 30%. Plot 2 (e) is analogous to (c), but explanation
latency is fixed to a value of 7 minutes.

These two plots illustrate how explanation affects the ex-
pected outcome of adaptation for strategy Eliminate. In partic-
ular, we observe that the impact is negligible or even negative
when the operator is poorly or well trained. This is because
an experienced operator (i.e., training level above 80%) is
already close to the top of her capability, whereas a novice
(i.e., training level below 30%) obtains modest improvement
in capability in the low-medium training level range as shown
in capability function at Listing 3. However, the improvement
obtained from explanation tactics in situations where the
operator training level is around 50% is significant due to
the higher capability-training ratio in the range 50-80% (cf.
capability function in Listing 3). Moreover we observe that
the delta in utility also improves progressively with increasing
levels of malicious clients. This is consistent with the fact that
such situations require a better trained operator to successfully
identify malicious IP address ranges.

Comparison of plots (c) end (e) also reveals that higher
explanation latency is detrimental to obtaining better system
utility, as one might expect. Concretely, the delta in plot 2 (c) is
always above positive with 4 minutes explanation latency and
could be as high as 20. However, the maximum delta for with
7 minutes of explanation latency (e) halves with respect to that
with lower latency. In fact, the delta can even become negative
when the operator is well trained. This also aligns with the
intuition that a well trained operator is already effective at
dealing with malicious clients regardless of the explanation
provided, which is only going to delay enacting adaptation
and reflect negatively on utility.
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(h) Avg. udelta(Operator(80)) = 0.41

Fig. 2: Results for Scenario 1: minimizing percentage of malicious clients

Plots 2(d) and (f) present the results of strategy selection
among OutGun, Eliminate and Eliminate Explanation that
correspond to the two values of explanation latency employed
in the two upper plots. Without explanation, the states in
which human involvement is chosen are indicated by a circle,
whereas the automated strategy is indicated by a triangle
mark. The plots show that higher levels of malicious clients
make human involvement preferable even when the training
level of the operator is limited to the range 30-50. However,
it is also worth noting that when the training level is very
low, the improvement by OutGun can outweigh the moderate
improvement provided by Eliminate. This can be observed in
the area where the training level is below 40 and the malicious
clients are in the range 80-100.

Regions of the space in which explanation is selected are
colored in red, with triangles and circles denoting states in
which OutGun and Eliminate have been replaced by Elim-
inate Explanation, respectively. The plots reveal the areas
where explanations improve the expected outcome of adap-
tation (in red) and show how the areas where human in-
volvement can outperform automated adaptation are broadened
(red triangles). The white circles denote explanation being
detrimental due to its cost, such as the points in the upper
right corner in plot (d) where the well-trained operator should
act quickly in serious cases with near 100% malicious clients,
instead of waiting for an ineffective explanation. Also, an
experienced operator (≥ 80% training level) should not wait
for explanation at all if the latency is up to 7 minutes as
shown in (f) as the comprehension delays of explanation will
outweigh its benefit.

To provide further context about under what conditions an
explanation should be provided, we present two plots that
examine the trade-off between explanation cost and effect.

Explanation cost is associated here with the explanation
comprehension latency and effect is the improvement on
the capability of the operator with a fixed 20% willingness
improvement. Our analysis assumes a penalty on tactic effect
directly proportional to the latency value.

Plot 2 (g) represents a novice with initial training level 30
while (h) is for an experienced expert with 80. Plot (g) clearly
shows that the delta utility with respect to strategy Eliminate
without explanation increases progressively with higher values
of explanation effect and decreasing explanation latency. It
is also worth noting that the delta will not become negative
even if the tactics are enacted poorly and late. This is because
the reference (i.e., utility for Eliminate) is also low due to
the low capability. Things are totally different for the expert.
The delta utility is decreasing down to -10 as the explanation
latency reaches 10 minutes. This aligns with the intuition that
trying to make an expert understand something that she already
knows is just a waste of time and is only going to degrade
the overall system utility. Moreover, the delta utility improves
with the explanation effect ranging from 0-20, but with no
improvement beyond that range because the operator is already
at the top of her capability.
Scenario 2. Figure 3 shows the analysis results in Scenario
2, in which the top priority is optimizing the experience of
legitimate clients. Plot (b) shows how strategy Outgun still
experiences a reduction in the utility with increasing levels of
malicious users (similarly to Scenario 1). However, in this
scenario the reduction in utility and the gap between the
human-driven and the automated strategy is less pronounced
than in Scenario 1 because in this case the main contribution
to utility results from optimizing legitimate client experience,
and efficiency at reducing the percentage of malicious clients
is not as relevant. The delta utility with an explanation is also
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Fig. 3: Results for Scenario 2: optimizing experience of legitimate clients

selected in less situations as shown in plots 3 (d) and (f) (i.e.,
red points including circles and triangles accounting for 63.2%
and 35.9% respectively compared to 76.6% and 49.4% in Fig-
ure 2). Despite this reduction, explanation can still broaden the
range of situations under which the human-involved strategy
is selected (i.e., red triangles). Figure 3 (g) and (h) follow
the same trend of Scenario 1, although the maximum and
minimum delta utility obtained with explanation is reduced
to almost half of its magnitude in Scenario 1 in most cases.
This is again explained by the fact that the top priority in
Scenario 2 is optimizing experience of legitimate clients and
not dealing effectively with malicious clients that does not
detract from utility as much as in Scenario 1.

In summary, the results of analyzing these two scenarios
have shown that: (i) explanation can enhance the performance
of the system when involving human operators, especially
when they have intermediate training levels, (ii) incurring the
cost of explanation is not valuable, and can even be detrimental
effects when operators are close to the top of their capacity,
and (iii) although different priorities result in variations in
magnitude of the increment of system utility and the range
of situations under which human-driven adaptation is selected,
explanation improves system utility across large regions of the
state space.

VI. CONCLUSIONS AND DISCUSSION

In this paper we presented an approach based on probabilis-
tic model checking to determine when an explanation should
be selected as an adaptation tactic in a human-involved self-
adaptive system. Although one limitation of our approach is
that we did not directly correlate our analytical results with
actual systems through an empirical study, our findings are
supported by and consistent with those obtained by Sukkerd

et al [36], who conducted an empirical user study to determine
if explanations can help users gain more understanding of the
rationale behind system decisions and become more likely to
cooperate with the system once they understand the need to
act, thus increasing user willingness. Their experimentation
also supports our model, which assumes that explanation in-
creases operator awareness of the situation and capability [36].

A second limitation is the lack of a direct procedure
for obtaining values that characterize the effect of expla-
nation on willingness and capability (i.e., DELTA WIL and
DELTA CAP). While this is an area for future work, prior
work suggests that the impact on willingness can be obtained
through unobtrusive measurement of human mental states
with, e.g., facial expression [5], while the delta in capability
can be traced through historical behaviors [27]. Moreover,
sensitivity analysis can also be useful when the explanation
effect cannot be determined with precision but lies within a
known range. Another limitation, and also a topic for future
work, is that comprehension time for explanation is not easy
to predict across different operators. One way to overcome this
challenge is by assigning the latency based on the complexity
of information in the explanation content, e.g., the amount of
the information. Qualitative estimates of time for the operator
to understand explanation could also be explored [27].

Our initial investigation suggests a number of additional
research directions, such as formulating the problem as a
multi-objective optimization with Pareto-optimal solutions (in
contrast with a single utility function which is a linear combi-
nation of different contributions, as in this paper); tailoring
the optimal amount of information to be provided as an
explanation candidate to maximize overall utility; taking the
time delay of explanation comprehension in consideration
and anticipating human-involved adaptation to proactively



make decisions about explanation; and finally, analyzing and
planning strategies by explicitly considering explanation and
automated tactics as potentially concurrent adaptation tactics.
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[4] J. Cámara, G. A. Moreno, and D. Garlan, “Reasoning about human
participation in self-adaptive systems,” in 10th IEEE/ACM International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS, Florence, Italy, May 18-19, 2015, 2015, pp. 146–156.

[5] E. Lloyd, S. Huang, and E. Tognoli, “Improving human-in-the-loop
adaptive systems using brain-computer interaction,” in 12th IEEE/ACM
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2017, Buenos Aires, Argentina, May
22-23, 2017, 2017, pp. 163–174.

[6] “Chapter 7 - evaluating trade-offs of human involvement in self-adaptive
systems,” in Managing Trade-Offs in Adaptable Software Architectures,
I. Mistrik, N. Ali, R. Kazman, J. Grundy, and B. Schmerl, Eds. Boston:
Morgan Kaufmann, 2017, pp. 155 – 180.

[7] K. Welsh, N. Bencomo, P. Sawyer, and J. Whittle, “Self-explanation in
adaptive systems based on runtime goal-based models,” Trans. Compu-
tational Collective Intelligence, vol. 16, pp. 122–145, 2014.

[8] O. Biran and C. Cotton, “Explanation and justification in machine
learning: A survey,” in IJCAI-17 workshop on explainable AI (XAI),
vol. 8, 2017, p. 1.

[9] T. Nomura and K. Kawakami, “Relationships between robot’s self-
disclosures and human’s anxiety toward robots,” in Proceedings of the
2011 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology-Volume 03. IEEE Computer Society,
2011, pp. 66–69.

[10] D. Eskins and W. H. Sanders, “The multiple-asymmetric-utility system
model: A framework for modeling cyber-human systems,” in Eighth
International Conference on Quantitative Evaluation of Systems, QEST
2011, Aachen, Germany, 5-8 September, 2011, 2011, pp. 233–242.

[11] S. Cheng, D. Garlan, and B. R. Schmerl, “Evaluating the effectiveness of
the rainbow self-adaptive system,” in 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2009,
Vancouver, BC, Canada, May 18-19, 2009, 2009, pp. 132–141.

[12] M. Kwiatkowska, G. Norman, and D. Parker, Probabilistic Model
Checking: Advances and Applications. Cham: Springer International
Publishing, 2018, pp. 73–121.

[13] A. Simaitis, “Automatic verification of competitive stochastic
systems,” Ph.D. dissertation, University of Oxford, UK, 2014.
[Online]. Available: http://ora.ox.ac.uk/objects/uuid:68b5e2d8-ba04-
419f-8926-4cd542121e2d

[14] T. Chen and J. Lu, “Probabilistic alternating-time temporal logic and
model checking algorithm,” in Fourth International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD 2007, 24-27 August 2007,
Haikou, Hainan, China, Proceedings, Volume 2, 2007, pp. 35–39.

[15] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal
logic,” J. ACM, vol. 49, no. 5, pp. 672–713, 2002.

[16] M. Gil, M. Albert, J. Fons, and V. Pelechano, “Designing human-in-the-
loop autonomous cyber-physical systems,” Int. J. Hum. Comput. Stud.,
vol. 130, pp. 21–39, 2019.
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