
Explaining Architectural Design Tradeoff Spaces:
a Machine Learning Approach

Javier Cámara1, Mariana Silva1, David Garlan2, and Bradley Schmerl2

1 University of York, UK
{javier.camaramoreno,mariana.silva}@york.ac.uk

2 Carnegie Mellon University, USA
{garlan,schmerl}@cs.cmu.edu

Abstract. In software design, guaranteeing the correctness of run-time
system behavior while achieving an acceptable balance among multiple
quality attributes remains a challenging problem. Moreover, providing
guarantees about the satisfaction of those requirements when systems
are subject to uncertain environments is even more challenging. While
recent developments in architectural analysis techniques can assist archi-
tects in exploring the satisfaction of quantitative guarantees across the
design space, existing approaches are still limited because they do not
explicitly link design decisions to satisfaction of quality requirements.
Furthermore, the amount of information they yield can be overwhelm-
ing to a human designer, making it difficult to distinguish the forest
through the trees. In this paper, we present an approach to analyzing ar-
chitectural design spaces that addresses these limitations and provides a
basis to enable the explainability of design tradeoffs. Our approach com-
bines dimensionality reduction techniques employed in machine learning
pipelines with quantitative verification to enable architects to understand
how design decisions contribute to the satisfaction of strict quantitative
guarantees under uncertainty across the design space. Our results show
feasibility of the approach in two case studies and evidence that dimen-
sionality reduction is a viable approach to facilitate comprehension of
tradeoffs in poorly-understood design spaces.

Keywords: Tradeoff analysis · Uncertainty · Dimensionality reduction.

1 Introduction

Architecting modern software-intensive systems requires exploring design spaces
that are often poorly understood due to the increasing complexity and range
of design choices that have to be made (and their potential interactions), as
well as to the high levels of uncertainty under which these systems are expected
to operate, being subject to faults, changes in resource availability and network
conditions, as well as to attacks [13]. In this setting, achieving a good design that
is able to guarantee the correctness of run-time system behavior while striking an
acceptable balance among multiple nonfunctional properties is challenging – in
particular when: (i) the context in which the system has to run contains unknown

2 J. Cámara, M. Silva, D. Garlan, B. Schmerl

attributes that are difficult to anticipate, and (ii) design decisions involve the
selection and composition of loosely coupled, pre-existing components or services
that have different attributes (e.g., performance, reliability, cost).

There are many existing approaches that help to automate the search for
a good architecture and that rely on a variety of techniques such as stochas-
tic search and Pareto analysis [1, 3, 21], as well as quantitative verification [6,
9] that enable architects to explore how the satisfaction of quality of service
requirements varies as the value of design parameters and environment variables
change. Despite being informative, these approaches do not always make clear
why and how architectures were selected because: (i) they do not explicitly link
design decisions and environmental factors to the satisfaction of requirements,
(ii) they yield vast amounts of data that are not easy to interpret by a human
designer, and (iii) results include both useful information and noise that obscures
understanding of the relation among variables.

Architects need tools and techniques to help them understand the tradeoffs
of complex design spaces and guide them to good designs, enabling them to
answer questions such as: Why are these tradeoffs being made, and not others?
What are the most important parameters and qualities that are driving the key
design decisions? How sensitive to a particular set of decisions is the satisfaction
of constraints or the achievement of optimality? Which choices are correlated
with others, either positively or negatively?

Providing such tool support demands investigating questions such as:

(RQ1) How can we link architectural design decisions and requirements satis-
faction in a way that highlights the most important dependencies among them?

(RQ2) How much can we reduce the complexity of the information presented to
the architect while preserving most of the relevant design tradeoff information?

This paper explores these questions by introducing an approach to enable
the explainability of architectural design spaces that addresses the limitations
described above. Our approach employs a dimensionality reduction technique
called principal component analysis (PCA) [16], which is typically employed to
compress information in machine learning (ML) pipelines e.g., by reducing the
number of features provided as input to a neural network classifier [17], as well
as in natural sciences like biology to interpret high-dimensional data [20]. In
our case, we combine dimensionality reduction with quantitative verification to
facilitate understanding how design decisions contribute to the satisfaction of
quantitative requirements across the architectural design space. Concretely, our
approach consists of: (i) extracting design features and quality metrics of a pop-
ulation of architectural configuration samples generated via synthesis and quan-
titative verification [9], (ii) applying PCA to tease out the main variables that
influence the qualities of configurations, as well as to establish a link between de-
sign variables (e.g., component selection, topological arrangement, configuration
parameter values) and the qualities of the resulting configurations.

Our results show feasibility of the approach in two case studies and evidence
that dimensionality reduction is a viable technique to facilitate understanding
of tradeoffs in poorly-understood design spaces.

Explaining Architectural Design Tradeoff Spaces 3

2 Motivating Scenario: Tele-Assistance System (TAS)

TAS [26] is a service-based system whose goal is tracking a patient’s vital pa-
rameters to adapt drug type or dose when needed, and taking actions in case
of emergency. TAS combines three service types in a workflow (Figure 1, left).
When TAS receives a request that includes the vital parameters of a patient,
its Medical Service analyzes the data and replies with instructions to: (i) change
the patient’s drug type, (ii) change the drug dose, or (iii) trigger an alarm for
first responders in case of emergency. When changing the drug type or dose,
TAS notifies a local pharmacy using a Drug Service, whereas first responders
are notified via an Alarm Service.

:Tele
Assistance
Service

:Drug
Service

:Medical
Service

:Alarm
Service

pick=pickTask()

sendAlarm()

sendAlarm()

alt

opt
[analysisResult!=patientOK]

[analysisResult==sendAlarm]

alt
[pick==vitalParamsMsg]

loop

[pick==buttonMsg]

data=getVitalParams()

analysisResult=analyzeData(data)

changeDrug(patientId)

changeDose(patientId)

[pick!=stopMsg]

[analysisResult==changeDrug]

[analysisResult==changeDose]

TAS

Service name Fail.rate Resp.time Cost
(%) (ms.) (usd)

(S1) Medical S.1 0.06 22 9.8
(S2) Medical S.2 0.1 27 8.9
(S3) Medical S.3 0.15 31 9.3
(S4) Medical S.4 0.25 29 7.3
(S5) Medical S.5 0.05 20 11.9
(AS1) Alarm S.1 0.3 11 4.1
(AS2) Alarm S.2 0.4 9 2.5
(AS3) Alarm S.3 0.08 3 6.8
(D1) Drug S.1 0.12 1 0.1

(a) Properties of TAS service providers.

Id Description
R1 The average failure rate should not ex-

ceed 0.03%.
R2 The average response time should not

exceed 26 ms.
R3 Subject to R1 and R2, the cost should

be minimized.

(b) Example of quality requirements.

Fig. 1. TAS workflow, service provider properties, and quality requirements.

The functionality of each service type in TAS is provided by multiple third
parties with different levels of performance (response time), reliability (failure
rate), and cost (Figure 1.a). Finding an adequate design for the system entails un-
derstanding the tradeoff space by selecting the set of system configurations that
satisfy: (i) structural constraints, e.g., the Drug Service must not be connected
to an Alarm Service, (ii) behavioral correctness properties (e.g., the system will
eventually provide a response – either by dispatching an ambulance or notifying
the pharmacy), and (iii) quality requirements, which can be formulated as a
combination of quantitative constraints and optimizations (Figure 1.b).

Figure 2 shows the analysis results of TAS obtained by applying our prior
work that combines structural synthesis and quantitative verification to analyze
quantitative formal guarantees across the architectural design space [8, 9]. The
plot on the left shows the minimized cost of configurations for different levels of
constraints on response time and reliability. This plot conveys the intuition that
higher response times and lower reliability correspond to lower costs, whereas
peaks in cost are reached with lowest failure rates and response times.

4 J. Cámara, M. Silva, D. Garlan, B. SchmerlFormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

t(s)

Pr
ob

ab
ili

ty

minPmax[Ft all highNode.s = infected]
maxPmax[Ft all highNode.s = infected]

minP[Ft all highNode.s = infected]
maxP[Ft all highNode.s = infected]

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

t(s)

Pr
ob

ab
ili

ty

minPmax[Ft some highNode.s = infected]
maxPmax[F t some highNode.s = infected]

minP[Ft some highNode.s = infected]
maxP[Ft some highNode.s = infected]

Figure 8: Network virus infection results

6.1.2 Tele-Assistance System (TAS). The goal of the TAS exemplar
system [52] is tracking a patient’s vital parameters to adapt drug
type or dose when needed, and taking actions in case of emergency.
TAS combines three service types in a work�ow. When TAS receives
a request that includes the vital parameters of a patient, its Medical
Service analyzes the data and replies with instructions to: (i) change
the patient’s drug type, (ii) change the drug dose, or (iii) trigger an
alarm for� rst responders in case of emergency. When changing
the drug type or dose, TAS noti�es a local pharmacy using a Drug
Service, whereas� rst responders are noti�ed via an Alarm Service.

The following excerpt shows the TAS work�ow modeled as a
signature in which static� elds correspond to service bindings, and
its behavior speci�cation de�nes a set of local variables that keep
track of the work�ow status:
one sig TASWorkflow {MSBindings: some MedicalAnalysisService, ...}
</ enum tasks:{notSelected, getVitalParams, buttonMsg};

enum analysisResultTypes:{none, patientOK, ..., sendAlarm};
var task:[tasks] init notSelected; ...
var MSInvoked, ..., workflowOK, workflowDone : bool init false;
[pickTask] (task=notSelected) -> //PickTask

0.5: (task�=getVitalParams) + 0.5: (task�=buttonMsg);
[] (task=buttonMsg) & (!MSInvoked) ->

(MSInvoked�=true) & (analysisResult�=sendAlarm);
[MSBindings:analyzeData] (task=getVitalParams) & (!MSInvoked) ->

(MSInvoked�=true); //PickTask selected getVitalParams
[MSBindings:analysisResultPatientOK] (MSInvoked) ->

(analysisResult�=patientOK) & (workflowOK�=true)
& (workflowDone�=true); ...

[MSBindings:analysisResultSendAlarm] (MSInvoked) ->
(analysisResult�=sendAlarm); ...

[MSBindings:timeout] (timeouts=0) & (MSInvoked) ->
(workflowDone�=true); ... />

Calls to service operations are pre�xed by the service binding
relation (e.g., analyzeData is pre�xed by MSBinding), so that the
actual binding between the work�ow and the services will be auto-
matically created by the tool when con�gurations are generated.

The functionality of each service type in TAS is provided by third
parties with di�erent levels of performance, reliability, and cost.
The metrics employed for the quality attributes are the percentage
of service failures for reliability, and service response time for
performance. Service providers can be created as abstract signatures
that encode these attributes as formulas, and include a constraint
to include a binding on the service side to the work�ow:
abstract sig ServiceProvider {WorkflowBinding: one TASWorkflow}
fact {all sp:ServiceProvider, w:TASWorkflow |

sp in w.ServiceBindings <=> w=sp.WorkflowBinding}
</ formula failure_rate, response_time, cost; />

0.980.990.99
1

20

30

8

10

Reliability (%) Resp
onse

tim
e (m

s.)

Co
st

(u
sd

)

0.980.990.9911

15

20

25

30

35

Reliability (%)

Re
sp

on
se

tim
e

(m
s.)

Figure 9: TAS analysis results

Service providers are subtyped by the types of service involved
in the composition. Service invocation includes two probabilistic
outcomes that model the possibility of service failure:
abstract sig MedicalAnalysisService extends ServiceProvider {}
</ var serviceOK: bool init false;

var ready : bool init true;
[WorkflowBinding:analyzeData] (ready) ->

failure_rate: (serviceOK�=false) & (ready�=false)
+ 1-failure_rate: (serviceOK�=true) & (ready�=false);

[WorkflowBinding:analysisResultPatientOK](!ready) & (serviceOK) ->
(serviceOK�=false) & (ready�=true); ...

reward costRew [WorkflowBinding:analyzeData] true : cost;
reward timeRew [WorkflowBinding:analysisResultPatientOK]

true : response_time; />

Every concrete service extends a service type encoded with a set
of attribute values. The use of the quanti�er lone indicates that the
use of every instance is optional, giving� exibility to use alternative
services of the same type in the composition:
lone sig MS1 extends MedicalAnalysisService{}
</ formula failure_rate=0.06, response_time=22, cost=9.8; />

Finding an adequate design for the system entails understanding
the tradeo� space by� nding the set of system con�gurations that
satisfy: (i) structural constraints, e.g., the Drug Service must not be
connected to an Alarm Service, (ii) behavioral correctness proper-
ties (e.g., the system is eventually going to provide a response –
either by dispatching an ambulance or notifying a change to the
pharmacy), and (iii) quality requirements, which can be formulated
as a combination of quantitative constraints and optimizations, e.g.:
(R1) The average failure rate must not exceed fr %, (R2) The aver-
age response time must not exceed rt ms, and (R3) Subject to R1
and R2, the cost should be minimized.

We can automatically search the design space to� nd the best
legal con�gurations with respect to these requirements by checking
the composite M-PCTL property constrained_mincost:

reliable ⌘ SallPfr[F some TASWorkflow.workFlowOK]
performant ⌘ SallRtimeRew

rt [F some TASWorkflow.workFlowDone]
mincost ⌘ minRcostRew[F some TASWorkflow.workFlowDone]

constrained_mincost ⌘ hreliable \ performanti mincost

The formulas labeled as reliable and performant obtain the set of
con�gurations that satisfy the reliability and performance require-
ments R1 and R2, respectively. Then, we can quantify the minimum
cost entailed by these joint requirements by scoping the quanti�-
cation of the third property mincost to the subset of designs that
satisfy the� rst two properties. For obtaining the con�guration(s)
that minimize cost for the speci�ed performance and reliability
levels, we substitute the quanti�er in mincost by SminR.

Figure 9 shows analysis results. The plot on the left shows the
minimized cost of con�gurations for di�erent levels of constraints
on response time and reliability. It was computed by checking
property constrained_mincost in the region of the state space in

��

Fig. 2. TAS Analysis results.

The plot on the right is a map that shows which configurations best satisfy
design criteria. Out of the set of 90 configurations that can be generated for TAS,
only 24 satisfy the criteria in some subregion of the state space. If we consider
that designers are interested e.g., in systems with response times ≤26ms and
reliability ≥99%, we can employ the same analysis technique to determine which
configurations best satisfy these constraints (highlighted in red in the figure).

Although these plots are informative and help architects to understand what
specific configurations might work well in a given situation, looking at them does
not facilitate understanding what design decisions influence these tradeoffs. An-
swering to what extent improvements on qualities are a function of the choice of
a specific service implementation, the topological arrangement of the composi-
tion, or the value of configuration parameters (e.g., maximum number of retries,
or timeout duration when services fail) is not possible with existing approaches.

One of the main challenges in facilitating the understanding of the tradeoff
space relates to the high dimensionality of the data and how to make it digestible
to a human designer: there are too many characteristics of configurations (and
relations among them) to track, and some of them contribute more than others
to the variation of quality attributes. For instance, even in the relatively simple
system illustrated earlier, it is unclear if selecting specific services contributes
more to system quality variation than workflow configuration parameters like
timeout length. In the next section, we describe how to address this challenge.

3 Approach

The inputs to our approach for explaining design tradeoffs (Figure 3) are a set of
legal configurations (i.e., those that satisfy the constraints of a given architectural
style), captured as attribute-annotated graphs, and a set of quantitative metrics
that can capture aspects related to e.g., the energy consumption, timeliness,
or safety of configurations. The output of the process is a plot that captures a
description of the relations between design and QoS variables (e.g., response time
is negatively correlated with reliability, selection of component X contributes to
lower response times and higher cost), as well as their contributions to differences
among architectural configurations. The approach consists of three stages:

Explaining Architectural Design Tradeoff Spaces 5

Configurations 1. Configuration
Data Extraction

Configuration
Metrics

2. Data
Aggregation and

Normalization

Configuration
Data

Correlations
Table

3. Principal
Component

Analysis (PCA)

Variable
Relations

Variable
Contributions

PCA Loadings Plot

Fig. 3. Overview of the Approach.

1. Configuration Data Extraction collects relevant information about the char-
acteristics of architecture configurations. Data extracted includes both topo-
logical information (e.g., centrality and cardinality measures of nodes cor-
responding to different architectural types and bindings) and information
related to properties of components, connectors, and other parameters.

2. Data Aggregation and Normalization. In this step, the configuration data
produced in (1) and the configuration metrics provided as input to the pro-
cess are aggregated into a single correlations table. Table data is normalized
so that all variables will have the same weight in subsequent analysis steps.

3. Principal Component Analysis (PCA) is employed to discover how archi-
tectural configurations differ from one another, and which variables con-
tribute the most to that difference. Moreover, PCA enables us to discrimi-
nate whether variables contribute in the same way or a different way (i.e.,
are positively or negatively correlated, respectively), or if instead, are inde-
pendent from each other. This enables architects to relate response variation
(QoS, quantitative guarantees) to design variables.

In the remainder of this section, we first introduce some preliminaries, and
follow with a detailed description of the three stages of our approach.

3.1 Preliminaries

Design spaces are often constrained by the need to design systems within certain
patterns or constraints. Architectural styles [22] characterize the design space
of families of software systems in terms of patterns of structural organization,
defining a vocabulary of component and connector types, as well as a set of
constraints on how they can be combined. Styles help designers constrain design
space exploration to within a set of legal structures to which the system must
conform. However, while the structure of a system may be constrained by some
style, there is still considerable design flexibility left for exploring the tradeoffs
on many of the qualities that a system must achieve.

Definition 1 (Architectural Style). Formally, we characterize an architec-
tural style as a tuple (Σ, CS), where:

– Σ = (CompT,ConnT,Π,Λ) is an architectural signature, such that:

6 J. Cámara, M. Silva, D. Garlan, B. Schmerl

• CompT and ConnT are disjoint sets of component and connector types.
For conciseness, we define ArchT ≡ CompT ∪ ConnT .

• Π : ArchT → 2D is a function that assigns sets of symbols typed by
datatypes in a fixed set D to architectural types κ ∈ ArchT . Π(κ) rep-
resents the properties associated with type κ. To refer to a property
p ∈ Π(κ), we simply write κ.p.

• Λ : ArchT → 2P ∪2R is a function that assigns a set of symbols typed by
a fixed set P to components κ ∈ CompT . This function also assigns a set
of symbols in a fixed set R to connectors κ ∈ ConnT . Λ(κ) represents the
ports of a component (conversely, the roles if κ is a connector), which
define logical points of interaction with κ’s environment. To denote a
port/role q ∈ Λ(κ), we write κ :: q.

– CS is a set of structural constraints expressed in a constraint language based
on first-order predicate logic in the style of Acme [14] or OCL [25] constraints
(e.g., ∀ w:TASWorkflowT •∃ a:AlarmServiceT • connected(w,a) – “every TAS
workflow must be connected to at least one alarm service”).

In the remainder of this section, we assume a fixed universe AΣ of architectural
elements, i.e., a finite set of components and connectors for Σ typed by ArchT .
The type of an architectural element c ∈ AΣ is denoted by type(c). We assume
that elements of AΣ are indexed and designate the ith element by AiΣ .

A configuration is a graph that captures the topology of a legal structure of
the system in a style A (we designate A’s set of legal configurations by G∗A).

Definition 2 (Configuration). A configuration in an architectural style (Σ, CS),
given a fixed universe of architectural elements AΣ, is a graph G = (N , E) sat-
isfying the constraints imposed by CS, where: N is a set of nodes, such that
N ⊆ AΣ, and E is a set of pairs typed by P × R that represent attachments
between ports and roles.

To determine if two architectural elements are attached on any of their port/roles,
we define the function att : AΣ×AΣ → B as att(n, n′) = > if ∃p ∈ P, r ∈ R•n ::
p∧n′ :: r∧(p, r) ∈ E , and att(n, n′) = ⊥ otherwise. We say that two components
are bound if there is a connector attached to any of their ports on both ends.
This is captured by function bnd : CompT × CompT → B, bnd(n, n′) = > if
∃ n′′ ∈ N , s.t. att(n, n′′) ∧ att(n′′, n′), and bnd(n, n′) = ⊥ otherwise.

3.2 Configuration Data Extraction

The first stage of our approach extracts the set of relevant attributes that cor-
respond to different design decisions made to form any legal configuration (i.e.,
that conforms to the architectural style), which are provided as input to the
process. Our approach is agnostic to the mechanisms employed to generate the
set of configurations that conform to an architectural style: this process is out
of scope of this paper, but existing prior work has addressed this problem in a
variety of ways (see [9] for one example).

The attributes extracted from a configuration G = (N , E) form a tuple of
design variable values DG(C, T, P) ∈ DG, where:

Explaining Architectural Design Tradeoff Spaces 7

– C ∈ Rn>0 is a vector that contains data items corresponding to constituent
architectural elements of the configuration (e.g., the presence and number
of specific components and connectors). Concretely, this vector is formed by
concatenating the result of the following functions:
1. Architectural element presence extraction fep : G∗A → {0, 1}|AΣ |, returns

a vector 〈p1, . . . , p|AΣ |〉 that encodes the presence of specific architectural
elements (i.e., component and connector instances) in a configuration,
where pi = 1, i ∈ {1..|AΣ |} if AiΣ ∈ N , and pi = 0, otherwise.

2. Architectural type cardinality extraction ftc : G∗A → N|ArchT |, returns
a vector 〈xtc(κ1), . . . , xtc(κ|ArchT |)〉 encoding the number of component
and connectors of each type present in a configuration. For κ ∈ ArchT ,
we define function xtc :ArchT → N as xtc(κ) = |{n ∈ N | type(n) = κ}|.

– T ∈ Rn>0 is a vector of data items that correspond to the topology of the
configuration like the presence of certain attachments among architectural
elements, and other topological measures like centrality indices, which char-
acterize important nodes in the configuration topology [2, 4]. Concretely, this
vector is formed by concatenating the results of the following functions:
1. Binding presence extraction fbp : G∗A → {0, 1}|AΣ |·|AΣ | returns a vec-

tor 〈p1,1, . . . , p|AΣ |,1, . . . , p|AΣ |,|A|Σ 〉 that encodes the presence of bind-
ings between specific components, with pi,j = 1, i, j ∈ {1..|AΣ |} if

bnd(AiΣ ,A
j
Σ), and pi,j = 0 otherwise.

2. Binding type cardinality extraction fbtc : G∗A → N|CompT |·|CompT |, returns
a vector 〈xbtc(κ1, κ1), . . . , xbtc(κ|CompT |,1), . . . , xbtc(κ|CompT |,|CompT |)〉 en-
coding the number of bindings between specific pairs of component types.
For the pair of component types (κ, κ′), we define function xbtc : CompT×
CompT → N as xbtc(κ, κ

′) = |{(n, n′) ∈ N×N | type(n) = κ∧type(n′) =
κ′ ∧ bnd(n, n′)}|.

3. Betweenness centrality extraction fCB : G∗A → R|AΣ |, returns a vec-

tor 〈CB(A1
Σ), . . . , CB(A|AΣ |Σ)〉 that encodes the betweenness centrality

of each node in the configuration graph, which quantifies the number of
times that a node acts as a bridge along the shortest path between two
other nodes [12]. Specifically, CB : AΣ → R≥0 is defined as: CB(n) =∑
s6=n 6=t∈N (σst(n)/σst), where σst is the total number of shortest paths

from node s to t in the configuration graph, and σst(n) is the number of
those paths that pass through n.

– P ∈ Rn is a vector containing data items corresponding to the values of
relevant configuration parameters. We assume that these can be directly
obtained from the values of properties associated with the different ar-
chitectural elements of the configuration (e.g., configuration parameter for
number of maximum service retries in TAS is stored in property TASWork-
flow0.max timeouts, where TASWorkflow0 is an instance of TASWorkflowT).

3.3 Data Aggregation and Normalization

The second input to our approach is a set of vectors RG of the form RG =
〈r1, . . . , rn〉, ri ∈ R, i ∈ {1..n} containing response variables that correspond to

8 J. Cámara, M. Silva, D. Garlan, B. Schmerl

the values of the quantified metrics for the different quality dimensions in a con-
figuration G. Our technique is agnostic to the mechanisms employed to quantify
the quality metrics of a configuration. However, in the particular instantiation
of the approach used in this paper, we obtain these values by checking a variety
of probabilistic temporal logic properties encoded in an extension of PCTL us-
ing HaiQ [8], a tool that performs probabilistic model checking on collections of
structural design variants that uses Alloy [15] and PRISM [19] in its backend.

The purpose of data aggregation and normalization is to generate a correla-
tions table that can be provided as input to PCA:

– Data aggregation. Given a design variable value tuple DG(C, T, P) ∈ DG,
and a response variable vector RG = 〈r1, . . . , rn〉 ∈ RG for the same config-
uration G, we define the configuration sample for G as RG _ DG , where _
denotes concatenation. The (non-normalized) correlations table is formed by
the samples that correspond to all input configurations.

– Data normalization. The correlations table contains variables that span vary-
ing degrees of magnitude and range. To avoid bias in PCA towards variables
that may have a higher magnitude, we scale the data employing unity-based
normalization, meaning that for any data item in the correlations table xi,j
for sample i and variable j, the new value of the data item is defined as
x′i,j = (xi,j −xminj)/(xmaxj −xminj), where xminj , xmaxj are the minimum and
maximum values of variable j across all samples.

Example 1. Figure 4 shows a sample TAS configuration, along with an excerpt
of its encoding in the correlations table. The first and second top-most tables
show the presence of architectural elements and type cardinalities (fep and ftc,
respectively). In this case, we can observe that the cardinality of all architectural
types is 1, except for the HttpConnT connector type, of which there are four in-
stances. The two tables at the bottom describe the presence of bindings between
components (fbp), and their betweenness centrality (fCB). TAS is built as a ser-
vice orchestration with a centralized workflow, meaning that all components but
the workflow itself will have a betweenness centrality of zero.

3.4 Principal Component Analysis

Data resulting from analyzing architectural spaces usually contain a large amount
of information, which is often too complex to be easily interpreted. Principal
Component Analysis (PCA) [16] is a statistical projection method commonly
used in ML and natural science that can help to visualize and facilitate under-
standing that information. To begin with, PCA can help to find out in what
respect some architectural configurations differ from others, and which variables
contribute to this difference. In some cases, variables contribute in the same way
(i.e., are correlated) or do so independently from each other. An important as-
pect of PCA is that it also enables quantifying the amount of useful information
in a data set, as opposed to noise or meaningless variations.

If we consider the data in the correlations table geometrically, we can say
that two samples (i.e., architectural configurations) are similar if they have close

Explaining Architectural Design Tradeoff Spaces 9

TAS1
(TASWorkflowT)

S5
(MedicalServiceT)

D1
(DrugServiceT)

AS3
(AlarmServiceT)

Port
Connector
Component

Caller1

Caller0

Caller3

Callee1

Callee0

Callee3
changeDrugPTS changeDrugPD

changeDosePTS changeDosePD

sendAlarmPTS sendAlarmPAS

analyzeDataPTS

analyzeDataPS

C1
(HttpConnT)

Callee2

Caller2

Legend

C3
(HttpConnT)

C2
(HttpConnT)

C0 (HttpConnT)

fep TAS1 1 AS1 0
D1 1 AS2 0
S1 1 AS3 1
S2 0 C0 1
.
S5 0 C3 1

ftc TASWorkflowT 1 AlarmServiceT 1
DrugServiceT 1 HttpConnT 4
MedicalServiceT 1

fbp TAS1-TAS1 0 TAS1-AS1 0
TAS1-D1 1 AS2-S1 0
TAS1-S1 0 AS3-TAS1 1
TAS1-S5 1 AS1-D1 0
.
S1-S2 0 AS3-AS3 0

fCB TAS1 6 AS1 0
D1 0 AS2 0
S1 0 AS3 0
S2 0
.
S5 0

Fig. 4. Sample TAS configuration (left), along with an excerpt of its encoding (right).

values for most variables (i.e., they are in the same region of the multidimensional
space) and different, otherwise. Considering this, the purpose of PCA is finding
the directions in space in which the distance between points is the largest. That
is equivalent to finding the linear combinations of the variables that contribute
most to making the samples (i.e., configurations) different from each other. These
directions or linear combinations are called principal components.

Principal components (PC) are computed in an iterative manner, in such a
way that the first PC is the one that carries most information (most explained
variance), whereas the second PC will carry the maximum share of the infor-
mation not taken into account by the previous PC, and so on. All PCs are
orthogonal to each other and each one carries more information than the next
one. In fact, this is one of the characteristics of PCA that makes it appealing
as an underlying mechanism to enable the explainability of architectural design
tradeoff spaces: the interpretation of PCs can be prioritized, since the first PCs
are known to carry the most information. Indeed, it is often the case that only the
first two PC contain genuine information, whereas the rest are likely to describe
noise [16].

The main results of PCA consist of three complementary sets of attributes:
(i) variances, which tell us how much information is taken into account by the
successive PCs, (ii) loadings, which describe relationships between variables, and
(iii) scores, which describe properties of the samples. In this paper, we focus on
variances and loadings, which will tell us what are the main variables (i.e., either
design or response variables) that contribute the most (and in what way) to the
differences among architectural configurations.

Example 2. The PCA loadings plot of the samples analyzed for TAS (Figure 5)
displays the first two PCs, which carry a large amount of information, explaining
83% of the variance of data, with PC1 explaining the most (68%) and PC2

10 J. Cámara, M. Silva, D. Garlan, B. Schmerl

explaining much less variance (13%). The plot contains two ellipses that indicate
how much variance is taken into account. The outer ellipse is the unit-circle
and indicates 100% explained variance, whereas the inner ellipse indicates 50%
of explained variance. Variables that are found between the edges of the two
ellipses, and particularly those positioned near the edge of the outer ellipse, are
those that are more important to differentiate the architectural configurations.

We can observe in this case that QoS metrics like reliability, cost, and re-
sponse time are all important to differentiate configurations. Out of the three,
response time is the most relevant, given that it is the most important for PC1,
which accounts for almost 70% of the overall variability, whereas reliability and
cost are important for PC2, but comparatively have less influence overall.

In addition to teasing out the most important variables, the plot displays
the relationships between variables. In the plot, the angle between the vectors
that go from the origin of coordinates to a variable point is an approximation
of the correlation between the variables. A small angle indicates the variables
are positively correlated, an angle of 90 degrees indicates the variables are not
correlated, and an angle close to 180 degrees indicates the variables are negatively
correlated. In our example, we can observe that reliability and cost are positively
correlated, whereas response time is negatively correlated with both of them.
These observations are consistent with the results in Figure 2, which show that
low response times and high reliability levels correspond to higher costs.

PC2 (13
%)

PC1 (68%)

0

01 0.8 0.6 0.40.81 0.2 10.80.60.40.2
0.60.40.2

0.810.60.40.2 response time

reliability
binding:TASWorkflow0AS3

cost
[C]AS3

[B]TASWorkflow0

timeout length max timeouts binding:TASWorkflow0MS5[C]MS5

Response variable (QoS)Design variable

Fig. 5. Correlation loading PCA plot for TAS.

So far, we have been discussing QoS variables, but the loading plot also en-
ables architects to observe the influence of design variables on variability. Here,
we can see in the lower-right quadrant of the ellipse that some of the most influ-

Explaining Architectural Design Tradeoff Spaces 11

ential variables for PC1 correspond to the presence of alarm service instance AS3
in a configuration, as well as to its binding to the workflow (TASWorkflow0). We
observe that all these design variables related to AS3 are positively correlated
with reliability and cost, and negatively correlated with response time. This in-
dicates that the selection of AS3 has a remarkable influence on the qualities
of the resulting configurations and is consistent with the fact that the alterna-
tive alarm service implementations have considerably higher failure rates and
response times than AS3, as well as lower cost per invocation (see Figure 1.a).
Also, the alarm service is invoked more times in the workflow than any other
service. Consequently other services like MS5, which are also influential and have
the same QoS correlations as AS3, have a comparatively moderate impact (its
associated design variables are within the inner edge of the ellipse) because they
are invoked only once in the workflow. With respect to configuration parame-
ters, we can see that, as expected, both timeout length and maximum number of
timeouts for service invocations are positively correlated with response time with
respect to PC1, but also to a lesser extent with reliability and cost with respect
to PC2. This observation is consistent with the fact that more service invocation
retries lead to increased reliability and cost, at the expense of higher response
times. Finally, the betweenness centrality of the workflow ([B]TASWorkflow0)
on the right-upper corner of the diagram is a relevant variable, although it is
not particularly significant in this case, given that TAS is a centralized service
orchestration in which the workflow is always at the center of the composition.

4 Evaluation

The objective of our evaluation is to: (i) assess the feasibility of linking design
decisions to requirement satisfaction (RQ1) and (ii) assess the tradeoff between
the information reduction and the amount of variance explained (RQ2).

In this section, we first describe our experimental setup. We then briefly
introduce a scenario that we have incorporated into our evaluation in addition
to TAS. Finally, we discuss results, relating them to our research questions.

4.1 Experimental Setup

We generated the set of architectural configurations and their QoS metrics using
an extended version of HaiQ that implements the data extraction, aggregation,
and normalization procedures described in Sections 3.2-3.3 and the set of mod-
els for TAS and the network virus example described in [8]. Table 1 describes
the number of variables and samples included in the datasets generated for the
two case studies. Data analysis using PCA was performed employing “CAMO
Analytics Unscrambler software (v11)” (https://www.camo.com/unscrambler/).

4.2 Scenario: Network Architecture

Architecting network-based systems that are resilient to uncontrollable environ-
ment conditions, such as network delays, or undesirable events such at virus

12 J. Cámara, M. Silva, D. Garlan, B. Schmerl

Table 1. Dataset dimensions for experimental evaluation.

Case Study # Variables #samples

QoS fep ftc fbp fbtc fCB parameters total

Tele-Assistance System 3 10 10 27 27 10 2 89 1080
Network Architecture 2 9 4 46 11 9 3 84 2400

infections, entails structuring the system in a way that maximizes the chances
of continued service provision in spite of the adverse conditions that it is subject
to. The scenario introduced by Kwiatkowska et al [18] models the progression of
a virus infecting a network formed by a grid of N×N nodes. The virus remains at
a node that is infected and repeatedly tries to infect any uninfected neighbors by
first attacking the neighbor’s firewall and, if successful, trying to infect the node.
In the network there are ’low’ and ’high’ nodes divided by ’barrier’ nodes that
scan the traffic between them. Ideally, the architecture of the network should:
(i) minimize the probability of successful infection of high nodes in the network
within 50 time units, and (ii) maximize the number of node infection or attack
attempts that the virus carries out to spread itself through the high nodes.

Results The PCA loadings plot for the network architecture (Figure 6) displays
the first two PCs, which explain 75% of the data variation (43% for PC1 and
32% for PC2). We can observe that both QoS metrics for the virus infection
success and maximum number of virus attacks are very important to differentiate
configurations. Being at the two opposite ends of the horizontal axis, they are
negatively correlated, indicating that configurations that are less resilient require
more virus infection attempts. Although this may sound counter-intuitive, it may
be explained by the fact that the values for the virus attack success probability
variable are obtained from a time-bound probabilistic analysis of the network
model, meaning that scenarios in which the virus successfully infects high nodes
after 50 time units are not captured in the samples. In contrast, the values for
the maximum number of attacks are not time-bound.

Concerning design variables, we can observe that the most influential cluster

of variables for PC1 (identified by 1 in the figure) corresponds to the bindings
between low nodes and barrier nodes. Concretely, the number of bindings be-
tween barrier nodes and low nodes ([C]binding:barrierNode-lowNode) is positively
correlated with the virus infection success and negatively correlated with the
number of attacks. This is consistent with the fact that more bindings between
low nodes and barrier nodes gives the virus more chances to spread faster to
barrier nodes, compared to having to infect other lower nodes first. The second
most influential cluster of variables corresponds mostly to bindings between bar-

rier nodes 2 . These variables are also positively correlated with virus infection
success and negatively correlated with the maximum number of attacks. This
is expected because a higher amount of bindings between barrier nodes gives
more opportunities for the virus to spread, although the effect is more moderate
because barrier nodes always have a higher probability of detecting virus attacks
than high and low nodes. As we might expect, the number of bindings between

Explaining Architectural Design Tradeoff Spaces 13

PC2 (32
%)

PC1 (43%)

0

01 0.8 0.6 0.40.81 0.2 10.80.60.40.2
0.60.40.2

0.810.60.40.2
binding:barrierNode0lowNode1 Response variable (QoS)Design variable[B]barrierNode0

[B]BarrierNode1
max attacksinfection success binding:barrierNode2lowNode1 node detectionbarrier detection[C]binding:highNodehighNode

[C]binding:barrierNodebarrierNodebinding:barrierNode0barrierNode2binding:barrierNode0barrierNode2
[C]binding:infectedNodelowNode

[C]binding:barrierNodelowNodebinding:barrierNode1lowNode0
[C]binding:barrierNodehighNodebinding:barrierNode2highNode2binding:barrierNode0highNode2

1 2
3

Fig. 6. Correlation loading PCA plot for the network architecture.

the node that is initially infected in the network, and the number of bindings
between high nodes also influence infection success probability and maximum
number of attacks in the same way, although with a more moderate impact.
The cluster of variables that relates to bindings between barrier nodes and high

nodes 3 is also influential in the same way, with a clear contribution both to
PC1 and PC2. In PC2, we can also observe that the betweenness centrality of
barrier nodes is also influential to explain variability, although there is no clear
correlation with QoS variables, which are very close to PC1 and form angles
close to 90 degrees with [B]barrierNode0/1. Finally, node and barrier virus de-
tection probabilities are somewhat significant in terms of PC1, but interestingly,
not much compared to other variables that are related to the topology of the
configurations. This emphasizes the importance of topology for the resilience of
the network, compared to attributes of individual nodes.

4.3 Discussion

(RQ1) Feasibility. PCA analysis results performed on the TAS and network
architecture scenarios has shown that our approach is able to extract infor-
mation that explains the relation among QoS variables and design variables.
When studying the relation among QoS variables, results are consistent with
observations obtained from existing analysis techniques [8, 9]. For the relation
between design variables and QoS variables, results are also consistent with ob-
servations obtained from careful examination of models and simulations of the
studied systems. Moreover, our results have been obtained from two different

14 J. Cámara, M. Silva, D. Garlan, B. Schmerl

types of architecture (a centralized service-based system and a decentralized
network architecture). In the centralized system, component variability has a
more prominent role in explaining QoS variation, whereas in the decentralized
system, it is configuration topology that explains most QoS variation. The ability
of the approach to yield compelling results in both cases indicates its potential
applicability to a broad range of scenarios.

(RQ2) Information Reduction-Explained Variance Tradeoff. Table 2
summarizes the information reduction and explained variance for the two sce-
narios described in the paper. In the table, information reduction is calculated
as the percentage of the original variables in the dataset that remain as relevant
in the PC1-PC2 correlation loadings plot (i.e., positioned within the 50%-100%
explained variance ellipses), whereas the total explained variance for PC1-PC2
is one of the outputs provided by PCA. Total residual variance corresponds to
the remainder of PCs, i.e., variance that is left unexplained by PC1-PC2.

We can observe that in both scenarios, there is a remarkable reduction in
the information that has to be examined by an architect to analyze the tradeoff
space, which is in the range 80-93%. At the same time, the total residual variance
ranges between 19 and 25%. Although non-negligible, these are moderate levels
of residual variance, especially if we consider them in the context of the drastic
dimensionality reduction in the set of explanatory variables.

Table 2. Information reduction and explained variance summary.

Case Study #dataset #relevant information explained residual
vars. PCA vars. reduction variance variance

Tele-Assistance System 89 6 93.25 % 81 % 19 %
Network Architecture 84 16 80.95 % 75 % 25 %

5 Related Work

Evaluation of software architectures under uncertainty is a subject that has been
broadly explored [23]. Due to space constraints, we focus on the subset of works
akin to our proposal, which can be categorized into:

Architecture-based quantitative analysis and optimization approaches, which
focus on analyzing and optimizing quantitative aspects of architectures using
mechanisms that include e.g., stochastic search and Pareto analysis [1, 3, 21].
Other recent approaches to architectural design synthesis and quantitative ver-
ification [5, 8, 9] generate and analyze alternative system designs, enabling ex-
ploration of quantitative guarantees across the design space. These techniques
([8, 9] being our prior work) do not address explainability, but produce (large)
datasets that can be used as input to the approach described in this paper.

Learning-based architecture evaluation adopts ML techniques to enhance the
evaluation with observations of system properties over time [7, 10, 11, 24]. These

Explaining Architectural Design Tradeoff Spaces 15

works employ Bayesian learning [7] to update model parameters, Model Tree
Learning (MTL) to tune system adaptation logic [11], and reinforcement learn-
ing [24, 10] to analyze architectural decisions made at run-time.

While all the approaches described above provide some form of architectural
tradeoff analysis (sometimes employing ML techniques), none of them make any
claims about explicitly linking design variables with requirement satisfaction or
facilitating the explainability of the design tradeoff space. Indeed, a recent com-
prehensive literature review on architectural evaluation under uncertainty [23]
reveals no approaches covering the research gap addressed by our technique.

6 Conclusions and Future Work

In this paper, we have presented what is, to the best of our knowledge, the
first approach that explicitly relates QoS and architectural design variables us-
ing dimensionality reduction techniques employed in ML, enabling architects to
interpret the main tradeoffs of an architectural design space based on a graphi-
cal summary of the relations among the main variables that explain differences
between configurations. Our results show feasibility of the approach (RQ1) and
indicate that a remarkable reduction of the amount of information required to
explain the main tradeoffs of an architectural design space is attainable while
the reduction in explained variance remains moderate (RQ2).

Although our approach works well in the case studies presented, PCA works
optimally only in the situation where the correlations are linear, or an approx-
imation thereof. Future work will involve exploring alternatives to PCA that
enable the analysis of systems with strong non-linear correlations. Moreover,
data extraction in our approach is currently limited to component-and-connector
architectures with binary connectors. We will also explore extensions to the cat-
alogue of metrics and extraction functions required to enable richer analysis of
various styles of architectural representation.

Acknowledgements

This work is partly supported by award N00014172899 from the Office of Naval
Research (ONR) and award H9823018D0008 from the NSA. Any views, opinions,
findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the ONR or NSA.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: Archeopterix: An extendable
tool for architecture optimization of AADL models. In: ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Software. pp. 61–71 (2009)

2. Bonacich, P.: Power and centrality: A family of measures. American journal of
sociology 92(5), 1170–1182 (1987)

16 J. Cámara, M. Silva, D. Garlan, B. Schmerl

3. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs
of a JPEG decoder using the deepcompass framework. In: 6th WS on Software and
Performance. pp. 153–163. WOSP, ACM (2007)

4. Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005)
5. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Designing

robust software systems through parametric markov chain synthesis. In: Interna-
tional Conference on Software Architecture, ICSA. pp. 131–140. IEEE (2017)

6. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

7. Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve marko-
vian model learning in qos engineering. In: 2nd ACM/SPEC International Confer-
ence on Performance Engineering. p. 505–510. ICPE ’11, ACM (2011)

8. Cámara, J.: HaiQ: Synthesis of software design spaces with structural and prob-
abilistic guarantees. In: FormaliSE@ICSE 2020: 8th International Conference on
Formal Methods in Software Engineering. pp. 22–33. ACM (2020)

9. Cámara, J., Garlan, D., Schmerl, B.: Synthesizing tradeoff spaces with quantitative
guarantees for families of software systems. J. Syst. Softw. 152, 33–49 (2019)

10. Cámara, J., Muccini, H., Vaidhyanathan, K.: Quantitative verification-aided ma-
chine learning: A tandem approach for architecting self-adaptive IoT systems. In:
International Conference on Software Architecture, ICSA. pp. 11–22. IEEE (2020)

11. Esfahani, N., Elkhodary, A., Malek, S.: A learning-based framework for engineering
feature-oriented self-adaptive software systems. IEEE Transactions on Software
Engineering 39(11), 1467–1493 (2013)

12. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
pp. 35–41 (1977)

13. Garlan, D.: Software engineering in an uncertain world. In: Proc. of the Workshop
on Future of Software Engineering Research, FoSER. pp. 125–128 (2010)

14. Garlan, D., Monroe, R.T., Wile, D.: Acme: an architecture description interchange
language. In: Conference of the Centre for Advanced Studies on Collaborative
Research. p. 7. IBM (1997)

15. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (Apr 2002)

16. Jolliffe, I.T.: Principal Component Analysis and Factor Analysis, pp. 115–128.
Springer New York, New York, NY (1986)

17. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extrac-
tion techniques in machine learning. In: 2014 Science and Information Conference.
pp. 372–378 (2014)

18. Kwiatkowska, M., Norman, G., Parker, D., Vigliotti, M.: Probabilistic mobile am-
bients. Theoretical Computer Science 410(12–13), 1272–1303 (2009)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification. LNCS, vol. 6806, pp. 585–591.
Springer (2011)

20. Lever, J., Krzywinski, M., Altman, N.: Principal component analysis. Nature Meth-
ods 14(7), 641–642 (2017)

21. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve
software architecture models for performance, reliability, and cost using evo-
lutionary algorithms. In: Int. Conf. on Performance Engineering. pp. 105–116.
WOSP/SIPEW, ACM (2010)

22. Shaw, M., Garlan, D.: Software architecture - perspectives on an emerging disci-
pline. Prentice Hall (1996)

Explaining Architectural Design Tradeoff Spaces 17

23. Sobhy, D., Bahsoon, R., Minku, L., Kazman, R.: Evaluation of software archi-
tectures under uncertainty: A systematic literature review. ACM Transactions on
Software Engineering and Methodology (2021)

24. Sobhy, D., Minku, L., Bahsoon, R., Chen, T., Kazman, R.: Run-time evaluation
of architectures: A case study of diversification in IoT. J. Syst. Soft. 159 (2020)

25. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley (2003)

26. Weyns, D., Calinescu, R.: Tele assistance: A self-adaptive service-based system
exemplar. In: 10th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2015. pp. 88–92. IEEE CS (2015)

