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Abstract

An increasingly essential aspect of many critical soft-
ware systems is the ability to quickly diagnose and lo-
cate faults so that appropriate corrective measures can
be taken. Large, complex software systems fail unpre-
dictably and pinpointing the source of the failure is a
challenging task. In this paper we explore how our re-
cently developed technique for automatic diagnosis per-
forms in the automatic detection of failures and fault lo-
calization in a critical manufacturing control system of
Samsung Electronics, where failures can result in large
financial and schedule losses. We show how our ap-
proach can scale to such systems to diagnose intermit-
tent faults, connectivity problems, protocol violations,
and timing failures. We propose a set of measures of
accuracy and performance that can be used to evaluate
run-time diagnosis. We present lessons learned from this
work including how instrumentation limitations may im-
pair diagnosis accuracy: without overcoming these, there
is a limit to the kinds of faults that can be detected.

1 Introduction

Product manufacture, notably technology manufacture,
is highly automated, involving critical software to sched-
ule, control, and monitor the manufacturing process. The
large volume of items produced, the high competitive-
ness in manufacturing costs, and global supply chains
make failures in this industrial setting costly, leading to
schedule overruns and large financial losses.

The inherent complexity in the manufacturing pro-
cess, exacerbated by extremely optimized production
processes, and the high volume of production makes
identifying faults in the underlying running software dif-
ficult. Software systems controlling the manufacturing
process communicate by sending a large number of mes-
sages between equipment and the controlling software to
coordinate manufacturing, and involve little human inter-

vention. Although hardware faults (i.e., equipment fail-
ure) may also lead to software faults, in this paper we
primarily address failures triggerd by software faults.

While this software system works most of the time, in-
termittent faults can cause cascading errors that can de-
lay or halt manufacturing. In such a case, the software
typically needs to be rebooted, causing further delays.
Furthermore, isolating which parts of the system caused
the initial problem is a difficult process, where develop-
ers manually examine volumes of log files to see if they
can determine why the problems occurred.

In this paper, we report on our experience applying our
run-time fault diagnosis approach [4] to dynamically and
automatically diagnose and locate faults for a chip manu-
facturing process for Samsung Electronics. As there are
several barriers (such as, rareness and unpredictability
of the faults and dependencies between the software and
the actual factory equipment) to performing monitoring
and diagnosis in a real setting, we developed a simula-
tor mimicking the behavior of the Samsung Electronics’
manufacturing control system, which has been validated
by Samsung Electronics.

In previous work we have tested our approach success-
fully on several research prototype software systems, re-
ported in [4, 3]. In this paper we discuss how the tech-
nique works in a real-world setting (albeit simulated),
with the scale and problems that exist in that system. In
particular, we validate that our approach to autonomic
monitoring and diagnosis (a) accurately identifies the
fault of a problem by observing the run-time behavior;
and (b) achieves the desired performance without violat-
ing quality attributes of the system. Furthermore, in our
previous work we have argued that:

e The specifications of system behavior required for
our approach were an intuitive concept for system
designers.

e These computations could be reused within systems
of the same architectural family.



e Defining correctness criteria for computations is
simple, being directly derived from business re-
quirements and quality attributes, and in terms fa-
miliar to system designers.

e The statistical analysis provided by the diagnostic
algorithm can pinpoint the source of the fault accu-
rately.

In this paper we analyze how our algorithms matched
the challenges and how they fulfill the above claims. We
further propose metrics to evaluate runtime diagnosis al-
gorithms and summarize lessons learned, which we be-
lieve to be applicable in other run-time diagnosis sys-
tems.

This paper is organized as follows: in section 2 we
provide a description of Samsung Electronics’ system
we’re targeting. Section 3 describes our approach to au-
tonomic diagnosis and how it was applied in Samsung
Electronics. In section 4 we propose metrics for evalu-
ation of run-time diagnosis algorithms. In section 5 we
provide the results of our case study in a set of scenar-
ios mimicking problems detected at Samsung Electron-
ics. In section 6 we list lessons learned that can be useful
for future systems. Section 7 summarizes our finds, dis-
cusses threats to validity and future work.

2 Target system

Samsung Electronics’ manufacturing system is a large-
scale industrial control system responsible for manu-
facturing control of semiconductors!. The system con-
trols the stages of wafer manufacture, deciding to which
equipment wafers are sent for processing. Furthermore,
the software tracks of not only the lots being manufac-
tured, but also the equipment used: which equipment is
allocated, whether and what it is processing, what its out-
put quality is, and so on.

The system is divided into subsystems, which perform
specific tasks related to the manufacturing process. For
example, the MOS (Manufacturing Operating System)
controls the stages of the manufacturing process, and the
ADS (Automatic Dispatch System) performs equipment
scheduling, deciding which equipment is the best to per-
form a step in the manufacturing process.

Each of these subsystem is built by multiple concur-
rent processes that provide various manufacturing ser-
vices, load distribution, and fault tolerance. These are
connected through an event bus, which mediates event
exchange amongst them. A subset of the system’s ar-
chitecture is abstractly depicted in Figure 1. Due to
confidentiality reasons, specific details about system im-
plementation cannot be reported. The total message
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Figure 1: High-level architectural view of the manufac-
turing system at Samsung Electronics. For simplicity,
only the MOS and TC systems are shown decomposed.

throughput in all buses combined is around 2000 events
per second.

The systems communicate with each other exchang-
ing messages according to several predefined protocols.
One such protocol is the track-in (TKIN) protocol. This
protocol is used before a wafer lot is sent to another stage
of processing. It determines what equipment the wafers
should be sent to, performs validation operations and
does some housekeeping, like ensuring that the equip-
ment for processing the next steps are available and that
no scheduling and quality constraints are violated.

2.1 Operation issues

While TKIN protocols are executed correctly most of the
time, once in a while problems arise that cause failures
in the system. These problems vary, but some of the typ-
ical problems are messages being lost (or not sent at all),
messages sent too late, or unexpected messages being
sent. Other problems are database performance slow-
downs, which affect overall system performance.

Such problems can have a significant impact on the
manufacturing process as they can lead to stalling lots
and unneccesary equipment reservations. Given the
sheer volume of messages being exchanged it is not pos-
sible for human operators to even realize that a problem
has occurred until later when more serious consequences



become visible. Also, given the independent develop-
ment of all the systems involved, it is difficult for the
system developers to figure out what the problem is and
where it is located.

Yet another difficulty is that these problems, although
serious, are rare - and therefore are difficult to diagnose.
Although the system operates with around 2000 mes-
sages exchanged per second, it generally functions cor-
rectly for many weeks in a row before any failure is de-
tected. This sets up a scenario in which millions of ob-
servations are performed before a single failure can be
identified.

2.2 Simulating the target system

There are several barriers to developing a diagnosis sys-
tem that can be used for Samsung Electronics’ manu-
facturing control systems. The criticality of the system
makes testing on the production system unacceptable;
the size of the system and its need to work connected to
factory equipment makes it impossible to run it in a dif-
ferent environment. Also, the rareness and unpredictabil-
ity of the faults make testing a diagnosis system difficult.

We addressed these issues by creating a simulator of
Samsung Electronics’ production system and perform-
ing diagnosis in the simulator. This simulator was engi-
neered with the help of Samsung Electronics to produce
a TKIN protocol similar to the real one and to allow man-
ual control of faults for testing purposes.

The TKIN protocol is described using a message se-
quence diagram in Figure 2. The messages in the se-
quence diagram correspond to types of events sent: for
example, BEST_EQP is a request for an equipment to pro-
cess a wafer lot and EQP is the event with the ADS’s de-
cision on the equipment to perform the process step.

The simulated system does not, naturally, control any
equipment. Rather, it generates messages that conform to
the protocol, both in terms of their types and also in their
timing. This simulator allows us to develop test scenarios
in which we arrange for specific faults to happen, check
whether they are diagnosed correctly, and have a credible
expectation that it can be successfully transitioned into
Samsung Electronics’ production system.

The simulated system is similar to the one in Figure 1,
but it has only two MOS components, one event bus, and
two TC components. This is in contrast with the real sys-
tem which includes more than 20 of each type. The sys-
tem starts multiple TKIN protocols at random time inter-
vals. Components have random processing delays and a
single TKIN protocol takes around 1 minute to complete,
similar to the TKIN protocol in the real system. The rate
at which TKIN protocols are initiated can be used to con-
trol the level of concurrency.

Both MOS components work in fault-tolerance mode:

either MOS. 1 or MOS. 2 will receive messages addressed
to the MOS, but not both. They maintain a “keep-alive”
mechanism, allowing one to take over if the other fails to
respond. The TC components work in “load-distribution”
mode: each request will be forwarded to either TC.1 or
TC.2.

Implementing fault tolerance in our simulator was
done by creating a synthetic component (MOS . S) that acts
like the MOS for all other components (except MOS.1 to
M0S.2). It will forward through the event bus any mes-
sage to either MOS . 1 or MOS . 2, depending on which com-
ponent is active. Load distribution is implemented simi-
larly using a synthetic TC.S component.

Although we did not have access to the actual factory
control software, we were careful to work with Samsung
Electronics engineers to ensure that the simulator we de-
veloped was faithful to the real system in the following
ways:

e event timings were designed to produce delays close
to the real system;

e the protocol was designed according to Samsung
Electronics’ specifications;

o the faults that were injected (see Section 5) were
typical of real problems experienced by Samsung
Electronics and which are hard to locate in the real
system.

We are therefore reasonably confident that the results
reported in this paper will apply when Samsung Elec-
tronics transitions our approach to the real system.

3 Approach

This section details our approach to automatic monitor-
ing and fault localization, as well as how we applied it to
the Samsung Electronics’ system.

3.1 Overview

A detailed description of our approach for autonomic
diagnosis is described in [3, 4]; see Figure 3 for an
overview. It consists, at a high level of abstraction, of
defining a behavior model (equivalent, to some extent, to
the TKIN protocol described in Figure 2) over the sys-
tem’s architecture (such as the one in Figure 1) and mon-
itoring the system to identify patterns that match to the
model.

These behavior specifications are high-level computa-
tions” that occur at the architecture level. These high-
level computations are not directly observable in the sys-
tem. Instead, low-level events such as a message sent

2We termed them transactions in [4, 3], but use computations to
avoid confusion with database transactions
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Figure 2: Simulated TKIN protocol.

from the EES to the ADS with type UPD_FAIL for equip-
ment lot X. 445, can usually be extracted through instru-
mentation. These low-level events are then combined by
the Recognizer using a Behavior Model (see figure 3), to
form the high-level computations.

The high-level computations are then analyzed by an
Oracle to check whether they represent correct or incor-
rect behaviors, according to some predefined Correct-
ness Criteria. Correctness is derived from the business
rules that define the system’s functional requirements
and quality attributes. For example, an incorrect com-
putation can occur because a protocol did not complete
successfully, or it completed, but without satisfying de-
sired performance requirements. This information is sent
to a Fault Localizer which will compute health estimates
for the component and connectors in the system.

Having a set of computations over the architecture
classified as correct and incorrect allows us to use static-
time algorithms used for fault localization, such as the
one in [1]. This algorithm was initially designed to lo-
calize faults in source code in the presence of a set of
successful and unsuccessful runs of test cases (i.e., at de-
velopment time, during the debugging phase of the soft-
ware development life-cycle). We apply them at runtime,
using observed run-time computations as “test cases”,
and localize the faults to the respective components in

the system’s architecture. Being a technique that reasons
over information about run-time behavior, the diagnosis
accuracy increases with the number of observations.

The output of the fault localizer is a set of fault candi-
dates ranked by the probability of being the explanation
of the observed failures [1]. The fault localizer gathers
information until it is able to produce an accurate report
based on a limit on entropy. Borrowed from informa-
tion theory, entropy is a measure of the uncertainty in
the ranking produced by the diagnostic algorithm. This
allows us to dynamically adjust the number of computa-
tions we need to observe before being able to accurately
diagnose a fault.

The key ideas of our approach are:

e System designers reason about systems using high-
level computations like the TKIN protocol, which
are meaningful from a business perspective and
whose structure and design is driven by the system’s
requirements.

e It is possible to classify these high-level computa-
tions as either correct or incorrect behavior.

Because these computations are meaningful from
a business perspective, their correctness is usually
defined directly in terms of system requirements.
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Figure 3: Structure of the diagnosis system.

For example, a TKIN protocol which halts half way
through is considered incorrect behavior. Also, a
TKIN protocol which takes more time to complete
than the established maximum is also incorrect be-
havior.

e High-level computations of a system cannot gener-
ally be observed directly in a system, but can be de-
tected by observing lower-level events.

For example, it is not possible to directly see the
TKIN protocol, as a whole, in the system. But we
can see individual messages sent from components
to other components. These individual messages
(which are directly observable) allow us to recon-
struct the higher-level behavior, the TKIN.

e Run-time observation of both correct and incorrect
behavior can be fed into design-time fault localiza-
tion algorithms as if each run-time observation was
the execution of a test case.

3.2 Behavior specification language

To apply our diagnosis framework to a system, we have
to provide both a behavior model of the system and the
correctness criteria (see Figure 3), which are used as in-
puts by the Recognizer and the Oracle.

The behavior model describes how higher-level com-
putations are built from lower-lever computations. This
is done by declaring individual recognizers that will be
instantiated at runtime. The structure of a recognizer is
represented in Listing 1.

/* Declares the recognizer "name". The formal
parameters represent the computation types
this recognizer will use to Tecognizer a
higher-level computation. */

a0_type, ...) {

R o)

=)

/% The invariant contains a first-order predicate
logic statement over the arguments that
recognized computations must maintain.
invariant ... ;

/* The emit clause (more than one may be present)
defines what higher-level computations are
recognized. */
emit ... ;

/* Alternatively, a emit failure clause says that
we explicitly identified incorrect behavior.
*/

emit fail;

*/

Listing 1: Structure of a recognizer.

An important aspect of recognition is how to treat
events that do not fit into any pattern. We adopted a con-
servative approach: we assumed our knowledge of how
the system works is limited and, therefore, more compu-
tations can be detected that we do not know about. Un-
matched events are ignored.

In some cases we know that some events must always
be matched according to some pattern, and the absence
of a match signals a failure. For example, a request for an
equipment without a response indicates a failure. Our ap-
proach supports detecting these situations by specifying
recognizers that detect illegal computations. These rec-
ognizers, which make use of first-order logic’s existential
quantifiers, can detect that there is an event of type X for
which there is no match with a required event. They will
use the emit fail clause to report that incorrect behav-
ior has been detected.

The correctness criteria is described using oracles that
can be grouped into types to allow reuse. An example of
an oracle is represented in Listing 2.

/% The oracle type construction defines a class of

oracles that can be instantiated. */

oracle type latency_oracle {

/* Oracle types may have instance wvariables. The
maz_latency wvariable, of type "period"” (a
primitive data type representing a time span),

contains the maximum latency allowed. */
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m_max_latency period;

/* The oracle’s constructor. */
latency_oracle (max_latency period) {

m_max_latency = max_latency;

}

/* The evaluate method receives as argument the
type of computation that is evaluated by the
oracle and returns true or false depending on
whether the computation is correct or
incorrect. */
bool evaluate(c c_type) {

/* end () and start() are built-in
functions that return when a
computation ended and started,
respectively. */

return end(c) - start(c) < m_max_latency;

}

/* Oracles clauses specify the oracles themselwves,
instances of their types. note that 15s in
the argument is a literal walue of "period"”
primitive data type. */
oracle limit_15s = new latency_oracle(15s);

Listing 2: Structure of an oracle

Both oracles and recognizers refer to computation
types. Computation types have to be declared and may
represent architecture-level computations, such as the
TKIN, or simple events probed by the system’s instru-
mentation. Conceptually, computation types are similar
to Java classes. Listing 3 contains the computation type
and associated declarations of the probed_ebus msg
computation, which represents a message flowing in the
event bus probed by the system’s instrumentation.

/%A1l messages in the TKIN.
enum msg_type {

mt_best_eqp ,

mt_eqp

V/AREY:

*/

I8

/* A struct represents a composite data type, like
a Java class. The msg_data structure contains
information about a lot being processed (the

lot’s unique ID) and the type of message. */

struct msg_data {
m_lot_id string;
m_type msg_type;
/% Constructor. Works like Java. */
msg_data(t msg_type, 1 string) {
m_lot_id = 1;
m_type = t;

}
/* Function that checks whether two message data
refer to the same "thread" (lot). */
bool same_thread(m msg_data) {
return m_lot_id m.m_lot_id;

I8

/* A computation type is, syntax-wise, similar to
a structure. Computations always have a start
and end time and are associated with the set
of architectural elements that contributed to
them. These aspects of the computations are
handle mostly automatically and are, therefore
, invisible in the syntaxz. The colon
represents inheritance in the object-oriented
sense. */

computation type probed_ebus_msg msg_data {

/* Name of the components that originated the
message and to whom the message is destined. 4

single message may have multiple destinations

*/

m_src_name
m_dst_name
/* Constructor.

string;
set of string;
The msg_data constructor s

invoked with the colonm syntax. */
probed_ebus_msg(t msg_type , 1 string,
src_name string,
dst_name set of string)
msg_data (t , 1) {
m_src_name = sSrc_name;
m_dst_name = dst_name;
}
};

Listing 3: Event bus message type.

Computation types, recognizers and oracles form the
basis of the language used to recognize computations. In
general, the diagnosis system’s runtime keeps track of
which components contributed to each computation as
the computations are recognized into higher-level com-
putations. Computations classified by oracles are sent,
together with the list of components that contributed to
them, to the fault localizer which will evaluate them us-
ing the barinel algorithm described in [1].

To perform fault localization, we need to define what
the system’s architecture is. Our language implements a
subset of the Acme language [5] supporting the declara-
tion of component and connect types and their instantia-
tion. Listing 4 contains a partial declaration of the system
structure.

/* A component type specifies a class of
components. */
component type proc {

};

/* The ADS is a specialization of the proc
component type. */

component type ads proc {

};

/* An event bus represents a class of conmectors.
*/

connector type ebus {

}

/* ads_1 is a concrete component. */

component ads_1 = new ads;

*/

/* bus is the event bus.
connector bus = new ebus;

Listing 4: Declaration of the system structure.

3.3 Application to the target system

Applying our approach to the system at Samsung Elec-
tronics required defining the behavior of the system in
terms of the language described in Section 3.2. The main
lines of our approach were:

e Each bus message was recognized to produce sev-
eral messages: a message being sent by components
and one message (or more, depending on the desti-
nations) being received at components.




e The receive/send message pairs that contain call/re-
turn behavior, were recognized as a single compu-
tation.

For example, the BEST_EQP received at the ADS is
paired with the EQP sent by the ADS to produce a
ads_eqp computation.

e Each pair also produced recognizers that detect be-
havior failures on timeouts.

For example, ads_eqp_no_response recognizer
recognizes a BEST_EQP for which no EQP exists.

e Sequential computations were then bound together
in a single computation that represents a sequen-
tial flow. We ended up with three sequential flows:
eqp-prep which corresponds to the flow until the
EES decides on a pass or fail, a test_pass which
corresponds to the “pass” optional section in the
protocol flow and a test_fail which corresponds
to the “fail” optional section in the protocol flow.

For example, the ads_eqp is matched to the
mos_start (recognized from a BEST_EQP de-
tected at the MOS) to yield a mos_ads_eqp. The
mos_ads_eqp is matched with a mos_prep (recog-
nized as a EQP/PREP_EQP pair at the MOS) to yield a
mos_eqgp_prep and so on.

e The alternative flow was modeled using four rec-
ognizers: one that recognizes a eqp_prep and a
test_pass into a eqp_pass, one that recognizes a
eqp-prep and a test_fail into a eqp_fail, one
that ensures either test_pass or test_fail, and
one that recognizes a single_run from either an
egp-pass or an eqp_fail.

e Loops were modeled using recursion and loop lim-
itation by placing a counter in the computation.

For example, the tkin computation type has an
attribute m_count that specifies the run count. A
tkin can be recognized from another tkin and
a single run. The newly generated tkin has a
m_count which is one value higher the the previous
tkin.

It is worthy discussing more deeply the matching of
call / return patterns within the TKIN protocol. If the con-
tract for the ADS is, as is the case, to always reply with
an EQP to a BEST_EQP request, then receiving an EQP and
not replying with a BEST_EQP is a failure regardless of
whether there is any other component involved. How-
ever, if the contract for the ADS were to only reply to
some requests (for example, invalid requests would not
have a response), then the pair BEST_EQP/EQP would not
be enough to pinpoint a failure in the ADS component and
the call / return pattern could not be applied.

The previous discussion hints at two important aspects
of our approach: (1) because behavior is formally mod-
eled, it reduces ambiguity in system specifications, and
(2) the small pieces of the protocols follow patterns that
are reusable across multiple systems, while the large,
complete protocols generally do not.

4 Metrics for evaluation

To evaluate how well the diagnosis algorithm performs,
we need to identify a set of appropriate metrics. There
are two main areas of metrics that are applicable in do-
mains sharing similarities with ours: metrics used for
evaluation of classifiers and metrics used for evaluation
of fault localization algorithms.

Our algorithm has similarities with classifiers in ma-
chine learning: it will output a classification of which
components are faulty and which are not. In that sense,
the classic metrics of precision and recall, or one of its
variants, seem to be relevant. However, those statistics
are applicable only in binary cases [6] and our classifier
outputs a probabilistically ranked classification. Many
components — maybe even all — may show up as out-
puts but their probability, or rank is relevant: if the faulty
component has probability of 0.99 and all the others have
probability % where n is the total number of compo-
nents, this is generally seen as a good classification al-
though it has a low value of precision. In the presence
of few faulty components, recall will always tend to the
high or low spectrum. These metrics are, therefore, not
applicable.

The fault localization literature uses ranking for eval-
uation: the real probability attributed to diagnosis is only
relevant in comparison with the others. The rationale be-
hind this metric is that developers will tend, in order to
correct the faults, to inspect components by rank order
and, therefore, the lower the rank of the faulty compo-
nent, the more effort will be wasted. This metric is ap-
plicable to evaluate run-time diagnosis.

However, at runtime, timing (performance) also be-
comes an important issue. If at design time, the time
taken for diagnosis is not relevant, at runtime it may be
critical for autonomic recovery. Also, at runtime, many
diagnoses can be produced for the same system and they
may yield different values. Therefore, we introduce two
metrics:

Jailure identification time (FIT) that measures the time
between when the fault is activated and when the
diagnosis system presents some information that
something is wrong;

diagnosis stabilization time (DST) that measures the
time between failure identification and diagnosis



stabilization: when the system decides on which di-
agnosis to consider final.

While on some systems — like the one presented in this
case study — it is the sum of both metrics that is relevant,
in other circumstances they may have different impacts:
if a breach in a high-security system is detected (fail-
ure identification time) we may want to disconnect the
system from the network immediately even before com-
puting which part of the system was breached (diagnosis
stabilization time).

5 Evaluation

We evaluated the system by defining the computations
using the specification language proposed. We then iden-
tify a set of scenarios in which the system would fail in
some predicted way. These scenarios were designed to
simulate types of problems that mimic real problems ob-
served at Samsung Electronics.

1. EES will send a FAIL message and, 3s later, will
send the PASS message. Because the MOS will re-
spond to both events, this will start two parallel
flows: one for the successful evaluation, which will
end with a TKIN, and another for the unsuccessful
evaluation, which will end with a retry of the whole
process.

2. TC database is too slow to respond.
3. TC will send CHECK_EQP to ADS instead of EES.

4. Active MOS fails and is later replaced by passive
MOS.

5. MOS retries four or more times.
6. ADS does not issue ADB_Q1.

7. The ADS database is too slow to respond.

Evaluation addressed the two main goals stated in the
introduction: (1) diagnosis accuracy and (2) diagnosis
performance. Based on our description in Section 4,
we measured the accuracy of the system as the rank of
the faulty component in the diagnosis and we measured
performance by computing the failure identification time
and diagnosis stabilization time.

We also computed another measure, not directly re-
lated to the diagnosis system, but of relevance to Sam-
sung Electronics: an estimate of the maximum through-
put of the system. Since every recognizer can be run in a
different system, the maximum throughput of the system
is limited by the amount of time the slowest recognizer
takes to perform its evaluation.

Scenario Component’ | Rank*
1: EES sends FAIL and PASS | EES 1

2: TC database is too slow TCDB 1

3: TC will send message to | TC 1

ADS instead of EES

4: MOS fails and is replaced | MOS.1 1

by standby

5: MOS will retry 4 times MOS.1* 1

6: ADS will not issue ADS_Q1 | -** o

7: ADS database is too slow | ADSDB P

Table 1: Evaluation of performance metrics in the sce-

narios.

Component where the fault was injected.
* Average rank among 10 scenarios.
* MOS. 1 was the active MOS.
** No failure was detected by the diagnosis system in this scenario.
*** ADS and ADSDB were both ranked with an equal probability of 0.5
in all 10 scenarios. We count as 2 as a developer / system maintainer
may want to inspect the ADS before the database. We took the most
conservative approach.

5.1 Accuracy evaluation

The average result of measuring accuracy in 10 scenar-
ios is presented in Table 1. These results show that the
system was able to correctly detect a failure in all sce-
narios except scenario 6. Because databases are a source
of performance bottlenecks at Samsung Electronics, it
was not possible to determine communication between
ADS and ADSDB. Consequently, the diagnosis system has
no way of distinguishing between the slowness of ADS
and ADSDB; each component is equally likely to be the
cause of the slowness. Interestingly, we are able to dis-
tinguish the slowness of TCDB. Because the two TC com-
ponents connect to the same database, slowness in both
increases the probability of the fault being localized in
the database.

5.2 Performance evaluation

Performance metrics evaluated in all scenarios are shown
in Table 2. For each evaluation scenario we ran the sce-
nario 10 times and collected the two performance metrics
discussed in Section 4. The fault localizer in Figure 3
outputs the results regularly (once every second).

As said before, the FIT is the time between the fault
being activated and a diagnosis being produced that in-
cludes an identification of a failure. If this diagnosis re-
sult already included the failed component ranked in first
position, then the diagnosis stabilization time (DST) is
0. In several scenarios, a later diagnosis never placed
another component in first position, meaning that most
scenarios have an instantaneous DST. In scenario 2 how-
ever, because TCDB was not instrumented, the detection



that it was the source of the failure required more data
and, therefore, DST is greater than 0.

The minimum FIT column is added for reference. It
is the minimum theoretically possible FIT that would de-
tect the failure. In scenario 1, for example, the FAIL mes-
sage is sent 3s after the PASS message so, before that, no
failure can be detected although the invalid code has al-
ready been started. In some examples, like this one, we
could have deducted the minimum FIT from the FIT but
due to scenarios in which the timing is not so predictable
(like introduced database slowness in scenarios 2 and 7)
this would not be consistent.

In the classical dependability taxonomy [2], FIT is ac-
tually measuring the time since the error was introduced,
not since the failure was observed.

6 Lessons learned

The application of our diagnosis framework to the sys-
tem at Samsung Electronics provided us with confirma-
tion that several of our assumptions appear to be sup-
ported in an industrial setting and also provided us with
insight into some other areas.

Decomposing computations is critical to the success
of the diagnosis. As a result of the decomposition, fail-
ures can be identified not only in the high-level compu-
tations but, sometimes, also in lower level computations.
This result allows diagnosis sometimes to be performed
in a much smaller set of components yielding a much
faster response and a higher accuracy. For example, a
lack of EQP response allows inferring immediately a fault
in the ADS component due to the request / response low-
level computation model.

Even with strict protocols, reasoning-based diag-
nosis analysis is sometimes necessary. The previ-
ously mentioned decomposition allows local detection
and identification of the source of the failure in some
some cases. This is consistent with industrial practice
in which many instances of this reasoning — like heart-
beats or timeouts — are used. However, in some cases
this is not sufficient. As seen, for example, in scenario 2
where the TC database slows down, more complex rea-
soning may be required to accurately pinpoint the source
of the failure.

Behavior specifications can be built up using pat-
terns that are reusable across systems. The computa-
tions that comprise the behavior specification we build
are defined on top of smaller patterns of well-known
computation styles like call/return, alternative flows or
loops. Therefore, although different systems may need
to specify their own idiosyncratic high-level computa-
tions, a significant number of specification blocks may
be reused across systems.

Domain experts are able to provide correctness
specifications for high-level computations. Domain
experts would not be able to explicitly state that within
15 seconds after a BEST_EQP message had been seen in
the event bus, an EQP message from the same ADS to the
same MOS with the same lot_id field should be seen in
the event. This reasoning involves a great deal of low-
level detail. However, domain experts were able to state
that the ADS should respond within 15 seconds of a re-
quest for an equipment. This means high-level computa-
tions have an abstraction level that matches the domain
experts’ understanding of the system and are, therefore,
a good level to write correctness specifications.

Instrumentation design must consider a trade-off
between system performance, diagnosis accuracy and
diagnosis performance. The limitation on the observ-
ability of some events creates uncertainties which, in
some cases like scenario 2 were solved by the reasoning-
based analysis with a performance penalty. But in other
cases, like scenario 7, this was not possible. However,
instrumenting the connection between the ADS and its
database was not possible because it was considered
by Samsung to introduce an unacceptable performance
penalty.

This means that diagnosis accuracy and diagnosis per-
formance have to trade with other system quality at-
tributes. In this system they traded with system perfor-
mance but in other systems they may have to trade with
other quality attributes. For example, probing some con-
nections may lead to easier information leaks, so security
could be another quality attribute that would be nega-
tively affected by the introduction of autonomic diagno-
sis.

7 Conclusions and future work

The results indicated by this case study are encouraging
as they show that the expected results match practical
experimentation and several of our assumptions hold at
least in this practical scenario. These conclusions are,
however, still bound to be the result of a simulation of
the real system.

We strongly believe that, in spite of being shown to
work on a simulator, our work would be usable in the
real industrial setting: adapting the diagnosis system to
the real system will require some engineering, but will
not raise any new fundamental problems. The diagnosis
system can receive the messages from the real system’s
event bus, just as it receives messages from the simulator
itself; the real system events have all the information re-
quired for the diagnosis to work; the timings on the simu-
lator are randomized and the real system’s timings would
also be seen as random, although, most likely, with a dif-
ferent distribution.



Scenario avg FITT | std FIT'? Min FIT™" | avg DST# | std DST #
1: EES sends FAIL and PASS 5,506 319 3,000 0 0
2: TC database is too slow 13,506 3,212 5,000-15,000 436 432
3: TC will send message to ADS instead of 17,708 309 15,000 0 0
EES

4: MOS fails and is replaced by standby 15,197 1,505 | 10,000-15,000 0 0
5: MOS will retry 4 times 2,861 0,343 0 0
6: ADS will not issue ADS_Q1 -* -* -* -* -*
7: ADS database is too slow 10,204 1,131 5,000-10,000 0 0

Table 2: Evaluation of performance metrics in the scenarios. All results in milliseconds.

T

l Average failure identification time.
1 Theoretical minimum failure identification time.

# Standard deviation of diagnosis localization time.

The main threat to the validity of the simulation is
scalability: our simulated system contains only two in-
stances of the MOS and the TC and only one instance of
the ADS and the EES. The performance of our recogniz-
ers and oracles can be made independent of the number
of components of the architecture through horizontal par-
titioning of the event space. Their number increases but
they may be run in parallel if we need to scale up. The
point of contention may be the fault recognizer whose
complexity raises with the number of components. How-
ever, experimentation at design time in [1] has shown that
it can handle large numbers of components.

With respect to future work, there are two main com-
plementary paths that we plan to follow: the industrial
path and the research path. On the industrial path, we
plan to continue to work to bring this system into Sam-
sung Electronics’ real system.

On the research path, integration of diagnosis with a
self-adaptive framework is a critical piece. It is clear that
diagnosis can be used to drive self-repair. But because
diagnosis introduces the need to perform trade-offs (for
example, between performance and accuracy), it is also
reasonable to assume that, ideally, the self-adaptive con-
trol loop should tune diagnosis at run time.

Also, in this work we had to manually handle the prob-
lem of non-observability: we added the databases to the
computations because we knew they were involved even
though we did not observe the events. However, we think
this approach is more general. The observed behavior
could be a projection of the complete behavior in which
non-observable computations have been removed. The
recognizer and the oracle will have to be updated ac-
cordingly, but further research is required to automate
this process and understand the implications for diagno-
sis accuracy and performance.

Standard deviation of failure identification time.
¥ Average diagnosis localization time.

* No failure was detected by the diagnosis system in this scenario.
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