
An Architectural Approach to End User Orchestrations

Vishal Dwivedi1, Perla Velasco-Elizondo2, Jose Maria Fernandes3 David Garlan1 and

Bradley Schmerl1

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
2 Centre for Mathematical Research (CIMAT), Zacatecas, ZAC, 98060, Mexico.

3 IEETA/DETI & Uni. of Aveiro, Campus Universitrio de Santiago, 3810-193 Aveiro, Portugal.

Abstract. Computations are pervasive across many domains, where end users

have to compose various heterogeneous computational entities to perform pro-

fessional activities. Service-Oriented Architecture (SOA) is a widely used mech-

anism that can support such forms of compositions as it allows heterogeneous

systems to be wrapped as services that can then be combined with each other.

However, current SOA orchestration languages require writing scripts that are

typically too low-level for end users to write, being targeted at professional pro-

grammers and business analysts. To address this problem, this paper proposes a

composition approach based on an end user specification style called SCORE.

SCORE is an architectural style that uses high-level constructs that can be tai-

lored for different domains and automatically translated into executable con-

structs by tool support. We demonstrate the use of SCORE in two domains -

dynamic network analysis and neuroscience, where users are intelligence analysts

and neuroscientists respectively, who use the architectural style based vocabulary

in SCORE as a basis of their domain-specific compositions that can be formally

analyzed.

1 Introduction

Professionals in domains such as scientific computing, social-sciences, astronomy, neu-

rosciences, and health-care are increasingly expected to compose heterogeneous com-

putational entities to perform and automate their professional activities. Unlike pro-

fessional programmers, these end users write programs to support the goals of their

domains, where programming is a means to an end, not the primary goal [7]. However,

studies have shown that such users spend about 40% of their time on programming ac-

tivities [5], meaning that a large community of people are spending a lot of their time

on programming tasks rather than on tasks directly related to their domain.

While in some cases end users may find it sufficient to use a single tool to accom-

plish their goals, very often one single tool may not provide all functionalities. Hence,

the end users must compose functions from a number of tools, libraries, and APIs. To

define such compositions, they need to either write glue code in the form of executable

scripts, or use special-purpose tools that provide GUIs that generate such code, both of

which require significant technical knowledge that they often lack.

Today, there is a large variety of approaches to support the composition of com-

putational elements; however, they can be classified into two main categories: i) code

scripts, and ii) orchestrations. However, neither of these fit naturally to the end users’

needs. For instance, a typical code script for neuroscience workflows (as shown in Fig.

1a) requires writing program calls to describe analyses. This not only requires knowl-

edge of the scripting language, but also other technical details, e.g. the parameters used

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

by each program call. Orchestration languages such as BPEL (as shown in Fig. 1b)

offer an improvement over scripts by providing higher level constructs (e.g., services

as opposed to command-line parameters). However, they too have a low level of ab-

straction, and are still close to program code. For instance, such BPEL scripts require

specification of control logic (e.g. Sequence, While), data assignment (i.e. Assign) and

error handling constructs (i.e. Throw). As can be seen, both approaches are too low

level for technically naı̈ve end users and therefore tedious and error-prone. For both

(b)usr/local/fsl/bin/flirt/ −ref
standard
−in example_func
−out example_func2standard
−omat example_func2standard.mat
−cost corratio −dof 12
−searchrx −90 90
−searchry −90 90
−searchrz −90 90
−interp trilineal

(a)

...

Assign

While

Sequence

Wait

Invoke

Catch

Throw

Sequence

Assign

Assign

Invoke

Reply

Sequence

Invoke

Invoke

Fig. 1. Common modes of composition: (a) code scripts and (b) orchestrations.

these cases, detection of syntactic and semantic issues has to be performed manually.

Although, at times GUIs and type-checkers aid syntactic verification, finding semantic

issues that are more domain-specific is difficult because specifications written in terms

of low-level code constructs are not convenient for describing semantic information.

Additionally, the analysis of other relevant properties such as performance or deadlock

is even harder to support on script code. This often leads to technically-nave end users

resorting to opportunistic programming and copy-paste, wherein they make frequent

mistakes [2]. In either case, creating compositions is difficult for end users because of:

- Complexity due to low-level details: Existing languages and tools require end users

to have knowledge of a myriad of low-level technical detail such as parameters, file

systems, paths, operating systems, etc.

- Lack of support for error resolution: Few mechanisms exist today for helping
users detect syntactic and semantic problems with their compositions. Further, identi-

fying and fixing quality attribute problems (such as security and privacy issues) in their

specifications is difficult for end users.

- Conceptual mismatch: End users often think in terms of tasks they want to accom-
plish, while current composition mechanisms force them to think in terms of technology

with which the task is implemented. For example, “Remove Image Noise” as opposed

to calling the specific program(s) to perform this function.

We believe an architectural specification can alleviate the above problems by pro-

viding domain-specific abstractions that are close to the way that end users think about

their problems, but that can still be mapped to code that can be executed on traditional

platforms such as SOAs. In this paper, we propose how this can be achieved using ar-

chitectural styles [14] that provide an abstract vocabulary of components (and the con-

straints that direct their usage) that can be used by end users to design compositions.

2

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

Function

Input Port
Output Port

A composition using a high−level
workflow style

Data Translate Service 1

Service 3

Service 2

Data Fetch

Function 1 Function 2 Function 3

Data flow

Data Store

orchestration style

Remote ServiceRelational Store CSV Data

A Workflow

Data Fetch

An Orchestration

Data Translate Service

Data flow

Service Invocation

Data Fetch Service

Data Store Input Port
Output Port

A composition using a low−level

Fig. 2. An illustration of a mapping between a workflow to an orchestration style.

2 Design Approach

We propose a dataflow-based architectural style called SCORE (Simple Compositional

ORchestration for End users) that can be used for assembling computations in various

domains. SCORE provides a vocabulary that can be tailored for different domains and

does not require writing low-level code. Instead of using directly executable scripts,

we propose using multi-layered styles for representing workflows, where each layer

handles different concerns. The use of such styles gives us leverage to use existing

architectural analysis techniques to provide advice and guarantees to users about their

compositions via various formal analyses. The end users can specify their compositions

in terms of an assembly of high-level functions. These functions can be translated into

lower-level orchestrations using tool support.

2.1 Using Architectural Styles as a basis for Abstraction and Refinement

Software architecture provides the high-level structure of a system, consisting of com-

ponents, connectors, and properties [14]. While it is possible to model the architecture

of a system using such generic high-level structures, it is crucial to use a more spe-

cialized architectural modeling vocabulary that targets a family of architectures for a

particular domain. This specialized modeling vocabulary is known as an architectural

style [14] and it defines the following elements:

- Component types: represent the primary computational elements and data stores.

- Connectors types: represent interactions among components.
- Properties: represent semantic information about the components and connectors.
- Constraints: represent restrictions on the usage of components or connectors, e.g.

allowable values of properties, topological restrictions.

Acme [1] is an architectural definition language (ADL) that provides support to

define such styles. Acme’s predicate-based type system allows styles to inherit char-

acteristics from other styles. When a style element (or the style itself) inherits other

elements, not only does it inherit the properties, but also the constraints defined on its

usage. We find this characteristic of Acme useful for many of the problems that we

discussed in Section 1. Specifically, for mapping a functional concept to its technical

solution, styles that determine functional vocabulary can be inherited and refined to the

styles that consist of components and implement them.

For example, a high-level workflow, as in Fig. 2, can be mapped to a low-level or-

chestration if both of these are specified using architectural styles that follow inheritance

3

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

UIElement

NeuroScience
Family

SCORE Family

Third−party

Family

Tools

Service

SORASCS

Family

Services
& Tools

Workflow
fslmathfslstats

fslroi

FSL
Family

mcflirtbet2 flirt susan

slice

Tool
Logic

ComponentService

fsl_tsplot

Normalize

Registration
Filtering
SpatialAlign

...

...

...
AutoMap

SORASCS

Temporal
Filtering

Segmentation Task

Extractor
Text

Analysis
Network

Visualizer Procedures

FunctionTool

Service
Reporting

Service
Data

ORA Construct

DataStore

VoluneData

Fig. 3. Style derivation by inheritance.

relationships. The workflow in Fig. 2 composes three functions with different input and

output data requirements and location constraints; its corresponding low-level orches-

tration includes services for individual functions and additional components for data

translation and data fetching to compose a sound service orchestration. Note that this

is not a 1-to-1 mapping between components, but it is derived from rules. For instance,

the port properties of components DataStore and Function 1 in the workflow can point

to a difference in data-type and location, leading to insertion of two components that

can address the mismatch.

Although simple, this example gives a glimpse of how abstract models can be help-

ful to end users by providing just the necessary details allowing for a simpler end user

specification. These abstract models can be translated into an executable specification

using additional properties and constraints. SCORE is based on this approach, where

end users can use a high-level style to compose functions that can be compiled into low-

level orchestration. We call this functional composition an ‘end user orchestration’.

3 SCORE

SCORE is an architectural style that provides a restricted vocabulary for the specifi-

cation of workflows in a dataflow like specification. It abstracts the specification of

workflows to the essential types and the properties of concern that match the computa-

tion model required by (end user) scientific communities. The SCORE style specifies

rules that are evaluated at design time, enforcing restrictions on the kinds of components

users can compose. Writing these rules involves some degree of technical expertise, but

these are associated with the architectural style, which is written once by a designer,

and then used by end users for modeling workflows based on the style.

3.1 SCORE Vocabulary

Table 1 shows SCORE architectural types, functions and constraints that are used to

specify workflows using SCORE. These constrants are based on Acme’s first order

predicate logic, where they are expressed as predicates over properties of the workflow

elements. The basic elements of the constraint language include constructs such as con-

junction, disjunction, implication and quantification. An important role of the SCORE

style description is to define the meaning of semantic constructs in terms of the syn-

tactic properties of the style elements. We achieve this, at least to a certain extent, by

enforcing domain-specific constraints. These not only prohibit end users from creating

inappropriate service compositions, but also promote soundness by ensuring feedback

mechanism via marking errors when a component fails to satisfy any such constraints.

4

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

Components Description

DataStore Components for Data-access (such as file/SQL data-access)

LogicComponent Components for conditional logic (such as join/split etc)

Service Components that are executed as a service call

Tool Components who’s functionality is implemented by tools

UIElement Special-purpose UI activity for human interaction

Connectors Description

DataFlowConnector Supports dataflow communication between the components.

DataReadConnector Read data from a DataStore Component

DataWriteConnector Write data to a DataStore Component

UIDataFlowConnector Provides capabilities to interact with UIElements

Ports Description

configPort Provides an interface to add configuration details to components

consumePort Represents data-input interface for a component.

providePort Represents data-output interface for a component.

readPort Provides data-read interface for DataStore component

writePort Provides data-write interface for DataStore component

Roles Description

consumerRole Defines input interface to DataFlow/UIDataflow connectors

providerRole Defines output interface to DataFlow/UIDataflow connectors

dataReaderRole Defines input interfaces for the DataRead/DataWrite connectors

dataWriterRole Defines output interfaces for the DataRead/DataWrite connectors

Acme Functions Description

Workflow.Connectors The set of connectors in a workflow

ConnectorName.Roles The set of the roles in a connector

self.PROPERTIES All the properties of a particular element

size() Size of a set of workflow elements

Invariant A constraint that can never be violated

Heuristic A constraint that should be observed but can be selectively violated

Constraint types Example

Structural Checking that connectors have only two roles attached

rule onlyTwoRoles = heuristic size(self.ROLES) = 2;

Structural Checking if a specific method of the service called exists

rule MatchingCalls = invariant forall request:

!ServiceCallT in self.PORTS |exists response:

!ServiceResponseTin self.PORTS|

request.methodName == response.methodName;

Property Checking if all property values are filled in

rule allValues = invariant forall p in self.PROPERTIES

| hasValue(p);

Membership Ensuring that a workflow contains only 2 types of components

rule membership-rule = invariant forall e: Component

in self.MEMBERS |declaresType(e,ComponentTypeA) OR

declaresType(e,ComponentTypeB);

Table 1. SCORE composition elements.

Properties and constraints on architectural elements can be used to analyze systems

defined using SCORE. Table 2 displays some examples of analyses that are built using

SCORE properties, such as analyzing a workflow for structural soundness, and various

domain-specific analyses based on workflow properties. Some of the examples of such

analyses written in Acme ADL are presented in [4]. The rules for these analyses are

written as predicates that are analyzed for correctness while end users design workflows.

4 SCORE in Practice

As shown in Fig. 3, SCORE can be specialized to various domains through refinement

and inheritance. This requires construction of sub-styles that extend the basic SCORE

dataflow style by adding additional properties, domain-specific constraints, and rules

that allow the correct construction of workflows within that domain. For our initial pro-

totype we have defined sub-styles for a couple of domains - neuroscience and network

analysis, that we use for modeling workflows in these two domains. For the neuro-

science domain, we experimented with using SCORE for defining workflows that can

5

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

STRUCTURAL ANALYSIS TYPE

Data Integrity Data-format of the output port of the previous Predicate based

connector matches the format of the input port

Semantic correctness Membership constraints for having only limited Predicate based

component types are met

Structural soundness All Structural constraints are met, and there are:

- no dangling ports Predicate based

- no disconnected data elements

DOMAIN-SPECIFIC ANALYSES TYPE

Security/Privacy Identify potential security/privacy issues Program based

Analysis based on rules

Order Analysis Evaluate if ordering of two services makes sense Program based

Table 2. Types of analyses

FSL

flirt −ref standard −in ${2} −out $
{input_in_standard} −omat ${input2standard}.mat$
−cost corratio −dof 12 −searchrx −90 90 −
searchry −90 90 −searchrz −90 90 −interp
trilinear

hp=‘echo "scale=10;100/${3}" | bc‘
lp=‘echo "scale=10;3/${3}" | bc‘
fslmath ${2} −bptf ${lp} −1 −mas mask ${6}

fslmath ${2} −kernel gauss ${sigma} −fmean ${5}

bet2 ${2} ${4} −f ${3} −n −m

flirt

Service Implementation Components

fslroi

mcflirt

bet2

fslmath

Fig. 4. A pre-processing workflow with an ordering problem.

automate FMRI 4 data pre-processing steps for which neuroscientists currently write

detailed code-scripts (as shown in Fig. 1a), replacing them with a tool-assisted work-

flow (shown in Fig. 4) that is based on SCORE type system. SCORE provides the basic

functional vocabulary for constructing workflows, while the low-level styles extend this

dataflow-based vocabulary to include additional details about how tools like FSL 5 exe-

cute these high-level functions. Thus, not only does SCORE help to define neuroscience

workflows at a functional level, it supports analysis such as checking for ordering, and

security based on various domain-specific constraints. Fig. 4 for instance, gives an ex-

ample where one such analysis has gone wrong because of the inappropriate ordering

of services in the defined workflow.

Similarly, SCORE was also used to model workflows for dynamic network analysis

- a domain that involves creating network models from unstructured data, and then use

those models to gain insight about social phenomena through analysis and simulation.

This was primarily used for our large SOA based platform named SORASCS [13] that

provides an end user friendly SOA based platform to analysts to combine services from

various tools in the intelligence analysis domain.

5 Related Work

SCORE can be characterized as providing an abstract vocabulary for composing com-

putations, which can be analyzed for both syntactic and semantic errors, and reduces

4 FMRI (functional magnetic resonance imaging) is a neuroimaging technique in the neuro-

science domain to understand the behavior of the human brain.
5 The FSL brain imaging tool-suite: www.fmrib.ox.ac.uk/fsl

6

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

the conceptual mismatch between end user’s functional vocabulary and low-level code

constructs (required by current composition mechanisms). We use this characterization

to compare SCORE with the related work.

Abstraction: UML-based languages like BPMN have been widely used for doc-

umenting abstract compositions. However, their primary use-case has been documen-

tation and not execution. They do not support analysis, and when used to capture de-

tails tend to be extremely complicated [10]. There have been other efforts such as SAS

language [3] for modeling functional and QoS requirements by Esfahani et al at, and

MDA based approaches [9] for composition using SOA profiles. However, such on-

tologies and profiles don’t scale and lack the capability to be extended across different

domains. SCORE in comparison, supports functional composition that can be refined,

and compiled to low level specifications enabling an easier composition.

Error resolution: Most of the current composition languages provide type-checkers

for syntactic verification, but they lack capabilities to resolve domain-specific errors.

Almost all such composition languages have a relatively fixed schema that don’t al-

low adding additional attributes that can be useful for expressing domain-specific con-

straints. In particular, the focus of most of these approaches has been to analyze sound-

ness [11], concurrency [8] or control flow errors [15]. In comparison, SCORE pro-

vides support for adding properties and constraints, allowing designers to write domain-

specific analyses that other languages cannot support.

Conceptual mismatch: Domain-specific compositions have been used for various

scientific dataflow languages such as SCUFL in Taverna [6], and LONI Pipeline [12] for

neurosciences. However, most of these approaches have a fixed type system that cannot

be extended or refined as we do in SCORE. One of the benefits of such refinement is

that the same set of high-level styles can be extended to other domains - for instance,

in our case dynamic network analysis, and neurosciences share a common model of

computation, but have no similarity in terms of design concepts.

6 Conclusions and Future Work
In this paper we proposed an architectural-style based approach for service composition

using an end user specification style called SCORE. The goal of SCORE is to address

the requirements of end users who are primarily concerned with composition of com-

putational elements and the analysis of the resulting compositions, but have limited

technical expertise to write detailed code.

The tool support constructed using SCORE component types, allows the visual

composition of tools, services and data that can be executed by a run-time platform.

Although, style-based composition helps to constrain the usage of the component types,

it is still a challenge to design an optimal type system for a domain; however, such an

upfront investment by style designers could be helpful for end users who can use such

a family of component types in their tools. As a future work, we would like to extend

SCORE to other domains, and support new types of analyses. We are also working

on the problem of mismatch repair given the domain-specific constraints. These would

require generating alternative compositions based on the constraints of the styles.

7 Acknowledgments
This work was supported in part by the Office of Naval Research (ONR-N000140811223), and

the FCT Portuguese Science and Technology Agency (under the CMU-Portugal faculty exchange

7

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

program). Additional support was provided by the Center for Computational Analysis of Social

and Organizational Systems (CASOS). The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the Office of Naval Research, or the U.S. government.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on

Software Engineering and Methodology, 6:213–249, 1997.

2. J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S.R. Klemmer. Two studies of oppor-

tunistic programming: Interleaving web foraging, learning, and writing code. In Proc. of the

27th Int. Conf. on Human Factors in Computing Systems (CHI), pages 1589–1598, 2009.

3. N. Esfahani, S. Malek, J.P. Sousa, H. Gomaa, and D.A. Menascé. A modeling language

for activity-oriented composition of service-oriented software systems. In Proc. of the 12th

Int. Conf. on Model Driven Engineering Languages and Systems, pages 591–605, Berlin,

Heidelberg, 2009. Springer Verlag.

4. D. Garlan and B. Schmerl. Architecture-driven modelling and analysis. In Proc. of the

11th Australian Workshop on Safety Critical Systems and Software (SCS), pages 3–17, Dar-

linghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

5. J. Howison and J.D. Herbsleb. Scientific software production: Incentives and collaboration.

In Proc. of ACM CSCW, pages 513–522, March, 2011.

6. Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R. Pocock, Peter

Li, and Tom Oinn. Taverna: A tool for building and running workflows of services. Nucleic

Acids Research, 34 (Web Server Issue):W729–W732, 2006.

7. A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,

J. Lawrance, H. Lieberman, B. Myers, M.B. Rosson, G. Rothemel, M. Shaw, and S. Wieden-

beck. The state of the art in end-user software engineering. ACM Comput. Surv., 43:21:1–

21:44, April 2011.

8. M. Koshkina and F. van Breugel. Modelling and verifying web service orchestration by

means of the concurrency workbench. SIGSOFT Software. Engineering Notes, 29:1–10,

September 2004.

9. P. Mayer, A. Schroeder, and N. Koch. MDD4SOA: Model-driven service orchestration. In

Proc. of the 2th Int. IEEE Enterprise Distributed Object Computing Conference, pages 203–

212. IEEE Computer Society, 2008.

10. Harold Ossher, Rachel K. E. Bellamy, Ian Simmonds, David Amid, Ateret Anaby-Tavor,

Matthew Callery, Michael Desmond, Jacqueline de Vries, Amit Fisher, and Sophia Krasikov.

Flexible modeling tools for pre-requirements analysis: conceptual architecture and research

challenges. In OOPSLA, pages 848–864, 2010.

11. F. Puhlmann and M. Weske. M.: interaction soundness for service orchestrations. In Proc.

of the Int. Conf. on Service-Oriented Computing, volume 4294 of LNCS, pages 302–313.

Springer Verlag, 2006.

12. D.E. Rex, J.Q. Ma, and A.W. Toga. The loni pipeline processing environment. Neuroimage,

19:1033–1048, 2003.

13. B. Schmerl, D. Garlan, V. Dwivedi, M. Bigrigg, and K.M.Carley. SORASCS: A case study

in SOA-based platform design for socio-cultural analysis. In Proc. of the 33rd Int. Conf. on

Software Engineering, (ICSE), pages 643–652, 2011.

14. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

15. W.M. P. van der Aalst. Workflow verification: Finding control-flow errors using petri-net-

based techniques. In Business Process Management, volume 1806 of LNCS, pages 161–183.

Springer Verlag, 2000.

8

In Proceedings of the 5th European Conference on Software Architecture, 13-16 September 2011.

