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Abstract

In software design, guaranteeing the correctness of run-time system behavior while

achieving an acceptable balance among multiple quality attributes remains a challeng-

ing problem. Moreover, providing guarantees about the satisfaction of those require-

ments when systems are subject to uncertain environments is even more challenging.

While recent developments in architectural analysis techniques can assist architects in

exploring the satisfaction of quantitative guarantees across the design space, existing

approaches are still limited because they do not explicitly link design decisions to sat-

isfaction of quality requirements. Furthermore, the amount of information they yield

can be overwhelming to a human designer, making it difficult to see the forest for the

trees. In this paper we present ExTrA (Explaining Tradeoffs of software Architecture

design spaces), an approach to analyzing architectural design spaces that addresses

these limitations and provides a basis for explaining design tradeoffs. Our approach

employs dimensionality reduction techniques employed in machine learning pipelines

like Principal Component Analysis (PCA) and Decision Tree Learning (DTL) to en-

able architects to understand how design decisions contribute to the satisfaction of

extra-functional properties across the design space. Our results show feasibility of the
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approach in two case studies and evidence that combining complementary techniques

like PCA and DTL is a viable approach to facilitate comprehension of tradeoffs in

poorly-understood design spaces.

Keywords: Tradeoff analysis, Uncertainty, Dimensionality reduction

1. Introduction

Designing modern software-intensive systems requires exploring architectural de-

sign spaces that are often poorly understood due to the increasing complexity and range

of choices that architects have to make (and their potential interactions). To add to the

problem, it is often challenging to achieve good designs because of high levels of un-5

certainty. This uncertainty means it is often difficult to guarantee the correctness of

run-time system behavior while striking an acceptable balance among multiple non-

functional properties when design decisions involve selecting and composing loosely

coupled, pre-existing components or services that have different attributes (e.g., per-

formance, reliability, cost). These uncertainties can be induced by e.g., faults, changes10

in resource availability and network conditions, as well as attacks [1].

There are multiple approaches that help to automate the search for good archi-

tecture designs and that rely on a variety of techniques such as stochastic search and

Pareto analysis [2, 3, 4], as well as quantitative verification [5, 6] that enable architects

to explore how the satisfaction of quality of service requirements varies as the value15

of design parameters and environment variables change. Despite being informative,

these approaches do not always make clear why and how architectures were selected

because: (i) they do not explicitly link design decisions and environmental factors to

the satisfaction of requirements, (ii) they yield vast amounts of data that are not easy

to interpret by a human designer, and (iii) results include both useful information and20

noise that obscures understanding the relationship among variables.

Architects need tools and techniques to help them understand the tradeoffs of com-

plex design spaces and guide them to good designs, enabling them to answer questions

such as: Why are these tradeoffs being made, and not others? What are the most impor-

tant parameters and qualities that are driving the key design decisions? How sensitive25
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is the satisfaction of constraints or the achievement of optimality to a particular set of

decisions? Which choices are correlated with others, either positively or negatively?

Providing such tool support demands investigating questions such as:

(RQ1) How can we link architectural design decisions and quantifiable requirements

satisfaction in a way that highlights the most important dependencies among them?30

(RQ2) How can we quantify the impact of architectural design decisions on the differ-

ent qualities across the architectural design space?

(RQ3) How much can we reduce the complexity of the information presented to the

architect while preserving most of the relevant design tradeoff information?

This paper explores these questions by introducing an approach to enable the ex-35

plainability of architectural design spaces that addresses the limitations described above.

Our approach employs: (i) a dimensionality reduction technique called principal com-

ponent analysis (PCA) [7] to help identify the most relevant design variables that

contribute to QoS variation across the design space, and (ii) Decision Tree Learning

(DTL) [8] to help identify how specific design decisions impact system qualities.40

Concretely, our approach consists of: (i) extracting design features and quality met-

rics of a population of architectural configuration samples generated via synthesis and

quantitative verification [6], (ii) applying PCA to determine the main variables that

influence the qualities of configurations, as well as to establish a link between design

variables (e.g., component selection, topological arrangement, configuration parameter45

values) and the qualities of the resulting configuration, and (iii) applying DTL to iden-

tify the thresholds in design variable values that contribute to meaningful variations in

QoS variables.

In [9] we introduce a preliminary version of this work on explainability that enables

the linking of architectural design decisions and requirements satisfaction employing50

PCA, and evaluate our results on a Tele Assistance System (TAS) [10] and a network

architecture scenario [11]. In this paper, we extend our approach to also make use of

Decision Tree Learning (DTL) to provide insights about the impact for architectural

decisions on different system qualities. Moreover, we also expand our demonstration

of the approach to two variants of TAS and three variants of the network architecture55
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that enable us to better illustrate how changes in design variants can impact system

qualities.

Our results show that the approach is feasible in two case studies and provide ev-

idence that combining complementary techniques like PCA and DTL is a viable ap-

proach to facilitate comprehension of tradeoffs in poorly-understood design spaces.60

The remainder of this paper is organized as follows: Section 2 presents a motivating

example (TAS). Section 3 presents our approach to trade-off space explanation via

dimensionality reduction using PCA and DTL. Section 4 demonstrates our approach,

whereas Section 5 discusses related work. Section 6 concludes the paper and indicates

directions for future work.65

2. Motivating Scenario: Tele-Assistance System (TAS)

TAS [10] is a service-based system with the goal of tracking a patient’s vital param-

eters to adapt drug type or dose when needed, and taking actions in case of emergency.

TAS combines three service types in a workflow (Figure 1, left). When TAS receives

a request that includes the vital parameters of a patient, its Medical Service analyzes70

the data and replies with instructions to: (i) change the patient’s drug type, (ii) change

the drug dose, or (iii) trigger an alarm for first responders in case of emergency. When

changing the drug type or dose, TAS notifies a local pharmacy using a Drug Service,

whereas first responders are notified via an Alarm Service.

The functionality of each service type in TAS is provided by multiple third par-75

ties with different levels of performance (response time), reliability (failure rate), and

cost (Figure 1.a). Finding an adequate design for the system entails understanding the

tradeoff space by selecting the set of system configurations that satisfy: (i) structural

constraints, e.g., the Drug Service must not be connected to an Alarm Service, (ii) be-

havioral correctness properties (e.g., the system will eventually provide a response –80

either by dispatching an ambulance or notifying the pharmacy), and (iii) quality re-

quirements, which can be formulated as a combination of quantitative constraints and

optimizations (Figure 1.b).

Figure 2 shows the analysis results of TAS obtained by applying our prior work
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[analysisResult!=patientOK]

[analysisResult==sendAlarm]
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[pick==vitalParamsMsg]
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[pick==buttonMsg]

data=getVitalParams()

analysisResult=analyzeData(data)

changeDrug(patientId)

changeDose(patientId)

[pick!=stopMsg]

[analysisResult==changeDrug]

[analysisResult==changeDose]

TAS

Service name Fail.rate Resp.time Cost

(%) (ms.) (usd)

(S1) Medical S.1 0.06 22 9.8

(S2) Medical S.2 0.1 27 8.9

(S3) Medical S.3 0.15 31 9.3

(S4) Medical S.4 0.25 29 7.3

(S5) Medical S.5 0.05 20 11.9

(AS1) Alarm S.1 0.3 11 4.1

(AS2) Alarm S.2 0.4 9 2.5

(AS3) Alarm S.3 0.08 3 6.8

(D1) Drug S.1 0.12 1 0.1

(a) Properties of TAS service providers.

Id Description

R1 The average failure rate should not exceed

0.03%.

R2 The average response time should not exceed 26

ms.

R3 Subject to R1 and R2, the cost should be mini-

mized.
(b) Example of quality requirements.

Figure 1: TAS workflow, service provider properties, and quality requirements.

that combines structural synthesis and quantitative verification to analyze quantitative85

formal guarantees across the architectural design space [12, 6]. The results were gen-

erated by automatically synthesizing a probabilistic model of the behavior of each con-

figuration in the system, and then applying probabilistic model checking to quantify

the value of the different QoS variables. The plot on the left shows the minimized cost

of configurations for different levels of constraints on response time and reliability.90

This plot conveys the intuition that higher response times and lower reliability corre-

spond to lower costs, whereas peaks in cost are reached with the lowest failure rates

and response times.

The plot on the right is a map that shows which configurations best satisfy design

criteria. It shows that 24 configurations (out of the 90 possible configurations) satisfy95

the criteria in some subregion of the state space. If we consider that designers are

interested e.g., in systems with response times ≤26ms and reliability ≥99%, we can

employ the same analysis technique to determine which configurations best satisfy

these constraints (delimited by the red area in the figure).
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Figure 8: Network virus infection results

6.1.2 Tele-Assistance System (TAS). The goal of the TAS exemplar
system [52] is tracking a patient’s vital parameters to adapt drug
type or dose when needed, and taking actions in case of emergency.
TAS combines three service types in a work�ow. When TAS receives
a request that includes the vital parameters of a patient, its Medical
Service analyzes the data and replies with instructions to: (i) change
the patient’s drug type, (ii) change the drug dose, or (iii) trigger an
alarm for� rst responders in case of emergency. When changing
the drug type or dose, TAS noti�es a local pharmacy using a Drug
Service, whereas� rst responders are noti�ed via an Alarm Service.

The following excerpt shows the TAS work�ow modeled as a
signature in which static� elds correspond to service bindings, and
its behavior speci�cation de�nes a set of local variables that keep
track of the work�ow status:
one sig TASWorkflow {MSBindings: some MedicalAnalysisService, ...}
</ enum tasks:{notSelected, getVitalParams, buttonMsg};

enum analysisResultTypes:{none, patientOK, ..., sendAlarm};
var task:[tasks] init notSelected; ...
var MSInvoked, ..., workflowOK, workflowDone : bool init false;
[pickTask] (task=notSelected) -> //PickTask

0.5: (task�=getVitalParams) + 0.5: (task�=buttonMsg);
[] (task=buttonMsg) & (!MSInvoked) ->

(MSInvoked�=true) & (analysisResult�=sendAlarm);
[MSBindings:analyzeData] (task=getVitalParams) & (!MSInvoked) ->

(MSInvoked�=true); //PickTask selected getVitalParams
[MSBindings:analysisResultPatientOK] (MSInvoked) ->

(analysisResult�=patientOK) & (workflowOK�=true)
& (workflowDone�=true); ...
[MSBindings:analysisResultSendAlarm] (MSInvoked) ->

(analysisResult�=sendAlarm); ...
[MSBindings:timeout] (timeouts=0) & (MSInvoked) ->

(workflowDone�=true); ... />

Calls to service operations are pre�xed by the service binding
relation (e.g., analyzeData is pre�xed by MSBinding), so that the
actual binding between the work�ow and the services will be auto-
matically created by the tool when con�gurations are generated.

The functionality of each service type in TAS is provided by third
parties with di�erent levels of performance, reliability, and cost.
The metrics employed for the quality attributes are the percentage
of service failures for reliability, and service response time for
performance. Service providers can be created as abstract signatures
that encode these attributes as formulas, and include a constraint
to include a binding on the service side to the work�ow:
abstract sig ServiceProvider {WorkflowBinding: one TASWorkflow}
fact {all sp:ServiceProvider, w:TASWorkflow |

sp in w.ServiceBindings <=> w=sp.WorkflowBinding}
</ formula failure_rate, response_time, cost; />
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Figure 9: TAS analysis results

Service providers are subtyped by the types of service involved
in the composition. Service invocation includes two probabilistic
outcomes that model the possibility of service failure:
abstract sig MedicalAnalysisService extends ServiceProvider {}
</ var serviceOK: bool init false;

var ready : bool init true;
[WorkflowBinding:analyzeData] (ready) ->

failure_rate: (serviceOK�=false) & (ready�=false)
+ 1-failure_rate: (serviceOK�=true) & (ready�=false);
[WorkflowBinding:analysisResultPatientOK](!ready) & (serviceOK) ->

(serviceOK�=false) & (ready�=true); ...
reward costRew [WorkflowBinding:analyzeData] true : cost;
reward timeRew [WorkflowBinding:analysisResultPatientOK]

true : response_time; />

Every concrete service extends a service type encoded with a set
of attribute values. The use of the quanti�er lone indicates that the
use of every instance is optional, giving� exibility to use alternative
services of the same type in the composition:
lone sig MS1 extends MedicalAnalysisService{}
</ formula failure_rate=0.06, response_time=22, cost=9.8; />

Finding an adequate design for the system entails understanding
the tradeo� space by� nding the set of system con�gurations that
satisfy: (i) structural constraints, e.g., the Drug Service must not be
connected to an Alarm Service, (ii) behavioral correctness proper-
ties (e.g., the system is eventually going to provide a response –
either by dispatching an ambulance or notifying a change to the
pharmacy), and (iii) quality requirements, which can be formulated
as a combination of quantitative constraints and optimizations, e.g.:
(R1) The average failure rate must not exceed fr %, (R2) The aver-
age response time must not exceed rt ms, and (R3) Subject to R1
and R2, the cost should be minimized.

We can automatically search the design space to� nd the best
legal con�gurations with respect to these requirements by checking
the composite M-PCTL property constrained_mincost:

reliable ⌘ SallPfr[F some TASWorkflow.workFlowOK]
performant ⌘ SallRtimeRew

rt [F some TASWorkflow.workFlowDone]
mincost ⌘ minRcostRew[F some TASWorkflow.workFlowDone]

constrained_mincost ⌘ hreliable \ performanti mincost

The formulas labeled as reliable and performant obtain the set of
con�gurations that satisfy the reliability and performance require-
ments R1 and R2, respectively. Then, we can quantify the minimum
cost entailed by these joint requirements by scoping the quanti�-
cation of the third property mincost to the subset of designs that
satisfy the� rst two properties. For obtaining the con�guration(s)
that minimize cost for the speci�ed performance and reliability
levels, we substitute the quanti�er in mincost by SminR.

Figure 9 shows analysis results. The plot on the left shows the
minimized cost of con�gurations for di�erent levels of constraints
on response time and reliability. It was computed by checking
property constrained_mincost in the region of the state space in

��

1

Figure 2: TAS Analysis results.

Although these plots are informative and can help architects to understand what100

specific configurations might work well in a given situation, it is not possible to un-

derstand what design decisions influence these tradeoffs. Answering to what extent

improvements on qualities are a function of the choice of a specific service implemen-

tation, the topological arrangement of the composition, or the value of configuration

parameters (e.g., maximum number of retries, or timeout duration when services fail)105

is not possible with existing approaches.

When assessing architectural configurations, it is often hard to tell how specific

design decisions result in quality requirements being satisfied to smaller or larger de-

grees. For instance, there are thresholds in quality measures (e.g., response time) that

have to be satisfied. Achieving such quality levels requires making design decisions,110

choosing among multiple alternatives that entail different costs and trade-offs. This re-

search aims to elicit these thresholds and explain them to architects in order to improve

the comprehensibility of the architectural design space.

One of the main challenges in facilitating the understanding of the tradeoff space

relates to the high dimensionality of the data and how to convey important factors to115

a human designer: there are too many characteristics of configurations (and relations

among them) to track, and some of them contribute more than others to the variation of

quality attributes. For instance, even in the relatively simple system illustrated earlier,

it is unclear if selecting specific services contributes more to system quality variation
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Figure 3: Overview of the approach.

than workflow configuration parameters like timeout length. In the next section, we120

describe how to address this challenge.

3. Approach

The inputs to our approach for explaining design tradeoffs (Figure 3) are a set of le-

gal configurations (i.e., those that satisfy the constraints of a given architectural style),

captured as attribute-annotated graphs, and a set of quantitative metrics that can capture125

aspects related to e.g., the energy consumption, timeliness, or safety of configurations.

The outputs of the process are: (i) a plot that captures a description of the relations

between design and QoS variables (e.g., response time is negatively correlated with

reliability, selection of component X contributes to lower response times and higher

cost), as well as their contributions to differences among architectural configurations,130

and (ii) a set of decision trees that capture how the selection of values for design vari-

ables influences the outcome of the design in terms of the quality concerns considered

(e.g., for values of the timeout length parameter below X, the values of response time

are constrained to the range [Y,Z]). The approach consists of five stages:

1. Configuration Data Extraction collects relevant information about the charac-135

teristics of architecture configurations. Data extracted includes both topological

information (e.g., centrality and cardinality measures of nodes corresponding to
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different component types and bindings) and information related to properties of

components, connectors, and other parameters.

2. Data Aggregation and Normalization. In this step, the configuration data pro-140

duced in (1) and the configuration metrics provided as input to the process are

aggregated into a single dataframe (Stage 2a). Table data is further normalized

(Stage 2b) into a correlations table so that all variables will have the same weight

in the subsequent principal component analysis (Stage 3).

3. Principal Component Analysis (PCA) is employed to discover how architectural145

configurations differ, and which variables contribute the most to that difference.

Moreover, PCA enables us to discriminate whether variables are positively or

negatively correlated, or if instead they are independent from each other. This

enables architects to relate response variation (QoS, quantitative guarantees) to

design variables.150

4. Target Variable Selection is performed by the architect based on the information

obtained from PCA that identifies the most important variables and dependencies

in the design space. In this stage, the architect selects the set of relevant variables

associated with decisions for which she wants to quantify the impact on different

quality concerns.155

5. Decision Tree Learning (DTL) receives as input both the aggregated dataframe

produced in stage 2 and the set of relevant variables identified in stage 4, and

produces a set of decision trees that link concrete threshold values of design vari-

ables with impacts on qualities that architects can use to inform their decisions.

Often, PCA and DTL are used independently and for different purposes. How-160

ever, in the context of ExTrA, we use the results from PCA analysis to inform

the creation of decision trees. This is because the contributions to variability and

relations identified by PCA can influence which target variables are selected by

the architect (Stage 4) and used as inputs to the creating the decision trees.

In the remainder of this section, we first introduce some preliminaries, and follow165

with a detailed description of the five stages of our approach.

8



3.1. Preliminaries

Design spaces are often constrained by the need to design systems within certain

patterns or constraints. Architectural styles [13] characterize the design space of fam-

ilies of software systems in terms of patterns of structural organization, defining a vo-170

cabulary of component and connector types, as well as a set of constraints on how they

can be combined. Styles help designers constrain design space exploration to within

a set of legal structures to which the system must conform. However, while the struc-

ture of a system may be constrained by some style, there is still considerable design

flexibility left for exploring the tradeoffs on many of the qualities that a system must175

achieve.

Definition 1 (Architectural Style). Formally, we characterize an architectural style as

a tuple (Σ, CS), where:

• Σ = (CompT,ConnT,Π,Λ) is an architectural signature, such that:

– CompT and ConnT are disjoint sets of component and connector types.180

For conciseness, we define ArchT ≡ CompT ∪ ConnT .

– Π : ArchT → 2D is a function that assigns sets of symbols typed by

datatypes in a fixed setD to architectural types κ ∈ ArchT . Π(κ) captures

properties associated with type κ. To refer to a property p ∈ Π(κ), we

simply write κ.p.185

– Λ : ArchT → 2P ∪ 2R is a function that assigns a set of symbols typed by

a fixed set P to components κ ∈ CompT . This function also assigns a set

of symbols in a fixed setR to connectors κ ∈ ConnT . Λ(κ) represents the

ports of a component (conversely, the roles if κ is a connector), which define

logical points of interaction with κ’s environment. To denote a port/role190

q ∈ Λ(κ), we write κ :: q.

• CS is a set of structural constraints expressed in a constraint language based

on first-order predicate logic in the style of Acme [14] or OCL [15] constraints

(e.g., ∀ w:TASWorkflowT •∃ a:AlarmServiceT • connected(w,a) – “every TAS

workflow must be connected to at least one alarm service”).195
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In the remainder of this section, we assume a fixed universeAΣ of architectural el-

ements, i.e., a finite set of components and connectors for Σ typed byArchT . The type

of an architectural element c ∈ AΣ is denoted by type(c). We assume that elements of

AΣ are indexed and designate the ith element by Ai
Σ.

A configuration is a graph that captures the topology of a legal structure of the200

system in a style A (we designate A’s set of legal configurations by G∗A).

Definition 2 (Configuration). A configuration in a style (Σ, CS), given a fixed universe

of architectural elements AΣ, is a graph G = (N , E) satisfying the constraints CS ,

where: N is a set of nodes, such thatN ⊆ AΣ, and E is a set of pairs typed by P ×R

that represent attachments between ports and roles.205

To determine if two architectural elements are attached on any of their port/roles,

we define the function att : AΣ ×AΣ → B as att(n, n′) = > if ∃p ∈ P, r ∈ R • n ::

p ∧ n′ :: r ∧ (p, r) ∈ E , and att(n, n′) = ⊥ otherwise. We say that two components

are bound if there is a connector attached to any of their ports on both ends. This is

captured by function bnd : CompT × CompT → B, bnd(n, n′) = > if ∃ n′′ ∈ N ,210

s.t. att(n, n′′) ∧ att(n′′, n′), and bnd(n, n′) = ⊥ otherwise.

3.2. Configuration Data Extraction

The first stage of our approach extracts the set of relevant attributes that correspond

to different design decisions made to form any legal configuration (i.e., that conforms

to the architectural style), which are provided as input to the process. Our approach is215

agnostic to the mechanisms employed to generate the set of configurations that conform

to an architectural style: this process is out of scope of this paper, but existing prior

work has addressed this problem in a variety of ways (see [6] for one example).

The attributes extracted from a configuration G = (N , E) form a tuple of design

variable values DG(C, T, P ) ∈ DG, where:220

• C ∈ Rn
>0 is a vector that contains data items corresponding to constituent archi-

tectural elements of the configuration (e.g., the presence and number of specific

components and connectors). Concretely, this vector is formed by concatenating

the result of the following functions:

10



1. Architectural element presence extraction fep : G∗A → {0, 1}|AΣ|, returns a225

vector 〈p1, . . . , p|AΣ|〉 that encodes the presence of specific architectural el-

ements (i.e., component and connector instances) in a configuration, where

pi = 1, i ∈ {1..|AΣ|} if Ai
Σ ∈ N , and pi = 0, otherwise.

2. Architectural type cardinality extraction ftc : G∗A → N|ArchT |, returns

a vector 〈xtc(κ1), . . . , xtc(κ|ArchT |)〉 encoding the number of component230

and connectors of each type present in a configuration. For κ ∈ ArchT , we

define function xtc :ArchT → N as xtc(κ) = |{n ∈ N | type(n) = κ}|.

• T ∈ Rn
>0 is a vector of data items that correspond to the topology of the configu-

ration like the presence of certain attachments among architectural elements, and

other topological measures like centrality indices, which characterize important235

nodes in the configuration topology [16, 17]. Concretely, this vector is formed

by concatenating the results of the following functions:

1. Binding presence extraction fbp : G∗A → {0, 1}|AΣ|·|AΣ| returns a vec-

tor 〈p1,1, . . . , p|AΣ|,1, . . . , p|AΣ|,|A|Σ〉 that encodes the presence of bind-

ings between specific components, with pi,j = 1, i, j ∈ {1..|AΣ|} if240

bnd(Ai
Σ,A

j
Σ), and pi,j = 0 otherwise.

2. Binding type cardinality extraction fbtc : G∗A → N|CompT |·|CompT |, re-

turns a vector 〈xbtc(κ1, κ1), . . . , xbtc(κ|CompT |,1), . . . , xbtc(κ|CompT |,|CompT |)〉

encoding the number of bindings between specific pairs of component types.

For the pair of component types (κ, κ′), we define function xbtc : CompT×245

CompT → N as xbtc(κ, κ′) = |{(n, n′) ∈ N × N | type(n) = κ ∧

type(n′) = κ′ ∧ bnd(n, n′)}|.

• P ∈ Rn is a vector containing data items corresponding to the values of relevant

configuration parameters. We assume that these can be directly obtained from

the values of properties associated with the different architectural elements of the250

configuration (e.g., the configuration parameter for the number of maximum ser-

vice retries in TAS is stored in property TASWorkflow0.max timeouts, where

TASWorkflow0 is an instance of TASWorkflowT).
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3.3. Data Aggregation and Normalization

The second input to our approach is a set of vectors RG of the form RG =255

〈r1, . . . , rn〉, ri ∈ R, i ∈ {1..n} containing response variables that correspond to

the values of the quantified metrics for the different quality dimensions in a configura-

tion G. Our technique is agnostic to the mechanisms employed to quantify the quality

metrics of a configuration. However, in the particular instantiation of the approach

used in this paper, we obtain these values by checking a variety of probabilistic tem-260

poral logic properties encoded in an extension of PCTL using HaiQ [12], a tool that

performs probabilistic model checking on collections of structural design variants that

uses Alloy [18] and PRISM [? ] in its backend.

The purpose of data aggregation and normalization is to generate a correlations

table that can be provided as input to PCA:265

• Data aggregation. Given a design variable value tuple DG(C, T, P ) ∈ DG, and

a response variable vector RG = 〈r1, . . . , rn〉 ∈ RG for the same configuration

G, we define the configuration sample for G as RG _ DG , where _ denotes

concatenation. The (non-normalized) correlations table is formed by the samples

that correspond to all input configurations.270

• Data normalization. The correlations table contains variables that span vary-

ing degrees of magnitude and range. To avoid bias in PCA towards variables

that may have a higher magnitude, we scale the data employing unity-based

normalization, meaning that for any data item in the correlations table xi,j for

sample i and variable j, the new value of the data item is defined as x′i,j =275

(xi,j − xmin
j )/(xmax

j − xmin
j ), where xmin

j , xmax
j are the minimum/maximum

values of j across all samples.

Example 1. Figure 4 shows a TAS configuration and an excerpt of its encoding in the

correlations table. The first and second top-most tables show the presence of architec-

tural elements and type cardinalities (fep and ftc, respectively). In this case, we can280

observe that the cardinality of all architectural types is 1, except for HttpConnT type,

of which there are four instances. The table at the bottom describes the presence of

bindings between components (fbp).
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TAS1
(TASWorkflowT)

S5
(MedicalServiceT)

D1
(DrugServiceT)

AS3
(AlarmServiceT)

Port
Connector
Component

Caller1

Caller0

Caller3

Callee1

Callee0

Callee3
changeDrugPTS changeDrugPD

changeDosePTS changeDosePD

sendAlarmPTS sendAlarmPAS

analyzeDataPTS

analyzeDataPS

C1
(HttpConnT)

Callee2

Caller2

Legend

C3
(HttpConnT)

C2
(HttpConnT)

C0 (HttpConnT)

fep TAS1 1 AS1 0

D1 1 AS2 0

S1 1 AS3 1

S2 0 C0 1

. . . . . . . . . . . .

S5 0 C3 1

ftc TASWorkflowT 1 AlarmServiceT 1

DrugServiceT 1 HttpConnT 4

MedicalServiceT 1

fbp TAS1-TAS1 0 TAS1-AS1 0

TAS1-D1 1 AS2-S1 0

TAS1-S1 0 AS3-TAS1 1

TAS1-S5 1 AS1-D1 0

. . . . . . . . . . . .

S1-S2 0 AS3-AS3 0

Figure 4: Sample TAS configuration (left), along with an excerpt of its encoding (right).

3.4. Principal Component Analysis

Data resulting from analyzing architectural spaces usually contain a large amount285

of information, which is often too complex to be easily interpreted. Principal Com-

ponent Analysis (PCA) [7] is a statistical projection method commonly used in ML

and natural science that can facilitate understanding that information. To begin with,

PCA can help to find out in what respect some architectural configurations differ from

others, and which variables contribute to this difference. In some cases, variables con-290

tribute in the same way (i.e., are correlated) or independently. Moreover, PCA also

enables quantifying the amount of useful information in a data set, as opposed to noise

or meaningless variations.

If we consider the data in the correlations table geometrically, we can say that two

samples (i.e., architectural configurations) are similar if they have close values for most295

variables (i.e., they are in the same region of the multidimensional space) and different,

otherwise. Considering this, the purpose of PCA is finding the directions in space

in which the distance between points is the largest. That is equivalent to finding the

linear combinations of the variables that contribute most to making the samples (i.e.,

configurations) different from each other. These directions or linear combinations are300

called principal components.

Principal components (PC) are computed in an iterative manner, in such a way
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that the first PC is the one that carries the most information (most explained variance),

whereas the second PC will carry the maximum share of the information not taken

into account by the previous PC, and so on. All PCs are orthogonal to each other305

and each one carries more information than the next one. In fact, this is one of the

characteristics of PCA that makes it appealing as an underlying mechanism to enable

the explainability of architectural design tradeoff spaces: the interpretation of PCs can

be prioritized, since the first PCs are known to carry the most information. Indeed, it is

often the case that only the first two PCs contain genuine information, whereas the rest310

describe noise [7].

The main results of PCA consist of three complementary sets of attributes: (i) vari-

ances, which tell us how much information is taken into account by the successive PCs,

(ii) loadings, which describe relationships between variables, and (iii) scores, which

describe properties of the samples. In this paper, we focus on variances and loadings,315

which will tell us what are the main variables (i.e., either design or response variables)

that contribute the most (and in what way) to the differences among configurations.

Example 2. The PCA loadings plot of the samples analyzed for TAS is shown in Fig-

ure 5. The plot contains two ellipses that indicate how much variance is taken into

account. The outer ellipse is the unit-circle and indicates 100% of the explained vari-320

ance, whereas the inner ellipse indicates 50% of the explained variance. Variables that

are found between the edges of the two ellipses, and particularly those positioned near

the edge of the outer ellipse, are those that are more important in differentiating the

configurations. This plot shows that the first two PCs carry a large amount of informa-

tion, explaining 76% of the variance of data, with PC1 explaining the most (71%) and325

PC2 explaining much less variance (5%).

QoS metrics like reliability, cost, and response time are all important to differenti-

ate configurations with response time being the most relevant (close to 1 in PC1, which

accounts for more than 70% of the overall variability). Reliability and cost (upper-left

quadrant) are also important for PC1, placed below -0.5 in PC1, but comparatively330

have less influence than response time in overall variation.

In addition to teasing out the most important variables, the plot displays the rela-
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Figure 5: Correlation loading PCA plot for TAS.

tionships between variables. In the plot, the angle between the vectors that go from the

origin of coordinates to a variable point is an approximation of the correlation between

the variables. A small angle indicates that the variables are positively correlated, an335

angle of 90 degrees indicates the variables are not correlated, and an angle close to

180 degrees indicates the variables are negatively correlated. In our example, we can

observe that reliability and cost are positively correlated, whereas response time is

negatively correlated with both of them. These observations are consistent with the

results in Figure 2, which show that low response times and high reliability correspond340

to higher costs.

So far, we have been discussing QoS variables, but the loading plot also enables

architects to observe the influence of design variables on variability. Here, we can see

in the upper-right quadrant of the ellipse that some of the most influential variables

for PC1 correspond to the presence of alarm service instance AS3 in a configuration,345

as well as to its binding to the workflow (TASWorkflow0). We observe that all the

design variables related to AS3 are positively correlated with reliability and cost, and

negatively correlated with response time. This indicates that the selection of AS3 has

a remarkable influence on the qualities of the resulting configurations and is consis-
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tent with the fact that the alternative alarm service implementations have considerably350

higher failure rates and response times than AS3, as well as lower cost per invocation

(see Figure 1.a). Also, the alarm service is invoked more times in the workflow than

any other service. Consequently other services like MS5, which are also influential

and have the same QoS correlations as AS3, have a comparatively moderate impact

(its associated design variables are within the inner edge of the ellipse) because they355

are invoked only once in the workflow. In the bottom-right quadrant, we have the sym-

metric case, with variables associated with the presence of AS2, which in contrast

with AS3, are positively correlated with response time, and negatively correlated with

cost and reliability (most importantly along the PC1 horizontal axis. This is also con-

sistent with the data in the table of Figure 1, which shows that AS3 has the highest360

failure rate and lowest cost. Regarding configuration parameters, we can see that, as

expected, timeout length for service invocations is positively correlated with response

time with respect to PC1 and negatively correlated to reliability and cost. In contrast,

and although less influential, the maximum number of retries for service invocations is

positively correlated with reliability and cost. This observation is consistent with the365

fact that more service invocation retries lead to increased reliability and cost.

3.5. Decision Tree Learning

Decision tree learning is a supervised learning technique used in statistics, data

mining, and machine learning that allows the prediction of a target variable’s value

based on other variables’ values [8]. It is a supervised technique that can be used to370

grow classification trees (to predict categorical values) and regression trees (to predict

numerical values). We decided to apply decision tree learning as part of ExTrA, as it is

particularly useful in contexts that involve complex datasets with high dimensionality

and heterogeneous data types [8]. Decision trees are generated based on recursive

binary partitioning, a method relying on repeatedly computing partitions of the data375

that minimize the residual sum of squares (for regression trees) or the Gini index (for

classification trees) [8]. As a subsequent step, in order to minimize overfitting, the tree

is pruned by computing the subtree that minimizes the mean squared prediction error.

Decision tree learning requires selecting a target variable whose value should be
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Figure 6: Decision tree plot for the Tele-Assistance System V1, predicting reliability

predicted or classified. We leverage the insights from analyzing PCA plots to inform380

the target variable selection. Variables that are of relevance to explain the variance

in the data are good candidates as target variables. In our approach, we are mainly

interested in the impact of architectural design decisions on quality attributes. For

instance, by looking at Figure 2, it can be seen that there are several levels of reliability

with several thresholds indicating a “stepwise transition” between them. Decision trees385

can be used to explain what these steps entail (e.g., with respect to the selection of input

parameters or architectural design decisions). Analyzing such decision trees can in turn

help architects to better understand tradeoffs and make decisions more deliberately.

Figure 6 shows a decision tree plot for TAS, predicting the level of reliability de-

pending on other numerical variables. The tree’s root indicates the most relevant con-390

dition (i.e., MAX TIMEOUTS < 2). If the condition is fulfilled, the left branch of the

tree should be considered. If MAX TIMEOUTS is larger or equal to 2, the right branch

is considered.

In the example, it can be seen that for low maximum numbers of timeouts, a rather

low degree of reliability is achieved. The existence of component AS3 is relevant as395

well: if it is included in a configuration, reliability is higher than if it is not. Apart from

that, the inclusion of AS1 and AS2 are important as well. If AS1 exists, reliability is
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higher and if AS2 exists, reliability is slightly lower. It should be noted that although

MAX TIMEOUTS is not a relevant variable to explain the variance of configurations in

the dataset, it is a relevant variable as a predictor for reliability. Insights like this can400

help with the fine-grained analysis of the dataset and specific quality attributes.

4. Demonstration

The objective of our demonstration is to: (i) assess the feasibility of linking design

decisions to requirement satisfaction (RQ1), (ii) quantify the impact of architectural

design decisions on the different qualities across the architectural design space, and405

(iii) assess the tradeoff between the information reduction and the amount of variance

explained (RQ2).

In this section, we first describe our experimental setup. We then briefly introduce a

scenario that we have incorporated into our demonstration in addition to TAS. Finally,

we discuss results, relating them to our research questions.410

4.1. Experimental Setup

We generated the set of architectural configurations for the different scenarios in-

cluded in our study and their QoS metrics using an extended version of HaiQ that

implements the data extraction, aggregation, and normalization procedures described

in Sections 3.2-3.3 and the set of models for TAS and the network virus example de-415

scribed in [12]. Table 1 describes the number of variables and samples included in the

datasets generated for all the variants of the case studies.

Data analysis (i.e., Principal Component Analysis and Decision Tree Learning)

was performed using R.1 For PCA, we used the prcomp2 package and for decision tree

learning, rpart was used. Besides following the normalization steps described below,420

we centered the variables in PCA, shifting all variables to be zero centered. Centering

the data subtracts the mean of each column from the values in that column. Given that

1Our R scripts and datasets are publicly available at: github.com/cmu-able/exTrA-material
2https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/

prcomp
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Table 1: Dataset dimensions for our experiments.

Case Study # Variables #samples

QoS fep ftc fbp fbtc parameters total

Tele-Assistance System V1 3 10 10 27 27 2 79 3750

Tele-Assistance System V2 3 10 10 27 27 2 79 3750

Network Architecture V1 5 9 4 46 11 3 78 60000

Network Architecture V2 5 9 4 70 15 3 106 60000

Network Architecture V3 5 9 4 40 7 3 68 60000

we are interested in understanding the variance in a dataset, centering the variables is

beneficial as it ensures that the first principal component explains the direction of max-

imum variance. For decision tree learning with rpart3, we used the default parameters.425

4.2. Scenario: Tele-Assistance System

In Example 2 we described the correlation loadings plot for the Tele-Assistance

System, illustrating the main variables thar influence configuration variability, as well

as their correlations. To further demonstrate the consistency of our approach in provid-430

ing links between architectural design decisions and the quality of configurations, in

this section, we also consider a variant of TAS (V2) that has been altered by modifying

the reliabilities and response times of AS3,which become worse (failure rate=0.4, re-

sponse time=7, and cost=6.8), and of MS5, which improve (failure rate=0.05, response

time=10, cost=11.9).435

Results: Principal Component Analysis

Figure 7 shows the correlation loading PCA plot for TAS V2. In the figure, we can

observe that multiple variables are in different positions, compared to the original ver-

sion of TAS (cf. Figure 5). If we start by observing QoS variables, we can notice that

the only exception is response time, which remains exactly in the same position as in440

3https://www.rdocumentation.org/packages/rpart/versions/4.1.16/

topics/rpart
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Figure 7: Correlation loading PCA plot for TAS V2. Dashed arrows represent variable displacements with

respect to TAS V1.

TAS V1. In contrast, we can observe how both cost and reliability have lost influence

in terms of explaining variability, moving closer to the origin of the horizontal PC1

axis. This indicates that while response time is still a major contributor to configura-

tion QoS variation, the other two variables contain less variability, probably because

one of the main factors that influenced obtaining configurations with high reliability445

and cost was the inclusion of AS3, which in TAS V2 is degraded to have a higher

failure rate. Hence, since no alarm service is particularly reliable in TAS V2, there

is a reduction in the variability along that dimension. Indeed, moving on to design

variables, we can observe that the variables associated with the inclusion of AS3 in a

configuration have moved from the top-left to the top-right quadrant of the plot. This450

indicates that the inclusion of AS3 is much less relevant now in terms of explaining

variability, being much closer to the origin of the horizontal PC1 axis. Beyond that, we

can also observe that its correlations have also changed. In particular, these variables

are now negatively correlated with cost, and even more with reliability, and positively

correlated with response time. These results are consistent with the fact that both the455

reliability and the response time of AS3 have now been degraded.
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Interestingly, we can also observe that the variables associated with the inclusion

of AS2 have moved from the bottom-right to the bottom-left quadrant of the plot. Al-

though the influence on variability explanation remains relatively low, the correlations

of these variables have now been inverted, being positively correlated with cost and460

reliability along the PC1 axis, and negatively with response time. This is consistent

with the fact that relative to the quality attributes of the other components, the failure

rate of AS2 is now on the high end of the spectrum.

Other variables in the plot have also been displaced with respect to TAS V1, but

their changes are not that significant, given that their movement along the horizontal465

PC1 axis is relatively small, and movements along the PC2 vertical axis are not that

representative, even if they are noticeable, due to the small amount of explained vari-

ance of PC2, relative to PC1 (approximately 7% for PC2 vs. 69% for PC1).

Results: Decision Tree Learning

Figure 8 shows a decision tree plot for TAS V2, predicting the level of reliability470

depending on other numerical variables. The tree’s root indicates the most relevant con-

dition (i.e., MAX TIMEOUTS < 2). It can be seen that for a low maximum numbers

of timeouts, a rather low degree of reliability is achieved. The inclusion of component

AS3 is relevant as well: if it is included, reliability is lower than if it not included.

Apart from that, the inclusion of AS1 is of importance as well. If AS1 is included,475

reliability is higher. The insight that AS3 leads to lower reliability is in line with our

observations from the PCA plot: given that the reliability of AS3 has been degraded in

V2, including this component leads to an overall lower reliability level.

4.3. Scenario: Network Architecture

Architecting network-based systems that are resilient to uncontrollable environ-480

ment conditions, such as network delays, or undesirable events such at virus infections,

entails structuring the system in a way that maximizes the chances of continued service

provision in spite of the adverse conditions that it is subject to. The scenario introduced

by Kwiatkowska et al [11] models the progression of a virus infecting a network formed

by a grid of N×N nodes. The virus remains at a node that is infected and repeatedly485

tries to infect any uninfected neighbors by first attacking the neighbor’s firewall and, if

21



MAX_TIMEOUTS < 2

AS3$0 = exists

AS1$0 = does not exist AS1$0 = does not exist

MAX_TIMEOUTS < 3

AS3$0 = exists MAX_TIMEOUTS < 4

0.96
100%

0.88
20%

0.86
10%

0.84
7%

0.88
3%

0.91
10%

0.88
3%

0.92
7%

0.98
80%

0.95
20%

0.94
10%

0.97
10%

0.99
60%

0.98
20%

0.99
40%

yes no

Figure 8: Decision tree plot for the Tele-Assistance System V2, predicting reliability.

successful, trying to infect the node. In the network there are ’low’ and ’high’ nodes

divided by ’barrier’ nodes that scan the traffic between them and have better chances of

detecting any potential virus infection attempts than low and high nodes. Ideally, the

architecture of the network should: (i) minimize the probability of successful infection490

of high nodes in the network within some time bound, and (ii) maximize the number of

node infection or attack attempts that the virus carries out to spread itself through the

high nodes. Initially, only one corner ’low’ node is infected.

We carried out the analysis of three variants of this system:

1. A variant in which only the communication between low nodes and high nodes495

has to go through barrier nodes (as originally described in [11]).

2. An unconstrained variant in which there is no enforcement of communication

between high nodes and low nodes through barrier nodes.

3. A restrictive variant that enforces communication between all nodes through a

barrier node.500

Results: Principal Component Analysis

(Figure 9) displays the first two PCs of each variant, which explain approximately

99% of the data variation (≥ 98% for PC1 and≤ 1% for PC2). This shows a clear dom-

inance of PC1, which explains most of the data variation, with a marginal contribution
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Figure 9: Correlation loading PCA plots for the network architecture: (top) communication scanned be-

tween through high nodes and barrier nodes, (middle) no communication scan enforced among nodes, (bot-

tom) communication scan between all nodes enforced.
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of PC2. Moreover, in all cases, we can observe that both QoS metrics for the virus505

infection success (for the different time bounds of 50, 100, and 150 time units), and the

maximum number of virus attacks are very important to differentiate configurations.

Variant 1. We can observe that both QoS metrics for the virus infection success

probability and maximum number of virus attacks are at opposite ends of the horizon-

tal axis and are negatively correlated. This indicates that higher probability of infec-510

tion success requires in principle fewer virus infection attempts. Although this can be

counter-intuitive, it can be explained by the fact that the values for the virus attack

success probability variable are obtained from a time-bounded probabilistic analysis of

the network model, meaning that scenarios in which the virus successfully infects high

nodes after {50, 100, 150} time units are not captured in the samples. In contrast, the515

values for the maximum number of attacks are not time-bounded.

Concerning design variables, we can observe that the most influential are the prob-

ability of individual infection when the virus is attacking a node (infect), followed by

the number of bindings between high nodes ([C]binding:highNode-highNode). In

both cases, these variables are positively correlated with the probability of having all520

high nodes infected within some time bound: this makes sense, given that higher val-

ues of infect mean more effective infection attempts, and a higher number of bindings

between high nodes represent more opportunities for the virus to spread in fewer ’hops’

between high nodes, once the barrier nodes have been breached.

Variant 2. We can observe that infect is still the most influential variable to explain525

data variation. In addition to that, the variable has moved even closer to the variables

for the overall probability of infection, meaning that the correlation is stronger now.

This is consistent with the fact that in this variant, communication through barrier

nodes is not enforced, so it makes sense that a higher probability of node infection

under attack has more influence over the overall probability of high node infection. If530

we take a look at the inner ellipse of the PCA plot, we can observe that the number

of bindings between high nodes is no longer an influential variable, given that the lack

of enforcement of communications through barrier nodes dilutes its influence on the

spread of the virus. If we focus on the bottom and top-center parts of the plot, we
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can observe that in this case the influence on variability in terms of bindings is slightly535

more slanted towards bindings between barrier and high nodes. However, this influence

can also be considered as marginal, given that these variables are influential only in the

context of PC2, which explains less than 1% of the variation. If we consider all the

observations together, they are consistent with the fact that topology does not have

much influence on the resilience of the network when communications through more540

secure nodes is never enforced.

Variant 3. In this variant, it can be observed that the probability of infection is

still the most influential variable, but is not as strongly correlated with the overall

probability of high node infection as in variant 2. We can observe that the variables

associated with the bindings between barrier nodes (e.g., ([C]binding:barrierNode-545

barrierNode) also have a moderate influence on variability, although in this case they

are negatively correlated with the probability of infection of high nodes. This makes

sense from the perspective that more bindings among barrier nodes represent more op-

portunities to scan the traffic before it arrives at high nodes. Given that in this variant

all communication between low and high nodes has to go through a barrier node, the550

fact that, on average, more ’hops’ through barrier nodes are required represents more

opportunities to thwart or at least delay node infections, compared to topologies that

include fewer bindings among barrier nodes.

Results: Decision Tree Learning

Figure 10 shows a decision tree plot for the first variant of the network architecture555

system, predicting the expected maximum number of attacks needed for a highly in-

fected system. The tree’s root indicates that the most relevant condition is the infection

rate (infect). For a high rate of infection, the expected maximum number of attacks is

low. The number of connections between high nodes is relevant as well: if it is high,

fewer attacks are needed. Also the probability of node detection is important: if it is560

low, the expected number of attacks is lower than if it is high. These insights confirm

our observations from analyzing the PCA plot. The infect variable and the number of

bindings between high nodes are negatively correlated with the max attacks variable.

Stakeholders analyzing PCA plots can use these observations to generate decision trees
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Figure 10: Decision tree for the first variant of the network architecture system (predicting the expected

maximum number of attacks).

and analyze the concrete thresholds of variable values leading to different outcomes (in565

this case, in terms of max attacks).

4.4. Discussion

We have shown the applicability of our approach by demonstrating it in two cases.

In practice, however, it is not trivial to construct design spaces and collect quantita-

tive data on requirements satisfaction. The creation of the dataframes would require570

ways to generate architectural configurations, as well as a simulator, a digital twin, or

real-world data, to collect realistic quality attribute measurements. Taking these re-

quirements into account, we believe that these ideas are applicable (with adaptations)

to systematic management of variability techniques that are currently used in industry,

such as product line architectures.575

(RQ1) Feasibility - Linking architectural design decisions with requirement satis-

faction. PCA analysis results performed on the various TAS and network architecture

scenarios have shown that our approach is able to extract information that links QoS

variables and design variables, providing a basis for explaining what design variables

are the best candidates to describe important QoS variation. When studying the re-580

lation among QoS variables, results obtained across the various scenarios considered

in our demonstration are consistent with observations obtained from existing analysis
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techniques [12, 6]. For the relation between design variables and QoS variables, results

are also consistent with observations obtained from careful examination of models and

simulations of the systems we have studied. Moreover, our results have been obtained585

from two different types of architecture (a centralized service-based system and a de-

centralized network architecture). In the centralized system, component variability has

a more prominent role in explaining QoS variation, whereas in the decentralized sys-

tem, configuration topology explains most of the QoS variation. The ability of the

approach to yield insightful results in both cases indicates its potential applicability to590

a broad range of scenarios.

(RQ2) Feasibility - Quantifying impact of architectural design decisions on qual-

ities. The application of decision tree learning has enabled us to extract informative

information with respect to how qualities are affected by design decisions. Concretely,

the generated decision trees indicate thresholds in variable values that lead to differ-595

ences in the fulfillment of QoS variables. For the Tele-Assistance System, for instance,

the generated trees show the importance of a threshold of 2 for the maximum number

of timeouts, whereas for the network architecture system, the infection success rate

and the number of connections between high nodes are identified as relevant. These

results cannot be obtained by simply studying PCA plots and hence have the potential600

to facilitate the work of an architect by making the relations between variables explicit.

As a consequence of studying these trees, parameters and design decisions can be cho-

sen more deliberately. Moreover, our observations confirm the insights we obtained by

studying PCA plots and existing analysis techniques.

We found that both PCA and decision tree learning were applicable to all ver-605

sions of the systems and datasets that we used in this paper. Other techniques used to

understand large datasets in machine learning are Multiple Correspondence Analysis

(MCA) and clustering algorithms. We investigated these approaches as well. MCA is

most beneficial to explain variance in datasets with categorical variables and did not

yield interesting results for the datasets used in this paper. In contrast to other system610

properties, architectural configurations and quality attributes can be easily captured in

quantitative variables, which is why PCA was a more appropriate technique in these
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cases. Clustering appears to be a promising area to explain the natures of different

categories of configurations. However, in our example systems, the identified clus-

ters were difficult to understand and mainly reflected the tradeoffs we identified based615

on PCA (e.g., resulting in two resulting clusters, with one cluster being cost-effective

but having low reliability and high response times, and the other cluster having oppo-

site characteristics). There may be circumstances in which these additional techniques

could provide useful insight, but in this paper we have not elaborated on them because

of their limited usefulness for the systems studied.620

(RQ3) Information Reduction-Explained Variance Tradeoff. Table 2 summarizes

the information reduction and explained variance for the two scenarios described in the

paper. In the table, information reduction is calculated as the percentage of the original

variables in the dataset that remain as relevant in the PC1-PC2 correlation loadings plot

(i.e., positioned within the 50%-100% explained variance ellipses), whereas the total625

explained variance for PC1-PC2 is one of the outputs provided by PCA. Total residual

variance corresponds to the remainder of PCs, i.e., variance that is left unexplained by

PC1 and PC2.

We can observe that in all scenarios, there is a remarkable reduction in the infor-

mation that has to be examined by an architect to analyze the tradeoff space, which is630

in the range 46-84% of the overall number of variables available in the dataset. At the

same time, the total residual variance ranges between 0.98 and 26.89%. Although non-

negligible, these are moderate levels of residual variance, especially if we consider

them in the context of the drastic dimensionality reduction in the set of explanatory

variables.635

5. Related Work

Evaluation of software architectures under uncertainty is a subject that has been

broadly explored [19]. Due to space constraints, we focus on the subset of works akin

to our proposal, which can be categorized into:

Architecture-based quantitative analysis and optimization approaches, which fo-640

cus on analyzing and optimizing quantitative aspects of architectures using mecha-
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Table 2: Information reduction and explained variance summary.

Case Study #dataset #relevant information explained residual

vars. PCA vars. reduction variance variance

Tele-Assistance System V1 79 42 46.84 % 76.32 % 23.68 %

Tele-Assistance System V2 79 20 74.68 % 73.11 % 26.89 %

Network Architecture V1 78 12 84.62 % 99.02 % 0.98 %

Network Architecture V2 106 26 75.47 % 98.09 % 1.91 %

Network Architecture V3 68 16 76.47 % 95.32 % 4.68 %

Average 82 23.2 71.62 % 88.37 % 11.63 %

nisms that include e.g., stochastic search and Pareto analysis [2, 3, 4]. Other recent

approaches to architectural design synthesis and quantitative verification [20, 12, 6]

generate and analyze alternative system designs, enabling exploration of quantitative

guarantees across the design space. These techniques ([12, 6] being our prior work) do645

not address explainability, but produce (large) datasets that can be used as input to the

approach described in this paper.

Learning-based architecture evaluation adopts ML techniques to enhance the eval-

uation with observations of system properties over time [21, 22, 23, 24]. These works

employ Bayesian learning [21] to update model parameters, Model Tree Learning650

(MTL) to tune system adaptation logic [23], and reinforcement learning [24, 22] to

analyze architectural decisions made at run-time.

While all the approaches described above provide some form of architectural trade-

off analysis (sometimes employing ML techniques), none of them makes any claims

about explicitly linking design variables with requirements satisfaction or facilitating655

the explainability of the design tradeoff space. Indeed, a recent comprehensive liter-

ature review on architectural evaluation under uncertainty [19] reveals no approaches

covering the research gap addressed by our technique.
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6. Conclusions and Future Work

In this paper, we have presented what is, to the best of our knowledge, the first660

approach that explicitly relates QoS and architectural design variables using dimen-

sionality reduction techniques employed in ML and other sciences, enabling architects

to interpret the main tradeoffs of an architectural design space based on a graphical

summary of the relations among the main variables that explain differences between

configurations, as well as on decision trees that illustrate the impact of concrete de-665

sign decisions on system qualities. Our results illustrate the feasibility of the approach

both in terms of identifying the main sources of variability and design/QoS variable

correlations (RQ1), as well as of quantifying the impact of design decisions on QoS

dimensions (RQ2). Moreover, the results across all five scenarios included in our study

indicate that a remarkable reduction in the amount of information required to explain670

the main tradeoffs of an architectural design space is attainable while the reduction in

explained variance remains moderate (RQ3).

Although our approach works well in the case studies presented, PCA works opti-

mally primarily in situations where variable correlations are linear, or an approximation

thereof. Future work will involve exploring alternatives to PCA that enable the analy-675

sis of systems with strong non-linear correlations. Moreover, our approach is currently

limited to component-and-connector static architectures with binary connectors. Our

future work will also explore extensions to the catalogue of metrics and extraction

functions required to enable richer analysis of various styles of architectural represen-

tation, including dynamic architectures, as well as the development of tools to help680

users easily interpret these analysis results.
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M. Sirjani, R. Mirandola, D. Weyns (Eds.), Software Architecture - 15th Euro-

pean Conference, ECSA 2021, Virtual Event, Sweden, September 13-17, 2021,

Proceedings, Vol. 12857 of Lecture Notes in Computer Science, Springer, 2021,

pp. 49–65. doi:10.1007/978-3-030-86044-8\_4.

URL https://doi.org/10.1007/978-3-030-86044-8_4720

[10] D. Weyns, R. Calinescu, Tele assistance: A self-adaptive service-based system

exemplar, in: 10th IEEE/ACM International Symposium on Software Engineer-

ing for Adaptive and Self-Managing Systems, SEAMS 2015, IEEE CS, 2015, pp.

88–92.

[11] M. Kwiatkowska, G. Norman, D. Parker, M. Vigliotti, Probabilistic mobile ambi-725

ents, Theoretical Computer Science 410 (12–13) (2009) 1272–1303.
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