End User Orchestrations*

Vishal Dwivedi, David Garlan, and Bradley Schmerl

Institute for Software Research
Carnegie Mellon University, Pittsburgh, PA-15213, USA
{vdwivedi, garlan, schmerl}@cs.cmu.edu

Abstract. Service-orchestrations define how services can be composed
together and are widely used to execute applications based on Service
Oriented Architectures (SOAs). However, the various special purpose or-
chestration languages used today require code-level constructs that force
the users to provide excessive technical detail. For many SOA domains
end-users of these orchestrations have limited technical expertise, and
hence these users find it difficult to specify orchestrations in current
languages. Additionally, users specifying orchestrations would often like
to reason about architectural attributes such as performance, security
and composability - capabilities that current languages and tools do not
support. In this paper we provide an improved technique for modeling
orchestrations that allows users to focus primarily on the functional
composition of services that is guided by tool supported domain-specific
analyses. We introduce an abstract architectural specification language
called SCORE (Simple Compositional ORchestration for End users)
that defines the vocabulary of elements that can be used in a service
composition. SCORE not only allows users to create correct service-
orchestrations, but it also removes the need for technical detail, most
of which is auto-generated by tool support. We demonstrate the use
of our approach to specify service-orchestrations in SORASCS (Service
ORiented Architectures for Socio-Cultural Systems), which is a SOA
system for the intelligence analysis domain. SORASCS users are analysts,
who are involved with domain-specific analysis workflows that are
represented using SCORE and executed.

1 Introduction

The raison d’étre of web-services is that they can be composed with other
services, data elements and middleware components to deliver composite
functionality. Most SOAs are based on this principle and use orchestrations as
an underlying method for specifying and executing such service compositions.
In early 2000, a number of open XML-based standards were introduced to
enable service-orchestrations by international consortiums like OASIS, BPMI
and the Apache Foundation. These efforts were led by large vendors like IBM,
SAP and Oracle. The primary goal of these standards was to provide a uniform
method of collaboration between orchestrated web-services by defining patterns
at the message-level of service interaction. These standards were primarily
designed for enterprise integration and provided the basis for current service-
orchestration languages such as BPEL [1], BPML [2], and WSCT [3].

* Submitted for publication

: Sequence <?xmlversion="1.0" encoding="UTF-8"?>
N <bpel:process xmlins:bpel="http://docs.oasis- Schema
@] Receive open.org/wshpel/2.0/process/executable” defilinitions
xmins:wsdl=http://schemas.xmlsoap.org/wsdl '
= Assign _E

_ <bpel:import namespace= "http://HotTopics"
= Assign location="HotTopics.wsdl" ;
importType="http://schemas.xmlsoap.org/wsdl/" />

Naniespaces

= Assign
(D) wait <bpelvariable name=" Variables
= fssign <hpel:sequence>
— <hpel:receive partnerLink="hotTopicsProcessAndInterfacePlkvar"
= Assign portType="this:Forinterface" operation ="EventStartMessage"
variable="thisEventStartMessageRequest" createlnstance="yes"
& Invoke bpmn:label="Message_Start_Fvent"
bpmn:id="_L FA0AjpEd6 yO3YRyDjWQ'"> BPEL Logic
= Assign </bpel:receive>
=

Figure 1: A snapshot of BPEL orchestration Ul-elements and its XML code

Today SOA based systems are used across various domains where the
computational model is aggregation of functions from various tools and services.
In many cases, users of such orchestrations are domain experts, who are primarily
concerned with composition of services, but have limited expertise to write
detailed technical specifications. Languages like BPEL and BPML are not
appropriate for this class of users as they involve code constructs that require
descriptions of orchestrations at very detailed technical level. For instance,
Figure 1 depicts a simple service-orchestration segment showing the user-
interface elements and the corresponding XML code using a standard BPEL-
orchestration tool.

For a SOA domain where users are not computer savvy, understanding and
writing such specifications is difficult because of:

1. Complexity: Existing languages require users to have knowledge of techni-
cal details such as schema-definitions, namespaces and variables, making it
difficult for them to define orchestrations correctly and easily.

2. Conceptual Mismatch: Users think functionally (composition of activities
in a workflow) while orchestrations involve the specifications of control flow
and variables.

3. Lack of analysis support: Few mechanisms exist to reason about
architectural drivers such as performance, security and composability, which
can aid in the design of correct orchestrations.

Traditional service-orchestration languages require developers to write XML
specifications, and deploy them, before they can be used by other users; but

that is hard for domains such as analytics that require dynamic orchestrations.
Users in these domains need a modeling approach that allows them to focus
primarily on high-level functional composition of services, and at the same
time, allows them to create and execute correct service-orchestrations. Our work
specifically addresses this class of users (whom we refer to as "end-users").
This paper proposes an improved approach for modeling service-orchestrations
using an abstract architectural specification language called SCORE (Simple
Compositional ORchestration for End users) that can be used to specify a
high-level functional composition of services. SCORE provides a domain-specific
vocabulary that can be tailored for different users and domains and does not
require writing low-level code. Further, we provide various analyses to check
composability, security and performance over SCORE specifications in order to
help end-users to compose correct service compositions. These high-level SCORE
specifications are automatically converted into executable specifications that can
be executed by the system.

2 Distinguishing Characteristics of SCORE

SCORE can be characterized as providing an abstract language for specifying
service-orchestrations, which can be analyzed for various quality attributes
using a functional vocabulary and ezecuted through tool support. We use this
characterization to compare SCORE with the related work.

2.1 Abstract

SCORE provides an abstract component-oriented language that hides the
technical details from end-users. It uses a functional vocabulary with a domain-
specific component and property type system along with a rich set of constraints.
This allows users to focus primarily on the functional composition of services.
Orchestrations can be expressed in SCORE using a collection of styles that are
designed for a particular SOA domain.

There exists similar work by Esfahani and colleagues at George Mason
University, where they provide a language named SAS [4] for modeling functional
and QOS requirements in an activity level specification. However, their approach
relies on creating domain ontologies and mapping workflow activities to the do-
main. In contrast, SCORE uses a set of domain-specific architectural styles that
can be customized for a specific SOA domain. Likewise, Mayer and Foster|5|used
model-driven architecture (MDA) for orchestration code generation using a UML
profile for SOA, but a single such profile is difficult to generalize across various
SOA domains.

By comparison, most current service-orchestration languages are at opposite
ends of a spectrum with respect to their support for abstraction. Languages
like BPEL [1] and BPML [2] require specification of detailed code constructs
like schema-definitions, namespaces and variable assignments and have minimal
support for abstraction. Alternatively, UML-based languages like BPMN [6]
allow abstraction at the level of composition of activities, but are used primarily
for documentation purposes, and are not executable.

2.2 Analyzable

SCORE provides various analyses such as checking for composability, security
and performance that aid end-users in composing correct orchestrations. Some
of these analyses are based on domain-specific constraints that cannot be easily
specified using unconstrained UML-based modeling approaches.

Although, there exists a considerable amount of work demonstrating analysis
of workflows, current orchestration languages provide limited support for
analyses beyond type-checking. One of the reasons for lack of analysis support
can be attributed to the fact that most of the current approaches rely on
modeling formal representations, and then using them to analyze structural or
runtime properties. For instance Puhlmann et. al. proposed analyzing structural
soundness of orchestrations [7]. Koshkina et al proposed checking concurrency
of BPEL orchestrations by formally modeling BPEL in a process algebra [§].
Similarly, VanderAalst and colleagues have done work towards PetriNet-based
analysis of workflows to check for control flow errors[9].

The fact that most current languages are built on XML with a relatively
fixed schema, and allow limited support for adding additional attributes and
constraints, makes it difficult to provide analysis at design time. Very often,
the domain of the workflow enforces constraints that must be followed by end-
users. SCORE provides support for adding properties and constraints, allowing
designers to write domain-specific analysis that other languages find difficult to
support.

2.3 Executable

SCORE specifications are compiled into low-level orchestration specifications
that can be executed by an orchestration engine. Our current prototype
associates the architectural specification with a script and uses the composition
logic to generate low-level BPEL scripts. The generated BPEL scripts are
deployed on Apache-ODE BPEL engine [10] and executed.

Whether a service composition language is executable or not depends on
the level of abstraction it supports. BPMN [6] for example provides support for
abstract specification, but is used primarily for documentation purposes. On the
other hand, languages such as BPEL[1], BPML[2| and WSCI[3] are executable
but are code-centric. There has been some support for executable BPEL code
generation from BPMN models by vendors such as Intalio [11] but that is fairly
restricted. In general, it is difficult to translate a free-form UML based diagram
unless the constraints are codified - something which is much easier through
architectural support for writing constraints.

3 Design Approach

We decided to design a two-layered specification for representing orchestrations,
where each layer handles different concerns. The end-user specification language,
named SCORE, is an abstract specification, is primarily functional in nature,
and is used to design high-level workflows describing service compositions.
Orchestrations are detailed executable specifications in a language like BPEL,
which are auto-generated.

A workflow

Relational Store CSV Data Remote service

S_.HF Service 1 H Service 2 H Service 3 +—’Eﬁ

1 Service Invocation
B Output Port

E Data Store O Input Port
—_—

Data flow

An orchestration

S—p‘# Data Fetch +—.E|Data Translate ﬁée Service 1 +7 .ée Service 2 +
Data translate service S]‘—+ Service 3 HEH—+ Data Fetch

Data Fetch service

l:| Service Invocation B Output Port

O Input Port

Data Store

Data flow

Figure 2: An illustrative two-layered specification

A simple example for such a multi-level specification is shown in Figure 2.
The figure describes a simple workflow, which composes three services with
varying input and output data requirements and location constraints. It also
shows the corresponding orchestration that includes additional components
for data translation and data fetching to compose a sound orchestration
specification. Note that here DataTranslate element is representative of a
large class of low-level components that must be present in an executable
orchestration. For instance a realization of this translation service may involve
additional operations such as conversion of relational tuples into XML, their
XSLT based transformation, and conversion to a comma-separated file, each
of which may require invoking additional services. Although, this is a simple
illustration, it provides a glimpse of how abstract models can be helpful to
end-users by providing just the necessary details allowing for a simpler end-
user specification that can be translated into an executable specification using
additional properties and constraints.

We provide a restricted vocabulary for the specification of workflows using
SCORE, where it abstracts the specification of workflows to the essential
component and connector types and the properties of concern. In this abstract
vocabulary:

— Components represent the primary computational elements and data stores
of a workflow.

— Connectors represent interactions among components that may vary from
simple HTTP based calls to complex protocols

— Properties represent semantic information about the components

— Constraints represent restrictions on the service compositions that should
remain true while designing orchestrations. Typical constraints include
restrictions on allowable values of properties, composition restrictions, or
membership constraints (as described in Section 3.2).

The above elements are provided via a predefined template (called a style)
that defines the vocabulary of design elements for a particular domain. Unlike
free-form UML based approaches for workflow composition, a style-centric
approach constrains end-users to use the appropriate elements along with their
associated restrictions. Such a style can be further customized or extened to
include additional constraints based on the domain of usage, thereby providing
more support to end-users. End-users who use the SCORE style to compose
workflows are provided with default values for various attributes making their
job more easier.

The next few sections describe the type-system of SCORE and how it can
be used by end-users to generate orchestrations.

SCORE component types

+ Component Types [+ Pork Types
= Dratastore o configT
<= LaogicC amponent O cansumeT
L ServiceOperation | provideT
| Tool - readT
UIElement o UIconfigT
b wrikeT
[NEW Carmpanent type...] [Remo\re Type [New Patt type,.,] [Remove Type]
+ Connector Types + Role Types
ControlFlowZonnector consunnetT
DataFlowZonnector dataReaderT
| DataReadConnectar dataWriterT
a DrataviriteConnectar providerT
L UIDakaFlowZonnector
[NEW Connectar type...] [Remove Type] [Rename...] [New Connectar type, .,] [Remwe Type] [Rename...]
architectural Types | Property Twpes | Functions | Group Types | Connection Patterns | Struckure
Overview | Acme Source | FarchFam

SCORE Properties

~ Property Types
Type Definiton Descripkion
DataType string
Security Types Record [Authentication : boolean; Authorization : boolean; Logging @ boolean;]
Crigin Enum {notSpecified, CMU, externalowner}
Operationiame string
ToolCrigin Enum {notSpecified, Automap, Construct, ORA, Pythia, Otherk
description skring
TrustLevel Enum {notSpecified, trusted, semiTrusted, unTrusted)
Messagelntegrity Enum {Guaranteed, MotGuaranteed)
Function Enum {MotSpecified, PreProcessing, Procedure, Reporting, MebworkiGeneration, Other
Location Enum {MotSpecified, localMetwork, externalhletwork}
SecurityLevel Enum {naotSpecified, secured, unSecured}t
EncryptionLevel Enum {notSpecified,unEncrypted, encrypted}

Figure 3: SCORE basic component and property types

3.1 Elementary vocabulary for SCORE

SCORE was prototyped using the Acme architecture definition language [12]
via a special-purpose data-flow architectural style that provides (i) a component
type system representing the SOA domain, (ii) a property system that can
support analysis, and (iii) a set of analysis based on rules about properties
of the workflow. In Figure 3, we detail the element types used in the SCORE
vocabulary.

The high-level component types such as ServiceOperation, DataStore,
LogicComponent and Tool are the elementary component types for the work-
flows and they represent web-services, data-access elements (such as file access
and SQL data-access), control flow logic based on conditions and external tool
APIs respectively. The UIElement is a high-level component type that handles
user-interaction.

Similarly, the high-level connectors ControlFlowConnector and DataFlow-
Connector, as the names suggest, provide data-flow and control-flow semantics
in a composition and are primarily responsible for communication between
the components. The DataReadConnector and DataWriteConnector are pri-
marily meant to read and write data from a DataStore Component. The
UIDataFlowConnector is a special purpose AJAX connector that provides
capabilities to interact with user interfaces.

The ports act as interfaces to the components and serve as interaction points
for each component. The consumeT and provideT port types are responsible
for representing data-output and data-input interfaces between the various
components. The readT and writeT port-types are the data read and write
interfaces for the storage components. The configT is a special purpose port
type that serves as an interface to add configuration details to components.
Similarly, ULconfigT port-type acts as an interface to the UIElement.

In this style, connectors rather than being unchangeably bound to specific
ports, have interfaces that are defined by a set of roles. Each role of a connector
defines a participant of the interaction represented by the connector. We define
some primitive roles consumerT and providerT as service consumer provider
roles and dataReaderT and dataWriterT as roles over readT and writeT ports.
Each role of a connector defines a participant of the interaction represented by
the connector. The ports and the roles in the SCORE style allow us to write
various domain-specific constraints that restrict configurations of workflows, and
thus avoid potential mismatches. Specifications written using these component
types are then checked for consistency and well-formedness. We implement some
of these consistency checks by enforcing constraints on the workflow elements.
We would discuss these in detail in Section.

One of the critical trade-offs in the design of SCORE vocabulary was
ensuring a balance between the complexity of the component type-system and
the property type-system. They need to be expressive enough so that workflows
in the domain can be represented using the provided vocabulary. However, since
these workflow specifications form the basis of automated code generation, they
have to capture enough detail to be able to do so.

In this section we described the type-system for the base style for SCORE.
However, in practice, other sub-styles extend this base style to provide additional
capabilities. These are customized for the domain they are used and are extended
with additional domain-specific rules. We describe some of these domain-specific
customizations in later sections.

3.2 Domain-specific constraints

Workflow.Connectors The set of connectors in a workflow
ConnectorName.Roles The set of the roles in connector ConnectorName

self .PROPERTIES All the properties of a particular workflow element, where self is a
pointer to the element itself

size() Size of a set of worklflow elements

invariant A constraint that can never be violated

heuristic A constraint that should be observed but can be selectively violated

Table 1: Sample Acme constructs

SL. No Constraint type Example

1 Structural Checking that Connectors have only two roles attached
rule onlyTwoRoles = heuristic ! size(self.ROLES) = 2;

2 Structural Checking if a specific method of the service called exists
rule MatchingCalls = invariant forall request :! ServiceCallT
in self.PORTS |exists response :! ServiceResponseT
in self.PORTS |request.methodName == response.methodName;

3 Property Checking if all property values are filled in

Constraints rule allValues = invariant forall p in self.PROPERTIES|

hasValue(p);

4 Membership Ensuring that a workflow contains only the 3 types of services

rule membership-rule = invariant forall e: Component
in self.MEMBERS |declaresType(e,ServiceTypeA) OR
declaresType(e,ServiceTypeB) OR declaresType(e,ServiceTypeB);

Table 2: Sample constraints specified in predicate logic in SCORE style

An important role of the SCORE style description is to make explicit the
preconditions that must be satisfied in order to create a well-formed workflow.
In practice, not all workflow specifications are valid, and by enforcing rules that
determine restrictions on the structure, property or membership of workflow,
end-users are provided additional modeling support. The SCORE style specifies
these rules that are evaluated at design time, enforcing certain restrictions on
the kinds of services users can compose. Writing these constraints involves some
degree of technical expertise, but these are associated with the architectural style,
which is written once, and then used for modeling all workflows using the style.
Table 2 illustrates some examples of constraints represented in SCORE. The
constraints in SCORE are based on Acme’s first order predicate logic (FOPL),

where they are expressed as predicates over architectural properties of the
workflow elements. The basic elements of the constraint language includes FOPL
constructs such as conjunction, disjunction, implication and quantification.
Table 1 illustrates some functions and expressions provided by Acme, which
are used to specify workflow constraints. These constraints are associated with
various design elements of the SCORE specification such as the components,
connectors, port or the entire workflow itself.

By comparison, current UML based languages utilize constraint languages
like OCL [13] to check for well-formedness rules. SCORE’s constraints uses a
concrete syntax similar to OCL and can be associated with the workflow design-
elements using FOPL based rules.

An important role of the SCORE style description is to define the meaning
of syntactic constructs in terms of the semantic model of the orchestration. We
achieve this, at least to a certain extent, by enforcing these domain-specific
constraints. These not only prohibit end-users in creating inappropriate service
compositions, but also promote soundness of the orchestrations by ensuring
feedback mechanism via marking errors when a user fails any such constraint.

3.3 Support for analysis

As we discussed in Section 3.1, along with the component type system SCORE
also provides a property type system. Some examples of properties include the
specification of location information, tool origin of services, security credentials
and other attributes over the elements of the SCORE style. In this section we
describe some of the example analysis types that can be built using SCORE
properties, such as analyzing a workflow for composability errors, checking for
security or ensuring various performance constraints. The rules for these analyses
are written as predicates which are analyzed for correctness.

Constraint type Details
Data-format of the output port of the previous connector
matches the format of the input port
Membership constraints for having only limited
component types are met
All Structural constraints are met, and there are:
Structural soundness * no dangling ports

* no disconnected data elements

Data Integrity

Semantic appropriateness

Table 3: Composability Analysis

Composability Analysis: Com- *
. . . GeneralizeMeatwork [HOT-TopicsReport
posability is defined as the ability i
to select and assemble appropriate igure 4: Data-format mismatch

components to satisfy a user requirement. An important aspect of composability
analysis is to determine that the workflows designed by users are well-formed.

10

We ensure this by providing the analysis as shown in Table 3. Composability
analysis is provided by a collection of rules expressed in SCORE. Workflows are
created as instances of the SCORE style and all failures are visually marked as
errors by the tool. Figure 5 for instance illustrates a failure instance of a rule
where an inappropriate method of service is called. The error is marked visually
and displayed as an error message.

»

) . 1
o W GeneralizeMetwark
ApplyDeletelists [. ;

+-

= Properties 53 & Tasks t Problems

Basic Tame Rule
T Aa MatchingCalls Foralli | consumeT in self PORTS | exists o @1 provideT in self PORTS | i.methodNare == o.methadMame
Rules s A alvalues forall o in self PROPERTIES | hasvalueto)
Figure 5: An error markup showing inappropriate method call
Influencing Factors Requirements for security
Component Level Connector Level
Trust Boundaries Authentication|Authorization|Logging|Encryption|Integrity
From To
Trusted Trusted v v
Trusted Semi-Trusted v v v
Trusted Untrusted v v v
Semi-trusted|Trusted v v
Semi-trusted |Semi-trusted v v v
Semi-trusted |Untrusted v v v
Untrusted |Trusted v v v
Untrusted [Semi-trusted v v v v

Table 4: Security Analysis

Security Analysis: Another analysis provided by SCORE is to ensure that
the modeled orchestration is secure. An illustrative example for this kind of
analysis as shown in Table 4, which represents the security requirements
for an organization. The table lists the security requirements for the various
components and connectors for different modes of interactions. For example,
if a trusted component invokes a semi-trusted component, the organizational
policy requires the components to implement authorization and authentication,
and ensure that the messaging mechanism assures integrity. A collection of such
rules is represented in a style and workflows are analyzed to conform to the
style. Note that the requirements for security may vary across domains and
organizations. Table 4 illustrates an example scenario of a security policy that
needs to be enforced for all service compositions. SCORE can be used to specify
such constraints, and analyze them.

Performance Analysis: SCORE can be used to analyze workflow performance
by adding performance related properties to the components and connectors used
to model the workflows and using an external plugin to perform the analysis.
Some examples for such an analysis are : i) Evaluating approximate time to
execute the orchestration, ii) analyzing that the orchestration would not stall
(for example due to cycles), etc.

There exists a considerable amount of literature for analyzing workflow
performance varying from stochastic analysis based on queuing theory, PetriNet
based modeling and other formal approaches. SCORE provides an architectural
style which can form the basis of such analyses, each of which can be implemented
as plugins implementing the individual analysis code.

4 SCORE use-case

TN N N Yy
U B N N U B N

Key Entity
Thesaurus Analysis
Text -stemming Network
Article remove Belief simulation

— Text gathering ™| Propagation | —— >
—™ Text analysis
Network
—= S—
[@j/

Visualization

DI

D U U

Automap ORA Construct Other Tools

Figure 6: SORASCS tool pipeline

We use SCORE as an underlying style to represent workflows from SORASCS
(Service ORiented Architectures for Socio-Cultural Systems) [14]. SORASCS is
an end-user SOA system and an architecture platform for the integration of a set
of intelligence analysis tools and services from Carnegie Mellon and other partner
institutions. The computational model in SORASCS is based on aggregation
of services and functions from various analytical tools and web-services from
different organizations. Users in this domain are intelligence analysts who have
expertise in analyzing data, but use computers merely as tools to accomplish
their tasks; their computer expertise is limited to only general use and training
in programs from their domain.

Intelligence analysts have a wide variety of computer programs that assist
them in their tasks. Figure 6 shows a set of such tools developed at the Center
for Computational Analysis of Social and Organizational Systems (CASOS) at
Carnegie Mellon University: AutoMap [15] for extracting networks from natural
language texts, ORA [16] for analyzing the extracted networks, Construct [17]
for what-if reasoning about the networks. In addition to these tools, there
are a variety of tools from other organizations that may contain overlapping
functionality.

While the existing tools were quite powerful in terms of functionality, they
are mostly standalone tools that require training to use, and are difficult to

11

12

integrate and use together. There is a need in the community to mix and match
the capabilities of many tools, depending on need, to record common sequences of
usage for particular cases, to provide traceability so that analysts can determine
how conclusions were reached by tools, and to be able to assemble multiple
tool functions, data sources and new capabilities. Such needs can be addressed
by providing tool functionality as services in a Service Oriented Architecture
(SOA), that supports end-user workflow construction.

SCORE was used as an underlying architecture style for SORASCS as it
provided capabilities for composing SORASCS services into workflows. The tool
capabilities were thus decomposed into fine grained web-services that allows
them to be orchestrated together to perform a multitude of tasks. While
almost all services provided by SORASCS are currently fine-grained web-services
implemented by wrapping the functionality of tools, the granularity of these
services varied from very fine grained text-processing data-services in Automap,
to bulky application services in ORA visualization. SCORE allowed support for
orchestrating such thin-client and thick-client services. Although, creating an
architectural style for the domain involved an additional overhead, but it was a
one time job. Once defined, SCORE provided considerable support to end-users
to model workflows in SORASCS and generate the corresponding executable
orchestrations.

4.1 SORASCS Workflows in SCORE

: f : Ve o O
ApplyDeletelists (GeneralizeMetwark :D + GenerateSemantichletwork éﬁ

L
Email Texts %; HOT-TopicsReport

1

LT

Legend:
Components Connectors Ports Roles

=1 DataStore [| DataReadConnector configT providerT
consumeT consumerT =
LocalDirectory
writeT dataReaderT

provideT datativriterT

@ ServiceOperation DataFlowConnectar
= Tool O DatawriteConnector
=

ServiceOperation2

yYE vQoo

readT

Figure 7: HotTopics Workflow composed using SCORE

Figure 7 provides a simple illustration of a workflow composed using
SCORE. The workflow describes a composition of few domain-specific web-
services, a visualizer tool and input and output data elements. This scenario
from the SORASCS system [14] describes the HotTopics Workflow which involves
extraction of data from emails, generation of a network representation, visual-
ization of the network and creation of a report which describes the key actors
who are involved in the text description. The workflow uses 5 key services - Ap-
plyDeleteList, GeneralizeNetwork, GenerateSemanticNetworks, GenerateUnion,
and HotTopicsReport. These services primarily deal with network extraction

and generation tasks for the intelligence analysis domain and are hosted on the
SORASCS platform. ApplyDeleteList and GeneralizeNetwork services are
responsible for deleting some text key-words and performing natural language
processing on the text. GenerateSemanticNetwork service creates a set of
networks for analysis that are combined together by the GenerateUnion service.
These are then fed to HotTopicsReport service - a thick client based service to
generate a report.

4.2 Code generation

SCORE specifications are designed to be abstract in nature as they enable
functional composition of services based on a given domain-vocabulary. We
use these specifications to auto-generate low-level orchestration code. Our code
generation approach primarily consists of associating chunks of BPEL code with
SCORE components, and using these specifications to create executable BPEL
scripts. The generated BPEL scripts are then deployed on ODE BPEL engine[10]
and executed. We tested our approach for defining SORASCS workflows, where
the standard size of BPEL orchestrations varied from 100 lines to 4200 lines of
code. It was obvious that analysts would find it difficult to model orchestration
of this large size. SCORE not only automated the code generation, but it also
made it easier for the end-users to model them by providing an abstract and
functional vocabulary.

BPEL segment BPMN segment

Consale Interface

= Assign

Interface

= Assign

& Tnvoke

1
t
|
|
= fssign :
|

SCORE Activity
& Invoke

=
L= O_‘-- CallDelete Listaw |- 4P €
(=) While: - ApplyDeletelists [

I

|

I

+

|
(D) wait

@
& Invoke

Delete ListSerice

Pracess

T Sequence

Exernal Service

Figure 8: Comparison of constructs of the HotTopics workflow modeled in BPEL,
BPMN and SCORE

5 SCORE concepts evaluation

In Section 2 we identified the distinguishable characteristics of SCORE. We also
discussed how an abstract, domain-specific and functional vocabulary enables
SCORE to provide end-user representation. This section describes how SCORE
meets the criteria we identified earlier.

13

14

We designed a small experiment to compare the concepts required by current
orchestration languages with the ones by SCORE. We use the SORASCS
intelligence analysis domain as a standard domain for our test. Specifically,
we use the same HotTopics Workflow described in Figure 7 and model it
using BPEL, BPMN and SCORE. Choreography languages like WSCI were not
considered suitable for end-users in the SORASCS domain as they involve writing
message interchange specifications in XML that are not easy to specify for users
with limited technical expertise.

Type BPEL BPMN|SCORE|WSCI
Abstract representation - -+ -+ -
Functional vocabulary - +/- + -
Domain-specific constraints| - - + -
Support for analysis - - + -
Executable + +/- + +
Table 5: Comparison of modeling support
NR*: Not Required

Concepts (by type) BPEL | BPMN|SCORE

No. of Activities 70 13 7

No. of Variable Assignments 14 14 NR*

No. of Correlation Parameters 5 5 NR*

No. of Messages 2 NR* NR*

NameSpaces Required| NR* NR*

Table 6: Comparison of Concepts required to model the HotTopicsWorkflow

Table 6 provides a snapshot of the concepts involved in creating such an
orchestration using BPEL, BPMN and SCORE. We provide a logical comparison
of the concepts involved in modeling the same workflow. Languages like BPMN
and BPEL make it hard to model such orchestrations for end-users due to the
complexity of the technical constructs involved. Figure 8 provides an activity-
level comparison for modeling the same HotTopics workflow. It is noticeable that
it’s not so much the number of activities, but the more technical vocabulary of
the domain that allows significant reduction in the code-level semantics. BPMN
provides a certain level of abstraction, but is not executable. Languages like
BPEL and BPMN also do not provide any support to add constraints and
properties to perform architectural analysis. By comparison, SCORE requires
lesser number of concepts, making it easier for end-users to define orchestrations.

6 Conclusions and Future Work

In this paper we describe SCORE, an abstract architectural specification
language for modeling service-orchestrations. Our work is inspired by the
problems end-users face in modeling orchestrations and the limited analysis
capabilities of the current orchestration languages. SCORE not only allows
simpler modeling capabilities, but it also provides additional support for design
time analysis. Our aim is to address the requirements of end-users who are

primarily concerned with service composition and analysis, but have limited
technical expertise to write code. SCORE addresses such users by providing pre-
defined templates representing the vocabulary and rules that can be customized
for different domains. This domain-specific vocabulary is further supported by
additional pre-built analyses for various quality attributes.

SCORE is part of our ongoing research effort in building SORASCS, an end-
user SOA system for the intelligence analysis domain. We are currently working
on an improved front-end to simplify service-orchestrations using SCORE. In the
near future, we would like to provide various domain-specific sub-styles and other
analysis that can allow easier composition of services by end-users. We believe
that an architectural approach to represent service compositions can be extended
to various other composition scenarios, providing more formal reasoning support
for various quality attributes.

7 Acknowledgements

This work was supported in part by the Office of Naval Research (ONR-
N000140811223). Additional support was provided by the Center for Computa-
tional Analysis of Social and Organizational Systems (CASOS). The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied,
of the Office of Naval Research, or the U.S. government.

References

1. BPEL: BPEL Web Services Business Process Execution Language.
(http://docs.oasis-open.org/wsbpel /2.0/OS /wsbpel-v2.0-OS.html /)

2. BPML: Business Process Modeling Language.

(http:/ /xml.coverpages.org/bpml.html)

3. WSCI: Web Service Choreography Interface. (http://www.w3.org/TR/wsci)

4. Esfahani, N., Malek, S., Sousa, J.P., Gomaa, H., Menascé, D.A.: A modeling
language for activity-oriented composition of service-oriented software systems.
In: MoDELS. (2009) 591-605

5. Mayer, P., Schroeder, A., Koch, N.: Mdd4soa: Model-driven service orchestration.
In: EDOC. (2008) 203-212

6. BPMN: Business Process Modeling Notation. (http://www.bpmn.org/)

7. Puhlmann, F., Weske, M.: Interaction soundness for service orchestrations. In:
ICSOC. (2006) 302-313

8. Koshkina, M., van Breugel, F.: Modelling and verifying web service orchestration
by means of the concurrency workbench. ACM SIGSOFT Software Engineering
Notes 29(5) (2004) 1-10

9. Aalst, W.M.P.V.: Workflow verification: Finding control-flow errors using petri-
net-based techniques. In: Business Process Management. (2000) 161-183

10. ODE: Apache Orchestration Director Engine. (http://ode.apache.org/index.html)

11. Intalio|works: BPMS. (www.intalioworks.com/products/bpm)

12. Garlan, D., Monroe, R.T., Wile, D.: Acme: An architecture description interchange
language. In: Proceedings of CASCON’97, Toronto, Ontario (1997) 169-183

13. OCL: Object Constraint Language. (http://www-st.inf.tu-dresden.de/ocl/)

15

16

14.

15.

16.

17.

Garlan, D., Carley, K.M., Schmerl, B., Bigrigg, M., Celiku, O.: Using service-
oriented architectures for socio-cultural analysis. In: Proceedings of the 21st
International Conference on Software Engineering and Knowledge Engineering
(SEKE2009), Boston, USA (2009)

Diesner, J., Carley, K.: Automapl.2 - extract, analyze, represent, and compare
mental models from texts. Technical Report CMU-ISR-07-114, Carnegie Mellon
University (2004)

Carley, K., Reminga, J.: Ora: Organization risk analyzer. Technical Report CMU-
ISRI-04-101, Carnegie Mellon University (2004)

Schreiber, C., Singh, S., Carley, K.: Construct: A multi-agent network model
for the co-evolution of agents and socio-cultural environments. Technical Report
CMU-ISRI-04-109, Carnegie Mellon University (2004)

